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ABSTRACT: This study aims to examine the explicit solution for calculating the Average Run Length (ARL) on the
triple exponentially weighted moving average (TEWMA) control chart applied to autoregressive model (AR(p)), where
AR(p) is an autoregressive model of order p, representing a time series with dependencies on its p previous values.
Additionally, the study evaluates the accuracy of both explicit and numerical integral equation (NIE) solutions for AR(p)
using the TEWMA control chart, focusing on the absolute percentage relative error. The results indicate that the explicit
and approximate solutions are in close agreement. Furthermore, the study investigates the performance of exponentially
weighted moving average (EWMA) and TEWMA control charts in detecting changes in the process, using the relative
mean index (RMI) as a measure. The findings demonstrate that the TEWMA control chart outperforms the EWMA
control chart in detecting process changes, especially when the value of λ is sufficiently large. In addition, an analysis
using historical data from the SET index between January 2024 and May 2024 and historical data of global annual plastic
production, the results of both data sets also emphasize the superior performance of the TEWMA control chart.

KEYWORDS: EWMA control chart; TEWMA control charts; average run length; shift detection; explicit formula;
Fredholm integral equation; Banach’s fixed-point theorem; AR(p) process

1 Introduction
The Fredholm integral equation plays a crucial role in various fields of mathematics and science,

including physics, engineering mathematics, and signal analysis. It is a type of linear integral equation
that can be categorized into two distinct forms: the first and the second kind. These two forms differ in
structure and methods of solving them. One notable application of the second-kind Fredholm equation is in
determining the Average Run Length (ARL) of control charts. The ARL is an important performance metric
used to assess control charts, as it represents the average number of observations needed before a signal is
triggered. The ARL has two key values: ARL0, which indicates the expected number of observations before
a control chart detects that the process is out of control, and ARL1, which indicates the expected number
of observations required when the process is actually out of control. Several methods have been proposed
for calculating the ARL value of control charts, including approaches based on Markov chains, martingales,
Monte Carlo simulations, explicit formulas, and numerical integral equations (NIEs). The Fredholm integral
equation, characterized by a kernel function with constant integration limits, shares similarities with the
Volterra integral equation, which has variable integration limits. The second kind of Fredholm integral
equation is particularly significant in mathematical analysis and finds applications across various scientific
fields. Solutions to these equations can be derived using iterative or analytical methods, with explicit formulas

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.063459
https://www.techscience.com/doi/10.32604/cmes.2025.063459
mailto:yupaporn.a@sci.kmutnb.ac.th


1618 Comput Model Eng Sci. 2025;143(2)

providing direct solutions for calculating the Average Run Length (ARL) [1,2]. Crowder [3] pioneered the
application of second-kind Fredholm equations to EWMA charts, while Champ and Rigdon [4] extended
this approach to the cumulative sum chart. Studies on explicit ARL formulas and numerical integral
equations (NIEs) have since been conducted by several researchers [5–9], employing methods such as the
midpoint, trapezoidal, Simpson’s, Boole’s, and Gauss-Legendre rules. For instance, Peerajit et al. [10] used the
Gauss-Legendre quadrature to approximate ARL in CUSUM charts under long-memory processes, while
Peerajit [11] applied NIEs to detect mean shifts in similar settings. Phanyaem [12] developed explicit formulas
and NIEs for evaluating ARL of cumulative sum chart for a seasonal autoregressive with exogenous variable,
ARX (P,r)L models, and Makaew et al. [13] utilized NIEs to analyze ARL for TEWMA charts in autoregressive
processes. Peerajit [14] further applied NIEs for ARL approximation in EWMA charts for the fractionally
integrated AR model with an exogenous variable (ARFIX) using the Gauss-Legendre quadrature. This study
employs the trapezoidal rule for NIE approximations.

In Statistical Process Control (SPC), control charts are key tools for monitoring and maintaining
process stability. Introduced by Shewhart [15], control charts visually track process data over time to detect
trends or anomalies, ensuring consistency and quality. The Shewhart chart effectively identifies large shifts,
while Page’s [16] cumulative sum (CUSUM) chart is better suited for smaller shifts. Similarly, Robert [17]
introduced the exponentially weighted moving average (EWMA) chart to enhance small-shift detection.
Subsequent refinements include Shamma and Shamma [18] double EWMA (DEWMA) chart and Alevizakos
et al.’s [19] triple EWMA (TEWMA) chart, designed for normally distributed data. Recent studies, such as
those by Chatterjee [20,21], Supharakonsakun and Areepong [22], and Karoon et al. [23], have advanced
ARL analysis for time series and moving average processes under these frameworks. Alevizakos et al. [24,25]
further explored TEWMA charts, comparing various weighted moving average models to highlight the
advantages of double, triple, and quadruple EWMA approaches. More recently, Hu et al. [26] proposed a
Triple Exponentially Weighted Moving Average (TEWMA) control chart with a Variable Sampling Interval
(VSI) feature to monitor the coefficient of variation (CV). Additional research on DEWMA and TEWMA
control charts, as seen in [27–31], has further expanded the understanding and application of these charts in
diverse quality control contexts.

Typically, EWMA and TEWMA control charts include both upper and lower control limits, making
them essential tools for quality management. However, our research specifically focuses on one-sided criteria,
specifically upper control limits. For manufacturing situations, the application of upper control limits has
only shown its efficacy in the quick detection of production process problems. Companies can optimize
resource allocation and provide consistent product quality by finding deviations from normal standards and
tackling them before they escalate.

This study aims to develop an explicit formula for calculating the Average Run Length (ARL) of the
autoregressive models of order p with exponential white noise under the TEWMA control chart framework.
The existence and uniqueness of the solution will be demonstrated using Banach’s fixed-point theorem and
Hölder’s inequality. Simulations will compare the performance of the explicit and NIE approaches for the
TEWMA control chart, as well as evaluate the effectiveness of EWMA and TEWMA charts in detecting shifts
in the AR(p) model. Finally, real-world data will be analyzed to assess the performance of both EWMA and
TEWMA control charts for the AR(p) process.

2 Materials and Methods
The properties related to the AR(p) model, the EWMA control chart, and the TEWMA control chart

are as follows.
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2.1 Autoregressive Process
The Autoregressive (AR) process is a commonly used statistical tool for analyzing time series data. It

forecasts the current value of a variable as a linear combination of its previous values (lags) along with a
random error term. An AR model of order p, commonly written as AR(p), is described by the following
equation:

Xt = ω + ξ1 Xt−1 + ξ2 Xt−2 + . . . + ξp Xt−p + εt , (1)

where ξi , i = 1, 2, . . . , p are coefficient parameters of the AR process (∣ξi ∣ < 1) , ω is the constant and εt is
the error term of the model, which is distributed as an exponential white noise, εt ∼ Ex p (β) .

2.2 The EWMA Control Chart
The EWMA control charts are often used in quality control because they allow for the early detection

of small changes in process performance. The EWMA control chart is defined as follows:

Et = λXt + (1 − λ)Et−1 , (2)

where λ is a parameter constrained within the range 0 < λ ≤ 1. Here, Xt represents the observations from the
AR(p) process and E0 = μ0 is defined as the initial value. The stop time for EWMA control charts is defined
as follows:

τh = inf {t > 0; Et < g or Et > h} , (3)

where g denotes the lower control limit, and h represents the upper control limit. The average run length
(ARL) for the EWMA control chart on the AR(p) process, given an initial value of E0 = u, is expressed as
follows:

H (u) = ARL = E∞ (τh) ≥ T , E0 = u, (4)

where T represents a fixed constant and E∞ (.) denotes the expectation based on the assumption that
observation εt follows the specified distribution. The mean and variance of the EWMA control chart are
defined as E (Et) = μ and Var (Et) = ( λ

2− λ) σ 2, respectively. The lower and the upper control limits for the
EWMA control chart can be expressed as follows:

UCL = μ0 + L1σ
√

λ
(2 − λ) ,

LCL = μ0 − L1σ
√

λ
(2 − λ) ,

(5)

where the mean and the standard deviation of the process are defined as μ0, σ , respectively, and L1 is a control
width parameter.

2.3 The TEWMA Control Chart
One of the control charts developed from the EWMA control chart is the triple EWMA (TEWMA). The

TEWMA control chart is defined as follows:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Et = λXt + (1 − λ)Et−1 ,
Yt = λEt + (1 − λ)Yt−1 ,
TEt = λYt + (1 − λ)Wt−1 ,

(6)
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where λ is a parameter constrained within the range 0 < λ ≤ 1. Here, Xt represents observations from the
AR(p) process. The initial value is given as E0 = Y0 = TE0 = μ0. The stop time for the TEWMA control charts
is defined as follows:

τh = inf {t > 0; TEt < g or TEt > h} , (7)

where g denotes the lower control limit, and h represents the upper control limit. The average run length
(ARL) for the TEWMA control chart on the AR(p) process, given an initial value of TE0 = u, is expressed as
follows:

H (u) = ARL = E∞ (τh) ≥ T , TE0 = u, (8)

where T represents a fixed constant and E∞ (.) denotes the expectation based on the assumption that
observation εt follows the specified distribution. The mean and variance of the EWMA control chart

are defined as E (TEt) = μ, and Var (TEt) = (
6 (1 − λ)6 λ
(2 − λ)5 + 12 (1 − λ)4 λ2

(2 − λ)4 + 7 (1 − λ)2 λ3

(2 − λ)3 + λ4

(2 − λ)2) σ 2,

respectively. The lower and the upper control limits for the TEWMA control chart can be expressed as follows:

UCL = μ0 + L2σ

�
���6 (1 − λ)6 λ

(2 − λ)5 + 12 (1 − λ)4 λ2

(2 − λ)4 + 7 (1 − λ)2 λ3

(2 − λ)3 + λ4

(2 − λ)2 ,

LCL = μ0 − L2σ

�
���6 (1 − λ)6 λ

(2 − λ)5 + 12 (1 − λ)4 λ2

(2 − λ)4 + 7 (1 − λ)2 λ3

(2 − λ)3 + λ4

(2 − λ)2 ,

(9)

where the mean and the standard deviation of the process are defined as μ0, σ , respectively, and L2 is a control
width parameter.

3 Explicit Formula for Solving the ARL
This section outlines the derivation of the explicit formula for the ARL of the TEWMA control chart

applied to the AR model. The observations are assumed to follow an AR(p) process with exponentially
distributed noise. The existence and uniqueness of the ARL solutions are then verified as detailed below.
From Eq. (6), the recursive formula of TEWMA statistics can be written as follows:

TEt = λ3 Xt + λ2 (1 − λ)Et−1 + λ (1 − λ)Yt−1 + (1 − λ)TEt−1 (10)

Let Xt is observation on AR(p) model, then:

TEt = λ3 [ω +
p

∑
i=1

ξi Xt−p + εt] + λ2 (1 − λ)Et−1 + λ (1 − λ)Yt−1 + (1 − λ)TEt−1 (11)

For t = 1, we obtain:

TE1 = λ3 [ω +
p

∑
i=1

ξi X1−p + ε1] + λ2 (1 − λ)E0 + λ (1 − λ)Y0 + (1 − λ)TE0

= M + λ3ε1 + (1 − λ)u,

where M = λ3 [ω +
p
∑
i=1

ξi X1−p] + λ2 (1 − λ)E0 + λ (1 − λ)Y0, 0 < λ ≤ 1 and TE0 = u.
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Consider a one-sided case for the in-control process, that is 0 ≤ TEt ≤ h, where LCL = 0 and UCL = h.
So that, 0 ≤ M + λ3ε1 + (1 − λ)u ≤ h.

Next, it rearranged into the form of ε1 , we get that:

−(1 − λ)u − M
λ3 ≤ ε1 ≤

h − (1 − λ)u − M
λ3

Based on the method introduced by Champ and Rigdon [4], derived from the second-kind Fredholm
integral equation, the function H (u) can be expressed as follows:

H (u) = 1 + ∫
h−(1−λ)u−M

λ3

0
H [M + λ3 y + (1 − λ)u] f (y) d y (12)

Let W = M + λ3 y + (1 − λ)u, then y = W − (1 − λ)u − M
λ3 and d y = 1

λ3 dW . By changing the integral
variable, Eq. (12) can be written as:

H (u) = 1 + 1
λ3 ∫

h

0
H [W] f (W − (1 − λ)u − M

λ3 ) dW (13)

Since ε1 ∼ Ex p (β) , then f (x) = 1
β

e−
x
β ; x ≥ 0. Thus:

H (u) = 1 + e
(1−λ)u+M

βλ3

βλ3 ∫
h

0
H (w) e

−W
βλ3 dW . (14)

Let Q (u) = 1
βλ3 e

(1−λ)u+M
βλ3 and R = ∫

h
0 H (W) e

−W
βλ3 dW , so that:

H (u) = 1 + Q (u)R (15)

Consider that R = ∫
h

0 H (W) e
−W
βλ3 dW , then:

R = ∫
h

0
H [W] e

−W
βλ3 dW

= ∫
h

0
[1 + Q (W)R] e

−W
βλ3 dW

= ∫
h

0
e
−W
βλ3 dW + Re

M
βλ3

βλ3 ∫
h

0
e
−W
βλ2 dW

So, we obtain R =
−βλ3[e

−h
βλ3 −1]

1+ e
M

βλ3
λ [e

−h
βλ2 −1]

.
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Finally, by substituting R into Eq. (15), we obtain:

H (u) = 1 −
e
(1−λ)u+M

βλ3 [e
−h
βλ3 − 1]

(1 + e
M

βλ3

λ [e
−h
βλ2 − 1])

(16)

Under the in-control condition (β = β0), the explicit ARL0 formula for the TEWMA control chart in
an AR(p) process is given by:

ARL0 = 1 −
e
(1−λ)u+M

β0 λ3 [e
−h

β0 λ3 − 1]

1 + e
M

β0 λ3

λ
[e

−h
β0 λ2 − 1]

.

When the process is out of control (β = β1 , β1 = (1 + δ) β0), where δ indicates the shift size, the explicit
formula for ARL1 in the TEWMA control chart for an AR(p) process is given by:

ARL1 = 1 −
e
(1−λ)u+M

β1 λ3 [e
−h

β1 λ3 − 1]

1 + e
M

β1 λ3

λ [e
−h

β1 λ2 − 1]
.

Proposition 1 Banach’s Fixed-point Theorem: Suppose that H defined on a complete metric space and
T ∶H → H be a contraction mapping on H such that:

∥T (H1) − T (H2)∥ ≤ δ ∥H1 − H2∥

for:

H1 , H2 ∈ H,

then the problem has a unique solution in H [32].
Proof: Let T be a contraction mapping operator defined as follows:

T (H (u)) = 1 + 1
λ3 ∫

n

0
H (w) f (w − (1 − λ)u − M

λ3 ) dw ,

for any H1 , H2 ∈ C [0, h] with ∥L∥∞ = sup
u∈[0,b]

∣H (u)∣ . First, consider:

∥T (H1 (u)) − T (H2 (u))∥∞

= sup
u∈[0,n]

{∣(1 + 1
λ3 ∫

n
0 H1 (w) f (w −(1− λ)u −M

λ3 ) dw) − (1 + 1
λ3 ∫

n
0 H2 (w) f (w − (1 − λ)u − M

λ3 ) dw)∣}

= ∣ 1
λ3 ∫

n
0 H1 (w) f (w − (1 − λ)u − M

λ3 ) dw − 1
λ3 ∫

n
0 H2 (w) f (w − (1 − λ)u − M

λ3 ) dw∣

≤ 1
λ3 ∫

n
0 ∥H1 (w) − H2 (w)∥∞ f (w − (1 − λ)u − M

λ3 ) dw



Comput Model Eng Sci. 2025;143(2) 1623

Next, using the Hölder’s Inequality, it can be written as follows:

∥T (H1 (u)) − T (H2 (u))∥ ∞

≤ 1
λ3 ∥H1 − H2∥∞ ∫

n
0 f (w − (1 − λ)u − M

λ3 ) dw

≤ 1
λ3 ∥H1 − H2∥∞

⎛
⎝∫

n
0 ∣ f (w − (1 − λ)u − M

λ3 )∣
1

1−σ

dw
⎞
⎠

1−σ

(∫
n

0 ∣1∣
1
σ dw)

σ

≤ nσ

λ3 ∥H1 − H2∥∞ ( e
(1−λ)u−M

βλ3

βλ3 )
1−σ

(βλ3 (1 − σ) (1 − e−
n

βλ3(1−σ) ))
1−σ

= nσ

λ3 ((1 − σ) e
(1−λ)u−M

βλ3 (1 − e−
n

βλ3(1−σ) ))
1−σ

∥H1 − H2∥∞
≤ δ ∥H1 − H2∥∞ ,

where δ = nσ

λ3 ((1 − σ) e
(1−λ)u−M

βλ3 (1 − e−
n

βλ3(1−σ) ))
1−σ

∈ [0, 1) , with σ , λ ∈ (0, 1) , β > 0. From the assumption
given above, therefore ∥T (H1 (u)) − T (H2 (u))∥ ≤ δ ∥H1 − H2∥∞ , then T is the contraction mapping on
complete metric space, and by the Banach fixed point theorem, T has a unique solution in H. ◻

4 The NIE Method for Solving the ARL
The Numerical Integral Equation (NIE) method is employed to calculate the Average Run Length (ARL)

for the TEWMA control chart on the AR(p) process. This method includes various techniques such as the
Midpoint Rule, Trapezoidal Rule, and Simpson’s Rule, etc. In this study, the trapezoidal rule is specifically
utilized [13]. By approximating LNIE(u) through a system of m linear equations, the ARL is computed using
the trapezoidal rule, as determined as follows:

LN IE(u) ≈ 1 + 1
λ3

m
∑
j=1

w jL (x j)

f
⎛
⎝

x j − (1 − λ)u − (λ3 (ϕ0 + ϕ1 X0 + . . . + ϕp X1−p) + λ2Y0 (1 − λ) + λZ0 (1 − λ))
λ3

⎞
⎠

, (17)

where x j = jw j, w j =
h
m

, j = 1, 2, . . . , m − 1. Otherwise w j =
h

2m
.

5 Simulated Results
In this section, the efficiency performance is compared between previously proposed approxima-

tions [11] and the explicit solution obtained in this study of TEWMA charts on AR models, specifically AR(1),
AR(2), and AR(3) for the determination of the average run length (ARL), where a low ARL value indicates
accurate detection efficiency. In the simulations, ARL0 = 370 was considered. The approximation method
used is the trapezoidal method with the number of iterations m = 1000. For the in-control process, the initial
value is set to β0 = 10. On the other hand for the out-of-control process, it is set to β1 = (1 + δ) β0, where δ
is the shift size, which is considered from very small changes and then gradually moved as follows: 0.000,
0.001, .0003, 0.005, 0.007, 0.010, 0.030, 0.050, 0.070, 0.100, 0.300, 0.500, 0.700 and 1.000. Since we consider
only one-sided, i.e., the upper control limit (UCL) = h and lower control limit (LCL) = 0. The coefficient
parameters for the AR(1), AR(2), and AR(3) models were set as follows: ξ1 = 0.1, ξ1 = ξ2 = 0.1 and ξ1 = ξ2 =
ξ3 = 0.1, respectively, with a constant (ω) set to 0. The steps of the process can be defined as follows:
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Step 1: Specify ARL0, λ and the constant (ω) and coefficient parameters (ξi , i ≥ 1) of AR(p) model.
Step 2: Specify the initial values of the process such as u, β0, X0.
Step 3: Calculate h for the explicit solution formula and the NIE formula.
Step 4: Calculate ARL1 (out-of-control process) by using h from the previous step, consider β1 = (1 + δ)

β0, where δ is shift size.
The tool used to measure the efficiency of ARL between the estimated and the explicit solutions is

measured by using the absolute percentage relative error (APRE). APRE is a measure of the accuracy of a
forecast or estimate by comparing the predicted or estimated value to the actual value. APRE is calculated
by finding the absolute error between the actual value and the predicted value, dividing the difference by the
actual value and multiplying by 100 to express a percentage. The APRE formula is determined by:

APRE = ∣Actual Value − Estimated Value∣
Actual Value

× 100

A comparison of the ARL of the explicit formula with the NIE method for the TEWMA control chart,
when λ = 0.15, λ = 0.75 for the AR(1), AR(2), and AR(3), are shown in Tables 1–3, respectively. In each table,
Time (sec) indicates the computation time of the method to find the NIE solution and the computation time
of the explicit solution for every shift size (δ) value is less than 0.0001.

Table 1: Comparison of the ARL between the explicit and NIE solutions for the TEWMA control chart on AR(1) with
ARL0 = 370, given parameters ω = 0, ξ1 = 0.1, and β0 = 10

λ = 0.15 h = 1.846724 × 10(−12) λ = 0.75 h = 6.5028756

δ Explicit NIE Time used APRE (%) δ Explicit NIE Time used APRE (%)
0.000 370.000252 369.999998 <1.1870 0.0000687 0.000 370.001165 370.067934 <0.6400 0.0180455
0.001 358.911737 358.911954 <1.0780 0.0000605 0.001 296.031908 296.074549 <0.7500 0.0144041
0.003 337.786189 337.785861 <0.8600 0.000097 0.003 211.602626 211.624311 <0.6720 0.0102482
0.005 317.982471 317.982246 <1.0620 0.0000707 0.005 164.746714 164.759798 <0.7500 0.0079421
0.007 299.413968 299.413765 <1.2660 0.0000679 0.007 134.947608 134.956347 <0.8910 0.0064756
0.010 273.700709 273.700665 <1.2340 0.0000161 0.010 106.226223 106.2316 <0.8280 0.0050624
0.030 152.54171 152.541615 <1.2500 0.0000624 0.030 44.3231568 44.3240514 <0.7340 0.0020184
0.050 87.0868361 87.0869165 <1.1090 0.0000923 0.050 28.2842926 28.284641 <0.8290 0.0012318
0.070 50.9308514 50.9308403 <1.0460 0.0000218 0.070 20.9164952 20.9166775 <0.5470 0.0008716
0.100 23.8754908 23.8754797 <1.2660 0.0000465 0.100 15.1787325 15.1788224 <0.9690 0.0005923
0.300 1.3108621 1.3108623 <1.0630 0.0000153 0.300 5.8681721 5.8681812 <0.6560 0.0001551
0.500 1.0130207 1.0130207 <1.2180 0.0000000 0.500 3.9461889 3.9461917 <0.5620 0.000071
0.700 1.0011326 1.0011326 <1.2190 0.0000000 0.700 3.1154487 3.11545 <0.9220 0.0000417
1.000 1.000071 1.000071 <1.1880 0.0000000 1.000 2.4889253 2.4889259 <0.8910 0.0000241

Table 2: Comparison of the ARL between the explicit and NIE solutions for the TEWMA control chart on AR(2) with
ARL0 = 370, given parameters ω = 0, ξ1 = ξ2 = 0.1, and β0 = 10

λ = 0.15 h = 1.828350 × 10(−12) λ = 0.75 h = 6.3822473

δ Explicit NIE Time used APRE (%) δ Explicit NIE Time used APRE (%)
0.000 370.000236 370.000242 <1.3590 0.0000016 0.000 370.001932 370.066114 <1.0320 0.0173463
0.001 358.90895 358.908616 <1.1560 0.0000931 0.001 294.559356 294.599937 <1.2340 0.0137771
0.003 337.776332 337.776011 <1.2030 0.0000951 0.003 209.365235 209.385641 <1.2810 0.0097469
0.005 317.966427 317.966686 <0.9690 0.0000812 0.005 162.500769 162.513006 <1.1100 0.0075301
0.007 299.393158 299.39322 <1.1720 0.0000207 0.007 132.848998 132.857139 <1.2340 0.0061278

(Continued)
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Table 2 (continued)

λ = 0.15 h = 1.828350 × 10(−12) λ = 0.75 h = 6.3822473

δ Explicit NIE Time used APRE (%) δ Explicit NIE Time used APRE (%)
0.010 273.673948 273.673846 <1.0470 0.0000373 0.010 104.381235 104.386226 <0.5940 0.0047815
0.030 152.497625 152.497583 <1.1250 0.000027 0.030 43.3942569 43.3950811 <0.9370 0.0018993
0.050 87.0459352 87.0459895 <1.2810 0.0000624 0.050 27.6743752 27.6746958 <0.7660 0.0011585
0.070 50.8982141 50.898219 <1.1560 0.0000096 0.070 20.4642241 20.4643918 <0.2820 0.0008195
0.100 23.8547127 23.8547084 <1.2190 0.000018 0.100 14.8539841 14.8540669 <0.7660 0.0005574
0.300 1.3101458 1.310146 <0.9840 0.0000153 0.300 5.7583563 5.7583647 <0.8440 0.0001459
0.500 1.0129774 1.0129774 <1.2190 0.0000000 0.500 3.8813431 3.8813458 <1.1250 0.0000696
0.700 1.001128 1.001128 <1.0160 0.0000000 0.700 3.0698278 3.069829 <0.9690 0.0000391
1.000 1.0000707 1.0000707 <1.3130 0.0000000 1.000 2.4575624 2.457563 <0.9530 0.0000244

Table 3: Comparison of the ARL between the explicit and NIE solutions for the TEWMA control chart on AR(3) with
ARL0 = 370 given parameters ω = 0, ξ1 = ξ2 = ξ3 = 0.1, and β0 = 10

λ = 0.15 h = 1.846724 × 10(−12) λ = 0.75 h = 6.5028756

δ Explicit NIE Time used APRE (%) δ Explicit NIE Time used APRE (%)
0.000 370.0003767 370.0001375 <0.7350 0.0000646 0.000 370.0065437 370.0682714 <0.7660 0.0166829
0.001 358.9048832 358.9049387 <0.7810 0.0000155 0.001 293.1210844 293.1597330 <0.7650 0.0131852
0.003 337.7660260 337.7658426 <0.7650 0.0000543 0.003 207.2017709 207.2209931 <0.6560 0.0092770
0.005 317.9506746 317.9508267 <0.7660 0.0000478 0.005 160.3417966 160.3532543 <0.6720 0.0071458
0.007 299.3726850 299.3723934 <0.6720 0.0000974 0.007 130.8392114 130.8468054 <0.5780 0.0058041
0.010 273.6470174 273.6467729 <1.1560 0.0000893 0.010 102.6206722 102.6253115 <0.5940 0.0045208
0.030 152.4534317 152.4534213 <0.6880 0.0000068 0.030 42.5143496 42.5151104 <0.5160 0.0017895
0.050 87.0049673 87.0050006 <0.8120 0.0000383 0.050 27.0974852 27.0977807 <0.9060 0.0010905
0.070 50.8655319 50.8655718 <1.0310 0.0000784 0.070 20.0366140 20.0367685 <0.8130 0.0007711
0.100 23.8339350 23.8339343 <0.8430 0.0000029 0.100 14.5469289 14.5470052 <0.7500 0.0005245
0.300 1.3094307 1.3094310 <0.6720 0.0000229 0.300 5.6541998 5.6542075 <0.4690 0.0001362
0.500 1.0129342 1.0129342 <0.6720 0.0000000 0.500 3.8196593 3.8196618 <0.6880 0.0000655
0.700 1.0011233 1.0011233 <1.0630 0.0000000 0.700 3.0263312 3.0263323 <0.5940 0.0000363
1.000 1.0000703 1.0000703 <1.0780 0.0000000 1.000 2.4275817 2.4275821 <0.8900 0.0000165

From the results in Tables 1–3, it can be seen that the explicit and approximate solutions have very
close values for all the shift sizes from small to large changes, but the explicit solution is still superior in
computation time for all the shift sizes. The performance of the TEWMA control chart was evaluated by
comparing it to its prototype, the EWMA control chart, using the Relative Mean Index (RMI) [25] as a
performance metric. RMI is a statistical tool designed to compare the central tendency of one dataset to
another, typically a reference or standard value. It quantifies the relationship between the mean of a dataset
and a reference value, offering insights into the chart’s effectiveness. The RMI is calculated as follows:

RMI = 1
n

n
∑
i=1
[ARLi (c) − ARLi (s)

ARLi (s) ]

here, ARLi(c) represents the ARL of a control chart for a given shift size in row i, while ARLi(s) is the smallest
ARL across all charts for the same row. A lower RMI value indicates superior performance in detecting
shifts. Tables 4–6 present the comparison of ARL values for the EWMA and TEWMA control charts under
various λ values (0.15, 0.50, and 0.75) applied to AR(1), AR(2), and AR(3) processes, respectively.
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Table 4: Comparison of the ARL between the EWMA and TEWMA control charts on AR(1) with ARL0 = 370, given
parameters ω = 0, ξ1 = 0.1, and β0 = 10

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 1.602125 h = 1.846724 × 10(−12) h = 6.8104266 h = 1.1373573 h = 13.5009086 h = 6.5028756

0.000 370.0038132 370.0002521 370.0039535 370.0026750 370.0023664 370.0011652
0.001 286.0255229 358.9117369 281.7410936 277.5636762 307.4425541 296.0319080
0.003 196.8346242 337.7861890 190.9147094 185.2101124 229.8375479 211.6026259
0.005 150.1305805 317.9824706 144.5050115 139.0655155 183.5886054 164.7467138
0.007 121.3949005 299.4139684 116.3318554 111.3891878 152.8857880 134.9476081
0.010 94.3786365 273.7007086 90.1044725 85.8489273 122.2862819 106.2262228
0.030 38.3121458 152.5417101 36.4600181 34.2762268 52.7311313 44.3231568
0.050 24.2498450 87.0868361 23.1645987 21.6344183 33.8558964 28.2842926
0.070 17.8542940 50.9308514 17.1359583 15.9228917 25.0623353 20.9164952
0.100 12.9037951 23.8754908 12.4744659 11.5180683 18.1608506 15.1787325
0.300 4.9498524 1.3108621 4.9665812 4.4708893 6.8721539 5.8681721
0.500 3.3369955 1.0130207 3.4207401 3.0471471 4.5358554 3.9461889
0.700 2.6501032 1.0011326 2.7506036 2.4418270 3.5287445 3.1154487
1.000 2.1400938 1.0000710 2.2427487 1.9931848 2.7720619 2.4889253
RMI 0.5612278 0.9807902 0.0684077 0.0000000 0.1336786 0.0000000

Table 5: Comparison of the ARL on the EWMA and TEWMA control charts for AR(2) with ARL0 = 370, given
parameters ω = 0, ξ1 = ξ2 = 0.1, and β0 = 10

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 1.5848291 h = 1.828350 × 10(−12) h = 6.7137175 h = 1.1230575 h = 13.220365 h = 6.3822473

0.000 370.0018183 370.0002364 370.0056426 370.0023091 370.0034833 370.0019317
0.001 285.5277840 358.9089498 280.6623956 276.9367207 305.6322898 294.5593557
0.003 196.1314322 337.7763322 189.4396929 184.3768204 226.8330458 209.3652345
0.005 149.4511410 317.9664274 143.1048834 138.2854024 180.4170894 162.5007694
0.007 120.7747826 299.3931576 115.0680466 110.6907283 149.8248096 132.8489980
0.010 93.8452894 273.6739483 89.0289901 85.2588430 119.5094815 104.3812354
0.030 38.0545427 152.4976245 35.9532682 34.0013958 51.2383649 43.3942569
0.050 24.0816418 87.0459352 22.8367144 21.4565395 32.8624001 27.6743752
0.070 17.7294489 50.8982141 16.8940832 15.7913779 24.3229582 20.4642241
0.100 12.8136883 23.8547127 12.3011497 11.4234270 17.6301954 14.8539841
0.300 4.9179042 1.3101458 4.9070576 4.4375195 6.6977892 5.7583563
0.500 3.3173513 1.0129774 3.3848878 3.0266949 4.4356103 3.8813431
0.700 2.6358288 1.0011280 2.7249309 2.4270120 3.4596853 3.0698278
1.000 2.1299073 1.0000707 2.2247054 1.9826584 2.7256967 2.4575624
RMI 0.5565128 0.9897406 0.0640659 0.0000000 0.1278382 0.0000000

Table 6: Comparison of the ARL on the EWMA and TEWMA control charts for AR(3) with ARL0 = 370, given
parameters ω = 0, ξ1 = ξ2 = ξ3 = 0.1, and β0 = 10

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 1.5677351 h = 1.8101571 × 10(−12) h = 6.6188845 h = 1.1089803 h = 12.9501615 h = 6.2653165

0.000 370.0039363 370.0003767 370.0048233 370.0009573 370.0104975 370.0065437
0.001 285.0373327 358.9048832 279.6006371 276.3152799 303.8737840 293.1210844
0.003 195.4387669 337.7660260 188.0003670 183.5550249 223.9515511 207.2017709
0.005 148.7826890 317.9506746 141.7442239 137.5178437 177.3999237 160.3417966
0.007 120.1652168 299.3726850 113.8428423 110.0044477 146.9283959 130.8392114
0.010 93.3214584 273.6470174 87.9886628 84.6797651 116.8958676 102.6206722
0.030 37.8019451 152.4534317 35.4650999 33.7323183 49.8492475 42.5143496

(Continued)
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Table 6 (continued)

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 1.5677351 h = 1.8101571 × 10(−12) h = 6.6188845 h = 1.1089803 h = 12.9501615 h = 6.2653165

0.050 23.9167374 87.0049673 22.5210569 21.2824567 31.9401247 27.0974852
0.070 17.6070435 50.8655319 16.6612368 15.6626817 23.6370482 20.0366140
0.100 12.7253205 23.8339350 12.1342562 11.3308078 17.1378958 14.5469289
0.300 4.8865147 1.3094307 4.8495669 4.4048279 6.5352413 5.6541998
0.500 3.2980256 1.0129342 3.3501756 3.0066413 4.3417334 3.8196593
0.700 2.6217733 1.0011233 2.7000288 2.4124765 3.3947825 3.0263312
1.000 2.1198683 1.0000703 2.2071690 1.9723239 2.6819472 2.4275817
RMI 0.5518756 0.9986229 0.0598956 0.0000000 0.1224334 0.0000000

From Tables 4–6, it can be seen that the TEWMA control chart is not suitable for considering the
situation with small lambda, but when the lambda value increases, the efficiency of TEWMA will increase
accordingly. Moreover, the comparison between TEWMA and EWMA control charts for different ARs
shown in Tables 4–6 can be further explained with graphs as shown in Fig. 1 as follows.
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Figure 1: Consider RMI of EWMA and TEWMA control charts on various AR models for comparing performance
when λ = 0.15, λ = 0.50 and λ = 0.75
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6 Application to Real Data
This section compares TEWMA and EWMA control charts, starting with historical data from the SET

index (January–May 2024). The compatibility of the dataset with AR models—AR(1), AR(2), and AR(3)—
was evaluated based on Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and
Bayesian Information Criterion (BIC), as presented in Table 7. The AR(1) model, having the lowest RMSE
and BIC values, was identified as the most suitable for this dataset. Additionally, the Kolmogorov-Smirnov
Test was applied to confirm the suitability of white noise conforming to the exponential mean, as shown
in Table 8. The SET index for the AR(1) model can be represented as follows:

Xt = 1382.234 + 0.918Xt−1 + εt , εt ∼ Ex p (6.8758) .

Table 7: Evaluation of the suitability of AR(1), AR(2), and AR(3) models

Model RMSE MAPE BIC
AR(1) 10.126 0.497 4.722
AR(2) 10.158 0.495 4.774
AR(3) 10.210 0.494 4.830

Table 8: Testing the real data for exponential white noise of the exponential distribution

Model Exponential parameter (β) Kolmogorov-smirnov Asymp Sig. (2-Tailed)
AR(1) 6.8758 0.751 0.626
AR(2) 7.0796 0.650 0.792
AR(3) 7.0592 0.657 0.780

Next, Table 9 presents the performance comparison between the EWMA and TEWMA control charts
using previously determined real data from the AR(1) process. The steps of comparison of both control charts
can be defined as follows:

Step 1: Specify ARL0 and λ.
Step 2: The dataset was tested for fit with the AR model to find the constants and coefficient parameters

of the model.
Step 3: Calculate h for the EWMA and the TEWMA control charts.
Step 4: Calculate ARL1 (out-of-control process) of each control chart by using h from the previous step,

consider β1 = (1 + δ) β0, where δ is shift size.
From Table 9, the results are in accordance with the results in the simulation chapter, that is, the

performance of TEWMA is not suitable considering a small lambda, but as the lambda increases, the
performance of TEWMA will improve accordingly. In addition, Fig. 2 displays the RMI values of both control
charts for AR(1), highlighting their comparative performance. Lastly, Fig. 3 illustrates the ARL values of the
EWMA and TEWMA control charts for AR(1), showing the comparison across different parameters.
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Table 9: Comparison of the ARL for the EWMA and TEWMA control charts on AR(1) with ARL0 = 370, given
parameters ω = 1382.234, ξ1 = 0.918, and β0 = 6.8758

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 1.0052133 h = 0.000061907 h = 1.823065 h = 0.1839268 h = 0.6629987 h = 0.0703826

0.000 370.0040028 370.0036706 370.0862742 370.0350660 370.1093046 370.0824437
0.001 297.9664911 365.3014136 232.8208345 238.3188195 177.3515115 142.4690294
0.003 214.4903906 356.1020820 133.9134074 139.3003270 87.1636696 64.1805653
0.005 167.5767476 347.1689151 94.1476356 98.4709965 57.9535362 41.5834155
0.007 137.5200286 338.4932970 72.6870727 76.1869639 43.5034196 30.8439484
0.010 108.3866385 325.9446797 54.2654302 56.9174793 31.7566154 22.3175448
0.030 45.0516978 254.7808559 20.5909620 21.3604840 11.7082524 8.1741398
0.050 28.5294375 201.0033149 12.9768761 13.2695713 7.4136571 5.2128511
0.070 20.9308750 159.9743760 9.6120831 9.6940981 5.5439054 3.9332920
0.100 15.0164924 115.3627372 7.0477050 6.9750953 4.1319447 2.9731937
0.300 5.4916217 19.4811314 2.9948016 2.7426744 1.9393195 1.5141437
0.500 3.5836669 5.7567474 2.1803784 1.9388595 1.5167249 1.2521796
0.700 2.7846064 2.6586148 1.8334757 1.6158800 1.3440174 1.1527595
1.000 2.2025871 1.4960857 1.5756284 1.3907677 1.2216251 1.0879078
RMI 0.0371160 2.3290378 0.0353303 0.0196603 0.3046227 0.0000000
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Figure 2: Consider RMI of EWMA and TEWMA control charts on AR(1) model for comparing performance when
λ = 0.15, λ = 0.50 and λ = 0.75

From Fig. 3, it is found that the ARL value of the EWMA control chart will be higher than the TEWMA
when considering the low lambda, but when the lambda value increases, the efficiency of TEWMA will
increase until it is better than EWMA. Next, the performance comparison of the control charts between
TEWMA and EWMA with historical data of annual global plastics production (1950–2019) is performed.
Since we consider the model as AR(p), the dataset is checked for compatibility with different AR(p) models,
and the exponential distribution of the error terms is examined as follows.
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Figure 3: Comparison of the ARL between the TEWMA and the EWMA control charts for (a) λ = 0.15, (b) λ = 0.50,
and (c) λ = 0.75

From Tables 10 and 11, it is found that the data set is most compatible with the AR(1) model, and the
error term has an exponential distribution which can be written as follows:

Yt = 137563820.884 + 0.999 Yt−1 + εt , εt ∼ Ex p (7834147.726) .

Table 10: Evaluation of the suitability of AR(1), AR(2), and AR(3) models

Model RMSE MAPE BIC
AR(1) 19133381.711 106.024 33.657
AR(2) 19421286.316 106.183 33.748
AR(3) 19504089.239 106.103 33.818
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Table 11: Testing the real data for exponential white noise of the exponential distribution

Model Exponential parameter (β) Kolmogorov-smirnov Asymp Sig. (2-Tailed)
AR(1) 7834,147.726 0.958 0.318
AR(2) 8091,190.908 0.945 0.334
AR(3) 7970,542.372 0.949 0.329

Next, Table 12 presents the performance comparison between the EWMA and TEWMA control charts
using previously determined real data from the AR(1) process. In addition, Fig. 3 displays the RMI values of
both control charts for AR(1), highlighting their comparative performance.

Table 12: Comparison of the ARL for the EWMA and TEWMA control charts on AR(1) with ARL0 = 370, given
parameters ω = 137563820.884, ξ1 = 0.999, and β0 = 7834147.726

δ λ = 0.15 λ = 0.50 λ = 0.75

EWMA TEWMA EWMA TEWMA EWMA TEWMA
h = 0.02772733 h = 0.0006238612 h = 0.09242445 h = 0.023106092 h = 0.1386367 h = 0.07798308

0.000 370.0517955 370.0067866 370.0747139 370.0063494 370.0995347 370.0008681
0.001 47.5662790 47.5667289 47.5666205 47.5655243 47.5669996 47.5654123
0.003 17.6803649 17.6807552 17.6804044 17.6802617 17.6804542 17.6802426
0.005 11.0282293 11.0284940 11.0282439 11.0281916 11.0282629 11.0281836
0.007 8.1014722 8.1016672 8.1014787 8.1014525 8.1014884 8.1014474
0.010 5.8770968 5.8772352 5.8770993 5.8770864 5.8771039 5.8770834
0.030 2.3843143 2.3843547 2.3843141 2.3843129 2.3843146 2.3843123
0.050 1.6995719 1.6995921 1.6995718 1.6995714 1.6995719 1.6995711
0.070 1.4194280 1.4194398 1.4194279 1.4194277 1.4194279 1.4194275
0.100 1.2250719 1.2250780 1.2250718 1.2250717 1.2250718 1.2250716
0.300 1.0135166 1.0135169 1.0135166 1.0135166 1.0135166 1.0135166
0.500 1.0019123 1.0019124 1.0019123 1.0019123 1.0019123 1.0019123
0.700 1.0004251 1.0004251 1.0004251 1.0004251 1.0004251 1.0004251
1.000 1.0000767 1.0000767 1.0000767 1.0000767 1.0000767 1.0000767
RMI 0.0000087 0.0000104 0.0000162 0.0000000 0.0000235 0.0000000

From Table 12, it can be seen that the results have the same direction as the results from the previous
dataset when considering the RMI values. Then, to make it clearer, it is shown by the RMI values in Fig. 4.
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Figure 4: Consider RMI of EWMA and TEWMA control charts on AR(1) model for comparing performance when
λ = 0.15, λ = 0.50 and λ = 0.75
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7 Conclusion
This study evaluates the performance of control charts based on ARL. Both the explicit solution method

and the numerical integral equation (NIE) method were applied to TEWMA control charts for various AR
processes with exponential white noise. The efficiency of these methods was assessed in terms of APRE
and computation time. The simulation results indicate that although both methods give similar results, the
proposed explicit solution is less computationally intensive than the NIE method for all shift sizes. The
performance of the TEWMA control chart was further compared to the EWMA control chart across different
AR processes using RMI values. The results revealed that although the TEWMA chart is less effective for
small λ, it outperforms the EWMA chart in detecting shifts across all shift sizes. Additionally, the comparison
of TEWMA and EWMA charts was extended to real-world data, specifically the historical data of the SET
index and historical data of annual global plastics production. The findings confirm that the TEWMA chart
demonstrates superior performance in detecting changes compared to the EWMA chart for most λ values,
consistent with the simulation results. However, a limitation of this study is that the TEWMA control chart
may not perform well with small λ values, i.e., if small λ values are to be considered, the EWMA control chart
is more suitable. Future research will focus on exploring TEWMA control charts or other types of control
charts under different processes.
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