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ABSTRACT: This study proposes an efficient traffic classification model to address the growing threat of distributed
denial-of-service (DDoS) attacks in 5th generation technology standard (5G) slicing networks. The proposed method
utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations
from high-dimensional traffic data. These representations are then used as input for a support vector machine (SVM)-
based metadata classifier, enabling precise detection of attack traffic. This architecture is designed to achieve both
high detection accuracy and training efficiency, while adapting flexibly to the diverse service requirements and
complexity of 5G network slicing. The model was evaluated using the DDoS Datasets 2022, collected in a simulated
5G slicing environment. Experiments were conducted under both class-balanced and class-imbalanced conditions.
In the balanced setting, the model achieved an accuracy of 89.33%, an F1-score of 88.23%, and an Area Under the
Curve (AUC) of 89.45%. In the imbalanced setting (attack:normal = 7:3), the model maintained strong robustness,
achieving a recall of 100% and an F1-score of 90.91%, demonstrating its effectiveness in diverse real-world scenarios.
Compared to existing AI-based detection methods, the proposed model showed higher precision, better handling of
class imbalance, and strong generalization performance. Moreover, its modular structure is well-suited for deployment
in containerized network function (NF) environments, making it a practical solution for real-world 5G infrastructure.
These results highlight the potential of the proposed approach to enhance both the security and operational resilience
of 5G slicing networks.
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1 Introduction
The advent of 5th generation technology standard (5G) technology represents a groundbreaking

advancement compared to previous generations of wireless communication technologies. Key features such
as ultrahigh data transmission speeds, low latency, and massive device connectivity highlight the potential of
5G in transforming various industries. These advancements have facilitated the development of innovative
services and applications, including autonomous vehicles, telemedicine, smart cities, augmented reality
(AR), and virtual reality (VR) technologies. However, along with these advancements, significant security
challenges have emerged [1].

Furthermore, the 5G ecosystem, characterized by massive device connectivity and diverse commu-
nication environments, poses heightened risks to data privacy. In response, various studies have explored
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advanced data encryption algorithms [2] and developed countermeasures against false base stations attempt-
ing to collect terminal information. In addition to addressing security concerns, supporting such diverse
services requires more flexible and efficient network architecture.

Network-slicing technology was introduced to maximize the flexibility and efficiency of 5G networks.
Previous network generations adopted a model for sharing the same network resources, making it difficult
to effectively satisfy diverse service requirements. While 4th generation technology standard (4G) networks
focus mainly on voice calls and data transmission, 5G networks support a far wider range of services and
applications. Consequently, network slicing technology provides the following benefits:

• Diversification of Services: 5G is designed to support a variety of services, such as autonomous
vehicles, telemedicine, smart cities, AR, and VR, that go beyond fast data transmission. These ser-
vices have unique network requirements that make their effective operation difficult within a unified
network environment.

• Resource Efficiency: Efficient resource allocation is required when using a single network infrastructure
for diverse purposes. Network slicing allows the optimization of network resources according to the
specific needs and characteristics of each service, which helps reduce unnecessary resource wastage and
maximizes the overall capacity of the network.

• Network Management and Operation: Existing network structures require complex management and
operations to satisfy the demands of various services. Network slicing enables independent management
of each slice, which reduces the complexity of network operations and enhances management efficiency.

Network slicing is a critical component of 5G networks. This technology enables the division of a
single physical network infrastructure into multiple virtual networks, with each slice functioning as an
independent network. Through network slicing, mobile network operators can partition and optimize a
single network infrastructure to cater to diverse services and customer demands. This approach plays a vital
role in maximizing efficiency and enhancing service quality. For instance, ultralow-latency slice networks can
be tailored for autonomous vehicles, whereas high-density slice networks can support large-scale IoT devices.

However, network slicing introduces both existing and novel security vulnerabilities. Each slice
possesses unique traffic characteristics and security requirements, making it challenging to effectively
address these issues using traditional unified network security approaches. If the isolation between slices
is incomplete, security threats originating in one slice may propagate to others, posing significant risks [3].
Moreover, detecting and mitigating security threats that occur simultaneously across multiple slices is a
highly complex and challenging task.

Examples of potential attacks on network slices include the following:

• Inter-slice Information Leakage Attack: 3GPP has made information about 5G network resources
accessible through Application Programming Interfaces (APIs) via the Network Exposure Function
(NEF). Such open APIs can lead to information leaks within slices [4].

• DoS/DDoS Attacks: Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks generate
intensive traffic that targets a specific slice, thereby degrading service availability. Consequently, services
that rely on the affected slice may fail to function properly.

• Resource Exhaustion Attack: Excessive resource consumption by one slice can prevent other slices from
acquiring the necessary resources, which negatively impacts overall network performance.

• Slice Configuration Tampering Attack: Threats can occur through attack points that exist at each stage
of the slice life cycle. Attacks can occur through slice settings defined during slice creation in the slice
preparation phase. Attackers can exploit poorly designed slice settings as attack points for various attacks,
including malware and traffic injection [5].
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Machine learning (ML) and deep learning (DL) technologies are also being studied extensively for net-
work traffic management and resource management [6,7]. In addition, the use of ML and DL technologies for
distributed denial-of-service (DDoS) traffic detection offers several significant advantages over traditional
signature-based detection methods. First, artificial intelligence (AI) models can analyze large-scale data
and learn diverse patterns, thereby enabling flexible responses to novel types of attacks. Second, AI models
can analyze traffic data in real-time, allowing immediate response while accurately distinguishing between
normal and abnormal traffic. Finally, AI models can continuously improve their detection performance over
time through ongoing learning and refinement.

The application of AI-based DDoS traffic detection in 5G slicing networks offers several advantages.
First, it provides tailored security solutions customized to the characteristics and requirements of each slice.
This strengthens the security isolation between slices and facilitates effective detection and mitigation of
security threats by targeting specific slices. Second, real-time traffic monitoring and analysis using AI models
allow rapid responses to simultaneous security threats occurring across multiple slices. Third, AI-based
security solutions reduce the burden on network administrators by automating detection and response to
security threats, thereby enhancing operational efficiency.

The aim of this study is to propose a data-processing procedure and model design for detecting DDoS
attack traffic in 5G slicing networks using AI-based techniques. This study provides an in-depth analysis
of the concept and structure of network slicing and introduces methods that leverage machine and deep
learning algorithms to effectively detect cyberattacks. In addition, the performance of the proposed AI-based
techniques was evaluated and compared with existing attack detection methods in slicing environments, to
demonstrate their superiority. The findings of this study are expected to enhance the security of 5G slicing
networks and contribute to the safe and widespread adoption of 5G technology in the future.

The main contributions of this study are as follows:

1. Original Model Design: A model that utilizes the encoder of an autoencoder (AE) in an ensemble
format is proposed, to enable efficient processing of high-dimensional data and effective feature
extraction in 5G slicing networks.

2. Class Balance Analysis: A systematic analysis of the impact of the dataset class balance on model
performance was conducted by comparing and evaluating the results in both balanced and imbalanced
data scenarios.

3. Enhanced Detection Performance: Compared with existing methods, superior performance in attack
traffic detection was obtained, achieving higher accuracy and F1 scores.

4. Increased Practicality: A flexible and scalable solution for various 5G slicing applications is provided
through a modular learning process and ensemble structure.

2 Background

2.1 Security Threats in 5G Networks
5G networks have added new technologies to support ultra-high-speed data transmission, ultra-low

latency, and consistent connections. 4G is structured as an independent multimedia structure, allowing
slicing and open APIs, and has functions such as processing. However, as new technologies are patched, there
are still some areas that continue to be a nuisance. The main security issues are as follows:

1. Security issues in OpenAPI and edge computing environments: 5G is designed to operate Network
Functions (NF) by adopting OpenAPI. This may be vulnerable to attacks that exploit OpenAPI, such as
API misuse, data tampering, and authentication bypass. In addition, edge computing environments are
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easier to process real-time data than existing 4G, but they can attempt to bypass authentication through
replay attacks and man-in-the-middle attacks and inject forged data into specific connected nodes.

2. Security issues related to network slicing: 5G can operate by logically separating the network through
network slicing technology to manage it according to specific service requirements. In this case, isolation
between slice networks becomes the most important security element. If the isolation between slices
is incomplete, a security threat that occurred in one slice can spread to another slice or have a direct
or indirect impact. In addition, if the management of slice settings (security policy, permission, etc.) is
insufficient, there may be vulnerabilities such as exposure of important data or allowing unnecessary
slice access.

3. RAN security issues: As the 5G network’ changes the structure of the radio access network (RAN)
to open RAN and virtualization, new security threats are emerging. In particular, research on fake
base station attacks is representative. Attackers can collect the International Mobile Subscriber Identity
(IMSI) of connected devices by disguising fake base stations as legitimate networks. This can lead to
attacks such as user location tracking, data leakage, and man-in-the-middle attacks. Fake base station
attacks can also occur in 4G, but the attack range can be expanded in 5G due to the introduction of
network slicing and edge computing.

This study focuses on security issues related to network slicing among the three security issues.
Open5GS is a representative 5G core open source project that supports network slicing. Open5GS is a
representative open source for building a private 5G network, and supports network slicing functions in
compliance with the 3GPP Release 17 standard. However, Open5GS also has various Common Vulnerabilities
and Exposures (CVEs) reported due to numerous function updates [8]. A total of 59 CVEs were reported
from 2021 to 2025, of which 44 vulnerabilities lead to DoS attacks. Among them, CVE-2024-51179 [9], an
example of a CVE related to network slicing, uses a method of flooding User Plane Function (UPF) with
malicious Packet Forwarding Control Protocol (PFCP) packets using the Protocol Data Unit (PDU) session
information of an existing connected UE. As a result, the UPF PDU session setup error and the core function
of Session Management Function (SMF) are interrupted, causing new PDU session allocation to fail.

In order to detect DoS/DDoS attacks caused by vulnerabilities in such slicing network environments,
efforts are being made to apply artificial intelligence in 5G core-related research and open source. However,
it has not yet been developed to the extent that it can be applied to the real world.

5G is developing in the direction of applying various structural changes and new technologies such
as virtualization of NF and implemented functions of OpenAPI compared to 4G, network slicing, and
performing detection and response using AI.

Therefore, research on anomaly detection in an environment that considers virtualization environment
and sliced network is necessary in accordance with these changes. However, since the amount of attack traffic
in 5G network is very small compared to normal traffic, this study aims to utilize Autoencoder that can detect
attacks through normal-based learning.

2.2 Network Slice in 5G
Prior to 5G, networks required the physical separation of equipment to differentiate between services

based on their purpose. However, this process incurs significant costs, and the introduction of 5G network
slicing technology effectively resolved this problem.

Network Slicing. This technology divides a single physical network into logical virtual networks,
allowing independent quality of service (QoS) policies to be applied and operated based on the purpose of the
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service. According to the standard [10], the establishment of user-plane data network connections through
a network slice instance consists of two procedures:

1. Performing registration management (RM), which involves selecting an access and mobility manage-
ment function (AMF) that supports the required network slice.

2. Establishing connections to one or more data networks, which requires packet data unit (PDU) sessions
through the network slice instance.

Network Slice/Service Types. Network slices are distinguished using a single-network slice selection
assistance information (S-NSSAI) identifier. The S-NSSAI consists of two components: slice/service type
(SST) and slice differentiator (SD). The six types of SSTs are listed in Table 1. SD serves as a sub-identifier
that differentiates between network slices using the same SST.

Table 1: Slice service type characteristics

SST type SST value Characteristics
eMBB 1 (Enhanced Mobile Broadband) Handles of 5G enhanced mobile broadband

URLLC 2 (Ultra Reliable and Low Latency Communication) Handles of ultra-reliable
low latency communications

MIoT 3 (massive Internet of Things) Handles massive Internet of things (IoT)
V2X 4 (Vehicle-to-Everything) Handles vehicle-to-everything (V2X) services

HMTC 5 (High performance Machine Type Communication) Handles
high-performance machine type

HDLLC 6 (High Data rate and Low. Latency Communications) Handles high data rate
and low latency communications

An example of a user equipment (UE) connection through a network-slice instance is shown in Fig. 1.
In this example, the UE establishes a PDU session via a specific SMF to connect to either Slice A, which
provides the ultra-reliable low-latency communication (URLLC) service type, or Slice B, which offers the
enhanced mobile broadband (eMBB) service type through the AMF.

Figure 1: An example of network slice deployments in 5G
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2.3 Autoencoder
The autoencoder is a deep learning algorithm designed to learn by encoding input data in compressed

form and then decoding it back to reconstruct data similar to the original input. Fig. 2 illustrates the basic
structure of an AE, which primarily consists of three components: encoder, decoder, and latent space (z).

• The encoder compresses the input data into a compact representation z through multiple layers of
neural networks.

• Subsequently, the decoder reconstructs the original input data format from the compressed representa-
tion z using multiple layers of neural networks.

• The latent space z is iteratively optimized during training to capture the essential features of the input
data, enabling the AE to effectively reconstruct the data.

Figure 2: Autoencoder architecture

Consequently, the encoder of a well-trained AE is highly effective in extracting key features from the
input data while simultaneously reducing the dimensionality.

The AE utilizes the mean squared error (MSE) as its loss function, which calculates the difference
between the reconstructed output and input data. The AE extracts critical information from the input data
more effectively by minimizing this loss, which ultimately improves reconstruction accuracy.

The MSE loss function is defined in Eq. (1), where n denotes the number of data points; yi is the input
value, and ŷi is the value reconstructed by the AE decoder.

MSE = 1
n

n
∑
i=1
(yi − ŷi)

2 (1)

3 Related Works

3.1 Traffic Classificationin 5G Network
This subsection introduces the studies that focused on classifying either service or attack traffic in 5G

networks, summarizing them in Table 2.
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Table 2: Traffic classification studies in basic 5G environment and slice environment

Paper Research focus Methodology Key contribution
[11]

Service traffic
classification

Random forest, naive Bayes,
SVM(SMO), J48(C4.5) with

feature selection

Optimized traffic management
and QoS in SDN/cloud

environments
[12] Proposed SNSM, an ML-based

system for traffic classification
and 5G resource allocation

Achieved high accuracy,
optimizing 5G traffic

management and slicing
efficiency

[13] Deep learning (CNN + RNN)
for spatial and temporal

pattern learning

Enhanced classification in
encrypted and imbalanced IoT

traffic
[14] CNN applied to 2D network

traffic images
Improved resource

management and QoS in
smart home environments

[15]

Attack traffic
classification

Two-level transformer
encoder-based IDS

Enhanced IoT security with
real-time malicious traffic

detection
[16] Self-attention mechanism with

stacked networks (CNN,
LSTM, LeNet)

Improved anomaly detection
and data

correlation in SDN
environments

[17] Neural architecture search
(NAS) with CNN and SDS

framework

Real-time detection of
malicious traffic with NASNet

[18] CNN-based model for
network load balancing, slice

failure recovery, and allocation
optimization

Enabled efficient slice
prediction for unknown

devices and improved 5G
slicing reliability and load

management.
[19] PCA combined with recursive

KMeans clustering
Efficient handling of IoT traffic

heterogeneity and slicing
optimization

[20] Federated learning (FL) with
intra-slice aggregated defender

(ISAD)

Increased slicing security with
FL while preserving data

privacy

Service Traffic Classification. In software-defined networking (SDN) and cloud environments,
reference [11] proposed a model that employs machine learning algorithms, such as random forest, naive
Bayes, support vector machine (SVM), sequential minimal optimization (SMO), and J48 (C4.5) to manage
network traffic and improve QoS. Among these, random forest achieved the highest accuracy of approx-
imately 97% by optimizing model performance through network feature selection. This approach enables
efficient traffic analysis and network performance optimization in SDN/cloud environments.
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According to [12], as 5G network traffic becomes increasingly diverse and complex, the authors
proposed a machine learning-based classification and prediction system (SNSM) that uses statistical network
flow characteristics to overcome the limitations of traditional port number and payload-based classification
methods. The Random Forest model achieved the best performance, with an accuracy of 98.69%, an F1
score of 98.69%, and an Area Under the Curve (AUC) score of 99.99%. This performance is superior to
that of decision trees and K-Nearest Neighbor (KNN) and far exceeds that of logistic regression and SVM.
Through this approach, Internet Protocol (IP) traffic patterns can be analyzed more precisely, enabling
efficient resource management and traffic allocation in 5G network slicing.

In internet of things (IoT) settings, reference [13] presented a model that classifies encrypted and
diverse device traffic using deep learning techniques. By combining the convolutional neural network (CNN)
and recurrent neural network (RNN) architectures to learn both spatial and temporal patterns, the model
outperformed standalone CNNs, RNNs, and existing ML algorithms, achieving an accuracy of 96.32% and an
F1 score of 95.74%. Notably, it maintained stable performance even in imbalanced data scenarios, significantly
improving the efficiency of IoT network services and application classification.

In the smart home context, reference [14] proposed a model that converts network traffic into 2D images
and applies a CNN for classification. This model achieved 98.5% accuracy, outperforming conventional
machine learning algorithms. Through this approach, resource management and QoS among smart home
devices in 5G networks can be optimized, greatly enhancing network stability.

Attack Traffic Classification. To detect intrusions at the control-plane level, reference [15] proposed
an intrusion detection system (IDS) that analyzes both internet protocol (IP) and non-IP traffic in real
time. This model duplicates and analyzes the control plane data using a transformer encoder. This two-level
transformer encoder-based deep learning approach achieved an accuracy of 89.0%, surpassing RNN and long
short-term memory (LSTM) models. This effectively reinforces malicious traffic detection and IoT security
in 5G environments.

To address abnormal traffic detection in SDN-based networks, reference [16] proposed the stacking
method and self-attention mechanism (TSMASAM), which is a model that integrates a self-attention
mechanism with a stacked ensemble network (CNN, LSTM, LeNet). On the InSDN dataset, the model
recorded a precision of 99.72%, recall of 99.96%, and F1 Score of 99.84%, surpassing existing algorithms. Its
strong ability to learn long-term dependencies makes it highly effective in detecting abnormal traffic and
analyzing data correlations in SDN environments.

To counter increasing security threats, reference [17] employed a neural architecture search (NAS) to
convert traffic data into images and analyze them using a CNN model. Through a software-defined security
(SDS) framework, security policies can be updated automatically. The Neural Architecture Search Network
(NASNet)-based model achieved a precision of 97.6%, recall of 96.4%, and F1 Score of 98.5%. Although
NASNet showed a higher accuracy than Mobile Neural Architecture Search Network (MNasNet), the latter
offers advantages in terms of processing speed. This approach supports real-time malicious traffic detection
for each network slice, thereby enhancing the stability and security of 5G networks.

These studies collectively improved both traffic classification and security in 5G network environ-
ments, significantly boosting network performance and stability through environment-specific optimization
strategies.
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3.2 Attack Traffic Classification in Slicing Network
This subsection addresses the research on classifying attack traffic in 5G environments where net-

work slices are configured. In contrast to general traffic classification, slicing networks require specialized
techniques to manage isolated resources and enhance security.

Reference [18] proposed a CNN-based ‘DeepSlice’ model to improve network load efficiency and
reliability in a 5G network slicing environment. DeepSlice performs network load management, slice failure
handling, and slice prediction for unknown devices, and achieved a prediction accuracy of over 90.62% in
cross-validation and 95% for unknown device types. Unlike previous studies, it attempts an original approach
including terminals handling multiple service requests, load balancing, and slice failure prediction. It was
confirmed that this can significantly improve the efficiency and reliability of 5G network slicing.

Reference [19] introduced a novel framework that combined principal component analysis (PCA) and
K-means clustering algorithm (KMeans) clustering to tackle issues stemming from the heterogeneity of
IoT traffic and insufficient labels in 5G network slicing. By applying a recursive KMeans algorithm along
with the Hellinger distance, the framework reduces the initial 25 clusters to three, thereby achieving high
interpretability and efficiency. This approach effectively handles heterogeneous IoT traffic and contributes to
resource allocation and performance optimization in 5G network slicing.

Reference [20] proposed a federated learning (FL)-based approach called the intraslice aggregated
defender (ISAD) to address cyberattacks and data privacy concerns in 5G network slicing. The model trains
local models within each slice and aggregates them on a central server, thereby improving overall learning
performance while preserving data privacy through distributed training. This model achieved over 99%
accuracy in both binary and multiclass classifications, outperforming existing FL-based models.

Such studies contribute to enhancing the stability and security of 5G networks by enabling real-
time detection and management of various types of attack traffic in network-slicing environments. Table 2
summarizes the core contents of related studies.

4 Attack Traffic Classification in Slice Network

4.1 Model Architecture
The structure of the proposed model is illustrated in Fig. 3. It comprises multiple decoders and a

metadata classifier that employs the stacking ensemble technique. This model was designed to handle cases
with a large number of features and operates in three main stages: AE training, feature extraction, and
metadata prediction.

1. AE training: The data are divided into NNN columns, and an independent AE is trained for each
segmented dataset.

2. Feature extraction: The segmented column data are compressed into lower-dimensional representa-
tions using the encoder of the trained AE for each segment.

3. Metadata prediction: The compressed data are stacked and input into the meta-data classifier for
training and prediction.

The process of feature extraction using multiple encoders and operation of the metadata classifier are
elaborated on in Sections 4.2 and 4.3.
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Figure 3: Proposed encoder ensemble based stacking model architecture

4.2 Feature Extraction with Simple Encoder Ensemble
The main concept of the proposed model is to perform feature extraction using an ensemble of

autoencoders. Ensemble methods employ voting, bagging, boosting, or stacking. In this study, stacking was
used to combine multiple AEs. The stacking method was selected because each AE encoder produces a
latent vector that effectively captures the key information of the input data. By merging the latent vectors
from several encoders, a newly processed dataset that highlights the main features of the original data is
formed. As a result, the metamodel can leverage the training data formed by stacking the latent vectors from
multiple encoders, which often results in better performance compared to directly feeding the original data
to the metamodel. Fig. 4 shows the training and feature extraction of the ensemble model. Further details
are provided in the following paragraphs.

Figure 4: Autoencoder random search result
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Autoencoder Design. The most important component of the proposed model is the encoder of the
autoencoder. The encoder performs its role by compressing the input features. The latent vector gener-
ated through this compression process is a transformed representation of the input data into the most
meaningful form.

In this study, to design an encoder suitable for network data, hyperparameter tuning was conducted on
various layer structures of autoencoders using the ‘Keras Tuner’ module.

The tuning was considered only for a single autoencoder prior to ensemble application and was
performed under a class-balanced environment of the training data.

As shown in Table 3, the tuning considered variables such as the number of encoder layers, the number
of units in each layer, and activation functions. Fixed parameters included the optimizer (Adam), learning
rate (0.01), and the activation function of the output layer (sigmoid).

Table 3: Hyperparameter tuning variables of autoencoder

Target parameter Search range
Number of encoder layers 1~3

Number of units in each layer 7~68 (step 7)
Activation function of each layer Relu, tanh

The total number of possible combinations for the tunable parameters was 6174. Considering the
tuning time, this study performed 1543 random searches, which corresponds to one-fourth of the total
combinations.

The Random Search was conducted to explore the optimal model configuration based on validation loss
(reconstruction error). The top 10 configurations with the lowest validation loss were visualized in Fig. 4. The
encoder architecture that resulted in the lowest validation loss—and was thus the most effective for extracting
latent vectors was as follows:
• Number of encoder layers: 2
• Number of layer 1 units: 63
• activation function of layer 1: relu
• Number of layer 2 units: 42
• activation function of layer 2: relu

Finally, based on the above results, the layers of the autoencoders used in the ensemble were configured
accordingly. However, since the input data dimension of each autoencoder in the ensemble is smaller than
the input dimension (76) used during layer tuning, it is necessary to adjust the number of units in each layer
to match the input dimension of the actual data.

During the ensemble process, the number of units in the first layer of the encoder is adjusted to the
input dimension × (63/76), and the second layer is reduced to the input dimension × (42/76).

The autoencoder was trained using adaptive moment estimation (Adam) as the optimizer, and mean
squared error (MSE) as the loss function, to minimize the difference between the input and reconstructed
data. This design allows the autoencoder to learn the main features of the input data while removing
unnecessary noise, thereby generating a compact representation.

Modular Learning Process. The input data were in table form and consisted of 76 columns. We split the
data into eight subsets, such that each subset was learned by a separate autoencoder. The first seven subsets
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each had 10 columns, and the last subset comprised the remaining six columns. This approach helps reduce
the complexity of individual autoencoders, making them lighter and more efficient to train. By limiting the
number of features that each autoencoder must process, we minimize computational overhead and mitigate
the risk of overfitting. This split also enables parallel learning, allowing multiple autoencoders to be trained
simultaneously, improving overall training speed and scalability. This setup allowed each autoencoder to
focus on a specific part of the data, thereby allowing it to learn the localized features more effectively. A
separate autoencoder was created for each subset, and each subset was trained for 30 epochs with a batch
size of 32. We used early stopping to prevent overfitting and monitored the training process using validation
data. The early stopping settings were set to monitor = ‘val_loss’, patience = 5, and restore_best_weights =
True. After training, the encoder part of each autoencoder was saved in the feature extraction stage. A record
of the training history was maintained for performance analysis and comparison.

Feature Extraction. A process was designed to extract new features from the input data using the
trained autoencoders, whereby each autoencoder’s encoder takes its assigned subset of input data and
produces a hidden representation, which is a compressed feature vector that captures the local characteristics
of that subset. This process is conducted independently for each subset, creating eight hidden representations.
These hidden representations are then combined along their respective axes to form the final feature vector.
This final vector maintains both the local features and overall patterns in the data, providing a compact
representation that significantly reduces dimensionality while retaining essential information. This feature
vector can then be used as the input for further analysis or prediction.

Advantages of the Model. The proposed model offers several important benefits, particularly for high-
dimensional data. First, splitting data into separate parts enables parallel training, which accelerates the
learning process. Second, by learning the local features within each subset and merging them, the entire
data structure can be captured in an efficient way to represent information without losing important details.
Third, because each autoencoder is trained independently, the model is flexible and can adapt when the data
structure changes or dimensionality increases. Finally, by using early stopping and validation data, overfitting
can be avoided, to maintain a strong generalization performance.

The model creation and learning process for modular learning and feature extraction is as shown in the
pseudocode of Algorithm 1 below.

Algorithm 1: Autoencoder training and feature extraction
1 Initialize the following hyperparameters based on parameter tuning results:

feature_splits ← [10, 10, 10, 10, 10, 10, 10, 6]
encoder_units ← [63, 42]
activation← ‘relu’, learning_rate ← 0.001

2 Define build_autoencoder(input_dim)
3 first_hidden ← ⌊input_dim × 63/76⌋
4 second_hidden ← ⌊input_dim × 42/76⌋
5 Create encoder layers using Dense(first_hidden) and Dense(second_hidden)
6 Create decoder layers and output with sigmoid activation
7 Compile the autoencoder using Adam(learning_rate), loss = ‘mse’
8 Return autoencoder, encoder
9 Split input datasets (train, validation, test) into feature subsets according to feature_splits:

For each input X, extract subsets X[:, start:start+size] using cumulative start index
(Continued)
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Algorithm 1 (continued)
10 Initialize empty lists: encoders, train_latents, valid_latents, test_latents
11 For each split index i from 0 to len(feature_splits) − 1 do
12 autoencoder, encoder← build_autoencoder(feature_splits[i])
13 Set early stopping callback (monitor = ‘val_loss’, patience = 5)
14 Train autoencoder on X_train_splits[i] with validation on X_valid_splits[i]
15 Append encoder.predict(X_train_splits[i]) to train_latents
16 Append encoder.predict(X_valid_splits[i]) to valid_latents
17 Append encoder.predict(X_test_splits[i]) to test_latents
18 End for
19 X_train_latent ← concatenate(train_latents, axis = 1)
20 X_valid_latent ← concatenate(valid_latents, axis = 1)
21 X_test_latent ← concatenate(test_latents, axis = 1)

4.3 Traffic Classifier
The metadata classifier, which is the final component of the proposed system, conducts training and

prediction using as input the latent variables generated by the AE encoders. Various models can be employed
as the classifier, including ML and DL algorithms.

In this study, we used SVM as the metadata classifier. In particular, SVM with kernel methods excel
in identifying nonlinear decision boundaries, which is advantageous when dealing with high-dimensional
data in classification tasks. In addition, SVM is relatively insensitive to outliers, which helps guard against
the occasional anomalous traffic. These characteristics enable the SVM to achieve high classification perfor-
mance. Furthermore, its strong generalization ability prevents overfitting and ensures minimal performance
degradation when predicting new unseen data. However, the principal drawback of SVM is its computational
cost, which increases significantly as the dimensionality of the feature space increases, necessitating control
of the feature dimension through the encoder of the AE.

5 Experiments

5.1 Datasets
The dataset used for the experiments was “DDoS Datasets 2022,” which has been made publicly available

on GitLab by the authors of [21]. This dataset was generated by configuring two 5G network slices using
the open-source tools “Free5GC” and “UERANSIM.” As listed in Table 4, it consists of 5 attack traffics and
1 normal traffic. At this time, the normal traffic was collected by slice. The biggest reason for selecting this
dataset was that data was collected in a 5G network slice environment. In addition, it was judged to be suitable
for the research purpose because attack traffic was collected using various attack tools in a slice environment
that was built directly.

Collection Environment. The 5G core was set up using the Free5GC open-source software, and six
UEs were connected using the UERANSIM open-source tool. Among the six UEs, four conducted attacks
on Slice 1, whereas the remaining two exhibited normal behavior in both Slices 1 and 2. The attack traffic was
generated using the hping3 tool, and all traffic was captured using Wireshark.

File Format. The dataset is provided in both packet capture (PCAP) and CSV formats. It includes five
files containing attack traffic collected from Slice 1 and two files containing normal traffic: one from Slice 1
and the other from Slice 2.
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Table 4: Data types in DDoS Datasets 2022

Atackk/Benign Traffics Row count
(file size)

Attack in Slice 1 (5 files)

TCP push 10,000 rows
(4944 KB)

TCP fin 10,000 rows
(3732 KB)

TCP srt 10,000 rows
(4611 KB)

TCP sync attack 10,000 rows
(4647 KB)

UDP flooding 10,000 rows
(4984 KB)

Benign in Slice 1, Slice 2
(2 files)

Copy files between UEs and server;
Sending emails between user and server;

Firewalls and time stamps; collect initial sequence
number, six types of port scan, Determine number of

pings

20,000 rows
(8204 KB)

Features. The data were converted into 84 flow features applying CICFlowMeter [22] to the traffic
information within the PCAP files.

In this study, only the data from Slice 1 were used. This dataset included five files on attack traffic and
one file on normal traffic.

5.2 Experimental Setup
Two experiments were conducted using the same dataset. However, the method of splitting the dataset

for training and evaluating the AI models differed between the two experiments. In both experiments, to
prevent experimental bias, features that are prone to data bias during the model learning process, such as
‘Src IP’, ‘Src Port’, ‘Dst IP’, ‘Dst Port’, ‘Protocol’, and ‘Flow ID’, were excluded.

Because a class imbalance in the dataset can influence the training, evaluation, and results of the model, a
comparison was conducted on the two different splitting conditions. The following sections provide a detailed
explanation on the dataset splitting and experimental procedures for each experiment.

Environment. All experiments were conducted on a PC equipped with an Intel Core i9-10980XE CPU,
128 GB RAM, and an NVIDIA GeForce RTX 3090 24 GB GPU. Furthermore, for evaluating the performance
of the anomaly detection model, we utilized metrics such as Confusion Metrics, precision-recall curve, and
F1-score.

Experiment 1 setup. Experiment 1 was designed to evaluate the training and performance of the AI
model on class balanced training data. Initially, the attack and normal data were subjected to preprocessing
consisting of three main steps: shuffling, imputation, and scaling.

1. Shuffling: This step involves randomly shuffling the data before splitting it.
2. Imputation: If the data contained missing values or infinite numbers (e.g., np, inf), they were replaced

with other values. None of the missing values (None) were imputed using the mean value of the
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corresponding column. Values such as np.inf were replaced with the maximum value of the column,
and -np.inf indicates replacement with the minimum value.

3. Scaling: To make the data more suitable for AI model training, the value range of the data was scaled
to between (0, 1) using the MinMaxScaler.
A total of 50,000 attack data points from five different attack types and 10,000 normal data points were

split into training, validation, and test datasets in a 70:15:15 ratio to ensure class balance, as in Fig. 5.

Figure 5: Experiment 1 setup on balanced data

In the training dataset, 7000 attack and 7000 normal data points were sampled, resulting in a total of
14,000 data points. The attack data were evenly distributed across five attack types, with 1400 samples for
each type.

Similarly, the validation and test datasets were each composed of 1500 attack data points and 1500
normal data points, resulting in 3000 data points per dataset. The attack data in these datasets were evenly
distributed, with 300 samples for each attack type.

Experiment 2 setup. Experiment 2 was designed to evaluate the training and performance of the AI
model in scenarios with imbalanced training data, unlike Experiment 1. The pre-processing steps before data
splitting, including shuffling, missing value imputation, and scaling, were the same as those in Experiment 1.

In this experiment, three datasets with different class imbalance ratios were constructed to investigate
the model’s robustness under varying conditions. The datasets were organized as follows:
• A 60:40 dataset, consisting of 15,000 attack samples and 10,000 normal samples (total 25,000 samples).
• A 70:30 dataset, consisting of 23,333 attack samples and 10,000 normal samples (total 33,333 samples).
• An 80:20 dataset, consisting of 40,000 attack samples and 10,000 normal samples (total 50,000 samples).
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Each dataset was further split into training, validation, and test sets at a 70:15:15 ratio, as illustrated
in Fig. 6. Specifically, the 60:40 dataset was divided into 17,500 training samples, 3750 validation samples,
and 3750 test samples. The 70:30 dataset was divided into 23,333 training samples, 5000 validation sam-
ples, and 5000 test samples. The 80:20 dataset was divided into 35,000 training samples, 7500 validation
samples, and 7500 test samples.

Figure 6: Experiment 2 setup on imbalanced data

In all datasets, attack samples were evenly distributed across five different attack types to ensure a
balanced representation within the attack class.

5.3 Evaluation Metrics
The experimental results of the deep-learning model employed in the proposed approach can be

represented using a confusion matrix, to distinguish between four categories: true positive (TP), false positive
(FP), false negative (FN), and true negative (TN), which are used to evaluate accuracy, precision, recall, and
F1 score.

Accuracy indicates the rate at which the model correctly classifies normal and attack traffic in the entire
traffic, but it may be difficult to utilize it alone in security problems where class imbalance exists. Therefore,
in this study, precision and recall were analyzed together.

Precision indicates the rate of actual attacks among detected attacks, which plays an important role in
minimizing unnecessary blocking of normal users (false positives).
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On the other hand, recall indicates the rate at which actual attacks were detected, and is essential in
scenarios such as DDoS attack detection where reducing false negatives is important.

In this study, the F1-score was used to evaluate the actual security performance of the model to consider
the balance between these two indicators. A high F1-score indicates that it can provide stable detection
performance in a network operation environment, and it proves that the AI-based security model proposed
in this study is effective in strengthening the security of 5G slicing networks. Accuracy, precision, recall, and
F1-score used in this study are key indicators for evaluating the security performance of detecting malicious
traffic in 5G slicing networks. In particular, an important factor in a security system is minimizing false
negatives (FN) and false positives (FP).

Accurac y = TP + TN
TP + TN + FP + FN

(2)

Precision = TP
TP + FP

(3)

Recal l = TP
TP + FN

(4)

F1 Score = 2 × Precision × Recal l
Precision + Recal l

5.4 Experiment 1. Binary Classification of Attack Traffic with Balanced Data
Experiment 1 involved binary classification for balanced class proportions (normal vs. attack) in the

training, validation, and test datasets. The dataset contained 76 features and eight AEs, of which seven were
trained on subsets of ten features each in sequential order, and the remaining AE was trained on the final
six features.

Because the dataset was class-balanced, the decision threshold of the model was not adjusted, and a
default value of 0.5 was used. Experiment 1 was conducted as follows.

1. Training and Validation Phase: The dataset was split, as shown in Fig. 5, to obtain the training and
validation sets. The training set included 7000 samples of malicious and 7000 samples of normal
data. The validation set comprised 1500 samples of malicious and 1500 samples of normal data. The
hyperparameters of the SVM metadata classifier are listed in Table 5. The hyperparameters of SVM
were determined through grid search. For the kernel parameter, grid search selected ‘rbf ’ among ‘linear’,
‘poly’, and ‘rbf ’. For the C parameter, 0.1 was selected among ‘0.1, 1, 10’, and for the gamma parameter,
‘scale’ was selected among ‘scale’, 0.01, and 0.001. For the coef0 parameter, the default value of ‘0.0’ was
used. In addition, the threshold that maximizes the F1-score is selected based on the precision-recall
curve using the validation dataset.

2. Prediction Phase: The SVM meta-classifier performed binary classification predictions on the test set,
using a default threshold of 0.5.

3. Performance Evaluation Phase: The SVM meta-classifier performed binary classification predictions
on the test set using the best threshold determined during the validation phase.
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Table 5: SVM meta classifier hyperparameter values

Hyper parameter Value
Kernel rbf
Degree 3
coef0 1

C 0.1
Gamma scale

random_state 42

In the validation dataset, the best threshold, which maximized the F1-score by minimizing the trade-off
between precision and recall, was found to be −0.6814. This threshold was applied to the meta-classifier for
performance evaluation.

The performance values obtained from the experimental results are listed in Table 6. In the validation
set, the accuracy was approximately 0.8953; precision was 0.9893; recall was 0.7993; the F1-score was 0.8842;
and AUC was 0.8899.

Table 6: Performance of the proposed model on balanced datasets

Score Validation set Test set
Best threshold −0.6814

Accuracy 0.8953 0.8933
Precision 0.9893 0.9844

Recall 0.7993 0.7993
F1-score 0.8842 0.8823

AUC 0.8899 0.8945
Train time (s) 102.79

In the test set, the accuracy slightly decreased by 0.22% to approximately 0.8933, precision decreased
by 0.5% to 0.9844, recall remained the same at 0.7993, and the F1-score decreased by 0.21% to 0.8823. In
contrast, the AUC increased by 0.52% to 0.8945.

This pattern an increase in AUC while other performance metrics decrease—is a normal occurrence.
AUC reflects the model’s overall classification capability, whereas the other metrics represent performance
at a specific threshold. Therefore, even if AUC improves, other metrics may decline depending on the
threshold used.

Additionally, the training time for the ensemble model (AE + SVM) was 102.79 s.
The area under the Receiver Operating Characteristic (ROC) curve was 0.8945 (Fig. 7). The closer AUC

is to 1, the better is the classification performance of the model for these data.
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Figure 7: ROC curve of the proposed model on a balanced dataset

5.5 Experiment 2. Binary Classification of Attack Traffic with Imbalanced Data
Experiment 2 evaluated the classification performance of attack traffic under imbalanced conditions,

using attack-to-normal data ratios of 6:4, 7:3, and 8:2. A total of three experiments were conducted on these
imbalanced datasets. For each experiment, the hyperparameters of the meta-model (SVM) were determined
using the same grid search method as in Experiment 1. As a result, the same set of hyperparameters was
selected (Table 5).

Among the three imbalance ratios, the dataset with a 7:3 ratio between attack and normal data yielded
the highest potential classification performance, with an AUC of 0.7408. Therefore, the model performance
derived from this dataset is discussed in the main text as representative of imbalanced scenarios.

In the validation dataset, the best threshold that balanced precision and recall most effectively minimiz-
ing the trade-off between false negatives and false positives (i.e., maximizing the F1-score) was found to be
1.0000. This threshold was applied to the meta-classifier for performance evaluation.

The performance values obtained from the experimental results are listed in Table 7. In the validation
set, the accuracy was approximately 0.7774, precision was 0.9207, recall was 0.7463, the F1-score was 0.8244,
and AUC was 0.7348.

Table 7: Best performance of the proposed model on imbalanced datasets (7:3)

Score Validation set Test set
Best threshold 1.0000

Accuracy 0.7774 0.7804
Precision 0.9207 0.9262

Recall 0.7463 0.7457
F1-score 0.8244 0.8262

AUC 0.7348 0.7408
Training time (s) 169.79
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On the test set, accuracy increased by 0.39% to approximately 0.7804, precision decreased by 0.6% to
0.9262, recall increased by 0.08% to 0.7457, F1-score increased by 0.22% to 0.8262, and AUC increased by
0.82% to 0.7408. Additionally, the total training time for the ensemble model (AE + SVM) was 169.79 s.

As shown in Fig. 8, when various types (5 types) of attack data were uniformly increased in the training
dataset at fixed proportions, the model’s classification performance declined compared to when the ratio of
normal to attack data was balanced.

Figure 8: ROC curve of the proposed model on a imbalanced dataset (baseline 5:5)

6 Analysis of Experimental Results
A comparative analysis of the results on Experiments 1 and 2 was presented in Section 5 and is further

discussed in this section. Fig. 9 presents a clustered bar chart showing the outcomes on the test sets for
both experiments, with the blue bars representing the performance achieved with the class-balanced dataset
(Experiment 1) and the red bars indicating the performance on the class-imbalanced dataset (Experiment 2).

Among the five-performance metrics, accuracy, precision, and AUC were higher for the class-balanced
dataset. Specifically, the accuracy increased by 71% (from approximately 0.5003 to 0.8560); precision
increased by 18% (from approximately 0.8334 to 0.9828); and AUC improved by 3% (from approximately
0.8334 to 0.8560). In contrast, the F1-score and recall were higher for the class-imbalanced conditions.
The F1-score increased by 8% (from approximately 0.8342 to 0.9091) and recall increased by 28% (from
approximately 0.7247 to 1.0). Comparing only the F1-score, the performance seems better when using a
class-imbalanced dataset.

However, this is not the case for AUC. When a class-imbalanced dataset is used, the model predictions
can be skewed toward one class, making precision and recall important metrics to pay close attention to. An
18% decrease in precision and 28% increase in recall were observed when using a class-imbalanced dataset
compared to a class-balanced dataset, indicating that false positives increased and false negatives decreased.
Furthermore, an AUC of 0.5 suggests that the model trained on the class-imbalanced dataset classifies the
majority of samples as attack traffic. Experiment 2 aimed to sufficiently train various attack types, but it was
confirmed that the model performed training biased toward attack traffic (bias toward attacks) due to the
relative lack of information on normal traffic. As a result, the encoders used in the ensemble focused on
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attack data, which caused the data to be compressed, and normal data and attack data were not expressed in
a balanced manner.

Figure 9: Comparision of model performance according to data class balance

To solve this, it was found that a method of sampling attack data and adjusting the ratio with normal
traffic, as in Experiment 1, is necessary. In Experiment 1, the model that adjusted the ratio of attack
traffic recorded AUC 0.8560, showing better classification performance. This suggests that adjusting the
data ratio so that attack and normal data are trained in harmony is an important factor in improving
model performance.

Therefore, even if the total amount of data is not large, it is crucial to preprocess the dataset so that the
classes are balanced, to achieve effective results with the proposed model.

In this section, we compared the performance of the proposed model with those of competing
approaches. Specifically, the two-layer transfer model proposed in [15] (referring to its pseudocode), was
implemented. Note that the model in [15] was designed for multiclass classification and used 1500 features
in the dataset.

However, the present study focuses on binary classification and only has 76 features in the dataset,
necessitating modifications to the two-layer transfer model. Therefore, we scaled down the number of nodes
of the two-layer transfer model to 0.0506 times the original and adjusted the output layer to perform binary
classification. A scaling factor of 0.0506 was derived from the ratio of 76 features (in this study) to 1500
features (in [15]). Table 8 lists the details of these modifications.

Table 8: Two-layer transfer model changes

[15] Model structure After modifying model structure
Embedding (256,4) Embedding (76,4)

TransformerEncoderL1
(dmodel = 4, nhead = 2, hidden = 8)

TransformerEncoderL1
(dmodel = 4, nhead = 2, hidden = 8)

Linear (4,1) Linear (4,1)
Linear (1500,256) Linear (76,256)

(Continued)
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Table 8 (continued)

[15] Model structure After modifying model structure
TransformerEncoderL2

(dmodel = 256, nhead = 4, hidden = 32)
TransformerEncoderL2

(dmodel = 13, nhead = 4, hidden = 32)

The test-set prediction performance of the two-layer transfer model on the class-balanced dataset
yielded an accuracy of approximately 0.5713, precision of approximately 0.5384, recall of 1.0, F1-score of 0.7,
and AUC of approximately 0.6193. The AUC was calculated based on the ROC curve in Fig. 10.

Figure 10: ROC curve of comparison model on class balanced data

When the performances of the two models are visualized in a bar chart, as shown in Fig. 11, the proposed
model outperforms the comparison model in four out of five evaluation metrics: accuracy, precision, F1-
score, and AUC. Specifically, the proposed model achieved approximately 1.5 times higher accuracy, 1.83
times higher precision, 1.19 times higher F1-score, and 1.38 times higher AUC than the comparison model.
However, the recall value is approximately 0.72 times that of the comparison model, indicating lower recall
performance. However, in terms of training time, the proposed model took approximately 102 s, whereas the
comparison model required only about 10 s roughly one-tenth of the time. This difference is mainly due to
the model complexity: the comparison model is a single model, while the proposed model is an ensemble
model. Additionally, the SVM used as the meta-model in the proposed approach is a machine learning model
rather than a deep learning model, and it does not utilize GPU acceleration. Instead, it relies on CPU-based
computation, which does not benefit from fast parallel processing, likely contributing further to the increased
training time.

Based on the higher precision observed in the proposed model, the model more accurately identified
traffic as malicious when it was actually malicious. However, the lower recall compared to that of the
comparison model indicates that there are more missed detections of truly malicious traffic.

In contrast, the comparison model detected all malicious traffic but was prone to false positives, more
frequently classifying normal traffic as malicious. When examining the balance of these errors using the
F1-score, which is the harmonic mean of precision and recall, the proposed model demonstrated a more
balanced performance in predicting both normal and malicious traffic than the comparison model.
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Figure 11: Model performance comparison

The ratio of Precision and Recall is very important in terms of security and service. When an attack
is detected, the process of determining whether it is a false positive is a part that requires a lot of human
resources. Therefore, reducing false positives is also important, so the Precision value should be improved.
However, attacks can be missed in order to reduce false positives. Recall is an indicator of how many actual
attacks were detected, which is also an indicator of the false positive rate.

Considering this trade-off relationship, the author judged F1-Score to be the main indicator for
comparison because it shows the harmony between the two, and I think it is the basis for showing better
performance than the comparison model.

7 Conclusion
This study proposed an ensemble encoder-based model combined with an SVM metadata classifier for

classifying attack traffic in 5G slicing networks. By leveraging autoencoders to compress high-dimensional
network traffic data into latent representations and combining them through stacking, the model demon-
strated strong classification performance while maintaining efficiency and scalability.

The experimental results on both class-balanced and class-imbalanced datasets confirmed the model’s
robustness. In the class-balanced setting, the model achieved higher accuracy, precision, and AUC, while in
the imbalanced scenario, it yielded higher recall and F1-score, indicating effective detection of rare attack
patterns. These findings highlight the importance of appropriate class balancing during training to achieve
optimal performance across metrics.

The model offers practical benefits for real-world 5G environments where diverse service types generate
large amounts of metadata. By distributing data subsets to multiple shallow autoencoders, the system ensures
lightweight computation, reduced overfitting, and ease of deployment in container-based or slice-specific
network environments. Moreover, the modular design facilitates fine-tuning for each service slice, making
it adaptable and scalable.

Despite these strengths, challenges remain. The high computational cost of the SVM metadata classifier
may limit real-time deployment in large-scale environments, and improving recall is essential to minimize
undetected attacks, especially under class-imbalanced conditions. Furthermore, the current evaluation was
based on simulated datasets, which do not fully capture the dynamics and diversity of real-world traffic
patterns where attacker behavior may change frequently.

To address these limitations, future work will focus on the following directions:
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• Exploring lightweight classifier alternatives: To reduce inference latency in real-time scenarios, we
plan to replace SVM with more efficient classifiers, such as ensemble decision trees or quantized
neural networks.

• Validating on real-world 5G traffic: Future experiments will use traffic data collected from actual 5G
environments, which exhibit dynamic 5-tuple changes (e.g., rotating IPs/ports, multiple sessions) to
better simulate realistic attack vectors.

• Developing slice-aware anomaly detection: We plan to build a detection framework that dynamically
adapts to the specific QoS and traffic behavior of each network slice, enabling fine-grained and service-
specific protection.

• Aligning with AI standardization efforts: To ensure interoperability and scalability, we will explore
integration with ongoing standardization activities such as 3GPP Network Data Analytics Function
(NWDAF) and the OpenRAN AI/ML Framework.

By addressing these directions, we aim to evolve the proposed model into a practical, scalable solution
for securing 5G slicing networks in real-world deployments.
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