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ABSTRACT: This study introduces a novel distance measure (DM) for (p, q, r)−spherical fuzzy sets ((p, q, r)−SFSs)
to improve decision-making in complex and uncertain environments. Many existing distance measures either fail to
satisfy essential axiomatic properties or produce unintuitive outcomes. To address these limitations, we propose a
new three-dimensional divergence-based DM that ensures mathematical consistency, enhances the discrimination of
information, and adheres to the axiomatic framework of distance theory. Building on this foundation, we construct
a multi-criteria decision-making (MCDM) model that utilizes the proposed DM to evaluate and rank alternatives
effectively. The applicability and robustness of the model are validated through a practical case study, demonstrating
that it leads to more rational, consistent, and reliable decision outcomes compared to existing approaches.
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1 Introduction
In real-world scenarios, the degree of uncertainty grows progressively as time advances. This phe-

nomenon can be attributed to the dynamic and ever-changing nature of real-life situations, where unexpected
variables and evolving circumstances introduce additional complications. Factors such as fluctuating market
conditions, technological advancements, environmental changes, and human behavior contribute to the
increasing uncertainty over time, making it essential to adopt robust methods and models that can accom-
modate and adapt to this growing unpredictability. Recognizing and addressing this temporal escalation of
uncertainty is crucial for effective decision-making and strategic planning. Given the capability of fuzzy sets
(FSs) [1] to model uncertainty, they play a crucial role in dynamic and complex real-world scenarios where the
rate of uncertainty increases over time. In such situations, traditional binary logic or crisp set theory fails to
account for gradual changes and ambiguity. FSs represent partial truths and degrees of membership, making
them essential for decision-making [2–4], risk analysis [5–7], and system modeling in environments with
incomplete or vague information [8–10]. Integrating FSs with advanced methodologies, such as divergence-
based measures or multi-attribute decision-making frameworks, allows researchers to tackle increasing
uncertainty and develop robust practical solutions. This type of flexibility highlights the versatility of FSs as
a cornerstone for handling complexity in both theoretical and applied contexts.
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The FSs theory has experienced significant extensions to address its limitations and provide more
nuanced representations of uncertainty. Notable extensions include Intuitionistic Fuzzy Sets (IFSs) [11],
which incorporate membership degree (MD) and non-membership degree (NMD) satisfying the condition
0 ≼ φ + ϑ ≼ 1. Recent applications of IFSs are discussed in references [12,13]. Real-world decision-making
scenarios may include evaluations that contradict the IFS condition, such as a decision-maker’s rating
of 0.6 for agreement and 0.7 for disagreement, which exceeds the unity threshold and highlights the
limitations of IFSs in accommodating such information. To address these limitations, Yager [14] introduced
Pythagorean FSs (PFSs) and extended the condition of IFSs (0 ≼ φ + ϑ ≼ 1) to 0 ≼ φ2 + ϑ2 ≼ 1. Peng and
Yang [15] significantly contributed to the development of PFSs by proposing operational laws and ana-
lyzing their properties. Fermatean FSs (FFSs) [16] are a further extension of PFSs, introduced to better
capture the complexity and uncertainty of real-world problems. The introduction of q–rung orthopair FSs
(q–ROFSs) by Yager [17] marked a significant milestone in the evolution of FSs theory. By imposing the
condition, 0 ≼ φq + ϑq ≼ 1, where q ∈ Z+, provide a versatile tool for modeling and analyzing complex
systems with uncertainty and imprecision. A notable limitation of the q–rung orthopair fuzzy (q–ROF)
environment is the requirement for decision-makers to assign the same level term for both MD and
NMD (0 ≼ φq + ϑq ≼ 1). This constraint may limit the ability to capture subtle distinctions in decision-
making, potentially affecting the validity and accuracy of outcomes. Seikh and Mandal [18] introduced
p, q–quasirung orthopair fuzzy sets to address these limitations, providing a more flexible and adaptable
framework. By relaxing the constraint of identical level terms, this approach allows decision-makers to
adjust p and q (where p, q are positive integers satisfying the condition 0 ≼ φp + ϑq ≼ 1; p = q, p ≺ q, or
p ≻ q) according to the requirements of the decision-making situation, thus enhancing the accuracy and
effectiveness of the decision-making process. Researchers have leveraged various extensions of fuzzy set
theory to manage uncertainty in complex decision-making scenarios. For example, Alreshidi et al. [19]
introduced similarity and entropy measures for circular intuitionistic fuzzy sets, enhancing the accuracy
of modeling vague information. Uluçay and Şahin [20] developed intuitionistic fuzzy soft expert graphs,
which improve expert-based evaluations in uncertain environments. Alkan and Kahraman [21] extended
the COmbinative Distance-based ASsessment (CODAS) method using decomposed Pythagorean fuzzy sets
to optimize strategy selection for internet of things-based sustainable supply chains. Akram et al. [22]
integrated CRiteria Importance Through Intercriteria Correlation (CRITIC) and Régime Methodologies
devaluation (REGIME) methods using Pythagorean fuzzy rough numbers, providing better support for
structured decision-making processes. Rahim et al. [23] defined new distance measures for Pythagorean
cubic fuzzy sets and applied them to determine optimal treatments for depression and anxiety. Similarly,
Khan et al. [24] developed a nonlinear programming method integrating Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) in a cubic Pythagorean fuzzy environment for green supplier selection.
Göçer [25] extended Fermatean fuzzy sets into group decision-making models for prioritizing renewable
energy technologies, while Ejegwa et al. [26] proposed a robust correlation coefficient based on Spearman’s
method for Fermatean fuzzy sets, enhancing clustering and selection tasks. Zheng et al. [27] introduced a
group decision-making method based on Combined Compromise Solution (CoCoSo) and interval-valued
q-rung orthopair fuzzy sets. In a similar vein, Ali and Yang [28] explored circular q–rung orthopair fuzzy
sets using Dombi aggregation operators for symmetry analysis in AI. Rahim et al. [29] utilized Dombi
aggregation operators under p, q–quasirung orthopair fuzzy sets for multi-criteria group decision-making.
Zhao et al. [30] proposed quasirung orthopair fuzzy linguistic sets and demonstrated their applicability in
multi-criteria decision-making scenarios.

A limitation of the existing fuzzy extensions discussed earlier (IFSs, PFSs, FFSs, q–ROFSs, and p, q–
quasirung orthopair fuzzy sets (p, q–QOFSs)) is the lack of consideration for neutral membership degree
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(NEMD), which can capture uncertainty that does not fit into traditional membership or non-membership
categories, highlighting the need for further research into neutral membership-based fuzzy extensions. In
response to the limitations of existing fuzzy extensions, Cuòng [31] introduced Picture fuzzy sets (PIFSs),
an innovative framework that considers three distinct membership grades, such as MD, NMD, and NEMD,
with the condition 0 ≼ φ2 + η2 + ϑ2 ≼ 1. By acknowledging the complexity of uncertainty, PIFSs provide a
more robust and adaptable tool for modeling and analyzing uncertain systems. The evolution of PIFSs has led
to the development of several notable extensions, including spherical FSs (SFSs) (0 ≼ φ2 + η2 + ϑ2 ≼ 1) [32],
t–spherical FSs (t−SFSs) (0 ≼ φt + ηt + ϑt ≼ 1 [33], where t ≽ 1), and p, q, r−spherical FSs (p, q, r–SFSs)
(0 ≼ φp + ηr + ϑq ≼ 1) [34], where p, q ≽ 1 and r = max(p, q)). The p, q, r–SFSs offer numerous advantages,
primarily due to the flexibility and adaptability provided by the three parameters p, q, and r. These parameters
enable a more nuanced representation of uncertainty, allowing for the capture of complex uncertainty
structures and facilitating decision-making in uncertain environments. The parameters also provide a
means of parameterizing uncertainty, enabling decision-makers to quantify and analyze uncertainty more
systematically and rigorously. Furthermore, p, q, r–SFSs generalize existing fuzzy sets, making them a more
comprehensive and flexible tool for uncertainty modeling and providing a more realistic representation
of uncertainty, acknowledging its complexity and multifaceted nature. The p, q, r–SFSs have emerged as a
powerful tool for decision-making due to their ability to capture complex uncertainty structures and provide
a realistic representation of uncertainty. As a result, they have been widely applied to solve various types
of decision-making problems, including those involving multiple criteria, uncertain data, and conflicting
objectives [35–38].

1.1 A Review on Distance and Similarity Measures
Distance measures (DMs) and similarity measures (SMs) are two fundamental concepts used to quantify

the relationship between objects (alternatives) [39–41], vectors [42], or sets (collections) [43,44]. Distance
measures, such as Euclidean [45], Manhattan [46], and Minkowski distances [47], calculate the difference
or separation between two entities, quantifying how far apart they are. In contrast, similarity measures,
including cosine similarity [48], Jaccard similarity [49], and Pearson correlation [50], quantify the similarity
or closeness between two entities, measuring how alike they are. Both distance and similarity measures
are crucial in various applications, including data mining [51], machine learning [52,53], and information
retrieval, and the choice of measure depends on the specific problem and application. A range of DMs and
SMs has been defined and explored by scholars in different areas, with applications in fields showcasing the
broad relevance of distance-based methods. For example, Dinh and Thao [54] developed some SMs for PIFSs,
which incorporated the impact of MD differences on similarity, and demonstrated their efficacy in solving
multi-criteria decision-making (MCDM) problems. Singh et al. [55] proposed a generalized SM for PIFSs,
featuring an adjustable parameter that enables flexibility in quantifying similarity. Xuecheng [56] provided
a comprehensive discussion on the axiomatization of entropy, distance, and similarity measures for fuzzy
sets, highlighting their interconnections and underlying principles. Mahanta and Panda [57] proposed a
distance function for IFSs and validated its compliance with the axiomatic definition. Xiao [58] introduced
a distance measure for IFSs utilizing the Jensen-Shannon divergence. Liu and Jiang [59] developed a DM
for interval-valued IFSs, leveraging the distance metric for interval numbers to quantify the separation
between sets. Zhao et al. [60] introduced a dynamic DM for PIFSs, utilizing a picture fuzzy point operator,
and demonstrated its effectiveness in numerical comparison and MCDM problems. Pinar and Boran [53]
developed a DM for q–rung PIFSs, a hybrid framework that merges q–ROFS and PIFS, enabling the
quantification of distances between sets in this framework. Khan et al. [61] developed new DMs and SMs for
SFSs and discussed their relevance and utility in addressing pattern recognition challenges. Wu et al. [62]
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introduced divergence measures within the framework of t–SFSs and demonstrated their applications using
numerical examples. For a more comprehensive overview of DMs and SMs, the reader is directed to
references [33,63,64].

1.2 Gap Analysis
Recently, various distance measures and similarity metrics for p, q, r–SFSs have been introduced. For

instance, Rahim et al. proposed similarity measures such as cosine similarity, set-theoretic similarity, and
grey similarity measures, while Karamaz and Karaaslan developed distance measures for p, q, r–SFSs based
on Hamming, Hausdorff, and Euclidean metrics. However, despite the advancements in these distance
measures, several limitations remain. A significant limitation of these existing distance measures is their
failure to consistently produce reliable decision outcomes in MCDM problems, which undermines their
usefulness, see references [54,55,65–67]. This limitation can be attributed to the following main factors:

(1) A major shortcoming of certain distance measures for p, q, r–SFSs is their failure to satisfy the
axiomatic definition of distance, which includes properties such as non-negativity, symmetry, and the
triangle inequality, thus limiting their applicability and practicality.

(2) For identical p, q, r−SFSs H1 and H1, the distance D yields an undefined value (0/0), highlighting a
deficiency in the SMs that prevents it from satisfying the axiomatic definition.

(3) Some existing formulas for computing differences between p, q, r–SFSs utilize simple mathematical
operations, neglecting the complex interplay between positive, neutral, and negative membership
degrees, which is crucial for accurately capturing the information conveyed by these sets.

To enhance the capabilities of DMs and address the abovementioned restrictions, this paper proposes
a new DM for p, q, r–SFSs. Leveraging the ability of divergence to differentiate among information, a
generalized DM based on divergence between p, q, r–SFSs is introduced. The main contributions of this
paper are outlined as follows:

(1) This paper extends the concept of divergence to p, q, r–SFSs. The new divergence measure considers
the structure of p, q, r–SFSs, including their positive, neutral, and negative membership degrees, as
well as the parameters p, q, and r. This measure provides a more accurate way to quantify the differ-
ences between p, q, r–SFSs, making it useful for analyzing complex relationships in decision-making
scenarios with uncertain and vague information.

(2) The numerical examples demonstrate that the proposed DM effectively addresses and overcomes
counterintuitive defects present in existing methods. These examples highlight the robustness and
reliability of the proposed approach in accurately quantifying the dissimilarity between p, q, r–SFSs,
ensuring logical and consistent results across various scenarios.

(3) The utility of the proposed distance measure is demonstrated in the context of multi-attribute decision-
making problems. A thorough evaluation of decision outcomes reveals that the proposed distance
measure yields consistent and reliable results, making it a valuable asset for decision-making applica-
tions.

The organization of this paper is depicted in Fig. 1.

2 Preliminaries
This section overviews basic definitions and DMs for different fuzzy sets.

Definition 1 [11]: Let G denote the universal set. The IFS D over G can be defined as

D = {g , φD (g), ϑD (g) ∣g ∈ G } (1)



Comput Model Eng Sci. 2025;143(2) 2189

In Eq. (1), φD denotes the MD, while ϑD represents the NMD, where both φD and ϑD are bounded within
the interval [0, 1] and satisfy the condition 0 ≤ φD (g) + ϑD (g) ≤ 1.

Figure 1: A schematic layout of the paper

Definition 2 [17]: For any finite set G, the q−ROFS E can be expressed as follows:

E = {g , φE (g), ϑE (g) ∣g ∈ G } (2)

In Eq. (2), φE ∈ [0, 1] and represent the MD of element g ∈ G, while ϑE is the NMD, adhering to the
constraint 0 ≤ φq

E (g) + ϑq
E (g) ≤ 1, where q ≽ 1.

Definition 3 [18]: Assuming G be a finite set. The structure of p, q–QOFS F can be expressed as

F = {g , φF (g), ϑF (g) ∣g ∈ G } (3)

where φF ∈ [0, 1] and ϑF ∈ [0, 1] represent the MD and NMD of an element g ∈ G in set F and satisfying the
condition 0 ≤ φp

F (g) + ϑq
F (g) ≤ 1 for all p, q ≽ 1.

Definition 4 [31]: Let G be a non-empty finite set. A PIFS J over an element g ∈ G can be expressed as

J = {g , φJ (g), ηJ (g), ϑJ (g) ∣g ∈ G } (4)

where, φJ , ηJ , and ϑJ denote the MD, NEMD, and NMD, respectively, and adhering to the constraint 0 ≤
φH (g) + ηJ (g) + ϑJ (g) ≤ 1.
Definition 5 [32]: Let G be any finite set. Then, the SFS S can be represented as

S = {g , φS (g) , ηS (g), ϑS (g) ∣g ∈ G } (5)

where φs , ηs and ϑs represent the MD, NEMD, and NMD of an element g ∈ G, respectively, and satisfy the
condition 0 ≤ φ2

S (g) + η2
S (g) + ϑ2

S (g) ≼ 1.
Definition 6 [33]: Assuming G is a finite set, the t–SFS T is defined as follows:

T = {g , φT (g) , ηT (g), ϑT (g) ∣g ∈ G } (6)

where φT , ηT and ϑT are the MD, NEMD, and NMD of an element g ∈ G in set T , respectively, such that
0 ≤ φt

J (g) + ηt
J (g) + ϑt

J (g) ≼ 1 for all t ∈ Z+.
Definition 7: Suppose G is a finite set. Then, the (p, q, r)–SFS Z can be expressed as

Z = {g , φZ (g) , ηZ (g), ϑZ (g) ∣g ∈ G } (7)



2190 Comput Model Eng Sci. 2025;143(2)

where φZ , ηZ and ϑZ are the membership grades and satisfy the condition 0 ≼ φp
Z (g) + ηr

Z (g) +
ϑq

Z (g) ≼ 1 for all p, q, and r ≽ 1 with r = max (p, q) . The degree of hesitancy can be calculated as
θZ = r

√
(1 − φZ p − ηZ r − ϑZ

q).
Definition 8: Consider Z1 = (φZ1 , ηZ1 , ϑZ1) and Z2 = (φZ2 , ηZ2 , ϑZ2) be two p, q, r−SFSs, and λ, λ1 and λ2 be
any positive real numbers then we have

(1) Z1 ⊕ Z2 = ( p
√

φp
Z1
+ φp

Z2
− φp

Z1
φp

Z2
, ηZ1 ηZ2 , ϑZ1 ϑZ2),

(2) Z1 ⊗ Z2 = (φZ1 φZ2 , ηZ1 ηZ2 , p
√

ϑq Z1 + ϑq Z2 − ϑq Z1 ϑq Z2),

(3) λZ = ( p
√

1 − (1 − φZ p)λ , ηZ
λ , ϑZ

λ),

(4) Z λ = (φλ , ηλ , q
√

1 − (1 − ϑq)λ).

Some Existing Distance Measures
Definition 9: Consider the two PIFSs J1 = {g , φJ1 (g) , ηJ1 (g) , ϑJ1 (g)} and J2 = {g , φJ2 (g) ,
ηJ2 (g) , ϑJ2 (g)} on the finite set G = {g1 , g2, . . . , gm}. Let’s review the traditional methods for calculating the
distance between these PIFSs. Dinh and Thao [54] defined as series of DMs as listed below

D1 (J1 , J2) =
1
m

⎛
⎜⎜⎜⎜⎜
⎝

�
��������

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
∑
j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(φJ1 (g j) − φJ2 (g j))
2 +

(ηJ1 (g j) − ηJ2 (g j))
2 +

(ϑJ1 (g j) − ϑJ2 (g j))
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟
⎠

(8)

D2 (J1 , J2) =
1
m

⎛
⎜⎜
⎝

max
m
∑
j=1

⎛
⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣ +
∣ηJ1 (g j) − ηJ2 (g j)∣ +
∣ϑJ1 (g j) − ϑJ2 (g j)∣

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(9)

D3 (J1 , J2) =
1
m

⎛
⎜⎜⎜⎜⎜
⎝

�
��������

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

m
∑
j=1

max
⎛
⎜⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣
2 ,

∣ηJ1 (g j) − ηJ2 (g j)∣
2 ,

∣ϑJ1 (g j) − ϑJ2 (g j)∣
2

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟
⎠

(10)

whereD1 (J1 , J2) represents the Euclidean distance that calculates the root mean square difference between MD,
NEMD, and NMD across all elements j = 1, 2, . . . , n, whileD2 (J1 , J2) is the maximum absolute distance which
determines the maximum absolute difference across all degrees, making it highly sensitive to large deviations
but potentially less stable when handling minor variations.D3 (J1 , J2) (maximum squared sistance) identifies
the largest squared difference among φ, η, and ϑ , placing greater emphasis on major deviations in a single
dimension while overlooking smaller cumulative differences.

DMs proposed by Singh et al. [55]

D4 (J1 , J2) =
1

4m

m
∑
j=1

⎛
⎜⎜⎜⎜
⎝

[∣φJ1 (g j) − φJ2 (g j)∣ inf ∣ηJ1 (g j) − ηJ2 (g j)∣ inf
∣ϑJ1 (g j) − ϑJ2 (g j)∣ inf ∣NJ1 (g j) − NJ2 (g j)∣

]

[∣φJ1 (g j) − φJ2 (g j)∣ sup ηJ1 (g j) − ηJ2 (g j) sup
∣ϑJ1 (g j) − ϑJ2 (g j)∣ sup ∣NJ1 (g j) − NJ2 (g j)∣

]

⎞
⎟⎟⎟⎟
⎠

(11)

where D4 (J1 , J2) quantifies the distance by integrating the minimum and maximum differences between
fuzzy parameters, ensuring a bounded and stable measurement.



Comput Model Eng Sci. 2025;143(2) 2191

DMs proposed by Wei [65]

D5 (H1 , H2) = 1 − 1
m

m
∑
j=1

⎛
⎜
⎝

φJ1 (g j)φJ2 (g j) + ηJ1 (g j) ηJ2 (g j) + ϑJ1 (g j) − ϑJ2 (g j)√
(φ2

J1
(g j) + η2

J1
(g j) + ϑ2 J1 (g j)) × (φ2

J2
(g j) + η2

J2
(g j) + ϑ2 J2 (g j))

⎞
⎟
⎠

(12)

D6 (J1 , J2) = 1 − 1
m

m
∑
j=1

cot
⎛
⎜⎜
⎝

π
4
+ π

4

⎛
⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣ sup
∣ηJ1 (g j) − ηJ2 (g j)∣ sup
∣ϑJ1 (g j) − ϑJ2 (g j)∣

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(13)

D7 (J1 , J2) = 1 − 1
m

m
∑
j=1

cos
⎛
⎜⎜
⎝

π
4

⎛
⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣ +
∣ηJ1 (g j) − ηJ2 (g j)∣ +
∣ϑJ1 (g j) − ϑJ2 (g j)∣

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(14)

D8 (J1 , J2) = 1 − 1
m

m
∑
j=1

cos
⎛
⎜⎜
⎝

π
2

⎛
⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣ ×
∣ηJ1 (g j) − ηJ2 (g j)∣ ×
∣ϑJ1 (g j) − ϑJ2 (g j)∣

⎞
⎟⎟
⎠

⎞
⎟⎟
⎠

(15)

where D5 (J1 , J2) leverages the cosine of angle differences between two fuzzy sets for effective pattern
recognition and classification, whileD6 (J1 , J2) utilizes a trigonometric cotangent transformation to handle
uncertainty in decision-making, and D7 (J1 , J2) and D8 (J1 , J2) employ different scaling techniques to
enhance sensitivity to subtle variations in fuzzy values.

D9 (J1 , J2) = 1 − 1
m

m
∑
j=1

⎛
⎜⎜⎜⎜⎜⎜
⎝

( φJ1 (g j)φJ2 (g j) + ηJ1 (g j) ηJ2 (g j)+
ϑJ1 (g j) − ϑJ2 (g j) + NJ1 (g j) − NJ2 (g j)

)
�
���(φ2

J1
(g j) + η2

J1
(g j) + ϑ2

J1 (g j) + N2
J1 (g j))×

(φ2
J2
(g j) + η2

J2
(g j) + ϑ2

J2 (g j) + N2
J2 (g j))

⎞
⎟⎟⎟⎟⎟⎟
⎠

(16)

where D5 (J1 , J2) leverages the cosine of angle differences between two fuzzy sets for effective pattern
recognition and classification, while D6 (J1 , J2) utilizes a trigonometric cotangent transformation to han-
dle uncertainty in decision-making, and D7 (J1 , J2) and D8 (J1 , J2) employ different scaling techniques
to enhance sensitivity to subtle variations in fuzzy values. Additionallly, D9 (J1 , J2) extends the cosine-
based model by incorporating additional membership components, enhancing its ability to capture fuzzy
set dissimilarity.

DMs proposed by Luo et al. [66]

D10 (J1 , J2) =
1
m

m
∑
j=1

�
�������������

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − )(φJ1 (g j) − φJ2 (g j))
2 + (1 − )(ηJ1 (g j) − ηJ2 (g j))

2

+(1 − )(ϑJ1 (g j) − ϑJ2 (g j))
2 + (1 − − )

(φJ1 (g j) − φJ2 (g j) × (ηJ1 (g j) − ηJ2 (g j)))+
(1 − − )(φJ1 (g j) − φJ2 (g j) × (ηJ1 (g j) − ηJ2 (g j)))+
(1 − − )(ηJ1 (g j) − ηH2 (g j)) × (ϑJ1 (g j) − ϑJ2 (g j))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(17)

whereD10 (J1 , J2) incorporates weighting parameters , , to prioritize membership, neutral, and non-
membership degrees differently, enabling a flexible and customized distance calculation. Here, , , ∈
[0, 1] such that + + = 1.
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DMs proposed by Wei and Gao [67]

D11 (J1 , J2) = 1 − 1
m

m
∑
j=1

⎛
⎜⎜⎜⎜
⎝

2( φJ1 (g j)φJ2 (g j) + ηJ1 (g j) ηJ2 (g j)
+ ϑJ1 (g j) ϑJ2 (g j) + NJ1 (g j)NJ2 (g j)

)

φ2
J1
(g j) + η2

J1
(g j) + ϑ2

J1 (g j)
+NJ1 (g j) + N2

H1 (g j)N2
J2 (g j)

⎞
⎟⎟⎟⎟
⎠

(18)

where D11 (J1 , J2) represents a modified cosine-based distance. This measure modifies cosine similarity by
incorporating a normalization step, making it more robust for MCDM problems.

DMs proposed by Luo et al. [66]

D12 (J1 , J2) = 1 − 1
3m

m
∑
j=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 (φJ1 (g j)φJ2 (g j) + ηJ1 (g j) ηJ2 (g j) + ϑJ1 (g j) ϑJ2 (g j))
1
2 +

((1 − ηJ1 (g j) − ϑJ1 (g j))×
(1 − ηJ2 (g j) − ϑJ2 (g j))

)
1
2

+ ((1 − φJ1 (g j) − ϑJ1 (g j))×
(1 − φJ2 (g j) − ϑJ2 (g j))

)
1
2

+((1 − φJ1 (g j) − ηJ1 (g j))×
(1 − φJ2 (g j) − ηJ2 (g j))

)
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(19)

where D12 (J1 , J2) measure applies a square-root transformation to balance the effect of high deviations,
ensuring a smoother distance computation.

DM proposed by Dutta[68]

D13 (H1 , H2) =

1
m ∑m

j=1 (U j +V j)
δ

1
m ∑m

j=1 (U j +V j)
δ + 1

m ∑m
j=1 (Ψj + Φδ

j )
1
δ + 1

(20)

In Eq. (20), δ = 1, 2, . . . ,U j =
Δφδ

j+Δηδ
j+Δϑ δ

j
3 , V j = max (Δφδ

j , Δηδ
j , Δϑδ

j ), Ψj = max (θ J1
j , θ J2

j ) and

Φ j = ∣θ J1
j − θ J2

j ∣; Δφ j = ∣φJ1 (g j) − φJ2 (g j)∣; Δη j = ∣ηJ1 (g j) − ηJ2 (g j)∣ and Δϑ j = ∣ϑJ1 (g j) − ϑJ2 (g j)∣; θ J1
j =

∣φJ1 (g j) + ηJ1 (g j) + ϑJ1 (g j)∣; θ J2
j = ∣φJ2 (g j) + ηJ2 (g j) + ϑJ2 (g j)∣, ( j = 1, 2, . . . , m).

DM proposed by Khan et al. [69]

D14 (J1 , J2) =
1

3m (τ + 1)δ

m
∑
j=1

⎛
⎜⎜⎜
⎝

∣τ ((φJ1 (g j) − φJ2 (g j)) − (ηJ1 (g j) − ϑJ2 (g j)) − (ϑJ1 (g j) − ϑJ2 (g j)))∣
δ +

∣τ ((ηJ1 (g j) − ηJ2 (g j)) − (φJ1 (g j) − φJ2 (g j)) − (ϑJ1 (g j) − ϑJ2 (g j)))∣
δ +

∣τ ((ϑJ1 (g j) − ϑJ2 (g j)) − (φJ1 (g j) − φJ2 (g j)) − (ηJ1 (g j) − ηJ2 (g j)))∣
δ

⎞
⎟⎟⎟
⎠

(21)

whereD14 (J1 , J2) is a weighted summation-based distance. This measure introduces a weighting factor τ to
balance the influence of different fuzzy parameters, ensuring adaptability to specific decision contexts.

MDs proposed by Singh and Ganie [70]

D15 (J1 , J2) = 1 −
∑m

j=1 (2{1−∣((φJ1(g j)−φJ2(g j)) sup(ηJ1(g j)−ϑJ2(g j)) sup(ϑJ1(g j)−ϑJ2(g j)))∣} − 1)
m

(22)

D16 (J1 , J2) = 1 −
∑m

j=1 (2{1− 1
2 ∣((φJ1(g j)−φJ2(g j)) sup(ηJ1(g j)−ϑJ2(g j)) sup(ϑJ1(g j)−ϑJ2(g j)))∣} − 1)

m
(23)
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where D15 (J1 , J2) and D16 (J1 , J2) are exponential-based distances. These measures apply an exponential
decay function to differences in fuzzy set values, reducing the impact of minor variations while preserving
major deviations.

DMs proposed Verma and Rohtagi [71]

D17 (J1 , J2) =
3

4m

m
∑
j=1

⎛
⎜⎜⎜⎜⎜⎜
⎝

(φJ1 (g j) − φJ2 (g j))
2

2 + φJ1 (g j) + φJ2 (g j)
+
(ηJ1 (g j) − ηJ2 (g j))

2

2 + ηJ1 (g j) + ηJ2 (g j)

+
(ϑJ1 (g j) − ϑJ2 (g j))

2

2 + ϑJ1 (g j) + ϑJ2 (g j)
+
(NJ1 (g j) − NJ2 (g j))

2

2 + NJ1 (g j) + NJ2 (g j)

⎞
⎟⎟⎟⎟⎟⎟
⎠

(24)

D18 (J1 , J2) =
3

4m

m
∑
j=1

⎛
⎜⎜⎜⎜⎜
⎝

(φJ1 (g j) − φJ2 (g j))
2 + φJ1 (g j) + φJ2 (g j)

+
(ηJ1 (g j) − ηJ2 (g j))

2 + ηJ1 (g j) + ηJ2 (g j)

+
(ϑJ1 (g j) − ϑJ2 (g j))

2 + ϑJ1 (g j) + ϑJ2 (g j)
+

(NJ1 (g j) − NJ2 (g j))
2 + NJ1 (g j) + NJ2 (g j)

⎞
⎟⎟⎟⎟⎟
⎠

(25)

whereD17 (J1 , J2) andD18 (J1 , J2) are two fraction-based distance measures. These measures use fractional
transformations to standardize distance computation, making them effective in uncertain environments.

DMs proposed by Thao [72]

D19 (J1 , J2) = 1 − 1
m

m
∑
j=1

1 − 1
3

⎛
⎜⎜
⎝

∣φJ1 (g j) − φJ2 (g j)∣ +
∣ηJ1 (g j) − ηJ2 (g j)∣ +
∣ϑJ1 (g j) − ϑJ2 (g j)∣

⎞
⎟⎟
⎠

(26)

D20 (J1 , J2) = 1 − 1
m

m
∑
j=1

Υ j
φ + γ j

η + γ j
ϑ + γ j

N

4 ln 4
(27)

In Eq. (27), Υ j
φ = (∣φJ1 (g j) − φJ2 (g j)∣ − 1) ln( 1−∣φJ1(g j)−φJ2(g j)∣

4 ), γ j
η = (∣ηJ1 (g j) − ηJ2 (g j)∣ − 1) ln

1−∣ηJ1(g j)−ηJ2(g j)∣
4 , γ j

ϑ = (∣ϑJ1 (g j) − ϑJ2 (g j)∣ − 1) ln( 1−∣ϑJ1(g j)−ϑJ2(g j)∣
4 ) and γ j

N = −(∣φJ1 (g j) − φJ2 (g j)∣ +
∣ηJ1 (g j) − ηJ2 (g j)∣ + ∣ϑJ1 (g j) − ϑJ2 (g j)∣ + 1) ln(1/4(∣φJ1 (g j) − φJ2 (g j)∣ + ∣ηJ1 (g j) − ηJ2 (g j)∣ + ∣ϑJ1 (g j)
− ϑJ2 (g j) ∣ + 1)).

Luo and Zhang [73]

D21 (J1 , J2) =
1

3m × ln(1 + 1
β
)

m
∑
j=1

⎛
⎜⎜⎜⎜⎜
⎝

(ω + φJ1 (g j)) ln
⎛
⎝

ω + φJ1 (g j)
ω + φJ2 (g j)

⎞
⎠
+ (ω + φJ1 (g j) + ηJ1 (g j))×

ln
⎛
⎝

ω + φJ1 (g j) + ηJ1 (g j)
ω + φJ2 (g j) + ηJ2 (g j)

⎞
⎠
+ (ω + 1 − ϑJ1 (g j)) × ln

⎛
⎝

ω + 1 − ϑJ1 (g j)
ω + 1 − ϑJ2 (g j)

⎞
⎠

⎞
⎟⎟⎟⎟⎟
⎠

(28)

In Eq. (28), ω ∈ [0, 1]. WhereD21 (J1 , J2) is a measure that integrates divergence theory with fuzzy set
distance calculation, enhancing its ability to capture subtle variations in uncertainty.

Despite their utility, the existing distance measures have several limitations. The Euclidean-type distance
D1 is sensitive to outliers, while the maximum absoluteD2 and maximum squared distancesD3 exaggerate
major deviations and overlook cumulative differences. The infimum-supremum-based distance D4 relies
on extreme values, potentially missing finer variations. Cosine similarity-based measures D5, D7, D8
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and D9, and cotangent-based distance D6 are useful in classification but can distort absolute differences
and are computationally demanding. The weighted Euclidean-type distance D10 introduces customizable
parameters but complicates standardization. Modified cosine-based distance D11 enhances robustness but
distorts rankings, while the square root-based measureD12 reduces high deviations at the cost of precision.
Power function-based distance D13 amplifies small differences, while weighted summation distance D14
requires predefined weights, complicating real-world applications. Exponential-based distances D15 and
D16 suppress meaningful variations, while fraction-based measures D17 and D18 struggle with extreme
values. Logarithmic-based distances D19 and D20 enhance sensitivity but fail for zero differences, and the
divergence-based distanceD21 is computationally intensive. These drawbacks highlight the need for a more
balanced, computationally efficient, and mathematically consistent distance measure, which the proposed
divergence-based distance measure aims to address.

3 New DM between p, q, r–Spherical Fuzzy Sets
Although many distances for p, q, r–SFSs have been proposed, some of these distances may not be

able to solve practical decision-making problems effectively. Therefore, developing more robust distance
measures that can accurately capture the nuances of p, q, r–SFSs in real-world applications is essential. This
may be caused by the fact that some existing distances do not correctly distinguish the input data, resulting
in counterintuitive results. Therefore, it is necessary to propose a satisfactory distance for p, q, r–SFSs to
overcome some existing distances’ defects and enhance the effectiveness of data classification and clustering.
By developing a more precise distance metric, we can improve the accuracy of the analysis and ensure that
the relationships between data points are appropriately represented. In this section, a new distance measure
will be proposed based on the divergence in the p, q, r–SF environment. This measure aims to enhance the
accuracy of similarity assessments between p, q, r–SFSs by incorporating both the degree of membership
and non-membership. Additionally, it will consider the uncertainty inherent in the data, providing a more
robust framework for analysis in various applications.
Definition 10: Let K1, K2 and K3 be any (p, q, r)−SFSs. A binary function D∶ Z (g) × Z (g) → [0, 1] is said
to be a distance measure between them if it satisfies the following properties:

(1) 0 ≤D (Z1 , Z2) ≤ 1,
(2) D (Z1 , Z2) =D (Z2, Z1),
(3) D (Z1 , Z2) = 0, if Z1 = Z2,
(4) If Z1 ⊆ Z2 ⊆ Z3, it implies that D (Z1 , Z2) ≤D (Z1 , Z3) andD (Z2, Z3) ≤D (Z1 , Z3).

Definition 11: Let G be a discrete random variable with two probability distributions Z1 and Z2. The divergence
between these distributions can be represented as

D (Z1 , Z2) = ∑
g∈G

(Z1 (g) ln ( Z1 (g)
Z2 (g))) (29)

Definition 12: Suppose Z1 and Z2 are two p, q, r−SFSs defined on a finite set G = {g1 , g2, . . . , gm} . The
divergenceDβ (ZZ , Z2) between these sets can be defined as

Dβ (Z1 , Z2) =

:::::::::::::::::::::

1

3m × ln (1 + 1
β
)

m
∑
j=1

⎛
⎜⎜⎜⎜
⎝

(β + φp
Z1
(g j)) ln

⎛
⎝

β + φp
Z1
(g j)

β + φp
Z2
(g j)
⎞
⎠
+ (β + φp

Z1
(g j) + ηr

Z1
(g j))×

ln
⎛
⎝

β + φp
Z1
(g j) + ηr

Z1
(g j)

β + φp
Z2
(g j) + ηr

Z2
(g j)
⎞
⎠
+ (β + 1 − ϑq

Z1
(g j)) × ln

⎛
⎝

β + 1 − ϑq
K1
(g j)

β + 1 − ϑq
Z2
(g j)
⎞
⎠

⎞
⎟⎟⎟⎟
⎠

:::::::::::::::::::::
(30)
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Eq. (30) involves positive integers p and q, with r being the maximum of these two values. To avoid the
issues in φp

Z (g j) = 0, φp
K (g j) + ηr

Z (g j) = 0 and 1 − ϑq
Z (g j) = 0, we incorporate a parameter β ∈ [0, 1]. This

enables us to develop a method for calculating distances between p, q, r–SFSs.
Theorem 1: Consider two (p, q, r)–SFSs, that is Z1 and Z2 on the finite set G. The binary functionD∶ Z (g) ×
Z (g) → [0, 1] can be expressed as

F (Z1 , Z2) =
1

3m × ln (1 + 1
β
)
(Dβ (Z1 , Z2) +Dβ (Z2, Z1))

= 1

3m × ln(1 + 1
β
)

m
∑
j=1

⎛
⎜⎜⎜⎜⎜⎜
⎝

(φp
Z1
(g j) − φp

Z2
(g j)) × ln

⎛
⎝

β + φp
Z1
(g j)

β + φp
Z2
(g j)

⎞
⎠
+ (φp

Z1
(g j) + ηr

Z1
(g j))−

(φp
Z1
(g j) − ηr

Z1
(g j)) × ln

⎛
⎝

β + φp
Z1
(g j) + ηr

Z1
(g j)

β + φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
× ln

⎛
⎝

β + 1 − ϑq
Z1
(g j)

β + 1 − ϑq
Z2
(g j)

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟
⎠

(31)

In Eq. (31), the parameter β ranges from 0 to 1, and F (Z1 , Z2) represents the distance metric between
p, q, r–SFSs.
Proof: To facilitate a straightforward proof of the theorem, consider the following binary function:

Γ (a, b) = (a − b) ln( β+a
β+b ), where β ∈ [0, 1] , a ≥ 0, b ≥ 0. Then the F (Z1 , Z2) can be express as

F (Z1 , Z2) =
1

3m × ln(1 + 1
β
)

m
∑
j=1

⎛
⎜⎜⎜⎜
⎝

Γ (φp
Z1
(g j) , φp

Z2
(g j)) + Γ (φp

Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

)

+Γ (1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

)

⎞
⎟⎟⎟⎟
⎠

(32)

The partial derivative of the binary function is given by

∂Γ
∂a

= a − b
β + a

+ ln(β + a
β + b

) , ∂Γ
∂b

= b − a
β + b

+ ln(β + b
β + a

) (33)

From Eq. (33), we observe that Γ (a, b) is symmetric, i.e., Γ (a, b) = Γ (b, a). Without loss of generality,
let a ≤ b. Analyzing Γ (b, a), we derive the results ∂Γ

∂a ≥ 0 and ∂Γ
∂b ≤ 0. Thus, the function Γ (a, b) is

monotonically increasing with respect to a and monotonically decreasing with respect to b when a ≤ b. Also,
Γ (a, b) is monotonic, increasing in a and decreasing in b. Thus, we find that Γ (a, b) reaches its maximum
value of ln (1 + 1

β), at the coordinates (1, 0). Additionally, assuming a ≥ b, we have a − b ≥ 0 and ln( β+a
β+b ) ≥ 0.

This implies that Γ (a, b) ≥ 0, thus by Definition 10 we have

= 1

3m ln(1 + 1
β
)

m
∑
j=1

⎛
⎝

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) , ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
⎞
⎠
≥ 0,
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Consequently, the maximum value attained by the functionF (Z1 , Z2) is ln (1 + 1
β), which implies that

= 1

3m ln(1 + 1
β
)

m
∑
j=1

⎛
⎝

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
⎞
⎠
≤ 1,

Therefore, F (Z1 , Z2) ≤ 1. Hence 0 ≤ F (Z1 , Z2) ≤ 1.
As from Definition 10. We have Γ (a, b) = Γ (b, a), therefore

= 1

3m ln(1 + 1
β
)

m
∑
j=1

⎛
⎝

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
⎞
⎠

,

= 1

3m ln(1 + 1
β
)

m
∑
j=1

⎛
⎝

Γ
⎛
⎝

φp
Z2
(g j) ,

φp
Z1
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z2
(g j) + ηr

Z2
(g j) ,

φp
Z1
(g j) + ηr

Z1
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z2
(g j) ,

1 − ϑq
Z1
(g j)

⎞
⎠
⎞
⎠

,

Hence, F (Z1 , Z2) = F (Z2, Z1).
In accordance with Definition 10, F (Z1 , Z2) = 0, then

⎛
⎝

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
⎞
⎠
= 0

As we know that Γ (a, b) ≥ 0, it satisfies

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
= Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
= Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
= 0

Consider that Γ (a, b) = 0 if and only if a = b, we get φp
Z1
(g j) = φp

Z2
(g j), ηr

Z1
(g j) = ηr

Z2
(g j), ϑq

Z1
(g j) =

ϑq
Z2
(g j) and Nr

Z1
(g j) = Nr

Z2
(g j). This implies that Z1 = Z2. If Z1 = Z2, then we have φp

Z1
(g j) = φp

Z2
(g j),

ηr
Z1
(g j) = ηr

Z2
(g j) ϑq

Z1
(g j) = ϑq

Z2
(g j) and Nr

Z1
(g j) = Nr

Z2
(g j). Implies that

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
= Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
= Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠
= 0

Implies that

⎛
⎝

Γ
⎛
⎝

φp
K1
(g j) ,

φp
K2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
K1
(g j) + ηr

K1
(g j) ,

φp
K2
(g j) + ηr

K2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
K1
(g j) ,

1 − ϑq
K2
(g j)

⎞
⎠
⎞
⎠
= 0

Hence K1 = K2.
According to Definition 10, the sets Z1, Z2 and Z3 satisfy the condition Z1 ⊆ Z2 ⊆ Z3, it

implies that φp
Z1
(g j) ≤ φp

Z2
(g j) ≤ φp

Z3
(g j), φp

Z1
(g j) + ηr

Z1
(g j) ≤ φp

Z2
(g j) + ηr

Z2
(g j) ≤ φp

Z3
(g j) + ηr

Z3
(g j)

and ϑq
Z1
(g j) ≥ ϑq

Z2
(g j) ≥ ϑq

Z3
(g j). As a result, the binary function Γ (a, b) increases monotonically with
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b, but decreases with a. So, we get, Γ (φp
Z1
(g j) ,

φp
Z3
(g j)

) ≥ Γ (φp
Z1
(g j) ,

φp
Z2
(g j)

) and Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z3
(g j)

⎞
⎠
≥ Γ

⎛
⎝

φp
Z2
(g j) ,

φp
Z3
(g j)

⎞
⎠

.

Similarly, it can be demonstrated that

Γ
⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z3
(g j) + ηr

Z3
(g j)

⎞
⎠
≥ Γ

⎛
⎝

φp
Z2
(g j) + ηr

Z2
(g j) ,

φp
Z3
(g j) + ηr

Z3
(g j)

⎞
⎠

and

Γ
⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z3
(g j) + ηr

Z3
(g j)

⎞
⎠
≥ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠

As ϑq
Z1
(g j) ≥ ϑq

Z2
(g j) ≥ ϑq

Z3
(g j), we can obtain 1 − ϑq

Z1
(g j) ≤ 1 − ϑq

Z2
(g j) ≤ 1 − ϑq

Z3
(g j), so we can

write as

Γ
⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z3
(g j)

⎞
⎠
≥ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠

and

Γ
⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z3
(g j)

⎞
⎠
≥ Γ

⎛
⎝

1 − ϑq
Z2
(g j) ,

1 − ϑq
Z3
(g j)

⎞
⎠

Thus, the following condition must be satisfied:

Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z3
(g j) + ηr

Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠

≽ Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z1
(g j) ,

1 − ϑq
Z2
(g j)

⎞
⎠

and

≽ Γ
⎛
⎝

φp
Z1
(g j) ,

φp
Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j) ,

φp
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(g j) + ηr

Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝
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Z1
(g j) ,
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(g j)

⎞
⎠

≽ Γ
⎛
⎝

φp
Z2
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Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝

φp
Z2
(g j) + ηr

Z2
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φp
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(g j) + ηr

Z3
(g j)

⎞
⎠
+ Γ

⎛
⎝

1 − ϑq
Z2
(g j) ,

1 − ϑq
Z3
(g j)

⎞
⎠

Hence, F (Z1 , Z3) ≥ F (Z1 , Z2) and F (Z1 , Z3) ≥ F (Z2, Z3). ◻
Theorem 2: Consider the two p, q, r–SFSs Z1 and Z2 on the finite set G = {g1 , g2, . . . , gm}. The binary function
D∶ Z (g) × Z (g) → [0, 1] can be defined as

Dλ (Z1 , Z2)
1

3ln (1 + 1
β
)

m
∑
j=1

λ j

⎛
⎜⎜⎜⎜⎜⎜
⎝

φp
Z1
(g j) − φp

Z2
(g j) × ln

⎛
⎝

β + φp
Z1
(g j)

β + φp
Z2
(g j)

⎞
⎠
+
⎛
⎝

φp
Z1
(g j) + ηr

Z1
(g j)−

φp
Z2
(g j) − ηr

Z2
(g j)

⎞
⎠
×

ln
⎛
⎝

β + φp
Z1
(g j) + ηr

Z1
(g j)

β + φp
Z2
(g j) + ηr

Z2
(g j)

⎞
⎠
+ (ϑq

Z2
(g j) − ϑq

Z1
(g j)) × ln

⎛
⎝

1 + β − ϑq
Z1
(g j)

1 + β − ϑq
Z2
(g j)

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟
⎠

(34)
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where β ∈ [0, 1], then this is called theDλ (Z1 , Z2) is the weighted distances between p, q, r–SFSs.
Proof: The proof of the theorem is similar to Theorem 1. ◻
Example 1: Let us consider the p, q, r−spherical fuzzy numbers (p, q, r–SFNs) Z1, Z2, and Z3, defined over set
G, where Z1 = (1.0, 0.0, 0.0), Z2 = (0.0, 0.7, 0.0), Z3 = (0.0, 0.0, 0.7). A comparison of the distances between
Z1 and Z2, as well as Z1 and Z3, is presented in Table 1 using the proposed DM alongside several existing
methods. The analysis highlights significant shortcomings in certain existing DMs, including D1, D2, D3,
D4, D5, D6, D7, D8, D9, D10 and D11. These measures rely on basic mathematical operations, such as
addition, subtraction, maximum, or minimum, and fail to consider the intricate relationship between the
positive, neutral, and negative membership degrees within the p, q, r–SF context. Other measures, such as
D12,D13,D14,D15,D16,D17,D18 andD19, also yield inconsistent results due to the loss of critical information
during their computation. The proposed distance measure addresses these issues by incorporating a more
robust approach that preserves the underlying information structure. Although varying the parameter
ω influences the calculated distance values, it does not affect the relative ranking of the alternatives. For
instance, in a hypothetical thousand-person voting scenario, Z1 = (1.0, 0.0, 0.0) represents a unanimous vote
in favor, Z2 = (0.0, 0.7, 0.0) reflects 700 neutral votes, and Z3 = (0.0, 0.0, 0.7) indicates 700 votes against.
Automatically, this suggests that Z2 is closer to Z1 than Z3, aligning with the proposed distance’s results where
D(Z1 , Z2) ≼D(Z1 , Z2). In conclusion, the proposed distance measure overcomes the limitations of prior
methods, offering a more reliable and intuitive approach to comparing picture fuzzy sets while maintaining
critical information integrity.

Table 1: The outcome of Example 1

Methods D (Z1 , Z2) D (Z1 , Z3) Relation
D1 [54] 0.610 0.610 D (Z1 , Z2) =D (Z1 , Z3)
D2 [54] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)
D3 [54] 0.100 0.100 D (Z1 , Z2) =D (Z1 , Z3)
D4 [55] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)

D5, m = 1 [65] 0.175 0.175 D (Z1 , Z2) =D (Z1 , Z3)
D6 [65] 0.300 0.300 D (Z1 , Z2) =D (Z1 , Z3)
D7 [65] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)
D8 [65] 0.292 0.292 D (Z1 , Z2) =D (Z1 , Z3)
D9 [65] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)
D10 [66] 0.000 0.000 D (Z1 , Z2) =D (Z1 , Z3)
D11 [67] 0.500 0.500 D (Z1 , Z2) =D (Z1 , Z3)
D12 [66] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)
D13 [68] 0.365 0.365 D (Z1 , Z2) =D (Z1 , Z3)
D14 [69] 0.405 0.405 D (Z1 , Z2) =D (Z1 , Z3)
D15 [70] 0.733 0.733 D (Z1 , Z2) =D (Z1 , Z3)
D16 [70] 1.000 1.000 D (Z1 , Z2) =D (Z1 , Z3)
D17 [71] 0.890 0.890 D (Z1 , Z2) =D (Z1 , Z3)
D18 [71] 0.522 0.522 D (Z1 , Z2) =D (Z1 , Z3)
D19 [72] 0.346 0.346 D (Z1 , Z2) =D (Z1 , Z3)
D20 [72] 0.000 0.000 D (Z1 , Z2) =D (Z1 , Z3)
D21 [73] 0.000 0.000 D (Z1 , Z2) =D (Z1 , Z3)

D23 (ω = 0.1, p = 3, q = 2, r = 3) (Proposed work) 0.505 0.823 D (Z1 , Z2) ≺D (Z1 , Z3)
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Example 2: Let us examine the Picture Fuzzy Sets (PFSs) A A, B B, and C C, defined on G = {g1 , g2},
where Z1 = {(0.30, 0.20, 0.40) , (0.60, 0.20, 0.10)}, Z2 = {(0.30, 0.10, 0.40) , (0.60, 0.10, 0.20)} and Z3 =
{(0.20, 0.20, 0.40) , (0.50, 0.20, 0.20)}.

Based on both scoring and intuitive reasoning, Z2 is evidently closer to Z1 than Z3, meaning that in
terms of distance, D (Z1 , Z2) ≺D (Z1 , Z3). Table 2 presents a comparison of the distances between Z1 and
Z2 and between Z1 and Z3, calculated using the proposed distance measure and various existing methods.
Upon analyzing Table 2, it becomes clear that many existing distance measures erroneously suggest that
Z1 has equal similarity to both Z2 and Z3, which contradicts intuitive reasoning. In contrast, the results
produced by the proposed distance measure are consistent with human intuition, accurately reflecting the
greater similarity between Z1 and Z2. This demonstrates the reliability and effectiveness of the proposed
distance in capturing meaningful relationships between fuzzy picture sets.

Table 2: The outcome of Example 1

Methods D (H1 , H2) D (H1 , H3) Relation
D1 [54] 0.212 0.212 D (Z1 , Z2) =D (Z1 , Z3)
D2 [54] 0.150 0.150 D (Z1 , Z2) =D (Z1 , Z3)
D3 [54] 0.100 0.100 D (Z1 , Z2) =D (Z1 , Z3)
D4 [55] 0.045 0.045 D (Z1 , Z2) =D (Z1 , Z3)

D5, m = 1 [65] 0.125 0.125 D (Z1 , Z2) =D (Z1 , Z3)
D6 [65] 0.827 0.827 D (Z1 , Z2) =D (Z1 , Z3)
D7 [65] 0.693 0.693 D (Z1 , Z2) =D (Z1 , Z3)
D8 [65] 0.493 0.493 D (Z1 , Z2) =D (Z1 , Z3)
D9 [65] 0.554 0.554 D (Z1 , Z2) =D (Z1 , Z3)
D10 [66] 0.500 0.500 D (Z1 , Z2) =D (Z1 , Z3)
D11 [67] 0.086 0.086 D (Z1 , Z2) =D (Z1 , Z3)
D12 [66] 0.625 0.625 D (Z1 , Z2) =D (Z1 , Z3)
D13 [68] 0.773 0.773 D (Z1 , Z2) =D (Z1 , Z3)
D14 [69] 0.123 0.123 D (Z1 , Z2) =D (Z1 , Z3)
D15 [70] 0.150 0.150 D (Z1 , Z2) =D (Z1 , Z3)
D16 [70] 0.187 0.187 D (Z1 , Z2) =D (Z1 , Z3)
D17 [71] 0.187 0.187 D (Z1 , Z2) =D (Z1 , Z3)
D18 [71] 0.011 0.011 D (Z1 , Z2) =D (Z1 , Z3)
D19 [72] 0.077 0.077 D (Z1 , Z2) =D (Z1 , Z3)
D20 [72] 0.800 0.800 D (Z1 , Z2) =D (Z1 , Z3)
D21 [73] 0.307 0.307 D (Z1 , Z2) =D (Z1 , Z3)

D22 (ω = 0.1) 0.113 0.113 D (Z1 , Z2) =D (Z1 , Z3)
D23(ω = 0.1, p = 3, q = 2, r = 3) Proposed work 0.107 0.109 D (Z1 , Z2) ≺D (Z1 , Z3)

Proposed MCDM Approach
In this subsection, we present an MCDM approach based on the proposed distance measures,

considering m alternatives and nnn criteria. This approach extends the traditional AHP method to the
p, q, r−spherical fuzzy environment for determining the unknown criteria weights.

Assume we have a set of alternatives Ξ = {Ξ1, Ξ2, . . . , Ξm}, a set of criteria ζ = {ζ1 , ζ2, . . . , ζn}, and their
weights are = { 1 , 2 , . . . , n}T associated with the criteria C j such that j ∈ [0, 1] and ∑m

j=1 i = 1.
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Consider a p, q, r−SF decision matrix denoted as V = (vi j)mn (vi j = (φi j , ηi j , ϑi j)) represents the evaluation
values of alternative Ξ i with respect to criterion C j. The φi j, ηi j and ϑi j represents the MD, NEMD and NMD
of alternative α j with respect to Ci and satisfy the conditions φi j ∈ [0, 1] , ηi j ∈ [0, 1] , ϑi j ∈ [0, 1], and φp

i j +
ηr

i j + ϑq
i j ≼ 1, where p and q are positive integers and r = max (p, q). A systematic approach to selecting the

optimal alternative involves the following steps:
Step 1. Identify potential alternatives and their associated attributes in a decision-making problem,

based on the opinions of decision-makers. Let Ξ i denote the set of m alternatives, C j ( j = 1, 2, . . . , n) represent
the set of n criteria.

V =

⎛
⎜⎜⎜⎜
⎝

(φ11 , η11 , ϑ11) (φ12 , η12 , ϑ12)
(φ21 , η21 , ϑ21) (φ22, η22, ϑ22)

⋅ ⋅ ⋅ (φ1n , η1n , ϑ1n)
(φ2n , η2n , ϑ2n)

⋮ ⋱ ⋮
(φ1m , η1m , ϑ1m) (φ2m , η2m , ϑ2m) ⋅ ⋅ ⋅ (φmn , ηmn , ϑmn)

⎞
⎟⎟⎟⎟
⎠

(35)

The decision matrix as presented in Eq. (35) is defined such that columns represent the evaluation
criteria, and rows represent the various alternatives being evaluated in the decision-making problem.

Step 2. The cost (ψ j) and benefit criteria (ψ̃ j) play a crucial role in decision making, as they enable
the evaluation of alternatives based on their potential expenses and advantages. Cost criteria represent the
negative consequences, while benefit criteria represent the positive outcomes. Normalization is essential to
transform these criteria values into a common scale, allowing for comparability, avoidance of dominance,
and improved accuracy. By normalizing cost and benefit criteria, decision-makers can ensure a fair and
unbiased evaluation of alternatives, leading to more informed and effective decisions. In cases where the
system involves both beneficial and non-beneficial (cost) criteria, normalization can be achieved using the
following formula:

Ṽi j = (φi j , ηi j , ϑi j) =
⎧⎪⎪⎨⎪⎪⎩

(φi j , ηi j , ϑi j), for Ci ∈ ψ̃ j

(ϑi j , ηi j , φi j), for Ci ∈ ψ j
(36)

Step 3. (Weights of criteria) The weights of the criteria in decision-making processes can be deter-
mined using various established methods, such as entropy, Interactive and Multicriteria Decision Making
(TODIM), and the Analytic Hierarchy Process (AHP). Each of these techniques offers distinct advantages
and faces inherent limitations depending on the nature of the decision-making problem and the type of
data involved. For the proposed decision-making approach, we extend the traditional AHP method into the
p, q, r–SF context, enabling it to handle higher levels of uncertainty and complexity associated with MCDM.
This extension ensures a more robust and comprehensive weighting process, leveraging the unique properties
of p, q, r–SFSs to model vagueness and ambiguity more effectively, ultimately enhancing the accuracy and
reliability of the decision-making outcomes. The methodology is outlined in the following steps:

Phase 1. Generate a pairwise comparison matrix by translating expert panel inputs into linguistic terms,
facilitating relative evaluation.

Ṽi j = (φi j , ηi j , ϑi j)mn (37)

Phase 2. Utilize Eqs. (38) and (39) to calculate the differences matrix Ṽi j incorporating the lower and
upper bounds of the MD, NEMD and NMD as follows:

Ψi jL = φp
i jL

− ηr
i jU

− ϑq
i jU

(38)
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Ψi jU = φp
i jU

− ηr
i jL

− ϑq
i jL

(39)

Phase 3. Calculate the interval multiplicative matrix Ω = (Ω i j)mn by applying Eqs. (40) and (41) as
follows:

Ω i jL =
√

1000ΨL (40)

Ω i jU =
√

1000ΨU (41)

Phase 4. Determine the determinacy value λ = (λ i j)mn of ďi j by applying Eq. (42).

λ i j = 1 − (φp
i jU

− φp
i jL
) − ηr

i jU
− ηr

i jL
− ϑq

i jU
− ϑq

i jL
(42)

Phase 5. Calculate the pre-normalization weight matrix Ξ = (ζ i j)mn by multiplying the determinacy
degrees with the matrix λ = (λ i j)mn , as given in Eq. (43).

ζ i j = (
Ω i jL + Ω i jU + Ω i jU

3
) × λ i j (43)

Phase 6. Determine the normalized priority weights, i by applying Eq. (44).

wi =
∑m

j=1 ζ i j

∑m
i=1 ∑m

j=1 ζ i j
(44)

Step 4. Calculate the deviations of all alternatives from the optimal solution using the distance formula
provided in Eq. (45).

D (Ξ i j , Ξ i j) =
1

3 ln(1 + 1
β
)

m
∑
j=1

j

⎛
⎜⎜⎜⎜⎜⎜
⎝

φp
Zi j

− φp
Zi j

× ln
⎛
⎝

β + φp
Zi j

β + φp
Zi j

⎞
⎠
+
⎛
⎝

φp
Zi j

+ ηr
Zi j
−

φp
Zi j

− ηr
Zi j

⎞
⎠
×

ln
⎛
⎝

β + φp
Zi j

+ ηr
Zi j

β + φp
Zi j

+ ηr
Zi j

⎞
⎠
+ (ϑq

Zi j
− ϑq

Zi j
) × ln

⎛
⎝

1 + β − ϑq
Zi j

1 + β − ϑq
Zi j

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟
⎠

(45)

where β ∈ [0, 1].
The extented AHP is employed to determine the weights of criteria within the proposed MCDM

framework. The extension of traditional AHP into the (p, q, r)–SFS environment offers several advantages,
in handling higher levels of uncertainty and imprecision. Unlike classical AHP, which relies on crisp pairwise
comparisons, this extension incorporates spherical fuzzy membership functions, allowing decision-makers
to express their preferences with more flexibility and accuracy. This is particularly beneficial in complex
decision scenarios where subjective judgments are unavoidable. The rationality of this extension lies in
its ability to model vagueness and ambiguity more effectively, ensuring that the assigned weights better
reflect real-world uncertainties. Furthermore, the reasonability of the proposed approach is supported by
its adherence to the fundamental principles of AHP while enhancing its applicability through divergence-
based distance measures. These modification enables more robust and consistent weight calculations, leading
to improved decision-making accuracy. By leveraging the strengths of (p, q, r)–SFSs, the extended AHP
significantly enhances the reliability of ranking alternatives, making it a more suitable tool for modern
MCDM problems.
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4 Applications
The quality of construction is fundamentally influenced by the quality of building materials used. Con-

sequently, rigorous inspection of building materials serves as a cornerstone for achieving high engineering
standards. Strict control during material selection is essential to ensure that only materials meeting the
required specifications are utilized. Effective inspection practices enable builders to accurately distinguish
between compliant and non-compliant materials, therefore enhancing the overall quality and durability
of construction projects. To explore pattern recognition problems related to the classification of building
materials, consider a scenario involving three distinct materials Ξ1, Ξ2 and Ξ3 represented in the set
G = {C1 , C2, C3, C4} using p, q, r–SFSs. This approach highlights the critical role of advanced classification
techniques in identifying and categorizing building materials to uphold construction quality standards.

Step 1. The information is summarized in Table 3.

Table 3: Decision matrix

Materials C1 C2 C3 C4

Ξ1 (0.40, 0.30, 0.10) (0.70, 0.30, 0.00) (0.40, 0.30, 0.00) (0.50, 0.00, 0.00)
Ξ2 (0.70, 0.20, 0.00) (0.40, 0.00, 0.30) (0.50, 0.50, 0.00) (0.40, 0.00, 0.00)
Ξ3 (0.50, 0.50, 0.00) (0.10, 0.40, 0.20) (0.50, 0.10, 0.30) (0.10, 0.40, 0.30)

Step 2. All criteria are treated as beneficial; therefore, normalization is not required.
Step 3. The extended AHP method is applied to determine the criteria weights, resulting in 1 = 0.5300,

2 = 0.1465, 3 = 0.2275, 4 = 0.0969.
Step 4: The distances between ideal solution H∎ = (0.70, 0.00, 0.00) of each alternative are calculated,

where p = 3, q = 2, r = 3, and ω = 0.1. The ranking of alternatives is summarized in Table 4.

Table 4: The ranking of the alternatives considered

Alternatives Parameter p Parameter q Parameter r D (H∎, H1) D (H∎, H2) D (H∎, H3) Ranking
Ξ1 3 2 3 0.03550 2
Ξ2 3 2 3 0.0006 3
Ξ3 3 2 3 0.23100 1

4.1 Influence of Parameter ω
This section focuses on analyzing the behavior of three alternatives (Ξ1, Ξ2, and Ξ3), under the influence

of a parameter ω. The figure provides a visual representation of how these alternatives vary with respect to
changes in ω, emphasizing the oscillatory trends and the interaction of ω with each alternative. The objective
is to explore the distinct patterns exhibited by Ξ1, Ξ2, and Ξ3, to compare their sensitivity to ω, and to
evaluate the overall trend as influenced by the parameter ω. Such analysis identifies how different variables
behave in dynamic systems where oscillatory changes and damping effects are critical. The impact of ω on
the performance of the alternatives is depicted in Fig. 2.
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Figure 2: The influence of parameter ω

The analysis of Ξ1, Ξ2, and Ξ3 under the influence of ω reveals distinct behavioral patterns and
sensitivities. Ξ1 demonstrates pronounced oscillatory behavior, characterized by periodic peaks and troughs.
However, as ω increases, the amplitude of these oscillations gradually decreases, indicating a damping effect.
This suggests that Ξ1 is initially highly sensitive to variations in ω, but this sensitivity diminishes over time,
reflecting a stabilizing influence. In contrast, Ξ2 exhibits a steady declining trend with relatively minor
oscillations that are less pronounced compared to Ξ1. This behavior highlights Ξ1’s relative stability, indicating
that it is less influenced by fluctuations in ω and follows a consistent pattern of reduction. Conversely, the
blue curve Ξ3 maintains persistent and prominent oscillatory behavior, with no evidence of damping across
the range of ω. This sustained oscillatory nature underscores Ξ1’s strong and continued sensitivity to ω, with
periodic spikes suggesting reinforcement effects. The influence of ω, a downward-sloping trendline, reveals
a general decline in its overall impact as ω increases. While ω exerts a noticeable damping effect on Ξ1 and
Ξ2, it has minimal influence on the oscillatory behavior of Ξ3, suggesting that ω interacts differently with
each function due to differences in their underlying structures.

4.2 Comparison with Existing Approaches
The effectiveness of the proposed approach is evaluated by comparing its results with those obtained

using several existing methods to ensure its validity and reliability. For this purpose, the data presented
in Table 3 is utilized, and the criteria weights are assigned as 1 = 0.5300, 2 = 0.1465, 3 = 0.2275,

4 = 0.0969, respectively. The comparative analysis of the final outcomes is summarized in Table 5. Upon
examining the results in Table 5, it is evident that the proposed approach produces results consistent
with those obtained by the majority of the existing approaches outlined in Definition 2. This alignment
highlights the accuracy and robustness of the proposed method, demonstrating its capability to generate
reliable decision-making outcomes that align with established methodologies. Such consistency further
reinforces the practical applicability and scientific credibility of the proposed approach in addressing
complex decision-making problems.

Table 5 presents comparative analysis of various distance measures Di (i = 1, 2, . . . , 23) for evaluating
alternatives Ξ1, Ξ2, and Ξ3, highlighting the effectiveness of the proposed measure. Most methods rank
Ξ3 ≻ Ξ2 ≻ Ξ1, indicating a general consensus on Ξ3 as the best alternative. However, some methods exhibit
ambiguity by ranking Ξ1 = Ξ2, while others rank Ξ3 > Ξ1 = Ξ2, leading to inconsistent results. The proposed
measure consistently produces the ranking Ξ3 ≻ Ξ2 ≻ Ξ1, with lower distances for Ξ1 and Ξ2 and a higher but
distinguishable distance for Ξ3, ensuring clarity and robustness. Its advantages include improved sensitivity
to small variations, a higher discrimination capability that avoids ambiguous rankings, and parameter
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integration (ω = 0.1, p = 3, q = 2, r = 3), which enhances adaptability and captures complex relationships.
Additionally, the proposed measure aligns with logical expectations, providing intuitive and interpretable
results while maintaining stability across scenarios, unlike some existing methods. These features make it
a reliable tool for multi-criteria decision-making, offering better discrimination and consistent rankings,
particularly in identifying Ξ3 as the best choice.

Table 5: Comparison

Methods D (H∎, H1) D (H∎, H2) D (H∎, H3) Results ranking Best choice
D1 0.2890 0.3000 0.4170 H3 > H2 > H1 H3
D2 0.5000 0.5000 0.7000 H3 > H2 = H1 NO
D3 0.2500 0.2500 0.4160 H3 > H2 = H1 NO
D4 0.1470 0.1500 0.1780 H3 > H2 > H1 H3
D5 0.2450 0.2450 0.4370 H3 > H2 = H1 NO
D6 0.0330 0.0000 0.1920 H3 > H2 > H1 H3
D7 0.6860 0.0460 0.0460 H1 > H2 = H3 NO
D8 0.2830 0.2830 0.3580 H3 > H2 = H1 NO
D9 0.7020 0.7030 0.7400 H3 > H2 > H1 H3
D10 0.1240 0.1330 0.2080 H3 > H2 > H1 H3
D11 0.0360 0.0000 0.2020 H3 > H2 > H1 H3
D12 0.4600 0.1790 0.1790 H1 > H2 = H3 NO
D13 0.0030 0.0000 0.2020 H3 > H2 > H1 H3
D14 0.4600 0.1790 0.1790 H1 > H2 = H3 NO
D15 0.0030 0.0000 0.0430 H3 > H2 > H1 H3
D16 0.1100 0.1220 0.2000 H3 > H2 > H1 H3
D17 0.0330 0.0000 0.1920 H3 > H2 > H1 H3
D18 0.2530 0.2530 0.3580 H3 > H2 = H1 NO
D19 0.4600 0.1890 0.1890 H1 > H2 = H3 NO
D20 0.1100 0.1220 0.2000 H3 > H2 > H1 H3
D21 0.2690 0.2620 0.3880 H3 > H2 = H1 NO

D22 (ω = 0.1) 0.1040 0.1330 0.2240 H3 > H2 > H1 H3
D23(ω = 0.1, p = 3, q = 2,

r = 3) proposed
0.0355 0.0006 0.2310 H3 > H2 > H1 H3

Table 6 evaluates the AHP-based divergence distance measure for (p, q, r)−SFSs against existing fuzzy
distance measures based on uncertainty handling, flexibility in criteria weighting, computational complexity,
applicability to large datasets, decision accuracy, ease of interpretation, and time complexity. Uncertainty
handling reflects the ability to manage vagueness and hesitation in decision-making, where the proposed
approach captures hesitation and neutrality better than conventional methods like Euclidean and Manhattan
distances, which operate on crisp data. Flexibility in criteria weighting indicates how well a method adapts to
different importance levels assigned to criteria, with divergence-based weighting offering greater adaptability
compared to rigid approaches. Computational complexity measures the effort required to execute a method,
where simple metrics like Euclidean distance have low complexity, while advanced techniques such as
Hausdorff and Jensen-Shannon divergence require intensive calculations. Applicability to large datasets
determines whether a method efficiently processes vast amounts of data, with the proposed approach proving
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highly effective in multi-expert and large-scale environments, unlike traditional AHP, which struggles with
scalability. Decision accuracy assesses how precisely alternatives are ranked, with the divergence distance
method improving ranking precision by incorporating hesitation factors, whereas conventional distance
measures may yield ambiguous results. Ease of interpretation reflects how intuitively a method can be
understood and implemented, with basic distance measures being simpler than fuzzy divergence-based
approaches, which require knowledge of fuzzy logic and aggregation. Time complexity represented using
Big O notation, describes how computational time grows with input size where O(n log(n)) complexity in
the proposed approach ensures efficiency for large datasets, contrasting with exponential-based methods
that become computationally impractical. Big O notation provides insight into algorithm efficiency, helping
to evaluate worst-case performance, where O(n) indicates linear time, O(n log(n)) represents log-linear
time, and O(n2) signifies quadratic time. The proposed divergence distance measure demonstrates strong
performance across multiple criteria, making it a robust tool for multi-criteria decision-making while
maintaining a reasonable computational cost.

Table 6: Comparative analysis of distance measures

Criteria Proposed Euclidean [74] Manhattan [75] Minkowski [76] Cosine
similarity [77]

Uncertainty
Handling

Captures
hesitation,

neutrality, and
divergence

Limited, works
on crisp data

Limited, works
on crisp data

Limited, works
on crisp data

High for
similarity-based

tasks but not
ranking

Flexibility in
Criteria

Weighting

Uses
divergence-based

distance for
enhanced
weighting

Fixed, lacks
adaptability

Fixed, lacks
adaptability

Fixed, lacks
adaptability

Adaptive but
primarily for
classification

Computational
Complexity

Moderate to high Low Low Moderate High (requires
similarity matrix)

Applicability to
Large Datasets

High (suitable for
large datasets and
multiple experts)

High High High High

Decision
Accuracy

High (accounts for
hesitation and

nuanced distance
evaluation)

Moderate Moderate Moderate High

Ease of
Interpretation

Moderate (requires
understanding of
divergence theory
and fuzzy logic)

High (simple
metric)

High (simple
metric)

High (simple
metric)

Moderate (requires
knowledge of

similarity metrics)

Time Complexity O(n log (n)) O(n) O(nlogn) O(n2) due to
matrix

operations

O(n)

The comparative analysis demonstrates that

1. The proposed divergence-based distance measure satisfies all axiomatic properties and provides better
sensitivity to uncertainty variations in p, q, r–SFSs.

2. In MCDM applications, the proposed measure generates more consistent and stable rankings, reducing
counter-intuitive outcomes observed in other distance measures.

3. The method achieves high computational efficiency, making it suitable for large-scale decision problems.
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4.3 Advantages of the Proposed Work
The p, q, r–SFSs is the recent advancement of fuzzy set theory. This framework incorporating

MD, NMD, and NEMD with the constraint 0 ≼ φp
Z (g) + ηr

Z (g) + ϑq
Z (g) ≼ 1 for all p, q, and r ≽ 1 with

r = max (p, q). This formulation enables more flexible and adaptive uncertainty modeling, allowing
decision-makers to adjust the parameters p, q and r based on problem-specific needs. Unlike previous
models, which impose rigid and symmetric relationships between membership and non-membership values,
the proposed framework eliminates these constraints, thereby enabling a more comprehensive representation
of real-world uncertainty. This flexibility makes p, q, r–SFSs particularly useful for multi-criteria decision-
making (MCDM) problems involving uncertain, imprecise, and conflicting information. A key contribution
of this work is the development of a divergence-based distance measure tailored for p, q, r–SFSs. Traditional
distance measures, such as Hamming, Euclidean, and Hausdorff distances, often fail to maintain axiomatic
properties such as non-negativity, symmetry, and triangle inequality, leading to counterintuitive results
in decision analysis. The proposed divergence-based distance measure, as formulated in Eq. (28), satisfies
fundamental axiomatic properties, including non-negativity, symmetry, and triangle inequality, ensuring
logical consistency and reliability in decision analysis. This divergence-based measure significantly improves
the differentiation capability among alternatives, ensuring mathematical consistency and resolving issues
where previous distance measures yielded unreliable or undefined results. By leveraging divergence theory,
the proposed measure not only quantifies the distance between fuzzy sets more accurately but also ensures
greater robustness in decision-making applications, particularly in ranking alternatives under uncertainty.
Furthermore, the proposed approach integrates the AHP within the p, q, r–SFS environment, providing a
more refined mechanism for calculating criteria weights. Conventional AHP struggles with uncertainty due
to its reliance on crisp pairwise comparisons, which limits its effectiveness in complex decision-making
scenarios. By extending AHP into the p, q, r–spherical fuzzy domain, the proposed method enhances
criteria weight computation, enabling a more rational, adaptive, and accurate decision-making process. The
numerical validation demonstrates that this approach consistently outperforms existing methods, producing
logically consistent and reliable results across different decision-making problems. These improvements
make the proposed work a robust, mathematically grounded, and practically applicable tool for handling
uncertainty in MCDM, significantly advancing the field of fuzzy decision analysis.

5 Conclusion
For existing FSs, the use of several distance measurements has not prevented the occurrence of

unexpected outcomes. Upon closer examination of these distances, two primary causes for these unusual
findings are revealed. Initially, the choice of distance metric can have a big impact on how similarity across
sets is interpreted, which could result in results that are not intuitively expected. The complex structure of
picture fuzzy sets, which include different levels of membership, neutral membership, and non-membership
grades, can also make the analysis more difficult and lead to unanticipated connections between the data.
We introduce a novel divergence-based distance metric between (p, q, r)–SFSs that satisfies the fundamental
conditions. The proposed distance not only produces sensible results but also shows a high degree of
confidence, according to case studies in multi-attribute decision-making.

Every research has its limitations, which future studies can address, and this study is no exception. Below
are some of the limitations of the proposed work.

(1) Practical Implementation: High computational complexity in real-world scenarios with large datasets
or multiple criteria.

(2) Parameter Sensitivity: Results are highly sensitive to the choice of parameters p, q, and r, affecting
stability.
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(3) Extreme Case Handling: May struggle with extreme membership values, leading to less accurate or
impractical decisions.

(4) Generalizability: Limited applicability to other fuzzy set models, requiring adjustments for broader use.

Future research can explore the integration of additional decision-making criteria and alternative
aggregation operators within the framework of p, q–quasirung orthopair fuzzy sets to enhance the robustness
of the model. Additionally, the impact of varying parameters such as p, q, and r on decision outcomes can be
further investigated, and real-world applications in different domains, such as healthcare and environmental
sustainability, could be explored to validate the model’s effectiveness. Furthermore, the incorporation
of machine learning techniques for automatic parameter tuning and expert weight determination could
improve the accuracy and efficiency of decision-making processes.
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