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ABSTRACT: Federated Learning (FL), a practical solution that leverages distributed data across devices without the
need for centralized data storage, which enables multiple participants to jointly train models while preserving data
privacy and avoiding direct data sharing. Despite its privacy-preserving advantages, FL remains vulnerable to backdoor
attacks, where malicious participants introduce backdoors into local models that are then propagated to the global
model through the aggregation process. While existing differential privacy defenses have demonstrated effectiveness
against backdoor attacks in FL, they often incur a significant degradation in the performance of the aggregated models
on benign tasks. To address this limitation, we propose a novel backdoor defense mechanism based on differential
privacy. Our approach first utilizes the inherent out-of-distribution characteristics of backdoor samples to identify and
exclude malicious model updates that significantly deviate from benign models. By filtering out models that are clearly
backdoor-infected before applying differential privacy, our method reduces the required noise level for differential
privacy, thereby enhancing model robustness while preserving performance. Experimental evaluations on the CIFAR10
and FEMNIST datasets demonstrate that our method effectively limits the backdoor accuracy to below 15% across
various backdoor scenarios while maintaining high main task accuracy.
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1 Introduction
Federated Learning (FL) [1] is an emerging distributed machine learning framework that allows multiple

participants to collaborate on training models without sharing raw data, and can be applied to a variety
of domains, including smart finance [2], smart healthcare [3], smart manufacturing [4] and the internet
of things [5]. However, despite the obvious privacy benefits of FL, it faces serious security challenges,
particularly vulnerability to poisoning attacks [6–9].

Poisoning attacks compromise the performance or predictive accuracy of target models and can be
categorized into untargeted attacks [6,7] and backdoor attacks [8,9]. Untargeted attacks degrade overall
model accuracy by injecting low-quality or incorrect data into the training process. In contrast, backdoor
attacks are more sophisticated, embedding in the training data specific triggers that remain dormant under
normal conditions. When input containing these triggers is encountered, the model misclassifies it into
predefined target classes. The decentralized nature of FL systems exacerbates the vulnerability to backdoor
attacks due to the lack of centralized control and visibility.

Existing defense strategies against backdoor attacks [10,11] primarily focus on detecting outliers in model
statistics or training data. While these methods show promise, they often rely on prior knowledge of the
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attack or require a detailed understanding of model behavior, limiting their effectiveness against unknown
or highly sophisticated backdoor attack strategies. In this context, differential privacy (DP) [8] emerges as
a robust technique applicable to general adversarial scenarios. DP does not depend on specific assumptions
about adversarial behavior or data distributions, and can effectively mitigate the influence of malicious model
updates. However, a direct implementation of DP methods often introduces a trade-off between privacy
preservation and model performance. The added Gaussian noise can degrade the model’s utility, raising the
critical challenge of minimizing the impact of DP noise while maintaining robust defenses.

To address the challenge of defending against backdoor attacks in FL while minimizing the adverse
impact of DP noise on model performance, we propose a novel two-stage approach. First, inspired by [12],
we construct an indicator task that leverages the out-of-distribution (OOD) nature of backdoor samples
to detect and exclude backdoor models that deviate significantly from benign updates. By filtering out
compromised models before applying DP, our method reduces the amount of noise required for effective
backdoor mitigation. This approach strikes a better balance between privacy protection and model accuracy.
Our key contributions are as follows:

• We introduce a novel detection mechanism that leverages OOD properties to identify and eliminate
backdoor-infected models before applying differential privacy, thereby improving the robustness of FL
against backdoor attacks.

• By pre-filtering backdoor models, our method reduces the minimum DP noise level required for effective
defense, mitigating the adverse impact of DP on the model’s main task accuracy.

• Extensive experiments on the CIFAR10 and FEMNIST datasets demonstrate that our approach success-
fully limits backdoor accuracy to below 15% across various attack scenarios while maintaining high main
task accuracy, outperforming existing state-of-the-art defense methods.

The remainder of this article is organized as follows. In Section 2, background knowledge and relevant
research is discussed. In Section 3, the details of the proposed scheme are described. In Section 4, experi-
ments are conducted on two different types of datasets. Finally, conclusions are drawn, and future work and
open issues are outlined.

2 Related Work

2.1 Federated Learning
FL is a decentralized machine learning framework designed to enable collaborative model training

between multiple clients without sharing raw data. With this approach, privacy concerns are addressed by
keeping the data localized while facilitating the development of global models. The process involves iterative
communication between a central server and participating clients: the server initializes and distributes the
global model, the clients perform local updates using their private data, and the server aggregates these
updates to refine the global model.

A foundational algorithm within FL is FedAvg [1], which minimizes the sum of local empirical losses
acrossK participating clients in a decentralized framework. Specifically, each client i maintains its local
dataset Di and optimizes the cross-entropy loss over Di , denoted as Li(θ), where θ represents the global
model. During each global round t, the server broadcasts the current global model θt to a subset St of
randomly selected clients. Each selected client trains its local model θt

i based on the received θt . This training
process involves the following steps. First, the gradients of the local loss function Li(θt ; Di) are computed
as: ∇Li(θt) = 1

∣Di ∣
∑x∈Di ∇l(x , θt), where l(x , θt) represents the loss for single data point x. Subsequently,

the local model parameters are updated using the learning rate η as follows: θt+1
i = θt − η∇Li(θt). After

local training, each client sends updated model parameters θt+1
i to the server. The server then aggregates all
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these updates to compute the global model for the next iteration. The global model is updated as follows:
θt+1 = 1

∣St ∣
∑i∈St θ t+1

i , where ∣St ∣ represents the number of participating clients in round t. This decentralized
approach ensures that the global model benefits from diversity in distributed datasets while maintaining
data privacy.

However, despite these advantages, FL is inherently vulnerable to adversarial attacks, such as backdoor
attacks, wherein malicious clients inject manipulated updates to compromise the integrity of the global
model. These vulnerabilities necessitate the development of robust mechanisms to safeguard the FL process
from such threats.

2.2 Backdoor Attacks in Federated Learning
Backdoor attacks in FL are designed to embed hidden functionalities (that is, triggers) into the global

model, which are activated when a specific input is encountered. These attacks are executed by malicious
clients that manipulate their own local updates. A typical backdoor attack involves injecting a predefined
trigger pattern, denoted xtrigger, into a subset of the local training data and associating it with the target
class. The local model update from a malicious client, j, is formulated as θt+1

j = θt − η∇L j(θt ; Dbackdoor
j ),

where Dbackdoor
j = {(xtrigger , ytarget)} ∪ Dbenign

j . If the attack succeeds, the global model, θt+1, incorporates
the backdoor functionality into the aggregation. The propagation mechanism exploits the server’s inability to
distinguish between updates from benign and malicious clients. Formally, the global model after aggregation
is computed as θt+1 = 1

∣St ∣
(∑i≠ j θ t+1

i + θt+1
j ), and the influence of backdoor update θt+1

j intensifies as the
proportion of compromised data or clients increases, amplifying the attack’s effectiveness.

Several advanced backdoor attack strategies have been proposed. Pixel-pattern backdoors [8,13,14]
inject specific pixel patterns into input data, which the model associates with the target class during training.
Edge-case backdoors [15,16] leverage OOD input, aligning it with the target class while preserving the
model’s performance on normal data. Semantic backdoors [17–19] introduce subtle semantic changes (e.g.,
embedding objects like sunglasses into images) that make detection more difficult. Other notable strategies
include model poisoning attacks [20], which amplifies the impact of malicious updates by scaling the
gradients, and label-flipping attacks [21], where attackers alter the labels of local datasets to manipulate
the global model. Furthermore, data poisoning methods employing reinforcement learning [22] have been
explored to enhance attack efficiency. These approaches underscore the complexity and sophistication of
backdoor attacks, highlighting the pressing need for effective detection and defense mechanisms to safeguard
FL systems.

2.3 Backdoor Defenses in Federated Learning
To mitigate the threat of backdoor attacks, several defense mechanisms have been proposed, which

can be broadly categorized into outlier detection-based [12,23], consistency detection-based [11,24,25],
and differential privacy-based approaches [26,27]. Outlier detection-based defenses, focus on identifying
anomalous updates. FLDetector [23] identifies outliers by analyzing discrepancies between the predicted and
actual models, whereas Indicator [12] leverages out-of-distribution samples to effectively identify and exclude
malicious updates. Additionally, Zhao et al. [28] provide insights into how structural modifications in neural
networks, specifically in language models, can help mitigate backdoor risks by altering model architecture
to disrupt malicious pathways.

Consistency detection defenses are based on the principle that backdoor updates share a unified
objective, namely to classify samples containing the trigger as the target label. Foolsgold [11] mitigates the
impact of backdoor updates by assigning lower aggregation weights to updates with high pairwise cosine
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similarities. Similarly, DeepSight [24] evaluates neuron activation patterns of infected models to isolate and
detect malicious contributions. Multikrum [25] is particularly effective against untargeted attacks, focusing
on reducing the influence of outliers in the global model.

DP-based methods often involve a trade-off between privacy preservation and model performance.
Clip Norm Decay (CND) [27], a defense method based on differential privacy that dynamically adjusts
the clipping threshold of model updates to reduce injected noise, helps maintain model accuracy while
mitigating backdoor attacks. Similarly, FLAME [26], a defense framework that estimates the optimal noise
injection level to eliminate backdoors, reduces the amount of Gaussian noise that needs to be injected for DP
by limiting the impact of individual updates–particularly those that are malicious–on the aggregated global
model by clustering the models and cropping the weight. These approaches pave the way for future research
that aims to balance privacy protection and model performance in federated learning systems.

3 Methodology
In this section, we first outline the basic workflow of the backdoor detection mechanism, which

integrates the indicator task of proactively detecting and filtering backdoor-infected models in FL. We then
detail how the indicator task can be used to reduce the noise required for DP, minimizing its detrimental
impact on the accuracy of the main task.

Before delving into the backdoor detection mechanism [12], it is essential to consider the following
two properties: (1) samples subjected to a backdoor attack are typically out-of-distribution with respect to
benign samples of the target class; (2) during the training phase of a model infected with a backdoor attack,
OOD mapping is often established between the infected sample and the target class, while the original in-
distribution (ID) mapping between benign samples and the target class remains intact.

Only the ID mapping is maintained, and OOD mapping is gradually removed once the adversary
ceases training the backdoor task. In this context, the injection of subsequent backdoor samples ensures
the preservation of prior OOD mappings. This is because the OOD features associated with ID data are
consistent, even across different backdoor triggers and types. Consequently, this preservation helps maintain
the accuracy of previously injected backdoors.

Algorithm 1: The procedure of our model
Input: The number of clients n, the number of training iterations, and the learning rate in training the
indicator task: B, η, regularization weight λ, and precision threshold αm .
Output: Global model at global round t + 1: Gt+1
1 The server initially saves estimated running mean μG and variance σG ;
2 for b = 1, . . . , B do
3 The indicator model wI = wI − η∇(Lcross + λ∥wI −Gt∥2);
4 end
5 The server saves estimated running mean and variance as μI and σI ;
6 The server replaces the BN statistics in wI with μG and σG ;
7 The server broadcasts wI ;
8 Clients initialize with wI ;
9 for client i ∈ [1, n] do
10 for b = 1, . . . , B do
11 Local model Li = Li − η∇Lcross;

(Continued)
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Algorithm 1 (continued)
12 end
13 end
14 Clients update Δwi = Li −wI to the server;
15 C ← [];
16 for i ∈ [1, n] do
17 Li ← wI + Δwi ;
18 Li ← (replace BN statistics with μI and σI) ;
19 {α1 , α2, . . . , αN} ← (Check the accuracy of the indicator task on L_i);
20 αm =max({α1 , α2, . . . , αN}) ;
21 if αm < αth then
22 C ← [Ci] ;
23 end
24 end
25 Gt = wI +

1
∣C∣ ∑i∈C Δwi ;

26 {e1 , . . . , en} ← EUCLIDEANDISTANCES(Gt , (wC1 , wC2 , . . . , wCi)) ;
27 St ←MEDIAN(e1 , . . . , en);

28 δG ≈
St

ε

√
2 ln 1.25

δ
;

29 Gt+1 ← Gt + N(0, δG
2)

The Algorithm 1 outlines the procedure of our model. The construction of the indicator task proceeds
as follows: the indicator dataset must first be generated, and it is worth emphasizing that this process does
not require direct access to the original distribution data. Specifically, let the pairs (xb , yb) and (xo , yo)
denote the benign and indicator feature-label pairs, respectively. The benign and indicator label spaces are
denoted by Yb and Yo , and are designed to satisfy Yb ∩ Yo = ∅ to enhance detection performance. Data from
the CIFAR100 dataset are extracted to construct the indicator dataset D0, which is trained on CIFAR10. The
dataset D0 is defined as follows:

D0 = {(x i
o , yi

o)}
N
i=1 (1)

Here, yo represents the true label of xo . For the indicator label space, the labels are generated by uniform
sampling of the benign label space and are subsequently assigned to each indicator sample. This approach
ensures that the indicator dataset is distinct from the original dataset, facilitating effective and reliable
detection without compromising the integrity of benign data.

For each global model Gt in the t-th round of FL, the server initially saves its estimated running mean
μG and variance σG . Subsequently, the server utilizes the constructed indicator dataset to train the indicator
task by optimizing the cross-entropy loss Lcross. To minimize the impact of the indicator task on the primary
model’s performance, an L2 regularization term is introduced as a penalty, and the total lossL is defined as
follows:

L = Lcross + λ∥wI −Gt∥2 (2)

where wI represents the indicator model, and λ denotes the regularization weight. To further mitigate the
influence of data distribution differences on the main task’s performance, the batch normalization (BN)
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statistics of the indicator model are replaced with the previously saved estimated running means μG and
variances σG after the completion of the indicator task training. This ensures consistency in model behavior
across varying data distributions.

After training the indicator task, the server calculates the maximum precision αm of the indicator model
within its designated categories and applies the precision threshold αth. Specifically, assume that the main
task consists of N = Yb classes. The server calculates an accuracy array, Acc = {α1 , α2, . . . , αN}, where αi
denotes the test accuracy for all data samples labeled i in indicator dataset D0. The server then identifies
maximum value αm from Acc and considers it the indicator accuracy. If αm > αth, the model is classified as
infected and is excluded from the aggregation process.

After eliminating backdoor models that deviate significantly from the benign model using the methods
described above, Gaussian noise is added to the global model to ensure that backdoors are eliminated. This
process is guided by the principles of approximate differential privacy (ADP) [29], which provides a formal
framework to balance privacy protection and model utility. Mathematically, ADP is defined as

Pr(M(D) ∈ S) ≤ eε × Pr(M(D′) ∈ S) + δ (3)

Here, M represents the randomized mechanism applied to the dataset (that is, the aggregation process
in federated learning). Datasets D and D′ are neighboring datasets differing by single data point, which
captures the privacy sensitivity of the mechanism. Subset S refers to the possible outputs that M can produce.
Parameter ε is the privacy budget, which controls the strength of privacy protection; lower values of ε provide
stronger privacy guarantees by reducing the likelihood that the presence or absence of a single data point can
be inferred from the output. Parameter δ quantifies the probability of tolerating a privacy violation, serving as
a relaxation term to accommodate practical scenarios where absolute privacy constraints may not be feasible.

To implement this privacy-preserving mechanism in federated learning, Gaussian noise is added to the
global model. The scale of the noise, δG , is derived from the differential privacy noise bound [26] and is
expressed as

δG ≈
St

ε

√
2 ln 1.25

δ
(4)

where St denotes the weight clipping bound, which limits the magnitude of individual model updates
to ensure that no single client exerts a disproportionate influence on the global model. The global noise
scale is dynamically adjusted based on the value of St , which evolves during the t-th iteration. The term
ln 1.25

δ , involving the natural logarithm, provides a scaling factor for noise intensity relative to the desired
privacy guarantees. The equation f (w; x) = ω⃗ ⋅ x⃗ = ∣w∣ further illustrates that infected models with larger
angular deviations from the benign model, or greater parameter magnitudes, exhibit higher sensitivity
values. By carefully calibrating ε, δ, and St , the framework achieves a robust balance between privacy and
model performance.

From the above derivation, we can infer that performing OOD backdoor detection significantly reduces
the sensitivity of the remaining backdoors. This decrease in sensitivity allows for the use of less Gaussian
noise to effectively eliminate backdoors while preserving the accuracy of the primary task. Moreover, this
approach ensures that the performance of the primary task remains uncompromised, striking a balance
between robustness and utility.
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4 Experiments
We evaluated the performance of the proposed method on the FEMNIST [30] and CIFAR10 [31]

datasets by using the ResNet18 [32] architecture, as illustrated in Fig. 1. To provide a comprehensive
comparison, we benchmarked our method against several state-of-the-art backdoor detection mechanisms,
including Multikrum [25], Foolsgold [11], FLAME [26], and Indicator [12]. During the training phase, the
attack algorithm Vanilla [33] was utilized to simulate various types of backdoor attacks, including Pixel-
pattern backdoors, which are among the most widely evaluated backdoors in the FL setting, and Edge-case
backdoors [16]. Furthermore, we evaluated the robustness of our method across different neural network
architectures, ensuring that its effectiveness is not limited to a specific model.

Figure 1: Sample examples from the CIFAR10 and FEMNIST datasets

4.1 Evaluation Metrics
To assess the effectiveness of the proposed method, we employed two evaluation metrics: Main Task

Accuracy (MA) and Backdoor Accuracy (BA). MA represents the accuracy of the main task at the end
of training, and BA measures the accuracy of the backdoor task in the global model after the attacker
ceases poisoning it. The combination of MA and BA allows us to thoroughly analyze the trade-offs between
robustness and accuracy, ensuring that the proposed defense mechanism is both effective in reducing
backdoor success rates and efficient in maintaining the primary task’s integrity.

4.2 Implementation Details
All experiments were implemented in Python and PyTorch running on NVIDIA 4090 GPUs. We

randomly selected 10 clients for FL and all experiments were conducted under the setting where a single
client was under attack. For both datasets, we employed Dirichlet sampling [34] to randomly partition the
dataset among clients in a non-IID manner, ensuring realistic FL conditions. The sampling parameter α was
set to 0.2 by default, representing a challenging scenario with severe data heterogeneity. The batch size B
during training was set to 64.

During the indicator dataset construction phase, the indicator dataset for the CIFAR10 task was gener-
ated using random samples from CIFAR100. For the FEMNIST task, the indicator dataset was constructed
with samples from CIFAR10. The size of the indicator dataset was set to 800, the hyperparameter λ in Eq. (2)
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was fixed at 0.1, and the threshold αth for both CIFAR10 and FEMNIST tasks was set to 95. The adversary
initiated poisoning at the 1200-th global round, and the poisoning process lasted for 250 global rounds. The
poisoned learning rate was set to 0.025.

4.3 Experiment Results
As shown in Table 1, under challenging adversarial training conditions and in the presence of highly

non-independent and identically distributed (non-IID) data, most evaluated methods failed to effectively
detect backdoor updates, with the exception of our method and the Indicator-based approach. This limitation
is particularly evident in backdoor models trained with small learning rates in highly non-IID settings, where
these methods struggle to identify malicious updates.

Table 1: Detection performance of the evaluated methods on CIFAR10 and FEMNIST datasets (Results reported in
bold are the best performance)

Defense CIFAR10 FEMNIST

Pixel-pattern Edge-case Pixel-pattern Edge-case

MA (%) BA (%) MA (%) BA (%) MA (%) BA (%) MA (%) BA (%)
No defense 87.9 78.3 84.5 49.4 88.2 91.8 86.3 75.6
Multikrum 84.2 91.3 76.7 66.5 85.4 99.1 83.4 83.4
Foolsgold 88.3 44.9 80.6 42.4 89.6 73.6 88.5 81.9
FLAME 88.7 88.1 80.4 87.8 90.4 97.6 88.9 71.2
Indicator 87.2 15.5 78.6 12.1 87.2 9.6 86.2 6.5

Our method 86.8 12.6 78.8 9.3 86.1 7.4 85.3 3.1

Our method demonstrated superior performance across various metrics, effectively limiting BA to
below 15% for both Pixel-pattern and Edge-case backdoors while maintaining high MA on CIFAR10 and
FEMNIST datasets. With CIFAR10, our method achieved a BA of 12.6% for Pixel-pattern backdoors and
9.3% for Edge-case backdoors, with corresponding MA scores of 86.8% and 78.8%. Similarly, on FEMNIST,
it achieved a BA of 7.4% and 3.1%, with MA scores of 86.1% and 85.3%, respectively. Compared to state-of-
the-art defenses such as Foolsgold and FLAME, our method significantly reduced BA without compromising
the main task performance.

These results demonstrate that our method not only effectively defends against various types of backdoor
attacks but also maintains the integrity of the main task. The ability to achieve such balanced performance
highlights the robustness of our approach in handling sophisticated backdoor scenarios within FL systems.

Table 2 provides an evaluation of the backdoor detection performance from various defense methods,
measured by backdoor accuracy, under ResNet34 and VGG16 neural network architectures [35]. The
experiments were conducted with a single-client attack scenario on the CIFAR10 task, using the Vanilla
algorithm and pixel-pattern backdoor. The adversary initiated poisoning at the 1200-th global round, with
the attack persisting for 250 rounds.

Our proposed method achieved the lowest BA under both architectures, recording 12.3% for ResNet34
and 11.7% for VGG16, thus outperforming state-of-the-art defenses such as FLAME and Indicator. These
results highlight the robustness and effectiveness of our approach in mitigating backdoor attacks, demon-
strating consistent performance across diverse model architectures under challenging adversarial conditions.
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Table 2: Detection performance of the defense methods under ResNet34 and VGG16 architectures (Results reported
in bold are the best performance)

Defense methods ResNet34 (%) VGG16 (%)
No defense 76.9 76.5
Multikrum 88.1 86.2
Foolsgold 31.4 75.8
FLAME 91.1 85.1
Indicator 14.3 13.6

Our method 12.3 11.7

To verify the effect of the indicator task on the minimum noise level δ for differential privacy required
in the elimination of backdoors, we conducted experiments on the CIFAR10 dataset with the same setup as
the experiments described above. After injecting different levels of noise, the results obtained are presented
in Table 3. Observe that in the injection with noise only, the BA decreased with increasing noise, but the
MA performance also decreased dramatically. For the Indicator & Noise case, the scale of noise required to
eliminate the backdoor was significantly reduced. The experiments demonstrate that our approach effectively
reduces the required differential privacy noise level with guaranteed backdoor elimination, minimizing the
impact of DP noise on main task performance.

Table 3: Effect of Indicator on minimum Gaussian noise level δ for backdoor elimination on the CIFAR10 dataset

δ Only noise Indicator & noise

BA (%) MA (%) BA (%) MA (%)
0.01 77.9 87.4 12.6 86.8
0.08 18.3 54.8 12.4 86.2
0.10 13.1 43.5 10.9 63.1

5 Conclusion
In this paper, we propose a backdoor detection and mitigation mechanism that integrates an indicator

task with DP to improve the robustness of FL. By leveraging the OOD property of backdoor samples, our
method effectively detects and excludes malicious model updates that significantly deviate from benign
models during the aggregation process. This filtering process reduces the sensitivity of the remaining updates,
allowing a lower level of DP noise to be applied, while still ensuring backdoor elimination. Experimental
results on the CIFAR10 and FEMNIST datasets confirm that our approach not only effectively mitigates
backdoor attacks but also minimizes the impact of DP noise, preserving high main task accuracy. Even under
challenging conditions, such as highly non-IID data distributions, backdoor attacks with small learning rates
can produce poisoned updates that closely mimic benign updates in the parameter space, making them
difficult to detect. Nevertheless, our method remains effective in defending against such backdoor attacks
through the integration of DP.

It is crucial to recognize potential limitations in scenarios where backdoor samples do not exhibit
OOD characteristics relative to the target class. Under these conditions, our indicator tasks might not
effectively discriminate between benign and malicious updates during the aggregation phase of FL. Such
situations underscore the imperative for continuous research and methodological enhancements to increase
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the robustness of our approach against more sophisticated backdoor strategies that may not present distinct
OOD features.
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