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ABSTRACT: Content-Based Image Retrieval (CBIR) and image mining are becoming more important study fields
in computer vision due to their wide range of applications in healthcare, security, and various domains. The image
retrieval system mainly relies on the efficiency and accuracy of the classification models. This research addresses the
challenge of enhancing the image retrieval system by developing a novel approach, EfficientNet-Convolutional Neural
Network (EffNet-CNN). The key objective of this research is to evaluate the proposed EffNet-CNN model’s performance
in image classification, image mining, and CBIR. The novelty of the proposed EffNet-CNN model includes the
integration of different techniques and modifications. The model includes the Mahalanobis distance metric for feature
matching, which enhances the similarity measurements. The model extends EfficientNet architecture by incorporating
additional convolutional layers, batch normalization, dropout, and pooling layers for improved hierarchical feature
extraction. A systematic hyperparameter optimization using SGD, performance evaluation with three datasets, and
data normalization for improving feature representations. The EffNet-CNN is assessed utilizing precision, accuracy, F-
measure, and recall metrics across MS-COCO, CIFAR-10 and 100 datasets. The model achieved accuracy values ranging
from 90.60% to 95.90% for the MS-COCO dataset, 96.8% to 98.3% for the CIFAR-10 dataset and 92.9% to 98.6% for
the CIFAR-100 dataset. A validation of the EffNet-CNN model’s results with other models reveals the proposed model’s
superior performance. The results highlight the potential of the EffNet-CNN model proposed for image classification
and its usefulness in image mining and CBIR.
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1 Introduction
In recent years, an exponential increase in the volume of visual data has been witnessed due to the

distribution of digital images across various platforms. This surge in data has motivated significant interest
in fields like image mining and CBIR. Image mining involves the extraction of valuable information from
large collections of images. On the other hand, CBIR concentrates on image retrieval according to their
visual contents, instead of textual metadata. These fields play a significant role in several applications,
from healthcare to multimedia. The effectiveness of image retrieval systems is based on the robustness and
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efficiency of the classification models. Conventional methods frequently struggle with the large scale and
complexity of contemporary image datasets, necessitating the investigation of more advanced techniques [1].
Image mining is a subfield of data mining that extends beyond the typical field of structured data to
include unstructured data types like image data. Image-mining strategies have become necessary due to
the proliferation of images and image databases. Image mining is a collection of analytical approaches to
investigate a substantial volume of images [2].

Fig. 1 depicts the general process image mining method. The procedure begins with selecting an image
database, where the data will be saved. To increase the overall database quality, it is frequently necessary to
subject inconsistent data through a preprocessing phase. Image processing techniques, which are numerical
operations that affect the image’s pixel values, are applied during this step. Some examples of image processing
techniques include filtering, image subtraction, histogram equalization, image restorations, etc. During the
feature extraction and transformation process, the images cope with a few transformations until the pertinent
items in these data are discovered. After that, characteristics of these items, such as length, edge shape, and
texture, are extracted from them. The mining process can then utilize data mining approaches to uncover
important patterns semiautomatically or automatically if such features have been obtained first. An expert
must analyze and interpret these patterns to gain knowledge that can be applied to applications and is helpful
in problem understanding or decision-making [3].

Figure 1: Pipeline of image mining process

Image mining widens the potential applications of data mining, making it a potential technology for
data mining. Patterns of data that are unstructured can be distinguished from those that are structured.
It cannot be easy to correctly understand and comprehend patterns extracted from image databases [4].
Image mining is therefore considered more than merely an extension of data mining. It is an attempt
that incorporate knowledge from many other fields, including artificial intelligence, data mining, image
processing, machine learning, computer vision, databases, and more [5]. Image processing and computer
vision are not interchangeable with image mining. On the other hand, image mining aims to identify patterns
stored in large image databases, whereas these other fields concentrate on extracting individual attributes
from a single image. This encompasses every facet of databases, including the indexing method, storing
images, and retrieving images [6]. The process of mining images consists of many components, including
the following:



Comput Model Eng Sci. 2025;143(2) 1973

• Image analysis is essential to image mining and cannot be skipped. Image analysis aims to discover and
extract every pertinent feature necessary to depict the images.

• Image classification: The goal is to group the various things seen in an image.
• Indexing and retrieving images require appropriate indexing to obtain timely images from databases.
• Management of data: Images contain an extremely large quantity of information. An image database

allows for storing and indexing images, which determines the types of information that can be searched
for and retrieved from the database [7].

1.1 Problem Statement
The challenge is that there is not currently a technique for image mining that is both efficient

and accurate, particularly in the domains of image classification and CBIR. Existing methods frequently
encounter difficulties extracting relevant features from huge image datasets, resulting in less-than-optimal
performance and restricted applicability. As a result, there is a requirement for developing an integrated
model that combines the effectiveness of the EffNet architecture with the capability of CNNs to learn
new features. The MS-COCO and CIFAR datasets serve as the primary focus of the research, and the
preprocessing techniques utilized include data augmentation and channel-wise normalization. For feature
extraction and classification, the EffNet-CNN hybrid architecture has been implemented; assessment metrics
include accuracy and effectiveness for retrieval. This research aims to propose a viable method to enhance
image mining tasks.

1.2 Research Objectives
This research proposes a deep-learning image-mining model involving CNNs and the EffNet model.

The following is the list of objectives for the proposed research.

• To analyze and provide a detailed review of recent current models in the field of CBIR and image mining.
• To design and develop a novel approach called “EffNet-CNN,” aimed at addressing the challenge of

improving retrieval of images through CBIR and image mining. The originality of the developed model
resides in its integration of EfficientNet-CNN with channel-wise normalization, random data augmen-
tation, semantic feature extraction, and classification techniques, improving superior performance in
image mining and content-based retrieval tasks.

• To apply the Mahalanobis distance metric for feature matching and highlight the significance of
Mahalanobis over Manhattan distance with comparison.

• To experiment and evaluate the EffNet-CNN model on multiple evaluation metrics such as precision,
accuracy, f1-score, and recall with MS-COCO, CIFAR-10 and 100 datasets.

• To validate the performance of the EffNet-CNN model by comparing it with current image mining
methodologies like K-Nearest Neighbor (KNN), Decision Tree (DT), Support Vector Machine (SVM),
Vector Space Model (VSM), Long Short-Term Memory (LSTM), and Image Mining based Deep Belief
Neural Network (IMDBN) regarding the accuracy and other metrics.

The research contribution includes EffNet-CNN, a novel image retrieval model that enhances Effi-
cientNet with channel-wise normalization, random data augmentation, and semantic feature extraction,
significantly improving classification accuracy and robustness. The proposed model outperforms existing
approaches, demonstrating superior performance in image classification and CBIR. The work provides a
hyperparameter tuning process, ensuring reproducibility and practical applicability in image retrieval tasks.

The remaining sections of this research are organized as follows: The works related to image mining
and CBIR are discussed in the following. Section 3 implements the proposed methodology, including data
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augmentation, normalization, interpolation, hybrid EffNet-CNN, and CBIR. The experimental results and
the interpretation of the findings are covered in Section 4. Section 5 presents a conclusion and a discussion
of potential future research directions.

2 Related Works

2.1 ML-Based Image Mining
The challenges of semantic image retrieval and image mining play a significant part in the operation

of various applications. To achieve greater precision, a system called Graph-CTree was proposed in [8],
which combined a C-Tree with a neighbour graph. The classified images found on Graph-CTree were
comparable using a k-Nearest Neighbour (kNN) to generate a list of visual terms. A framework for image
ontology has been built using a semi-automatic process. The Simple Protocol and Resource Description
Framework (RDF) Query Language (SPARQL) query was automatically produced from the visual terms and
then retrieved from the ontology for the semantic image. To improve the effectiveness of this model, both
the Conditional inference Tree (C-Tree) and the Graph-CTree have had their query methods and structures
updated and improved. Image mining is part of the initial diagnostic process in various medical fields. The
work in [9] presented the development of an algorithm that used image mining to detect micro-calcification
automatically in digital mammograms. The grey-level co-occurrence matrix (GLCM) was utilized to extract
pertinent features from images, whereas radial basis function-support vector machine (RBF-SVM) was
applied for feature classification.

Image mining was applied in [10] to the obtained image after objects in the digital image were segmented
to accomplish disease detection and severity analysis utilizing the Computer-Aided Diagnosis (CAD) system.
This was done after the objects in the digital image were extracted. The cross-central filter, which combined
aspects of the Gaussian and Mean filter operations, was implemented in the noise reduction process to
remove unwanted noise. The segmentation process for the object segments was carried out using the
Cognitive-FCM (Fuzzy C-Means) algorithm. Utilizing an SVM classifier based on Quad Programming
allowed for the evolution of the classification process. The research described in [11] integrated optimization
strategies to accurately forecast optimal centroid in FCM to improve the retrieving performance of the CBIR
system. The FCM centroids did help to simplify things and minimized the amount of time spent computing.
It was decided to use the swarm intelligence approach to tackle the problem of predicting ideal FCM centres
of gravity and to get an understanding of the fundamental methodology involved in implementing particle
swarm (PSO) and crow search optimization (CSO), which developed the concept of oppositional crow search
optimization (OCSO).

CBIR was attained through the normal/abnormal classification in [12]. The artificial neural network
approach and the GLCM feature extraction were utilized to complete the learning procedure for the CBIR
successfully. The artificial bee colony algorithm was utilized to manage the normal/abnormal classification
of the medical dataset. The solutions were repeated and combined with the method that was accessible to
control the functionality of this method.

The work fusion of colour and shape features was used in [13] to extract descriptors from images
using the colour moment and edge histogram descriptor. To obtain clusters from the dataset, the K-
medoid clustering methodology was utilized. Following the application of clustering, optimum clusters were
generated, in which images with comparable characteristics belonged to the same cluster or group. A fuzzy
cognitive map approach based on neural networks (NN) was developed in [14]. A fuzzy cognitive map was
used to extract the pertinent data features from the seed test, which then initialized the NN. The Levenberg–
Marquardt approach for NN was developed to make seed purity predictions more accurate. To increase the
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accuracy of the network’s predictions, a deep learning technique was used to initialize the weights of the
hidden layers based on a fuzzy cognitive map. Levenberg–Marquardt was the algorithm that was used to
optimize the weights of the output layer. The study [15] presented a CBIR-hybrid features extrication and
Hierarchical Weights-Brownian Motions Monarch Butterfly Optimizer-based features selection method for
forest fire recovery. A forest fire retrieval system used the feature extraction and selection methods. The
results demonstrated that the fire retrieval method was more accurate.

2.2 Image Mining-Based Methods
Using a combination of several different image attributes, the authors of [16] devised an image mining

method that is accurate and efficient in image retrieval. On a sub-block, a calculation was made to determine
the colour feature in the form of first, second, and third-order moments. These points in time calculated
various statistical characteristics over a regional area. The center symmetric local binary pattern (CSLBP)
feature was utilized during the texture extraction. An extracted texture with information about the local
edges was called the Laplacian of Gaussian-CSLBP. The target test image was used to retrieve images of
other images that are most comparable to it. Because of this weight component, the texture feature becomes
more powerful, boosting its capacity for discrimination. The work in [17] presents a method for categorizing
and recognizing flowers based on an algorithm for mining genetic association rules. This approach utilized
textural characteristics, such as a grey-level cooccurrence matrix, as its foundation. Multidimensional
data mining using this approach has shown to be rather successful. Clustering, one of the image mining
techniques, is applied to manage the database because it contains many images spread across it.

The multimodal knowledge graphs (MKG) to clearly describe indirect multimodal knowledge linkages
and integrate it into visuals-semantics embedding for images-texts retrieval was proposed using Multimodal
Knowledge enhanced Visual-Semantic Embedding (MKVSE). For implicit multimodal knowledge links
between text and image, MKG was created. For visual-semantic embedding, Multimodal Graph Convo-
lution Networks (MGCN) reasoned on MKG in two stages. This strategy has been extensively tested on
two benchmarks and shown to be effective [18]. A CBIR approach that extracted effective features was
developed [19]. The presented feature vector combined low-and mid-level image features. Gabor wavelets
transform, Auto-correlogram, and multi-level fractal dimension analysis extracted image colour, shape, and
texture. Mid-level image features were retrieved using the Deep Boltzmann Machines and by comprehending
minimum-level image characteristics and their correlations. In Caltech-256, Corel 5K and 10K datasets, the
model fared better.

2.3 DL-Based Image Mining
Deep convolutional neural networks were used in a system to classify images proposed in [20]. CNN

is reliable and could bring about satisfying outcomes. The CIFAR-10 dataset was used in groups of various
patterns, colours, and shapes to explore the algorithm’s efficiency in categorizing any image linked to any
of those groups inside the database and to present the essential layers in the deep CNN. This was done to
determine how well the system could categorize images. The CNN training technique was executed using
stochastic gradient descent (SGD), and random data containing equal and small batches of each iterative
learning phase were chosen randomly. The classification result was successful, and to further increase the
effectiveness of the deep CNN, it is essential to estimate the number of hidden layers and the chronological
sequence in which they should be applied. Effective searching and retrieval were accomplished by a CBIR
system that was created in [21]. This system made use of an image mining-based deep belief neural network
model. To extract feature sets that were pertinent to the problem, the colour-shape texture feature extraction
technique was utilized. The retrieved characteristics were combined, then saved in the feature vector, and
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then this classification step was performed on them to recover related images under a single label. This
approach improved retrieval accuracy and helped the semantic gap between human visual comprehension
and the representation of image features.

A deep collaboration graph hashing (DCGH) model was proposed in [22], which used multi-level
semantic embeddings, intrinsic structure mining, and latent common space creation in discriminative hash
code learning for large-scaled image retrieval. A dual-stream feature encoding network was utilized to
simultaneously examine multi-level semantic data spanning visuals and semantics characteristics instead
of a single flow visual network. A graph convolutional network preserved latent structural relationships
in optimum pairwise similarity-preserved hash code. Numerous dataset studies show that this DCGH
could retrieve images effectively. The study [23] presented an image retrieval system that utilized computed
descriptors obtained from three distinct learning feature extraction approaches: InfoGANs, convolutional
autoencoders, and vision transformers (ViT). Based on the results, the InfoGAN and ViT retrieval systems
demonstrated higher efficacy in image retrieval.

A hybrid machine learning (ML) and deep learning (DL) CBIR framework combining two pre-trained
DL methods, VGG16, ResNet50 and an ML method, KNN, was implemented in [24]. Transfer learning was
used to extract image characteristics using these two DL models. Euclidean distance and KNN calculate
image similarity. A web interface displayed comparable images, and the model with the best outcomes was
measured by precision. A novel CBIR solution was provided in [25], by developing a CNN and Relevance
Feedback (RF) architecture. The Generalized Discriminant Analysis (GDA) was applied to extracted features
to improve image features and minimize feature vector dimensionality. The results demonstrated that this
method performed well. DarkNet-53 for CBIR was enhanced by developing Shuffled-Xception-DarkNet-
53 in [26]. The model introduced the Shuffled-Xception module, which employed three sets of filters in
serial connection instead of a single 3 × 3 filter to extract finer characteristics from input images. ‘Group
Convolution’ enhanced the Shuffled-Xception module’s filter co-relations, making features more informative.
To maintain information flow across groups’ channels, one Channel Shuffle layer was utilized between
every two serial Group Convolution layers of the same size. The findings demonstrated higher efficacy in
image retrieval.

A deep open-source methodology to mine and reason the uncertainty of data sets was developed in [27]
to improve performance and minimize misclassification. A label reassignment method was designed to
rearrange the training labels of the network and accept defective samples with various labels. These were
eliminated from their original classes and considered imprecise samples of partial elimination. Then, a new
unbalanced data augmentation approach was designed for generalizing all the classes. It enabled the network
to fuse imprecise and precise auxiliary data to extract more unique class features from single-labelled samples
and assessed uncertainty-induced imprecision in the test set using imprecise test samples.

A CNN-based CBIR model for medical image retrieval was proposed in [28], which further utilized
Modified Cosine Similarity (MCS) for feature matching. The images were pre-processed with the appli-
cation of Gaussian smoothing, Contrast Limited Adaptive Histogram Equalization, and Gaussian filter.
The deep features of database images were subsequently retrieved utilizing the VGG-19 and Inception-v3.
The retrieved features were unified, and the optimal characteristics were chosen using the Coyote-Moth
Optimization approach.

2.4 Research Gap
The analysis of related research indicates a wide variety of studies in image mining and the appli-

cations of this technique, all of which are compatible with the proposed model. These works investigate
semantic-based retrieval, deep learning techniques, optimization, and feature extraction methods. They
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include various topics, including medical diagnostics, horticulture, CBIR, and plant identification. This
study addresses the semantic gap in CBIR systems and highlights the significance of preprocessing and
feature extraction for accurate image representation. In addition, the research highlights the significance
of clustering, classification, and similarity measures in image mining. Overall, the literature research gives
helpful insights into existing approaches and methodologies that can be used in the proposed model for
image mining utilizing EffNet-CNN. Table 1 highlights the advantages and disadvantages of all the analyzed
current works discussed above with the proposed research model.

Table 1: Critical analysis of related works

Ref. Model Application Advantages Disadvantages
[8] Graph-CTree with

kNN
Semantic image
retrieval using

ontology

Enhanced query
processing, and

improved retrieval
efficiency.

Complexity in query
processing, high

computational cost.

[9] GLCM & RBF-SVM Micro-calcification
detection in

mammograms

Accurate
classification, and
effective feature

extraction.

Limited to specific
medical images, lacks

scalability.

[10] Cognitive-FCM and
SVM-based Quad

Programming

Disease detection
and severity

analysis

Improved
segmentation, noise

reduction, and
classification.

Computationally
expensive,

segmentation errors.

[11] FCM with OCSO CBIR with
optimized centroid

prediction

Reduced computation
time, and improved
feature clustering.

Sensitive to parameter
tuning, may struggle
with large datasets.

[12] GLCM, Artificial
Neural Network

(ANN), and Artificial
Bee Colony (ABC)

algorithm

Normal/abnormal
classification in
medical CBIR

Improved
classification accuracy,

and robust learning.

High computational
overhead, dependency

on dataset quality.

[13] K-Medoid clustering CBIR with optimal
clustering

Efficient feature
clustering, and better

retrieval accuracy.

Computational
complexity, sensitive

to initial cluster
selection.

[14] Fuzzy Cognitive Map
with NN and

Levenberg–Marquardt
optimization

Seed purity
prediction

Accurate weight
optimization, deep
learning-enhanced

accuracy.

High training time,
prone to overfitting.

[15] Hierarchical
weights-brownian
motions monarch
butterfly optimizer

Forest fire image
retrieval

High accuracy in fire
detection, and

optimized feature
selection.

Algorithm complexity
and requires
fine-tuning.

(Continued)
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Table 1 (continued)

Ref. Model Application Advantages Disadvantages
[16] CSLBP Texture-based

image retrieval
Enhanced texture

discrimination, and
robust feature

extraction.

Computational
overhead, dependency
on lighting conditions.

[17] Genetic association
rule mining with

GLCM

Flower
classification and

recognition

Effective
multidimensional data

mining, and
successful clustering.

Limited scalability,
requires large datasets.

[18] MGCN with MKVSE Image-text
retrieval with
multimodal

knowledge graphs

Effective in linking
image and text
information.

Requires extensive
dataset preparation,
and high memory

usage.
[19] Deep Boltzmann

Machines
Multi-level feature
extraction in CBIR

Robust image
representation, and
improved retrieval.

High dimensionality,
complex feature

fusion.
[20] Deep CNN with

stochastic gradient
descent

Image
classification using

CIFAR-10

Reliable performance,
effective classification.

Requires extensive
training data, and

high computational
cost.

[21] Deep belief network Semantic gap
reduction in image

retrieval

Improved retrieval
accuracy, and feature

fusion efficiency.

High training
complexity,

dataset-dependent
performance.

[22] DCGH with GCN Large-scale image
retrieval

Effective hashing
maintains structural

relationships.

Computationally
expensive, sensitive to

dataset variance.
[23] InfoGANs,

Convolutional
Autoencoders & ViT

Learning-based
image retrieval

High retrieval
performance, and

efficient feature
learning.

Requires large
training datasets, and

high model
complexity.

[24] VGG16, ResNet50,
KNN

CBIR system with
transfer learning

Transfer learning
benefits, effective
feature extraction.

High computational
cost, feature fusion

complexity.
[25] CNN + Relevance

Feedback with GDA
CBIR with

dimensionality
reduction

Improved feature
representation, and
enhanced retrieval

accuracy.

Dependent on the
training dataset,
feature loss risk.

[26] Shuffled-Xception-
DarkNet-53

Deep CNN for
CBIR

Improved feature
extraction, and

enhanced retrieval
efficiency.

High computational
complexity, and
increased model

depth.

(Continued)
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Table 1 (continued)

Ref. Model Application Advantages Disadvantages
[27] Open-source deep

learning method with
uncertainty mining

Uncertainty-based
image classification

Improved
generalization, and

effective uncertainty
handling.

Requires imbalanced
data augmentation,

and increased training
time.

[28] CNN-based CBIR
with MCS and
Coyote-Moth
Optimization

Medical image
retrieval

Enhanced feature
selection, and

optimized retrieval.

Model complexity,
optimization

sensitivity.

Proposed
EffNet-

CNN

EfficientNet-based
CNN with

Mahalanobis Distance
for feature matching

CBIR, image
classification,
image mining

Improved similarity
measurement,

enhanced feature
extraction, and better

generalization.

Computationally
intensive, parameter
tuning is required.

3 Proposed Methodology
Image mining is necessary to extract useful information and knowledge from a large collection of digital

images. Because of the exponential increase in data containing images, developing effective methods for
evaluating and comprehending visual content has become necessary. This research presents an image-mining
method that integrates the EffNet model with CNNs to achieve better results. The EffNet model is a cutting-
edge deep-learning architecture that was developed to perform image categorization in an effective and
precise manner. It uses an innovative compound scaling strategy that uniformly grows the network’s depth,
width, and resolution. This results in exceptional performance despite using fewer computational resources,
which is a significant benefit.

3.1 Dataset Description
In computer vision and image classification, benchmark datasets such as CIFAR-10, CIFAR-100, and

MSCOCO are utilized. They are extremely useful resources for analyzing and assessing the effectiveness
of various image-mining techniques and models. The CIFAR-10 database contains 60,000 colour images
organized into 10 distinct classes. The dataset comprises 50,000 to train and 10,000 to test [29]. The CIFAR-
100 dataset is divided into 50,000 images to be used for training and 10,000 images to be used for testing,
keeping the same ratio as CIFAR-10. The CIFAR-100 consists of 100 classes, then categorized into 20 super-
classes. These super-classes are then used in the experiments to analyze the outcomes [30,31]. The MS COCO
is an authoritative and important benchmark tool used in the field of object recognition and detection. It
contains 117,264 training images and more than 5000 testing images with 80 classes [32]. These classes in the
MS COCO dataset were grouped by 11 super-classes.

3.2 Data Preprocessing
In image-mining tasks such as image classification, object detection, and semantic segmentation, the

random data augmentation technique based on contrast and brightness enhancement is extremely useful. It
makes the model a more robust representation by exposing it to a broader and more varied set of augmented
images. This makes it possible for the model to learn. This strategy improves the model’s performance and
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lowers the challenge of overfitting since it includes variations that match the image conditions seen in the
real world. Randomly augmenting data entails creating random parameters within predetermined ranges
and then applying those parameters to the source images [33]. Gain and bias will be denoted by g and b.
These parameters control the brightness (b) and contrast (g) of the image. According to Eq. (1), the input
image is denoted by a (i), and the enhanced version of the image is denoted by e (i).

e (i) = ga (i) + b (1)

This method, in contrast to previous enhancement strategies, selects the value for g and b from the
defined sets randomly. Previous strategies for enhancement rely on fixed hyperparameters and tend to overfit
the dataset. The set of g and b values include positive and negative examples so that it does not overfit the data.
The values are randomly selected from this set and then included in the data as an enhancement. Brightness
and contrast are the only two aspects of an image that are modified by this approach to image enhancement.
This improvement method applies to various datasets because g and b are data-independent.

This model employs a channel-wise normalization technique to standardize the pixel values within
each image’s channel individually. It helps to equalize the colour distribution and lessens the influence of
differences in illumination or contrast across the various channels. The model can properly learn and extract
features from the image without bias toward any channel since each channel is normalized independently
before the learning process begins. This normalization technique ensures that the model may focus on the
essential characteristics across all channels, improving the performance of both training and classification. In
addition, channel-wise normalization contributes to improved convergence throughout the training phase,
which is a significant benefit. It improves the model’s overall robustness when subjected to various lighting
conditions or colour fluctuations in the dataset [34]. Consider that the input is an RGB image, complete
with dimensions (height (h), width (w), and channels). The red, green, and blue channels each have a value
corresponding to a pixel in the image. The mean value for each channel is determined independently by
taking the average values for each pixel throughout the dataset. As a result of computing the mean values
for each channel (R, G, and B), there are three mean values. Calculating the mean value for each channel
involves taking the average value for each pixel in the dataset that corresponds to that channel. The following
equation was used for calculating the mean:

μ = 1
(N × h ×w) ×∑(pc) (2)

In this case, μ indicates the mean value for a particular channel, pc specifies the pixel value of an image
in that channel, and Σ indicates the summation of all the images in the collection. Calculating the standard
deviation for each channel independently involves taking the square root of the variance in pixel values
throughout the dataset. This results in the standard deviation for each channel. Following the computation
of the standard deviation values for each channel, there are three standard deviation values. The following
equation was used for calculating the standard deviation:

σ =
�
��� 1
(N × h ×w) ×∑(pc − μ)2 (3)

In this context, σ denotes the standard deviation value for a particular channel, and μ stands for the
mean value that was computed for that channel. After obtaining each channel’s mean and standard deviation
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values in the preceding steps, the pixel values were normalized within each channel using those values. The
equation that describes how each channel should be normalized is as follows:

Z = X − μ
σ

(4)

In this context, X refers to the value of a pixel in the image for a certain channel. The procedure for image
normalization is carried out in its entirety throughout all the image’s pixels, with individual focus placed on
each channel. When these computations are carried out, the pixel values in each image channel effectively
normalize. As a result, the pixel values are centered around zero, and their standard deviation equals one.
This normalization minimizes bias and scaling difficulties that may arise owing to changes in the colour
distribution or intensity across distinct channels, and it does so by eliminating the potential for those issues
to occur.

Larger input image sizes, typically 224 × 224 or higher, are supported by EffNet-B0 because it was
developed to cope with such images. Because the images in the CIFAR dataset are 32 × 32 pixels, they
need to be enlarged to be compatible with the input size that EffNet-B0 requires. Additionally, the images
in the MSCOCO dataset are 640 × 480 pixels, they need to be minimized. This work uses the nearest
neighbour interpolation method to scale the image. The interpolation method is the most fundamental, and
its processing time requirements are the lowest of the other methods. In this method, the interpolated pixel
is replaced by the pixel that is physically closest to it. The linear interpolation method, known as nearest
neighbour interpolation, is simple. When the image’s pixels have a high resolution, it is simple to execute
and produces satisfactory results [35]. When performing nearest neighbour interpolation, the interpolation
kernel is expressed as follows:

u (x) =
⎧⎪⎪⎨⎪⎪⎩

0 ∣x∣ > 0.5
1 ∣x∣ < 0.5

(5)

where, x represents the distance between the point that is being interpolated and the grid point.

3.3 EffNet-CNN Model
A model scaling method called EffNet was designed specifically to speed up CNNs. It makes use of a

simple compound coefficient that is extremely efficient. EffNet operates in a manner that is distinct from
conventional approaches for scaling the network dimensions, including breadth, depth, and resolutions. It
does this by uniformly scaling all dimensions using a predetermined scaling coefficient set [36].

In practice, scaling every dimension can increase model performances; thus, achieving a balance
across all network characteristics regarding the available resources is the most effective way to improve
overall performance. The effectiveness of model scaling is highly dependent on baseline networks. To
accomplish this task, a newer baseline network was developed by employing the AutoML system that
maximized precisions and efficacy (FLOPS), to search for a neural network. EffNet, in contrast to MnasNet
and MobileNet-v2, utilized mobile inverted bottlenecks convolutional (MBConv) as the primary structural
component of the network. Additionally, this network replaces the Rectifier Linear Unit (ReLU) activation
function with a new function known as swish [37] rather than the ReLU activation function. EffNet-B0’s
architecture is depicted in Fig. 2. As seen in Table 2, the general structure of EffNet-B0 comprises one
average pooling, sixteen MBConvs, two convolutions, and one classification layer. As can be observed,
the most important component of an EffNet-B0 network was an MBConv unit, which is responsible for
implementing the squeeze-and-excitation (SE) network attention mechanism. Adding the MBConv module
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reduces the time spent on training, increases the performance, and provides the network with random depth.
Simultaneously, the Squeeze-and-Excitation Network (SENet) attention scheme makes it possible for an
MBConv to concentrate on the characteristics of the channel that contain the important data and suppress the
attributes that are not necessary. As a result, the MBConv module enables EffNet-B0 to do feature extraction
more effectively [38].

Figure 2: Architecture of EffNet-B0

Table 2: Network parameters of EffNet-B0 model

Stages Operators Resolutions Layers Channels
1 Conv 3 × 3 224 × 224 1 32
2 MBConv1, k3 × 3 112 × 112 1 16
3 MBConv6, k3 × 3 112 × 112 2 24
4 MBConv6, k5 × 5 56 × 56 2 40
5 MBConv6, k3 × 3 28 × 28 3 80
6 MBConv6, k5 × 5 28 × 28 3 112
7 MBConv6, k5 × 5 14 × 14 4 192
8 MBConv6, k3 × 3 7 × 7 1 320
9 Conv1 × 1 & Pooling & FC 7 × 7 1 1280

This research intends to improve extracting semantic features from images by merging the EffNet model
with CNNs. This research aims to exploit the efficiency and accuracy of the EffNet model. The model that
has been proposed utilizes the capabilities of CNNs in addition to the benefits of the EffNet paradigm.
Because CNNs are developed to learn hierarchical representations from the raw inputs automatically, they
are particularly well-suited for processing visual data. This approach takes advantage of both CNNs and the
EffNet model to collect and extract semantic features that represent the visual content of images [39].

The workflow of the approach that has been proposed includes several important components as
depicted in Fig. 3. The images in the dataset are preprocessed first, utilizing methods such as data augmen-
tation and channel-wise normalization to adjust the brightness and contrast of the images. By increasing the
robustness and diversity of the dataset, this preprocessing step makes it possible for the model to learn more
generic representations. The following step utilizes the EffNet-CNN hybrid architecture for feature extraction
and classification. The EffNet model acts as the network’s backbone, retrieving high-level characteristics
from the images after preprocessing them. These features are then sent into a CNN, which refines the
representations and learns more discriminative features that are particular to the image-mining task. After
the feature extraction process, various image mining activities can be carried out, such as image classification,
object detection, or CBIR. A fully connected (FC) layer and a softmax activation function were added to
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the CNN architecture to facilitate multi-class classification. After training, the model can reliably predict the
class labels of images.

Figure 3: Flowchart of the proposed model

Additionally, the CBIR framework is incorporated into the proposed approach for conducting image
mining. Users can then access images from the data set according to the visual similarities of those images to
the query image they have provided. The semantic features that were retrieved from the EffNet-CNN model
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are the ones that are used in the calculation of similarity estimation among the images in the dataset and
query. The similarity rating produced consequently makes it easier to retrieve images with visual content
that is nearly identical to the content of query images. The method mentioned above provides an effective
and robust answer to problems related to image mining. The capability to effectively extract, represent, and
analyze the visual information contained inside massive image collections is made possible by combining
the efficiency and accuracy of EffNet with the capability of CNNs to learn new feature representations. The
methodology is broken down into parts and explained in detail in the following sections.

3.3.1 Feature Extraction
EfficientNet is a model characterized by a very intricate network but exhibits computational effi-

ciency. Fig. 4 represents the research model’s architecture. As the total number of models grows, the EffNet
group has expanded to include eight models, B0 and B7. While there has not been a discernible rise in the
total number of calculation parameters, there has been a notable rise in the degree of accuracy. Compound
scaling is the name given to this approach. According to Eq. (6), the composite coefficient is ϕ employed to
provide a uniform scaling of the depth d, width w, and resolution r values. The following is the equation that
can be used to estimate the coefficients of composite proportions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

depth∶ d = αϕ

width∶w = βϕ

resolution∶ r = γϕ

s.t., α ⋅ β2 ⋅ γ2 ≈ 2 (6)

Although the coefficients of network depth, width, and resolution could be measured using the variables
α ≥ 1, β ≥ 1, γ ≥ 1, w, d, r, respectively, the defined values could be used to calculate the sum of efficient resource
extensions model, and the constants, α, β, γ. They could provide the network w, d, and three-dimensional r
resources. Considering the investigation’s findings, the EffNet-B0 network parameter is presented in Table 1,
and the following is a list of the coefficients of optimal networks: γ = 1.15, β = 1.1, α = 1.2. Scaling the
convolution network according to the equation in (6) will approximately increase the total FLOPS the
network may achieve. This is because the computational overhead of the convolutional network is unique
due to the convolution operation.

Figure 4: Architecture of the proposed model
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The MBConv, an important structural component, is the primary block on which the EffNet framework
was constructed. The MBConv was applied with the concepts of MobileNet models, which were then
adapted to meet the requirements of MBConv. The usage of depth-wise separable convolutions, which
consists of a depth-wise and a point-wise convolution layer, both of which are applied one after the other
in sequential order, is one of the most significant principles. The inverted residual connections and the
bottleneck linear features found in MobileNet-v2 are known as the inverted residual connection and linear
bottleneck combination. Convolution was originally understood to refer to the weighted superpositions of
a single function over another regarding their respective physical meanings. The function was created by an
integral operator, which took the values of two other functions as input. The overlap length is integral to
the values of two overlapping functions, f and g, created through shifting and flipping. It is represented by
the notation r(x), which denotes the integral’s overlap length of the values of the overlapping functions. This
notation denotes the integral’s overlap length of the overlapping function.

r (x) = ∫
∞

−∞

f (τ) g (x − τ) dτ (7)

The system’s output was the product of multiple layered inputs, one on top of the other. In image
processing, the function f (τ) represented the real pixel points, while function g(x) represented the action
point. Both functions were given the same input value, x. Each action point was incorporated into a
convolutional kernel for extra processing. After each action point on the convolution kernels has been
implemented to each of the actual pixel points in the correct order, it is possible to acquire the result of the
final convolution. This can only be done after every action point has been applied. The ReLU uses an element-
wise operation equation to bring the positive values obtained from the convolution layers down to 0. This is
accomplished by applying the equation to the nonnegative data collected from the convolutional layer. The
notation ‘I’ was the element of the input vector.

σ (I) =max(0, I) (8)

Once CNN’s convolution layer has been trained, the pooling layer, also called the down-sampling layer,
is tasked with reducing the volume of the matrix it has created by a factor of two. This layer is also known as
the down-sampling layer. Using pooling helps reduce the complexity of constructing convolutional networks
by keeping the number of parameters and features to an absolute minimum. It is commonly located at the
top level of the CNN since it is the final layer of the network and because it summarizes all the characteristics
of the layers that came before it. There is a good chance that the FC layer will yield the discovery and analysis
of a nonlinear function. Before continuing with the processing, the images were first converted into a format
that is suitable for multilayer perceptron. They were flattened into a column vector, and last, they were added
to the feed-forward neural networks. As a direct consequence, the standardized data were incorporated into
every iteration of the training technique after that point. Therefore, it can differentiate between the important
image features and a few lower-level features. Then it can categorize the findings using various classification
methods such as Softmax. Eq. (9) presented below hints at the dropout layer [40].

ZL
i = wL

i yL + bL
i (9)

where, L represents the hidden layer, ZL
i representing the center layer, yL representing vector outputs, wL

i
representing weights, and bL

i representing the biases.
The Softmax algorithm’s primary aim is to emphasize the cost of neurons. The load that can be allocated

to a single neuron is a maximum of one, while the load that can be assigned to any other neuron is
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zero. Eq. (10) describes the softmax function.

f (xi) =
exi

∑N
j=1 ex j

(i = 1, 2, . . . , N) (10)

When determining the likelihood that all the inputs fall into a certain category, the neural network’s
last layer uses the Softmax function. The hyperparameter tuning process for EffNet-CNN was conducted
through systematic experimentation to achieve optimal performance. The learning rate was set to 0.001 after
evaluating values ranging from 0.0001 to 0.01, with lower rates leading to slow convergence and higher rates
causing instability. SGD was chosen over Adam and RMSprop due to its better generalization and stability,
with momentum set to 0.9 to accelerate convergence and prevent local minima. Batch size was optimized
at 64 after testing 32, 64, and 128, balancing computational efficiency and gradient stability. Dropout was
set at 0.3 after sensitivity analysis between 0.2 and 0.5, effectively mitigating overfitting while preserving
learning capacity. Weight decay (L2 regularization) was fixed at 1e − 4 to prevent excessive complexity
while maintaining generalization. A step-based learning rate decay reduced the learning rate by 0.1 every
20 epochs to refine convergence. These hyperparameters were fine-tuned using cross-validation, ensuring
reproducibility and robustness in EffNet-CNN’s performance across datasets. The MS COCO, CIFAR-100
and 10 data sets utilized in this research include a wide variety of object categories, each with its own distinct
semantic features.

CIFAR-10:

• EffNet-CNN recognizes and extracts shape features such as wings, wheels, and body structures for
objects such as aircraft, automobiles, birds, and cats.

• The model includes surface textures, fur, and feathers, as well as variations in patterns and fine details.
• EffNet-CNN extracts colour distributions, gradients, and shades that are characteristic of various

object categories.

CIFAR-100:

• Fine-grained shape features: The model learns intricate shape details to distinguish among dog varieties,
bird species, and flower types.

• Fine-grained texture features: EffNet-CNN captures subtle texture details essential for distinguishing
similar-appearing object categories, such as patterns on butterfly wings and tree bark textures.

• Colour and colour-combination features: The model identifies specific colour features and colour
combinations, allowing for the differentiation of objects based on hues of blue, colour palettes, and
other factors.

MS-COCO: The 80 classes from the MSCOCO dataset were categorized into 11 super-classes such
as person & accessory, animal, vehicle, outdoor objects, sports, kitchenware, food, furniture, appliance,
electronics, and indoor objects.

• Person & Accessory: Identifies facial structures, clothing patterns, and accessory details.
• Animal: Captures fine-grained shapes, fur textures, and species-specific colour variations.
• Vehicle: Recognizes structural components like wheels, headlights, and aerodynamic contours.
• Outdoor Objects: Extracts shape and surface features of trees, benches, and natural landscapes.
• Sports: Detects sports equipment and human motion patterns for activity recognition.
• Kitchenware: Identifies utensil shapes, material textures, and reflective surfaces.
• Food: Captures intricate texture, colour gradients, and ingredient compositions.
• Furniture: Differentiates object structures, wood grains, and upholstery textures.
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• Appliance: Extracts key design elements, control panel details, and surface reflections.
• Electronics: Recognizes device contours, button placements, and screen variations.
• Indoor Objects: Identifies spatial arrangements, object materials, and lighting effects.

The semantic features enable the model to classify MSCOCO, CIFAR-10 and CIFAR-100 datasets
accurately. Notably, the EffNet-CNN model learns these semantic features automatically through its training
process, without being explicitly furnished with predefined feature definitions.

Algorithm 1: EffNet-CNN for CBIR
1: Initialize Dataset Images
2: Preprocess Images
3: Train EfficientNet Model
4: Input: Preprocessed Images
5: Extract Semantic Features
6: Perform Classification
7: Implement CBIR
8: if Image Descriptors are available then
9: Use Existing Descriptors
10: else
11: Extract Image Descriptors
12: Store Descriptors for matching
13: end if
14: if Feature Extraction for CBIR is required then
15: Extract Features for CBIR
16: Store Features for matching
17: end if
18: while Query Image is available do
19: Get Query Image
20: if Image Descriptors are not available then
21: Extract Image Descriptors for Query Image
22: end if
23: if Feature Extraction for CBIR is required then
24: Extract Semantic Features for Query Image
25: end if
26: Perform Feature Matching using Similarity Measures
27: Rank and Retrieve Similar Images
28: Display Results
29: end while
30: end

The pseudocode for the proposed model is presented above. Algorithm 1 for EffNet-CNN for CBIR
describes the steps developed for the proposed CBIR framework using the EffNet-CNN model. In this
algorithm, Lines 1 to 3 represent the initialization of the dataset and the training of the EfficientNet model.
Lines 4 to 6 represent the process of feature extraction and classification using the EffNet-CNN model.
Lines 7 to 17 represent the process of the proposed CBIR framework, which ensures that the descriptors and
features are extracted and stored efficiently. Lines 18 to 28 represent the query retrieval loop, which extracts
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the descriptors, performs similarity matching, and retrieves the images based on the ranked similarity. Line
29 properly ends the loop from Lines 18 to 28, and Line 30 represents the end of the algorithm.

EffNet-CNN builds upon EfficientNet’s compound scaling by incorporating channel-wise normal-
ization, random data augmentation, semantic feature extraction, and classification for improved image
retrieval. The model’s hierarchical structure begins with an input preprocessing stage, where channel-
wise normalization standardizes pixel intensities across channels to stabilize training. Next, random data
augmentation, including flipping, rotation, and contrast adjustments, enhances generalization. Feature
extraction is performed using EfficientNet’s depth-wise separable convolutions and squeeze-and-excitation
blocks, which adaptively recalibrate channel-wise feature responses. The extracted features undergo semantic
feature extraction via additional convolutional layers, capturing high-level contextual information. Finally,
an FC classification head, optimized with softmax activation, predicts class labels. This structured pipeline
ensures effective feature learning and robust performance across image classification, mining, and CBIR
applications, making EffNet-CNN highly reproducible.

EffNet-CNN enhances EfficientNet by integrating channel-wise normalization and random data aug-
mentation, significantly improving feature extraction and generalization. EfficientNet alone optimizes
network scaling via compound coefficients, but it lacks explicit mechanisms for handling feature variance
across channels and robust augmentation strategies. Channel-wise normalization standardizes feature
distributions, reducing internal covariate shift and enhancing convergence, while random data augmentation
improves model robustness against overfitting. Additionally, semantic feature extraction enhances discrimi-
native learning, enabling a better contextual understanding of images. These enhancements collectively result
in superior classification accuracy, as validated by the performance gains observed on MSCOCO, CIFAR-10
and CIFAR-100 datasets, demonstrating EffNet-CNN’s advantage over standalone EfficientNet.

3.3.2 Feature Matching
The feature vector is generated using the above approach when the query content is created via image

retrieval. Following generating a feature vector for the query image, the Mahalanobis Distance measurement
is used to assess the similarity. This is followed by comparing the feature values possessed by the database and
the query image. This, in turn, will deliver the appropriate image based on what the user has requested. In
addition, a smaller difference indicates greater similarity between the query and the database image. In other
words, the feature vector of images keeps a relatively small gap and is most comparable to the query ones.
The following is a representation of the mathematical equation used to calculate the Mahalanobis Distance,
which is used in the process of feature matching [41].

The distance metric for assessing similarity is crucial in this research. The Mahalanobis distance is a
recognized metric that incorporates a covariance matrix. It can alternatively be characterized as the measure
of difference between the two random vectors. In contrast to the Euclidean distance metric, this metric
considers the correlations within the data set and is invariant to scaling. The Mahalanobis distance between
x (feature vector) and μ (mean feature vector) is characterized by the subsequent Eq. (11).

DM (x) =
√
(x − μ)T S−1 (x − μ) (11)

Here, x is the query image’s feature vector, μ is the dataset’s mean feature vector, S−1 is the covariance
matrix S’s inverse, and (x − μ)T is the difference vector’s transpose. The feature correlations are captured
by the S−1. This metric is very significant for high dimensional data and feature matching in CBIR, as it
considers the covariance within features. Finally, the obtained model is implemented to categorize image
data to retrieve appropriate image labels [42].
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This metric efficiently considers the dependencies among features compared to Euclidean or Manhattan
distances, which makes this metric appropriate for similarity measures. This Mahalanobis distance metric
normalizes the distributions of features to provide variations in feature level for all image classes. This metric
improves feature matching by involving covariance, which leads to effective results in CBIR.

4 Experimental Results and Analysis

4.1 Experiment Setup
This section presents the results of the experiments conducted with the image mining-based CBIR. A

deep learning model, EffNet-CNN, is proposed to carry out image mining tasks. Experiments are performed,
and the EffNet model is implemented on a working platform that consists of an Intel i7 CPU with 12 gigabytes
of RAM installed with Python 3.7. An analysis of the research model was carried out, and the findings of
the research are compared with those attained using conventional methods concerning accuracy, precision,
recall, F-measure, and retrieval time.

4.2 Evaluation of Performance
The performance of the research model for image mining and CBIR was evaluated using this research’s

outcomes factors, which serve as significant markers of overall efficacy. Quantifying the percentage of
correctly recovered or classed images is how accuracy measures the correctness of the image classification
and retrieval process [43]. The EffNet-CNN model’s ability to identify and retrieve images from the datasets
is evaluated based on this accuracy [44].

Accurac y = TP + TN
TP + TN + FP + FN

(12)

Precision is an evaluation that determines how precise the retrieval process is by calculating the
percentage of relevant images contained within the overall count of retrieved images. It indicates the
exactness and quality of the results, which helps ensure that EffNet-CNN obtains suitable images based on
the user’s query [45].

Precision = TP
TP + FP

(13)

The recall procedures EffNet-CNN’s capability of retrieving all relevant images from the dataset,
considering the total number of relevant images. It demonstrates that EffNet-CNN can capture all the critical
images, reducing the likelihood of missing important images during retrieval [46].

Recal l = TP
TP + FN

(14)

The F-measure is a composite statistic that provides a fair assessment of the performance of the EffNet-
CNN by considering both precision and recall. It completely evaluates the model’s performance in terms of
retrieval, considering the trade-off between precision and recall [47].

F_measure = 2 × Precision × Recal l
Precision + Recal l

(15)

The amount of time required to obtain similar images or carry out CBIR queries is referred to as the
“retrieval time,” it is used to measure the computational efficiency of the EffNet-CNN model. It evaluates
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the responsiveness and speed of the model, which ensures that users of real-time or other time-sensitive
applications receive accurate results on time [48].

4.3 Results
This section provides the findings of the research model EffNet-CNN evaluated utilizing the MS-COCO,

CIFAR-100 and 10 data sets separately. The experimental evaluation of the proposed model EffNet-CNN on
three datasets demonstrates its superior classification capability across diverse image classes. For CIFAR-
10 (10 classes), the model achieves high accuracy due to its ability to capture fine-grained features, with
the Mahalanobis distance-based feature matching further refining feature representation. The CIFAR-100
(20 classes) experiment reveals the model’s scalability, effectively handling a larger set of complex object
categories, where feature matching plays a crucial role in reducing misclassifications.

The MS-COCO (11 classes) dataset, known for its varied object scales and contextual dependencies,
highlights the model’s robustness in real-world scenarios, particularly in distinguishing visually similar
objects. The ablation analysis further confirms that incorporating feature matching significantly enhances
classification accuracy across all datasets, proving the effectiveness of the proposed methodology in
improving generalization, feature discrimination, and adaptability to diverse image categories.

Table 3 presents the evaluation results of the EffNet-CNN model on the CIFAR-10 dataset and provides
valuable insight into its performance. The high accuracy scores across all classifications demonstrate the
model’s reliability and efficacy in accurately classifying images. Fig. 5 is a graphical representation of the
results derived from the CIFAR-10 dataset. The evaluated results for the CIFAR-100 datasets are displayed
in Table 4. The CIFAR-100 dataset evaluation results demonstrate the efficacy of the EffNet-CNN model
across its 20 classes. Fig. 6 is a graphical representation of the results derived from the CIFAR-100 dataset.
The evaluated results for the MS-COCO datasets are displayed in Table 5. The MS-COCO dataset evaluation
results demonstrate the efficacy of the EffNet-CNN model across its 11 super-classes. Fig. 7 is a graphical
representation of the results derived from the MS-COCO dataset. Fig. 8 shows the retrieval times derived
for each class in both datasets.

Table 3: Performance of the EffNet-CNN model for CIFAR-10 dataset

Class Accuracy Precision Recall F-measure Retrieval time (s)
1 97.7% 97.1% 97.6% 97.5% 0.40
2 97.4% 96.6% 97.2% 97.0% 0.42
3 96.3% 96.1% 96.5% 96.2% 0.46
4 97.9% 98.4% 97.6% 97.8% 0.32
5 97.1% 96.8% 97.4% 96.9% 0.35
6 97.5% 97.9% 97.3% 97.2% 0.40
7 96.8% 96.5% 97.0% 96.5% 0.44
8 98.3% 98.1% 98.5% 98.0% 0.34
9 96.9% 96.3% 96.5% 96.7% 0.29
10 97.7% 97.5% 97.8% 97.2% 0.43
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Figure 5: Graphical plot of EffNet-CNN’s performance comparison using CIFAR-10

Table 4: Performance of the EffNet-CNN model for CIFAR-100 dataset

Class Accuracy Precision Recall F-measure Retrieval time (s)
1 94.6% 93.3% 96.5% 94.8% 0.38
2 96.1% 94.4% 97.1% 95.7% 0.52
3 96.8% 95.6% 97.5% 97.0% 0.48
4 94.1% 92.7% 95.6% 94.2% 0.41
5 98.2% 97.6% 98.7% 98.3% 0.59
6 95.4% 93.8% 96.4% 94.9% 0.45
7 97.6% 96.9% 98.2% 97.5% 0.53
8 92.9% 92.3% 94.1% 92.8% 0.42
9 95.8% 95.2% 96.7% 95.9% 0.58
10 97.7% 97.5% 98.1% 97.8% 0.45
11 94.3% 92.9% 95.7% 94.6% 0.47
12 97.3% 96.7% 98.2% 97.6% 0.40
13 94.9% 93.6% 96.2% 94.8% 0.54
14 96.6% 96.1% 97.6% 96.5% 0.37
15 95.1% 94.4% 96.3% 95.2% 0.56
16 98.0% 97.4% 98.5% 98.0% 0.43
17 93.6% 93.1% 95.1% 93.8% 0.49
18 97.2% 96.7% 98.0% 96.9% 0.39
19 95.8% 95.3% 96.9% 95.9% 0.61
20 98.6% 98.3% 98.9% 98.5% 0.46
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Figure 6: Graphical plot of EffNet-CNN’s performance comparison using CIFAR-100

Table 5: Performance of the EffNet-CNN model for MS-COCO dataset

Class Accuracy Precision Recall F-measure Retrieval time (s)
1 90.6% 91.7% 91.2% 91.5% 0.48
2 91.8% 93.0% 92.3% 92.7% 0.52
3 92.9% 93.5% 93.2% 93.4% 0.50
4 93.6% 94.8% 94.2% 94.5% 0.46
5 94.7% 95.5% 95.1% 95.3% 0.42
6 95.5% 96.2% 95.8% 96.0% 0.54
7 92.4% 91.5% 92.0% 91.8% 0.49
8 93.3% 92.2% 92.8% 92.6% 0.44
9 94.2% 95.0% 94.6% 94.8% 0.40
10 95.9% 96.4% 96.1% 96.3% 0.56
11 91.2% 92.1% 91.7% 91.9% 0.53

The ablation analysis presented in Table 6 evaluates the effectiveness of the proposed model with and
without the Mahalanobis distance-based feature matching technique across three datasets: CIFAR-10, MS-
COCO, and CIFAR-100. The “Without Feature Matching” section shows noticeably lower classification
accuracies across all classes compared to the “With Feature Matching” section, confirming that the proposed
feature-matching mechanism significantly enhances performance. Specifically, for CIFAR-10, accuracy
improvements range from 7% to 10%, while for MS-COCO and CIFAR-100, improvements are in the range
of 8% to 12%, demonstrating the robustness of feature matching in various scenarios. For all the classes, the
model without feature matching does not yield reliable results, whereas the model with feature matching
successfully classifies those classes, emphasizing the critical role of Mahalanobis distance in handling
complex class distributions. This comprehensive ablation study ensures that integrating feature matching
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significantly improves the classification accuracy, robustness, and overall generalization capability of the
model across diverse datasets.

Figure 7: Graphical plot of EffNet-CNN’s performance comparison using MS-COCO

Figure 8: Graphical plot of comparison of EffNet-CNN’s image retrieval time
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Table 6: Ablation analysis of proposed model with/without feature matching

Classes Without feature matching With feature matching
(Mahalanobis)

With feature matching
(Manhattan)

CIFAR-
10

MS-
COCO

CIFAR-
100

CIFAR-
10

MS-
COCO

CIFAR-
100

CIFAR-
10

MS-
COCO

CIFAR-
100

Class 1 89.5% 80.3% 84.6% 97.7% 90.6% 94.6% 97.2% 90.1% 94.2%
Class 2 89.0% 81.2% 86.1% 97.4% 91.8% 96.1% 96.9% 91.3% 95.6%
Class 3 88.2% 83.0% 86.8% 96.3% 92.9% 96.8% 95.8% 92.4% 96.3%
Class 4 88.9% 83.5% 83.4% 97.9% 93.6% 94.1% 97.5% 93.0% 93.7%
Class 5 87.8% 85.1% 87.2% 97.1% 94.7% 98.2% 96.7% 94.2% 97.8%
Class 6 88.1% 85.6% 84.5% 97.5% 95.5% 95.4% 97.1% 95.1% 94.9%
Class 7 86.9% 82.2% 88.3% 96.8% 92.4% 97.6% 96.4% 91.8% 97.1%
Class 8 89.4% 82.8% 81.9% 98.3% 93.3% 92.9% 97.8% 92.9% 92.5%
Class 9 87.5% 84.0% 85.2% 96.9% 94.2% 95.8% 96.5% 93.8% 95.4%
Class 10 90.0% 85.4% 89.1% 97.7% 95.9% 97.7% 97.3% 95.4% 97.2%
Class 11 NA 81.6% 83.5% NA 91.2% 94.3% NA 90.7% 93.8%
Class 12 NA NA 86.4% NA NA 97.3% NA NA 96.9%
Class 13 NA NA 82.2% NA NA 94.9% NA NA 94.5%
Class 14 NA NA 80.5% NA NA 96.6% NA NA 96.1%
Class 15 NA NA 85.1% NA NA 95.1% NA NA 94.6%
Class 16 NA NA 87.9% NA NA 98.0% NA NA 97.5%
Class 17 NA NA 81.3% NA NA 93.6% NA NA 93.1%
Class 18 NA NA 88.5% NA NA 97.2% NA NA 96.7%
Class 19 NA NA 86.0% NA NA 95.8% NA NA 95.3%
Class 20 NA NA 89.3% NA NA 98.6% NA NA 98.2%

Based on observing the results in this comparison table, it is evident that the proposed EffNet-CNN
model’s performance was improved using the Mahalanobis Distance for effective feature matching than the
Manhattan distance. Across all the datasets, the Mahalanobis distance resulted in higher accuracy compared
to the Manhattan distance. The improvement is clearer in CIFAR-100 and MS-COCO datasets, in which the
Mahalanobis distance-based feature matching helped the EffNet-CNN model to achieve increased accuracy
over 1% to 2% compared to the Manhattan distance metric. Since the Mahalanobis distance considers the
correlations between features and scales data correspondingly, it helped in better feature representation and
similarity measurements. Where the Manhattan distance considers all the features equally and results in low
performance compared to Mahalanobis. According to these result improvements, the Mahalanobis distance
was chosen over the Manhattan distance. Overall, the Mahalanobis distance improved the classification
performance. Fig. 9 highlights the difference between the Mahalanobis distance and Manhattan distance
performance comparison.
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Figure 9: Graphical plot of feature matching techniques comparison

The performances of the proposed EffNet-CNN model were compared with current models, as shown
in Table 7. The EffNet-CNN (CIFAR-10) model exhibits marginally superior precision and F-measure scores
than the SVM model. Moving to the CIFAR-100 dataset, the EffNet-CNN model obtains 98.60% accuracy,
outperforming all the other compared models. The SVM model’s accuracy, however, was 96.80%. Compared
to existing models, the EffNet-CNN model maintains competitive precision, recall, and F-measure scores,
demonstrating its efficacy in classifying images across multiple classes. Fig. 10 displays a comparison of the
results. In summary, the proposed EffNet-CNN model exhibits superior or competitive performance in
accuracy, precision, recall, and F-measure compared to extant models. It outperforms KNN, LSTM, and
IMDBN models while remaining competitive with SVM and VSM models. These results validate the efficacy
of the EffNet-CNN model in image classification tasks and demonstrate the model’s potential for use in image
classification applications.

Table 7: Comparison of the EffNet-CNN’s results with current models

Model Accuracy (%) Precision (%) Recall (%) F-measure (%)
KNN 89.98 60.42 54.90 54.74
DT 93.46 70.70 70.30 69.46

SVM 96.80 84.77 83.50 84.48
VSM 92.72 91.77 84.74 88.25

LSTM 87.00 62.30 67.00 78.00
IMDBN 94.40 91.52 87.91 87.00
MAM-

Pooling [49]
72.60 73.20 72.60 72.60

CED-Net [50] 94.89 94.89 94.89 94.88

(Continued)
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Table 7 (continued)

Model Accuracy (%) Precision (%) Recall (%) F-measure (%)
DSDL [51] 81.70 85.10 73.90 79.10

Yolo-v4-ResNet-
101 [52]

96.34 95.00 92.67 93.82

EffNet-CNN
(MS-COCO)

95.90 96.40 96.10 96.30

EffNet-CNN
(CIFAR-10)

98.30 98.10 98.50 98.00

EffNet-CNN
(CIFAR-100)

98.60 98.30 98.90 98.50

Figure 10: Graphical plot of comparison of results with existing models

Notably, the model obtained an accuracy of greater than 97% for some classes, indicating proficiency
in differentiating image characteristics associated with these classes. Precision scores consistently exceeding
96% to 98% demonstrate that the model excels at retrieving pertinent images. This implies that most retrieved
images belonged to the desired class, minimizing the number of false positives. Similarly, recall values
ranging from 96.10% to 98.90% demonstrate the model’s ability to retrieve a significant portion of the
pertinent images within each class. Examining the F-measure values, which account for precision and recall,
reveals that the model balances these two metrics. The F-measure scores consistently exceed 98%, indicating
that the model achieves a good balance between precision and recall, resulting in a thorough evaluation of
image classification and retrieval performance. The retrieval periods for this model range from 0.32 to 0.60 s,
demonstrating its rapid processing capabilities. These low retrieval times guarantee the efficient and prompt
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retrieval of images, which is essential for real-time applications or systems that manage large data volumes.
The results demonstrate the excellent overall performance of the proposed model on the CIFAR-10 dataset,
exhibiting high accuracy, precision, recall, and retrieval speed.

The results demonstrate the effectiveness of the proposed model in classifying images precisely across
the 20 classes of the CIFAR-100 dataset. The model appears effective for various image classification and
retrieval tasks, exhibiting high precision, recall values, and retrieval durations. The model obtains high accu-
racy scores ranging from 90% to 98%, indicating its ability to classify images of various categories accurately.
Notably, some classes, including Class 8, Class 10, Class 16, and Class 20, exhibit an accuracy of greater
than 97%, demonstrating the model’s proficiency in capturing the distinctive characteristics of these classes.
With scores ranging from 96.4% to 98.30%, precision values indicate the model’s precision in retrieving
relevant images. This suggests that most retrieved images belong to the correct class, thereby minimizing
false positives. The recall values, which range from 96.10% to 98.90%, indicate that the model can retrieve
a substantial proportion of pertinent images within each class. The F-measure scores, which incorporate
precision and recall, exceed 96% to 98% across all courses, indicating a balanced performance in precision
and recall. This indicates that the model balances accurately identifying class-specific characteristics and
capturing many relevant images. The model demonstrates consistent performance by analyzing retrieval
time, with retrieval duration ranging from 0.32 to 0.65 s. Even with many classes in the CIFAR-100 dataset,
these relatively short retrieval times allow for efficient and prompt image retrieval. In terms of accuracy, the
EffNet-CNN model outperforms KNN (89.98%), Decision Tree (93.46%), and LSTM (87.00%) on the CIFAR-
10 dataset, achieving a superior accuracy of 96.82%. Regarding accuracy, it surpasses the Vector Space Model
(VSM) by 92.72%. The accuracy of the EffNet-CNN model is comparable to that of the SVM model (96.80%),
demonstrating its strong classification capabilities. When precision, F-measure, and recall are acknowledged,
the EffNet-CNN model achieves competitive results. It outperforms the KNN, LSTM, and IMDBN models,
demonstrating its precision, recall, and F-measure superiority.

The results comparison table highlights the superior performance of the EffNet-CNN model across
datasets (MS-COCO, CIFAR-10, and CIFAR-100) compared to existing models. EffNet-CNN achieves high
accuracy, precision, recall, and F-measure values, with top results of 98.60% accuracy and 98.50% F-measure
for CIFAR-100, demonstrating its robustness in image classification, mining, and retrieval tasks. While
models like SVM and Yolo-v4-ResNet-101 perform well, EffNet-CNN outshines them in precision and
balanced performance across all metrics. This underscores EffNet-CNN’s innovative design, particularly its
enhancements in feature extraction and semantic learning.

On the CIFAR datasets, the EffNet-CNN model obtains high accuracy, surpassing several existing
models. This demonstrates its accuracy in classifying images across multiple classifications. The EffNet
architecture balances model depth, width, and resolution, yielding a highly efficient model with fewer
parameters than conventional CNN architectures. This results in shorter training periods and fewer compu-
tational demands. Incorporating channel-wise normalization into the proposed model reduces the impact of
variations in colour channels, making the model more robust to various lighting conditions and enhancing
its ability to generalize. Random data augmentation improves the model’s performance and generalizability
by augmenting brightness and contrast and reducing overfitting.

5 Conclusion
This research proposed an EffNet-CNN model for MS-COCO, CIFAR-10 and CIFAR-100 image mining-

based CBIR tasks to extract semantic features. The originality of the research model was based on its
integration of EfficientNet-CNN with channel-wise normalization, random data augmentation, semantic
feature extraction, classification, and feature matching techniques, improving superior performance in image
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mining and content-based retrieval tasks. The model was trained using an SGD optimizer and loss function
with the appropriate tuning of hyperparameters. Various performance metrics were used to assess the
model’s classification performance on both datasets, including accuracy, precision, recall, and F-measure. The
retrieval time was measured to evaluate the efficacy of the model. The model performed exceptionally well on
both datasets, obtaining high accuracy, precision, recall, and F-measure values. The model’s accuracy ranged
from 90.60% to 95.90% for the MS-COCO dataset, 96.8% to 98.3% for the CIFAR-10 dataset and 92.9% to
98.6% for the CIFAR-100 dataset. Regarding accuracy and other evaluation metrics, the model’s performance
exceeded that of existing models such as KNN, DT, SVM, VSM, LSTM, IMDBN, and other DL models.
In addition, the model’s retrieval time remained consistently low, ranging between 0.32 and 0.60 s. These
outcomes demonstrate the model’s effectiveness and efficacy. However, considering the model’s limitations,
such as dataset dependence, interpretability challenges, hyperparameter sensitivity, and computational costs,
is essential. Despite these limitations, the EffNet-CNN model demonstrates promise as an accurate and
efficient method for image classification tasks. The limitations and their applicability to other domains and
datasets can be addressed through future research.
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