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ABSTRACT: Melanoma is the deadliest form of skin cancer, with an increasing incidence over recent years. Over
the past decade, researchers have recognized the potential of computer vision algorithms to aid in the early diagnosis
of melanoma. As a result, a number of works have been dedicated to developing efficient machine learning models
for its accurate classification; still, there remains a large window for improvement necessitating further research
efforts. Limitations of the existing methods include lower accuracy and high computational complexity, which may be
addressed by identifying and selecting the most discriminative features to improve classification accuracy. In this work,
we apply transfer learning to a Nasnet-Mobile CNN model to extract deep features and augment it with a novel nature-
inspired feature selection algorithm called Mutated Binary Artificial Bee Colony. The selected features are fed to multiple
classifiers for final classification. We use PH2, ISIC-2016, and HAM10000 datasets for experimentation, supported by
Monte Carlo simulations for thoroughly evaluating the proposed feature selection mechanism. We carry out a detailed
comparison with various benchmark works in terms of convergence rate, accuracy histogram, and reduction percentage
histogram, where our method reports 99.15% (2-class) and 97.5% (3-class) accuracy on the PH2 dataset, while 96.12%
and 94.1% accuracy for the other two datasets, respectively, against minimal features.

KEYWORDS: Skin lesion classification; CNN; transfer learning; artificial bee colony; entropy-controlled; bio-inspired;
computer-aided diangosis (CAD)

1 Introduction
Cancer is a pathological condition characterized by aberrant proliferation of cells in many anatomical

locations within the human body [1]. Skin is a vital organ in the human body that includes all the muscular,
skeletal, and visceral components. The fundamental role of the skin is to protect the body from external
factors, including chemicals, pathogens, and temperature variations [2]. Naturally, a skin disease, such as
skin cancer, will have a consequential impact on all other bodily organs. Several prominent risk factors for
skin cancer include genetic susceptibility, fair skin, repeated sunburns, and other medical conditions [3].
Although skin cancer continues to increase worldwide as well, studies suggest that it is the most prevalent
kind of cancer in the US [4]. Recent studies [5] suggest that around 9500 people are diagnosed with general
skin cancers every day, where more than 2 die every hour only in the US. Similarly, another study by the
American Cancer Society [6] reveals that 104,960 people are projected to be diagnosed only with melanoma
in 2025, leading to an alarming number of 8430 deaths. The situation, unfortunately, isn’t encouraging in the
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rest of the world either, especially in Australia and Scandinavia [7]. Due to its rapid growth and metastasis,
melanoma is the most severe form of cancer [8]; however, it is curable with early detection and treatment [9].
Malignant and benign examples from various melanoma datasets are shown in Fig. 1.

Figure 1: A few image samples from the selected datasets of ISIC-2016 and PH2-illustrating melanoma and benign
classes

Considerable progress has been made by numerous researchers in the field of computer vision for skin
cancer detection [4,10–13].

One significant challenge associated with this approach is the substantial data requirement for model
training. The problem has been successfully resolved by utilizing transfer learning (TL) [14]. Several
researchers utilized multiple pre-trained models to categorize computer vision and medical imaging tasks.
These models include VGG [15], GoogleNet [16], ResNet [17], and Densnet201 [18].

Despite the great strides taken thus far, a lot more work is needed to fix the problem with the detection
and classification phases. Given the significance of feature selection for improving the model’s overall
accuracy and decreasing computation time, this research focuses primarily on the feature selection process as
a strategy to alleviate the challenge referred to as the curse of dimensionality. Given the increasing recognition
of bio-inspired techniques in the field of feature selection, we present a unique approach known as the
mutated binary artificial bee colony (MBABC) algorithm. The primary advantage of employing MBABC
compared to traditional methods, such as particle swarm optimization (PSO), genetic algorithm (GA), grey
wolf optimization (GWO), and BMNABC, resides in its improved exploration and exploitation balance,
broader search space, and its ability to adjust the selection strategy. Moreover, the implementation of
the entropy function for fitness evaluation has necessitated adaptations in the employed bee phase. This
extension not only enhances diversity but also facilitates fast convergence and reduces the likelihood of being
stuck in local minima.

The following is the logical progression of this article: The current approaches are discussed in Section 2,
and then the problem statement and contributions are presented in Section 3. Section 4 will focus on the
datasets and models used in the study, followed by the proposed section. Section 5 discusses the results,
followed by Section 6, which concludes our work.
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2 Literature Review
Skin cancer classification is a well-researched field, with numerous contributions, directly towards

deep learning models and feature selection methods, proposed in the past few years. Bassel et al. [4]
introduced an automated technique for classifying benign and malignant skin cancer by utilizing a hybrid
deep learning approach. They utilized several pre-trained deep models, such as Xception, ResNet50, and
VGG16, to perform feature extraction on the ISIC-2019 dataset. Afterwards, the deep features wee passed to
the classifiers, that included support vector machines (SVM), random forest (RF), neural networks (NN), and
K-nearest neighbors (KNN). To evaluate the effectiveness of the proposed framework, various performance
metrics such as F1 score, accuracy, AUC, and sensitivity were employed. The proposed method achieved an
accuracy of around 90.9% when applied to the extracted features using the Xception model.

Ali et al. presented a multi-class classification of skin cancer by applying pre-processing and transfer
learning techniques [11]. During the preprocessing stage, the images from HAM10000 dataset were scaled
and augmented, and the hair were removed using existing techniques. They evaluated the effectiveness of
different variants of EfficientNet. To accomplish this, they applied transfer learning to Efficientnet B0-B7
nets. The evaluation criteria used in this article were recall, accuracy, and F1 score. Among all, EfficientNet
models, B4 performed well with an accuracy of 87.91% and an F1 score of 87%.

In their study, Bechelli et al. [12] employed a combination of conventional and deep learning approaches
to classify skin cancer from dermoscopic images. They used multiple machine learning algorithms, including
logistic regression (LR), linear discriminant analysis (LDA), decision tree classifiers (DTC), k-nearest
neighbors classifiers (KNN), and Gaussian Naive bayes (GNB). Additionally, they utilized their own 11-
layered custom convolutional neural network (CNN) model, as well as pre- models such as ResNet50,
Xception, and VGG16. Their model achieved an accuracy rate of 84%, while among the conventional machine
learning models, LR exhibited the highest performance with an accuracy rate of 72%. On the other hand,
among the deep learning models, VGG16 outperformed the rest with an accuracy of 88%.

Chen et al. [19] proposed a multimodal data fusion diagnosis network (MDFNet) for the purpose of
classifying skin cancer. The proposed approach extensively integrated feature fusion in conjunction with
the attention mechanism. The proposed method consisted of three main steps: 1. Construction of a feature
extraction mechanism based on two modes; 2. Implementation of attention mechanisms to effectively handle
multimodal features; and 3. Integration of multimodal characteristics through fusion. Various models,
including ResNet50, VGGNet19, Inception-V3, and DenseNet121, were employed for feature extraction. The
developed approach achieved an accuracy of 80.42%, exhibiting a 9% improvement in comparison to models
solely utilizing medical images.

Hosny et al. [20] proposed a refined residual deep convolutional neural network for skin cancer
classification. This research work utilized six skin cancer datasets: ISIC (2016, 2017, 2018), MED-NODE,
DermIS, Quest, and PH2 and considered a set of experiments for evaluating the proposed model. Ini-
tially, the proposed residual deep convolutional neural network (RDCNN) was trained and tested on the
dataset without undergoing any preprocessing. Subsequently, during the second experimentation, the model
underwent testing on the segmented images. Finally, the model obtained from the second experimentation
was employed as a pre-trained model for final classification. The results demonstrated that their proposed
RDCNN model surpassed other models and achieved the best accuracy, around 96.29%, on the ISIC
2017 dataset.

Tembhurne et al. [21] proposed a method for detecting skin cancer using a combination of traditional
and modern machine learning approaches. The dataset used in this study was sourced from Kaggle, a
publicly accessible platform, and consisted of processed images from the ISIC dataset. The developed
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technique relied on four key steps: 1. Feature extraction; 2. Concatenation; 3. Dimensionality reduction; and
4. Classification. The features were initially retrieved using the contourlet transform (CT) and local binary
pattern histogram (LBP). Subsequently, the extracted features from both algorithms were combined before
applying the principal component analysis (PCA) for dimensionality reduction. The concatenated features
were later classified using two classifiers: logistic regression (LR) and linear support vector machines (SVM).
The proposed technique achieved a precision of 93%. Similarly, other researchers have also explored several
different pre-trained CNN models, either solely or in conjunction with the other pre-trained models [22–25].
In Table 1, the existing techniques are summarized briefly on the basis of the methodologies proposed, the
precision, and the datasets utilized.

Table 1: A few existing techniques

Year Authors Method Highest
accuracy (%)

Datasets

2025 Padhy
et al. [22]

Deep R-LSTIM50 model by combining
ResNet50 for feature extraction, and Long
Short-Term Memory (LSTM) for temporal

modeling

95.72%, 94.23% ISIC 2020,
HAM10000

2024 Bibi
et al. [26]

Contrast enhancement, Feature extraction
(DenseNet 53, 201), Fusion (Serial-harmonic

mean), Selection (Marine predator
optimization)

85.4, 98.80 ISIC 2018, 2019

2024 Chen
et al. [19]

Multimode data fusion diagnosis network
(MDFNet)

80.42 PAD-UFES-20

2023 Tahir
et al. [27]

DSCC_Net 94.17 ISIC 2020,
DermIS, and
HAM10000

2023 Tembhurne
et al. [21]

Feature extraction, Fusion, dimensionality
reduction, and classification

93 Kaggle dataset

2023 Gilani
et al. [28]

Spiking VGG-13 89.57 ISIC 2019

2023 Kibriya
et al. [29]

SegNet 89 ISIC 2016

2022 Khan
et al. [30]

Optimized Color Feature, Feature Extraction
DCNN-9, Normal Parallel Fusion, Normal

Distribution base High-ranking Feature
Selection

92.1, 96.5, and
85.1

ISBI
2016,2017,2018

2022 Kaur
et al. [31]

Lesion classification network (LCNet) 81.41, 88.23, and
90.42

ISIC 2016, ISIC
2017, and ISIC

2020
2022 Bassel

et al. [4]
Transfer learning (Xception, ResNet50, and

VGG16), Feature Extraction, and
classification

Xception = 90.9 ISIC 2019

2022 Ali et al. [11] Transfer learning (Efficientnet B0-B7), and
classification

B4 = 87.91 HAM10000

(Continued)
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Table 1 (continued)

Year Authors Method Highest
accuracy (%)

Datasets

2022 Bechelli
et al. [12]

ML(LDA, LR, DTC, KNN, and GNB), DL
(Custom NN, ResNet50, Xception and

VGG16)

LR = 72, CCNN
= 84, VGG16 =

88

HAM10000

2022 Saarela
et al. [32]

Customized deep model 80 HAM10000

2022 Atta
et al. [10]

Custom 15 layer deep model 89.4 Claudio
Fanconi

2021 Srinivasu
et al. [23]

Comparison of MobileNet-V2 and LSTM 85% HAM10000

2020 Khan
et al. [33]

Contrast Stretching, Boundary Localization,
Transfer Learning DenseNet, Feature
Extraction, Feature Selection Newton

Raphson

94.5, 93.4 ISBI 2016, 2017

Despite extensive work on skin lesion classification, several gaps remain. First, many methods strive to
boost accuracy but pay limited attention to dimensionality reduction—leading to high feature redundancy
and potential overfitting. Second, computational complexity is seldom discussed in detail, making it difficult
to assess a model’s practical feasibility. Third, bio-inspired optimization techniques, such as swarm and
evolutionary strategies, are underutilized despite their potential to mitigate the “curse of dimension-
ality”. Especially, the advanced metaheuristics remain underexplored for class-imbalanced datasets like
HAM10000. Fourth, many approaches evaluate performance on a single or closely related dataset, leaving
questions about cross-dataset generalization. Finally, although some studies handle multi-class problems,
many focus primarily on binary classification, inhibiting broader clinical adoption.

3 Problem Statement & Contributions
Existing methods in automated skin lesion classification are limited in their practical efficacy due to

numerous significant challenges that have not been responded: despite substantial research in the field.
Mostly, several presented methods emphasize accuracy improvement without sufficient fixing of dimen-
sionality reduction, leading to duplicated features and elevated overfitting risk. Additionally, computational
complexity and efficiency are often overlooked, posing difficulties in real-world implementation, particularly
in resource-constrained clinical environments. Although bio-inspired optimization methods, especially
advanced metaheuristics, have shown the potential to resolve these challenges, their use remains constrained,
mostly in class-imbalanced datasets. Ultimately, the majority of research primarily focuses on binary
classification, overlooking the complex challenges present in multi-class clinical scenarios. Therefore, it
is evident that a strong and computationally efficient feature selection method is necessary to overcome
these limitations, thereby improving the reliability, scalability, and practical applicability of skin lesion
classification systems.

In this study, we consider a labeled dataset D = {(xi , yi)}N
i=1 of images xi with class labels yi . By

passing each xi through MobileNet, we obtain high-dimensional feature vectors fi ∈ RD , which together
form the feature matrix F ∈ RN×D . We then define a binary selection vector s = (s1 , . . . , sD) ∈ {0, 1}D , where
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s j = 1 indicates the j-th feature is chosen; thus each sample i is represented by the reduced vector f̃i(s) =
( fi1s1 , . . . , fi DsD). To measure classification performance, we let C be a classifier trained on the selected
features with average accuracy.

A(s) = 1
N

N
∑
i=1

I( yi = C(f̃i(s))) (1)

To balance accuracy with feature reduction, we solve

max
s∈{0,1}D

[A(s) − λ ∥s∥1

D
] (2)

where ∥s∥1 counts the selected features, and λ ≥ 0 is a regularization parameter. Our proposed algorithm
efficiently tackles this combinatorial optimization, identifying an optimal (or near-optimal) feature subset
s∗, which is then used to train the final classifier.

The significant contributions of this work are as follows:

1. A novel bio-inspired metaheuristic algorithm, mutated binary artificial bee colony (MBABC), for
feature selection is proposed to address the challenges posed by over-fitting, “curse of dimensionality”,
and computational cost. The core objective is to identify and ultimately choose the most discriminatory
feature information for the final classification.

2. A thorough evaluation framework is developed that not only assesses robustness and generalization of
the proposed feature selection method using multiple datasets, but also compares it with the baseline
models using various metrics The results are compiled by conducting Monte-Carlo simulations for
stability analysis.

4 Materials and Method

4.1 Dataset
Our proposed methodology in this research is assessed using three publicly accessible benchmark

datasets: ISIC-2016 [34], PH2 [35], and HAM10000 [36]. Both ISIC-2016 and PH2 consist of two distinct
categories, specifically malignant and benign. Whereas the HAM10000 dataset consists of 7 classes. The ISIC-
2016 dataset comprises of 1145 images, PH2 has 200 images, whereas HAM10000 has 10,015 images. The
dataset’s summary is presented in Table 2.

Table 2: Datasets summary

Benchmark dataset Classes Total images

ISIC-2016 Melanoma 232
Benign 913

Melanoma 40
PH2 Nevus 80

Atypical 80

(Continued)
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Table 2 (continued)

Benchmark dataset Classes Total images
Actinic Keratosis (AKIEC) 327

Basal Cell Carcinoma (BCC) 514
Benign Keratosis (BKL) 1099

HAM10000 Dermatofibroma (DF) 115
Melanoma (MEL) 1113

Melanocytic Nevi (NV) 6705
Vascular Lesions (VASC) 142

4.2 Evaluation Matrics
To evaluate the performance of the proposed method comprehensively, several standard evaluation

metrics were utilized. Initially, a confusion matrix was constructed to visualize the performance through
the classification of predictions into four distinct categories: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) [37]. Based on these categories, the following performance measures
are calculated:

1. Accuracy calculates the ratio of accurate predictions relative to the total number of predictions:

Accurac y = TP + TN
TP + TN + FP + FN

2. Precision quantifies how precise the positive predictions are, defined as the ratio of correctly identified
positive cases to all predicted positive cases:

Precision = TP
TP + FP

3. Recall (Sensitivity) evaluates the method’s ability to identify positive instances correctly. High recall is
especially critical in medical diagnosis to minimize the risk of missing potentially malignant lesions:

Sensitiv ity = TP
TP + FN

4. Specificity measures the proportion of correctly identified negative instances:

Speci f icity = TN
TN + FP

5. F1-score is the harmonic mean of precision and recall, providing a balanced measure especially useful
when dealing with imbalanced datasets:

F1−score = 2 × Precision × Recal l
Precision + Recal l

6. Matthews Correlation Coefficient (MCC) evaluates the quality of binary classifications, considering
all four confusion matrix categories (TP, TN, FP, FN):

MCC = (TP × TN) − (FP × FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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4.3 CNN
Convolutional Neural Network (CNN) is a specialized architecture that has been specifically designed

for computer vision applications. These architectures have significantly transformed the domain of computer
vision by facilitating the learning of complex visual patterns and automatic recognition, thus enabling the
implementation of image segmentation, object detection, and classification, among other applications.

Nasnet-mobile
Construction of the Nasnet-Mobile convolutional neural network model utilizes the neural architecture

search (NAS) technique. Neural architecture search is a procedure that autonomously looks for the optimal
network architecture for a specified task. Designed specifically for mobile devices, this version of the NasNet
architecture is more compact and efficient.

Compared to deep models such as ResNet and InceptionV3, NasNet-mobile is an exceptionally quick,
shallow, and compact convolutional neural network model with 70 layers and 4.2 million parameters. The
Nasnet-mobile model utilizes the Adam Optimizer in combination with the Rectified Linear Unit (ReLU)
activation function. The comprehensive Nasnet-mobile architecture is illustrated in Table 3.

Table 3: Nasnet-mobile architecture

Layers Input size Output size
Conv, 3 × 3 224 × 224 × 3 112 × 112 × 32

MBConv1, 3 × 3 112 × 112 × 32 112 × 112 × 16
MBConv6, 3 × 3 112 × 112 × 16 56 × 56 × 24
MBConv6, 3 × 3 56 × 56 × 24 56 × 56 × 24
MBConv6, 5 × 5 56 × 56 × 24 28 × 28 × 40
MBConv6, 5 × 5 28 × 28 × 40 28 × 28 × 40
MBConv6, 3 × 3 28 × 28 × 40 28 × 28 × 80
MBConv6, 3 × 3 28 × 28 × 80 28 × 28 × 80
MBConv6, 3 × 3 28 × 28 × 80 28 × 28 × 80
MBConv6, 5 × 5 28 × 28 × 80 14 × 14 × 112
MBConv6, 5 × 5 14 × 14 × 112 14 × 14 × 112
MBConv6, 5 × 5 14 × 14 × 112 14 × 14 × 112
MBConv6, 5 × 5 14 × 14 × 112 7 × 7 × 192
MBConv6, 5 × 5 7 × 7 × 192 7 × 7 × 192
MBConv6, 5 × 5 7 × 7 × 192 7 × 7 × 192
MBConv6, 5 × 5 7 × 7 × 192 7 × 7 × 192
MBConv6, 3 × 3 7 × 7 × 192 7 × 7 × 320

Conv 1 × 1 and Pooling and FC 7 × 7 × 320 7 × 7 × 1280

4.4 Transfer Learning
A critical concern arises when confronted with the substantial volume of data needed for the CNN

framework. Deep learning models demand a significantly greater volume of data for training purposes when
compared to conventional machine learning models. Nevertheless, this issue has been resolved since the
inception of transfer learning [38]. By utilizing transfer learning, it is feasible to train a deep learning model
despite the limited availability of data. Fig. 2 demonstrates a visual illustration of transfer learning. In this
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process, the final layers of the model are replaced with the new layers, and the weights in the previous layers
remain frozen.

Figure 2: Transfer Learning: A CNN model trained on ImageNet is adapted for skin lesion classification by substituting
and fine-tuning its final layers

The steps involved in transfer learning are listed below:

1. Selection of a pre-trained model Pθ , that is trained to perform tasks Ts , with a source domain SD .
2. Change the fully-connected (FC) layer of the Pθ , and fine-tune it on your dataset.
3. The output model is fine-tuned on new data Nd , to perform new tasks Tt on target domain TD .

4.5 Proposed Framework
The proposed framework in Fig. 3 encompasses a comprehensive pipeline that spans from the initial

acquisition of images to the last stage of classification. The images obtained from the chosen databases
are initially fed into the selected pre-trained model, followed by transfer learning application. This process
involves substituting the last three layers with the newly initialized layers. By maintaining the frozen state
of the existing weights in the previous layers, the model undergoes retraining on the chosen datasets, which
then extracts the resulting features. It is crucial to acknowledge that the last layers possess the potential to
provide redundant information. Consequently, it becomes necessary to employ a feature selection strategy
to improve efficiency.
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Figure 3: Schematic of the proposed BioSkinNet framework: From the image acquisition block to the final classification
block

In the field of machine learning, and feature selection in particular, bio-inspired algorithms have
recently emerged as key players. These algorithms draw inspiration from the principles of evolution and
biological systems, and encompass a category of optimization methodologies that have been effectively
employed in diverse sectors for problem-solving purposes [18]. In this research, we focus on the artificial
bee colony (ABC) algorithm, which emulates the foraging behavior of honeybees to explore and improve
the solutions. The ABC algorithm employs two distinct categories of bees: employed bees and observer
bees. The foraging behavior involves employed bees actively exploring the solution space surrounding
their present food source. On the other hand, the observer bees make decisions regarding food sources
by relying on the information acquired from the employed bees. Bees engage in a dance-like technique to
transmit the quality of their food sources to one another. As the algorithm advances, an increasing number
of spectator bees opt for the most optimal food sources, thereby facilitating the exploration of novel and
superior problem-solving strategies. The proposed method integrates an entropy-based fitness function with



Comput Model Eng Sci. 2025;143(2) 2343

a balanced exploration-exploitation mechanism. Moreover, with mutation-driven diversity, it often surpasses
other feature selection methods. While many traditional algorithms (e.g., PSO, GA, GWO) risk early
convergence or poor local minima in high-dimensional spaces, MBABC’s added mutation phase that flips
feature bits stochastically - allowing swarm to escape suboptimal regions. Simultaneously, its entropy-based
fitness penalizes redundancy more precisely than just accuracy-based approaches by rewarding the most
discriminative feature subsets. This combination consistently yields higher classification performance, more
robust convergence, and better feature reduction than competing approaches, making MBABC well-suited
to real-world tasks that demand both accuracy and efficiency.

4.5.1 Mutated Binary Artificial Bee Colony Algorithm (MBABC)
In order to optimize the mathematical operations, Karaboga [39] presented the ABC algorithm as a

swarm intelligence method. It is based on how honey bee colonies hunt for food. The bee colony consists of
three distinct types of bees, namely employed bees, onlooker bees, and scout bees.

In the initial phase, the employed bees engage in foraging activities to locate food sources. They
communicate their findings to onlookers, who then evaluate the information provided by the employed bees
to determine which food sources to exploit. The decision-making process is predicated on the employed
bees’ perception of whether a specific food source constitutes a geographically optimal solution. When a
food source does not experience any advancements within a designated period of time, referred to as the
abandonment counter (AC), the bee linked to that food source transitions into a scout bee. During the scout
bees’ phase, the bees look for more food sources using an algorithm called AC that operates with a threshold
value set by the user.

The variables χm and l represent the random food source and dimension, respectively. Additionally, φ
denotes a randomly produced number within the range of [−1, +1]. The ζkl is evaluated by following a greedy
criterion. If the new solution ζk is improved compared to the existing solution χk , the employed bees update
the new solution by resetting the counter AC to either zero or one. The fitness value is calculated based on
an improved entropy-based criterion.

Ok = −
n
∑
p=1

ζp log2 ζp (3)

for the given objective function O, the fitness is calculated based on predefined threshold value.

f itk = {
Ok i f (Ok > τ)
Ok−1 otherwise (4)

4.5.2 Initialization Phase
During this phase, the value of AC is set to zero and a predetermined limit value is established. Moreover,

within the predetermined boundaries, the food sources are designated at random.

γkl = χmin
l + rand(0, 1)(χmax

l − χmin
l ) k = 1 . . . N f ood , l = 1 . . . Ud im (5)

The variable N f ood signifies the overall number of food sources, whereas Ud im represents the potential
dimensions, while Ud im denotes the potential dimensions. Similarly, χmin

l and χmax
l are the respective lower

and upper bounds of the lth dimension.

χkl = round(∣γkl mod 2∣) mod2) (6)
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where χkl is the respective binary value.

4.5.3 Employed Bees Phase
The new solution is produced as follows with the improved solution at this phase:

ζkl = χkl + ωl ⋅ φ(χkl − χml)
k, m ∈ {1, 2, . . . , N f ood}, k ≠ m
l ∈ {1, 2, . . . , Ud im} (7)

where τ is the user-defined threshold value, ωl is the weighting criterion that may vary across dimensionsI.
to prioritize certain features during the update.

4.5.4 Onlooker Bees Phase
As the employed bees return to the hive, they impart knowledge to the observer bees concerning

the food sources they have utilized. The observer bee selects its food source through the utilization of
probabilistic information at its disposal, which leads to the discovery of the new solution denoted as ζk . The
selection probability ρk is determined based on the improved fitness value of the solution.

ρk =
ωk ⋅ f itk

∑N f ood
l=1 ωl ⋅ f itl

(8)

ωk is introduced as a weight factor that prioritizes solutions based on criteria, not just fitness alone, and
introduces more strategic selection by improving the diversity. If the observer bee’s new solution is better,
then an updated solution is considered. The value of AC is reset to zero if it is not already zero; else, the value
of AC is incremented by 1.

4.5.5 Scout Bees Phase
In this phase, each food source’s AC value is explored. If the count goes above the maximum allowed,

the AC is set back to zero. Eq. (5) is used to generate a new supply of food, and the current solution is the best
solution, that is, (χkl or gbest). Regarding computational complexity, for a D-dimensional search space, using
a population of size N, over T iterations, the computational complexity of the phases (employer + onlooker +
scout) altogether is dominated by O(N × D). Over T total iterations, the time complexity is O(T × N × D).

Algorithm 1 explains the detailed flow of our proposed MBABC technique. The process initiates with
a random initialization of a population of candidate solutions, where each solution is represented as a
binary vector, indicating features that are either selected or discarded. Each iteration cycle employs three
distinct bee phases: Employed bees perturb existing solutions to explore neighboring subsets, guided by
a mutation operator to improve solution diversity. Subsequently, based on an entropy-controlled fitness
criterion, onlooker bees probabilistically select the best possible solutions, ensuring a balanced exploration
and exploitation of the search space. Scouts replace solutions stalling beyond a threshold level, therefore
fostering diversity and lowering the chance of early convergence. The method balances exploration and
exploitation until a stopping criterion—such as a convergence threshold or a maximum iteration limit—is
fulfilled, so iteratively updating a global best solution.
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Algorithm 1: Proposed feature selection algorithm (MBABC)
Initialization:
N , C, stopping criteria (max iterations or convergence threshold).
ACk ← 0, ∀k ∈ {1, . . . ,N}.
χkl ∼ U(χmin

l , χmax
l ), ∀k ∈ {1, . . . ,N}, l ∈ {1, . . . , Ud im},

where U is the uniform distribution.
Convert χkl to binary using fbinary(χkl).
F(χk) = ωk ⋅ f i tk

∑N
j=1 ω j ⋅ f i t j

, where ωk = g(χk).
gbest = arg maxk F(χk).
Main Iterative Process:
While TRUE:
Step 1: Employed Bee Phase

∀k ∈ {1, . . . ,N}, m ∈ {1, . . . ,N}/{k},
ζkl = χkl + ωl ⋅ φ(χkl − χml), ∀l ∈ {1, . . . , Ud im},
where φ ∼ U(−1, 1), ωl = f (χkl , diversity).

F(ζk) =
ωk ⋅ f itk

∑N
j=1 ω j ⋅ f it j

.

χk =
⎧⎪⎪⎨⎪⎪⎩

ζk , if F(ζk) > F(χk),
χk , otherwise.

ACk =
⎧⎪⎪⎨⎪⎪⎩

ACk + 1, if F(ζk) ≤ F(χk),
0, otherwise.

Step 2: Onlooker Bee Phase (Updated)

Pk =
ωk ⋅ F(χk)
∑N

j=1 ω j ⋅ F(χ j)
, ∀k ∈ {1, . . . ,N}.

∀ onlooker bees, sample χk based on Pk .
Vk l = χkl + ωl ⋅ φ(χkl − χml), m ≠ k, ∀l .

F(Vk) =
ωk ⋅ f itk

∑N
j=1 ω j ⋅ f it j

.

χk =
⎧⎪⎪⎨⎪⎪⎩

Vk , if F(Vk) > F(χk),
χk , otherwise.

ACk =
⎧⎪⎪⎨⎪⎪⎩

ACk + 1, if F(Vk) ≤ F(χk),
0, otherwise.

Step 3: Scout Bee Phase (Updated Fitness)
If ACk > C , ∀k ∶
χkl ∼ U(χmin

l , χmax
l ), ∀l .

ACk ← 0.
Update Global Best Solution:

gbest = arg maxk F(χk).
Output:
Best solution found: gbest.
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5 Results and Discussion
The simulations are performed using three publicly available benchmark datasets, including PH2, ISIC-

2016, and HAM10000. Various families of classifiers, including k-nearest neighbor (KNN), ensemble (ES),
support vector machines (SVM), neural network (NN), and linear discriminant (LD), are employed for
classification due to their improved performance. This study primarily focuses on the proposed feature
selection approach. Therefore, a comprehensive analysis has been provided for the readers. The ratio of
training to testing is set at a fixed value of 80/20 for the simulations. Additionally, the k-fold cross-validation
approach is selected for training validation. The default Matlab values are chosen for the selected deep
models. Further, to validate the classification performance, a set of parameters is used, including accuracy,
sensitivity, specificity, precision, negative prediction value (NPV), false discovery rate (FDR), false negative
rate (FNR), F1-score, and Mathews correlation coefficient (MCC), respectively.

For the selected pre-trained deep model of Nasnet-mobile, the resultant feature vector is of dimension
(N × 1056) ∈ R(r , c), where N = [900, 160, 10000] for ISIC-2016, PH2, and HAM10000, respectively. This
research aims to down-sample the given dimension of each image. For a fair comparison, we selected the
original feature selection algorithm [40]. Fig. 4 demonstrates the convergence plot of the proposed and the
existing in terms of average error and number of iterations after applying Monte-Carlo simulations.

Figure 4: Comparison of MBABC vs. BMNABC convergence on ISIC-2016. Plot (a) illustrates faster convergence rate
to a lower average error using proposed method, while plot (b) depicts the slower convergence rate of BMNABC

One could observe two main events: 1) a sudden drop in average error; and 2) a minimum average
error. It is clear from the comparison that the proposed method has shown a sudden drop in average error
compared to the existing method, as well as a greater number of times the algorithm touches the lowest value
of less than 0.1. On the contrary, the existing method has not shown a sharp trend or a minimum average
error. Similar trends have been observed in Fig. 5, where with the proposed feature selection algorithm,
the classification framework performs better compared to the existing one. Fig. 5a has an accuracy range of
(84%–96%) compared to (72–90) for the existing Fig. 5b.

Utilizing a combination of parameters to obtain a more comprehensive understanding of the model’s
performance is often recommended. As a result, we opted for the collection of performance parameters
mentioned earlier. The majority of these parameters exhibit interdependence and collectively exert an impact
on the average accuracy of the model. Accuracy is a measure that tests the overall correctness of a system or
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model. Sensitivity, on the other hand, quantifies the ability of the system or model to correctly identify real
positives. Specificity, in contrast, evaluates the system’s or model’s ability to avoid false positives. Precision is
a metric that specifically reviews the accuracy of positive predictions made by a system or model. Lastly, NPV
is a measure that assesses the accuracy of negative predictions made by the system or model. FDR is used
to assess the fraction of inaccurate positive predictions, while FNR quantifies the rate of false negatives. The
F1-Score is a metric that strikes a compromise between precision and sensitivity, giving preference to a model
that exhibits both high precision and recall. In conclusion, MCC provides a comprehensive evaluation of the
model’s performance by taking into account both true and erroneous positives and negatives. A thorough
examination of these metrics is crucial to improve a classification model for particular applications since
they jointly provide insights into its accuracy and efficacy.

Figure 5: Comparison of accuracy histogram (%) on ISIC-2016 after Monte-Carlo simulations

In the case of the proposed, the frequency is maximum for an accuracy of (88%–90%), whereas in the
case of the existing, the frequency is maximum within the range of (78%–84%). This is clear evidence of the
performance of the proposed feature selection method.

Similar trends have been observed in the reduction plot in Fig. 6, where, after applying Monte-Carlo
simulations, the histogram is plotted. It could be observed that in Fig. 6a, with the proposed reduction
method, maximum features are reduced within the range of (70%–75%) percent, whereas on the other
hand with the existing method, mostly the features are reduced within the range of (60%–75%). For a
fair comparison, a confidence interval is plotted in terms of a box plot, where it could be seen that the
proposed framework outperforms the existing method with a greater margin, whereas in terms of a reduction
percentage, the difference is somewhat comparable, see Fig. 7a,b. For better understanding and to make
well-informed decisions, the confusion matrix and receiver-operating characteristic curve (ROC) plots have
been included in the analysis. These visualizations, depicted in Fig. 8, help to distinguish between positive
and negative examples. The ISIC-2016 dataset presents TPR and FNR values that are inversely related: when
TPR increases, FNR drops, and vice versa. The elevated true positive rate (TPR) values demonstrate the
effectiveness of the proposed approach in accurately identifying positive events. Similarly, the low FNR value
plainly implies that the model is successfully minimizing the amount of false negatives, which reveals that the
model is good at finding positive cases. Similarly, the Area under the curve-Receiver-operating characteristic
curve (AUC-ROC) score demonstrates superior discriminatory capability, as observed in our ISIC-2016 case.
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Figure 6: Comparison of feature reduction percentage histograms using proposed MBABC (a) vs. BMNABC (b) on
ISIC-2016 dataset

Figure 7: Box plots for accuracy (%) (a) and feature reduction percentage (b): Comparing MBABC (1) vs. BMNABC
(2) on ISIC-2016 dataset

In the case of PH2, we considered two possible scenarios, employing two classes and three classes,
respectively. Initially, we conducted Monte-Carlo simulations for two classes and subsequently generated
charts depicting the convergence, accuracy, and reduction rate. The behavior of the proposed feature
selection method on PH2 is quite similar to that of ISIC-2016.

Fig. 9 demonstrates the convergence of the proposed framework to that of the existing one. The
convergence rate of the proposed framework clearly shows a sharp drop as well as a low average error in
most of the cases. On the contrary, the existing method shows a few cases of zero average error. Considering
the accuracy histogram, Fig. 10a,b, for the PH2 dataset, both cases have achieved maximum accuracy. The
difference is in the frequency and range, as with the proposed framework, the accuracy histogram reveals
a range of (88%−100%) compared to the existing method, which shows a range of (86%−98.2%). Further,
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most of the cases (bin value) with the proposed framework are in the range of (96%−100%), whereas for the
existing cases, the range is (94%−98%).

Figure 8: Confusion matrix and ROC curve of Medium-NN on ISIC-2016 dataset

Figure 9: Comparison of MBABC vs. BMNABC convergence on PH2 dataset. Plot (a) illustrates faster convergence
rate to a lower average error using the proposed method, while plot (b) depicts the slower convergence rate of BMNABC

Similarly, Fig. 10c demonstrates a maximum reduction trend, as it reaches the limit of 98%. This
shows, that even with only 2% of the original features, the framework is able to achieve maximum
accuracy. Fig. 10c,d indicates the same pattern as that of ISIC-2016. With the proposed framework, the
reduction percentage lies within the range of (85%−96%) compared to the existing method, which is in the
range of (82%−96%).
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Figure 10: Top: comparison of accuracy (%) histograms on PH2 dataset using the proposed BMABC (a) and BMNABC
algorithms (b); Bottom: comparison of feature reduction percentage histograms using the proposed MBABC (c) vs.
BMNABC algorithms (d) on PH2 dataset

The box plot in Fig. 11 shows the confidence interval for both accuracy and reduction percentages. From
both plots, one could easily observe the difference in accuracy as well as the reduction percentage.

Similarly, as in ISIC-2016, the confusion matrix and AUC-ROC for the PH2 dataset for both configu-
rations (2 & 3 classes) are also provided in Fig. 12. The elevated true positive rates (TPR) of 98.3% and 100%
clearly demonstrate the effectiveness of the proposed approach in accurately identifying positive events for
the PH2 dataset. Similarly, the FNR value of 1.7% indicates that the model effectively reduces the occurrence
of false negatives, demonstrating its ability to identify positive cases. Similarly, the AUR-ROC score for the
PH2 dataset clearly exhibits exceptional discriminatory capacity.
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Figure 11: Box plots for accuracy (%) (a) and feature reduction percentage (b): Comparing MBABC (1) vs. BMNABC
(2) on PH2 dataset

Figure 12: The ROC curve and confusion matrix of PH2 dataset: two-class CM, two-class ROC; three-class CM, three-
class ROC
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In the case of HAM10000, after applying Monte-Carlo simulations, we generated convergence and
accuracy plots. The proposed feature selection strategy exhibits distinct behavior when applied to the
HAM10000 dataset compared to the ISIC-2016 and PH2 datasets. Fig. 13 demonstrates the convergence of
the proposed framework to that of the existing one on the HAM10000 dataset. Similarly, Fig. 14a–d indicates
the difference in pattern as that of the other two datasets. In case of accuracy, Fig. 14a, the bounds are lower
compared to the other datasets, as in this case, the range is (64%−76%) with the proposed model, whereas
the range is between (63%−75%) for the baseline model (Fig. 14b). The pattern is also the same with the
reduction percentage compared to the other datasets (Fig. 14c). Though, with the proposed method, the
reduction percentage is up to 81%, with the peak between (72%−78%). On the contrary, with the baseline
model, the reduction percentage is minimum (Fig. 14d). This clearly indicates that the proposed feature
selection method works exceptionally well for a fewer number of classes, but for a larger number of classes,
the reduction percentage is compromised.

Figure 13: Comparison of MBABC vs. BMNABC convergence on HAM10000 dataset. Plot (a) illustrates faster
convergence rate to a lower average error using the proposed method, while plot (b) depicts the slower convergence
rate of BMNABC

Furthermore, Fig. 15a presents the confusion matrix for HAM10000. The high TPR values of 97.8% and
90.7% are considered acceptable for classes 6 (NV) and 3 (BKL). However, for classes 4 (Df), 7 (VASC), and
1 (AKIEC), the misclassification rates are very high, leading to a high FNR and lower TPR values. The TPR
and FNR for the remaining classes are within acceptable ranges. An identical trend has been noted in the
AUC-ROC plot, as depicted in Fig. 15b. The main factor contributing to the lower TPR and larger FNR for
the given classes is the limited number of image samples. Specifically, there are 327 samples for AKIEC, 115
samples for Df, and 142 samples for VASC.

Table 4 shows the list of classifiers in a given order from highest accuracy to the lowest. Similarly,
other parameters also show the variations as per the generated confusion matrix. It is quite clear that for
both datasets, different classifiers have achieved maximum and minimum accuracies. In the case of the PH2

dataset, quadratic SVM has shown maximum accuracy with the proposed framework, which is 99.15%,
compared to other sets of classifiers. For the same classifier, other performance measures are also significant,
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including sensitivity 0.983, specificity & precision (1.0), and FNR is 0.017. It could be observed that in the case
of PH2, the KNN family has shown the best performance compared to NN, SVM, and ensemble classifiers.

Figure 14: Top: comparison of accuracy (%) histograms on HAM10000 dataset using the proposed BMABC (a) and
BMNABC algorithms (b); Bottom: comparison of feature reduction percentage histograms using the proposed MBABC
(c) vs. BMNABC algorithms (d) on HAM10000 dataset

In this table, seven selected classifiers with improved classification accuracy are provided. The minimum
accuracy achieved is 96.96% which is with medium KNN. On the contrary, in the case of ISIC-2016,
the maximum accuracy achieved is 96.12% with medium NN. Other performance measures, including
sensitivity is 0.971, specificity at 0.951, NPV at 0.97, and FNR at 0.029.

Regarding ISIC-2016, both the SVM and KNN families have exhibited excellent performance in compar-
ison to other families, such as linear discriminant and ensemble. In the concluding instance of HAM10000,
the ensemble of neural networks has exhibited excellent performance in comparison to alternative groups of
classifiers. The results clearly demonstrate that the neural network family possesses the capability to achieve
outstanding performance across several classes.
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Figure 15: Confusion matrix and ROC of Trilayered-NN on HAM10000 dataset
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Table 4: Performance measure of the several classifiers’ families over benchmark datasets

HAM10000
Acc (%) MCC Spe Sen NPV Pre FNR FDR F1-Score

Trilayered-NN 94.10 0.835 0.959 0.881 0.964 0.866 0.119 0.134 0.873
Logistic Regression Kernel 92.09 0.773 0.970 0.763 0.928 0.889 0.237 0.112 0.821

Coarse Gaussian SVM 90.70 0.736 0.961 0.737 0.921 0.856 0.263 0.144 0.790
Subspace-KNN 89.50 0.701 0.953 0.711 0.913 0.828 0.289 0.172 0.765

Fine-KNN 86.00 0.599 0.930 0.638 0.891 0.742 0.362 0.259 0.686
Weighted-KNN 85.10 0.573 0.924 0.619 0.885 0.720 0.381 0.280 0.666

Cubic-KNN 84.50 0.554 0.919 0.608 0.883 0.700 0.393 0.300 0.651
ISIC-2016

Acc (%) MCC Spe Sen NPV Pre FNR FDR F1-Score
Medium-NN 96.12 0.921 0.971 0.951 0.951 0.970 0.049 0.029 0.961

Ensemble Subspace Discriminant (ESD) 95.40 0.908 0.968 0.940 0.941 0.967 0.058 0.032 0.954
Cubic-SVM 94.58 0.890 0.961 0.930 0.932 0.958 0.068 0.040 0.945

Quadratic-SVM 94.23 0.880 0.954 0.930 0.931 0.949 0.069 0.051 0.940
Cosine-KNN 93.01 0.861 0.947 0.920 0.921 0.938 0.078 0.060 0.930

Weighted-KNN 91.75 0.835 0.924 0.915 0.915 0.919 0.084 0.080 0.917
Linear Discriminant 90.50 0.810 0.901 0.910 0.909 0.090 0.091 0.904

PH2 Dataset
Acc (%) MCC Spe Sen NPV Pre FNR FDR F1-Score

Quadratic-SVM 99.15 0.983 0.983 1.000 1.000 0.983 0.000 0.017 0.991
ESD 99.01 0.981 0.981 1.000 1.000 0.981 0.000 0.019 0.990

Cosine-KNN 98.62 0.972 0.981 0.990 0.989 0.981 0.010 0.019 0.985
Medium-NN 98.51 0.970 0.982 0.991 0.989 0.980 0.010 0.020 0.984

Weighted-KNN 98.40 0.969 0.979 0.990 0.989 0.979 0.010 0.021 0.984
Linear Discriminant 97.57 0.959 0.971 0.980 0.979 0.971 0.020 0.029 0.975

Medium-KNN 96.96 0.939 0.969 0.970 0.971 0.969 0.030 0.031 0.969

To ensure a fair evaluation of feature selection strategies in optimizing classification accuracy for
this application, a comparison table is also included (Table 5). In contrast to established feature selection
methods such as genetic algorithm (GA), particle swarm optimization (PSO), grey wolf optimization
(GW), and BMNABC, the proposed method demonstrated remarkably high performance, as evidenced
by its classification accuracy. As compared to alternative methodologies, GA achieves a higher average
classification accuracy across all datasets. Undoubtedly, the genetic algorithm stands out as the optimal
solution for feature selection in this specific application, surpassing other alternatives. Additionally, F1-
score has been incorporated alongside accuracy metrics for skin lesion classification. The rationale for
adding the F1-score is twofold: 1) HAM10000 skin lesion dataset exhibits significant class imbalance, where
accuracy alone can mask poor performance on minority classes. The F1-score, which balances precision
and recall, provides a more robust evaluation of model effectiveness in such scenarios; and 2) by reporting
both metrics, we demonstrate that MBABC not only achieves higher accuracy but also maintains superior
F1-scores compared to PSO and GWO. This emphasizes its ability to optimize feature selection for both
majority and minority classes, a critical requirement in medical diagnostics. Table 6 presents a comparison
of classification accuracy between a baseline method (without feature selection), and a proposed method
for all selected datasets. The results clearly demonstrate a consistent improvement in accuracy when the
proposed feature selection method is applied. The baseline model attained an accuracy of 96.12% on the
Ph2 dataset with quadratic SVM classifiers, whereas the proposed method achieved an accuracy of 99.15%.
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Moreover, employing ISIC-2016, the achieved accuracy is 92.68% with a medium-NN classifier, in contrast
to 96.64% with the proposed method. Ultimately, the baseline model attained an accuracy of 87.41% on the
HAM10000 dataset with a quadratic SVM, whereas the proposed technique achieved an accuracy of 94.10%.
These findings underscore the effectiveness of the proposed feature selection technique in improving model’s
performance across diverse datasets and classifiers, highlighting its potential to optimize classification tasks
in medical imaging and related domains.

Table 5: Comparison of accuracy and approximate F1-scores after feature selection methods

Dataset Classifier Method Accuracy (%) F1-Score
GA 93.09 0.855
PSO 91.63 0.820

HAM10000 Trilayered-NN GWO 93.20 0.860
BMNABC 93.17 0.860
MBABC 94.10 0.873

GA 90.97 0.820
PSO 91.30 0.830

HAM10000 Logistic Reg. Kernel GWO 92.00 0.840
BMNABC 91.43 0.830
MBABC 92.09 0.821

GA 96.64 0.947
PSO 93.24 0.932

ISIC-2016 Medium-NN GWO 94.16 0.942
BMNABC 95.78 0.958
MBABC 96.12 0.961

GA 94.96 0.949
PSO 93.63 0.936

ISIC-2016 ESD GWO 95.17 0.952
BMNABC 95.10 0.951
MBABC 95.40 0.954

GA 96.93 0.969
PSO 95.80 0.958

PH2 Quadratic-SVM GWO 94.86 0.949
BMNABC 94.47 0.945
MBABC 99.15 0.991

GA 96.65 0.967
PSO 98.19 0.982

PH2 ESD GWO 96.17 0.961
BMNABC 97.12 0.971
MBABC 99.01 0.990
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Table 6: Classification accuracy comparison: Proposed method vs. baseline (without feature selection)

Dataset Without feature selection Proposed

Accuracy (%) Classifier Accuracy (%) Classifier
PH2 96.12 Quadratic-SVM 99.15 Quadratic-SVM

ISIC-2016 92.68 Medium-NN 96.64 Medium-NN
HAM10000 87.41 Quadratic-SVM 94.10 Trilayered-NN

6 Conclusion
Melanoma is the form of skin cancer that has the highest mortality rate, and its incidence has been

rapidly rising over the past several years. The main objective of this study is to prioritize the identification
and selection of feature information that exhibits the highest level of discrimination, ultimately resulting
in improved accuracy in classification. Three benchmark datasets, namely PH2, ISIC-2016, and HAM10000
are employed for the purpose of re-training the pre-trained Nasnet-Mobile CNN model. The features that
have been retrieved, after applying transfer learning, are subsequently fed into the proposed feature selection
module, which is defined as the mutated binary artificial bee colony (MBABC) algorithm. The selected
features are subsequently fed into several families of classifiers to perform the ultimate classification. This
study successfully addresses the issue of the “curse of dimensionality” by converting the high-dimensional
data into lower dimensions. However, it does not perform exceptionally well in presence of a greater
number of classes. One explanation is the increased correlation rate among the features of various classes.
Furthermore, the presence of a limited number of image samples in certain classes significantly diminishes
the accuracy of categorization.

In subsequent research, the number of image samples in specific categories will be augmented through
the utilization of either data augmentation techniques or generative adversarial networks. Additionally,
exploring the use of additional pre-trained models and developing a customized CNN model could be
a promising avenue to pursue. When using a feature selection method, the effectiveness of the proposed
algorithm relies heavily on the fitness function. Therefore, it is important to build a suitable fitness function
that can efficiently handle a large feature set with more number of classes.
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