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ABSTRACT: For the solution of peridynamic equations of motion, a meshless approach is typically used instead of
utilizing semi-analytical or mesh-based approaches. In contrast, the literature has limited analytical solutions. This
study develops a novel analytical solution for one-dimensional peridynamic models, considering the effect of damping.
After demonstrating the details of the analytical solution, various demonstration problems are presented. First, the free
vibration of a damped system is considered for under-damped and critically damped conditions. Peridynamic solutions
and results from the classical theory are compared against each other, and excellent agreement is observed between
the two approaches. Next, forced vibration analyses of undamped and damped conditions are performed. In addition,
the effect of horizon size is investigated. It is shown that for smaller horizon sizes, peridynamic results agree well with
classical results, whereas results from these two approaches deviate from each other as the horizon size increases.
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1 Introduction
As a new continuum mechanics formulation, peridynamics [1–4] has been developed by considering

the limitations of classical continuum mechanics, which is formulated in the form of partial differential
equations. Along the discontinuities, such as cracks, spatial derivatives are not defined as part of the partial
differential equations. The peridynamics equation of motion is given in integro-differential equation form,
which does not contain any spatial derivatives and is valid with or without discontinuities. In addition,
classical continuum mechanics does not have a length scale parameter, which can be necessary when
analyzing advanced material systems with microstructural details. On the other hand, peridynamics has an
important parameter named the horizon, which is the length scale parameter. With the horizon approaching
zero, peridynamics equations can converge to classical continuum mechanics equations.

During the last ten years, there has been rapid progress in peridynamics research. For instance,
peridynamics has been successfully utilized for the analysis of many different material systems. Liu et al. [5]
introduced a modified rate-dependent peridynamic model to investigate the dynamic mechanical behavior
of ceramic materials. Chen et al. [6] introduced a refined thermo-mechanical fully coupled peridynamic
model and investigated fracture in concrete. By performing peridynamic simulations, Shi et al. [7] examined
damage evolution in reinforced concrete subjected to radial blasting. Ma et al. [8] proposed an improved peri-
dynamic model for the quasi-static and dynamic fracture of reinforced concrete. Wang and Wu [9] presented
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a bond-level energy-based peridynamic model for mixed-mode fracture in rocks. Wu et al. [10] performed
peridynamic failure analysis in a Ni/Ni3Al bi-material structure. Chunyu et al. [11] developed a numerical
model to simulate a dynamic ice-milling process by using state-based peridynamics. Yang et al. [12] presented
a peridynamic formulation suitable for out-of-plane damage analysis of composite laminates. Oterkus and
Madenci [13] showed the application of peridynamics for failure prediction in composites. In another study,
Oterkus et al. [14] predicted damage growth from loaded composite fastener holes by using peridynamics.
To investigate fracture behavior in nuclear fuel pellets, Liu et al. [15] developed a thermomechanical
peridynamic model. By using element-based peridynamics, Jiang et al. [16] analyzed functionally graded
materials. Diana et al. [17] used peridynamics to determine homogenized properties for microstructured
materials. Yin et al. [18] developed a peridynamic model for large deformation and fracture analysis of
hyperelastic materials.

Peridynamic formulations for simplified structures are also available in the literature. O’Grady and
Foster [19] developed a peridynamic beam formulation within a non-ordinary state-based peridynamic
framework. Three-dimensional Euler-Bernoulli beam structures were studied by Liu et al. [20] using an
element-based peridynamic model. Chen et al. [21] performed a peridynamic fatigue crack growth analysis
of hydrogels. To predict the initiation and propagation of cracks in brittle solids Wang et al. [22] presented a
3-D conjugated bond-pair-based peridynamic formulation.

Peridynamics can also be utilized to analyze different types of material responses, including elastic,
plastic, viscoelastic, and viscoplastic material behavior. Zu et al. [23] presented an elastoplastic fracture
model in a bond-based peridynamic framework. Liu et al. [24] proposed a time-discontinuous state-based
peridynamic formulation for elastoplastic dynamic fracture problems. A viscoelastic model of non-ordinary
state-based peridynamics was developed by Tian and Zhou [25]. Zhang et al. [26] introduced a peridynamic
approach to model elasto-viscoplastic ductile fracture. A new ordinary state-based peridynamic framework
was proposed by Zhang et al. [27], including the Drucker-Prager plasticity model and shear deformation.

The meshless approach is usually used for the solution of peridynamic equations of motion instead of
utilizing semi-analytical [28] or mesh-based approaches. There are also some analytical solutions available in
the literature. Amongst these, Mikata presented analytical solutions for peristatic and peridynamic problems
for a 1-dimensional infinite rod [29] and 3-dimensional isotropic materials [30]. Yang et al. demonstrated an
analytical solution of 1-dimensional [31] and 2-dimensional [32] peridynamic equations of motion.

This study introduces a novel analytical solution for 1-dimensional peridynamic systems by considering
the effect of damping, which can occur due to internal losses in the material, friction in joints, and others.
After demonstrating the details of the analytical solution, various demonstration problems are considered.
Peridynamic analytical results and results obtained from the classical theory are compared against each other.
In addition, the effect of the horizon as the length scale parameter is demonstrated.

2 Analytical Solution of 1-Dimensional Peristaltic Governing Equation
For a 1-dimensional bar, the peristatic governing equation is described as follows:

c∫
δ

−δ

u (x + ξ) − u (x)
∣ξ∣ dξ = −b (x) c = 2EA

δ2 (1)

where c is the bond constant, u(x) is the displacement of the material point located at x, b(x) is the body
load, ξ is the bond length, E is the Elastic Modulus, and A is the cross-sectional area, and δ is the size of
the horizon.
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With the introduction of fictitious regions outside the boundary, clamped and free boundary conditions
can be written as follows (Appendix A):

cl amped∶ u (x∗ − ξ) = −u (x∗ + ξ)
f ree∶ u (x∗ − ξ) = u (x∗ + ξ) ∀ξ ∈ [0, δ] (2)

where x* is the location of the boundary condition.

2.1 Clamped-Clamped Condition
For a clamped-clamped bar subjected to some arbitrary loading, the boundary conditions are given as

u (−ξ) = −u (ξ) and u (L + ξ) = −u (L − ξ)∀ξ ∈ [0, δ] (3)

where L is the length of the bar.
Selecting the trial function as follows:

u (x) =
∞

∑
n=1

an sin nπx
L

(4)

where an is an unknown coefficient and substituting Eq. (4) into Eq. (1) gives

c
∞

∑
n=1

an ∫
δ

−δ

1
∣ξ∣ (1 − cos nπξ

L
) dξ sin nπx

L
= b (x) (5)

Unknown coefficients in Eq. (5) can be determined using the orthogonality condition as follows:

an =
2

cL
∫

L

0
b (x) sin nπx

L
dx

∫
δ

−δ

1
∣ξ∣ (1 − cos nπξ

L
) dξ

(6)

Substituting Eq. (6) back into Eq. (4) results in the peristatic analytical solution for a clamped-clamped
bar as follows:

u (x) = 2
cL

∞

∑
n=1

∫
L

0
b (x) sin nπx

L
dx

∫
δ

−δ

1
∣ξ∣ (1 − cos nπξ

L
) dξ

sin nπx
L

(7)

2.2 Clamped-Free Condition
For a bar that is only clamped at the left end, the boundary conditions can be described as follows:

u (−ξ) = −u (ξ) and u (L + ξ) = u (L − ξ)∀ξ ∈ [0, δ] (8)

In this case, the trial function can be chosen as follows:

u (x) =
∞

∑
n=1

bn sin (2n − 1) πx
2L

(9)
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where bn is an unknown coefficient. Substituting Eq. (9) into Eq. (1) and after simplification yields

c
∞

∑
n=1

bn ∫
δ

−δ

1
∣ξ∣ [1 − cos (2n − 1) πξ

2L
] dξ sin (2n − 1) πx

2L
= b (x) (10)

Coefficients in Eq. (10) can be obtained using the orthogonality condition as follows:

bn =
2

cL
∫

L

0
b (x) sin (2n − 1) πx

2L
dx

∫
δ

−δ

1
∣ξ∣ [1 − cos (2n − 1) πξ

2L
] dξ

(11)

Therefore, the peristatic analytical solution for this case can be written as:

u (x) = 2
cL

∞

∑
n=1

∫
L

0
b (x) sin (2n − 1) πx

2L
dx

∫
δ

−δ

1
∣ξ∣ [1 − cos (2n − 1) πξ

2L
] dξ

sin (2n − 1) πx
2L

(12)

3 Analytical Solution of 1-Dimensional Peridynamic Equation of Motion by Considering the Effect of
Damping

In general, the peridynamic (PD) equation of motion for a 1-dimensional bar can be written as follows:

ρü (x , t) + du̇ (x , t) = c∫
δ

−δ

u (x + ξ, t) − u (x , t)
∣ξ∣ dξ + b (x , t) (13)

where ρ is density, d is the damping factor, t represents time, “.” is the derivative of a function for time, and
“..” is the second derivative of a function with respect to time.

Suppose the initial conditions are known as follows:

u (x , 0) = u0 (x) and u̇ (x , 0) = v0 (x) (14)

And if the Laplace transform for the time variable t:

L [u (x , t)] = U (x , s) and L [b (x , t)] = B (x , s) (15)

Thus, applying the Laplace transform to both sides of Eq. (13) in t results in

ρ [s2U (x , s) − su0 (x) − v0 (x)] + d [sU (x , s) − u0 (x)] = c∫
δ

−δ

U (x + ξ, s) −U (x , s)
∣ξ∣ dξ + B (x , s) (16)

Rearranging Eq. (16) gives

c∫
δ

−δ

U (x + ξ, s) −U (x , s)
∣ξ∣ dξ = s2ρU (x , s) + s [dU (x , s) − ρu0 (x)] − ρv0 (x) − du0 (x) − B (x , s) (17)
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3.1 Clamped-Free Condition
For the clamped-free case, comparing Eq. (17) with Eq. (1) yields:

c∫
δ

−δ

U (x + ξ, s) −U (x , s)
∣ξ∣ dξ = −{ρv0 (x) + du0 (x) + B (x , s) − s2ρU (x , s) − s [dU (x , s) − ρu0 (x)]}

c∫
δ

−δ

u (x + ξ) − u (x)
∣ξ∣ dξ = −b (x) (18)

Considering U (x , s) as an analogue to u (x) leads to:

U (x , s) =
∞

∑
n=1

An (s) sin n̂x n̂ = (2n − 1) π
2L

(19)

Referring to Eq. (10), substituting Eq. (19) into Eq. (18a) yields:

∞

∑
n=1

An (s) [c∫
δ

−δ

1
∣ξ∣ (1 − cos n̂ξ) dξ + s2ρ + sd] sin n̂x = ρv0 (x) + du0 (x) + B (x , s) + sρu0 (x) (20)

Coefficients in Eq. (20) can be determined using the orthogonality condition as follows:

An (s) = 2
L

1
ρ

ρv̂(n)0 + dû(n)0 + ∫
L

0 B (x , s) sin n̂xdx + sρû(n)0

(s − α(n)1 )(s − α(n)2 )
(21)

where

û(n)0 = ∫
L

0
u0 (x) sin n̂xdx and v̂(n)0 (x) = ∫

L

0
v0 sin n̂xdx

with

α(n)1 =
−d +

√
d2 − 4ρc∫

δ

−δ

1
∣ξ∣ (1 − cos n̂ξ) dξ

2ρ
= −ηn ωn + ωn

√
(ηn)2 − 1

α(n)2 =
−d −

√
d2 − 4ρc∫

δ

−δ

1
∣ξ∣ (1 − cos n̂ξ) dξ

2ρ
= −ηn ωn − ωn

√
(ηn)2 − 1

(22)

ωn =
�
��� c

ρ ∫
δ

−δ

1
∣ξ∣ (1 − cos n̂ξ) dξ and ηn =

d
2ρωn

It can be rewritten using partial fractions in Eq. (21) as

An (s) = 2
L

1
ρ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ρv̂(n)0 + dû(n)0

α(n)1 − α(n)2

⎛
⎝

1
s − α(n)1

− 1
s − α(n)2

⎞
⎠
+ ρû(n)0

α1 − α2

⎛
⎝

α(n)1

s − α(n)1

− α(n)2

s − α(n)2

⎞
⎠
+ ∫

L
0 B (x , s) sin n̂xdx

(s − α(n)1 )(s − α(n)2 )

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(23)

Recalling the following and applying the inverse Laplace transform to Eq. (23) yields Eq. (25).

L−1 ( 1
s − α

) = eαt and L−1 [F (s)G (s)] = ( f ∗ g) (t) = ∫
t

0
f (u) g (t − u) du (24)
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an (t) = 2
L

1
ρ

1
α(n)1 − α(n)2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(ρv̂(n)0 + dû(n)0 )(eα(n)
1 t − eα(n)

2 t) + ρû(n)0 (α1eα(n)
1 t − α2eα(n)

2 t)
+∫

t
0 (eα(n)

1 u − eα(n)
2 u) [∫

L
0 b (x , t − u) sin n̂xdx] du

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(25)

where the following is the solution to this case:

u (x , t) = L−1 [U (x , s)] =
∞

∑
n=1

an (t) sin n̂x (26)

Substituting Eq. (25) into Eq. (26) yields:

u (x , t) = 2
L

∞

∑
n=1

1
α(n)1 − α(n)2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[(v̂(n)0 + d
ρ

û(n)0 ) + û0α1] eα(n)
1 t − [(v̂(n)0 + d

ρ
û(n)0 ) + û0α2] eα(n)

2 t

+ 1
ρ ∫

t

0
(eα(n)

1 u − eα(n)
2 u) [∫

L

0
b (x , t − u) sin (n̂x) dx] du

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

sin (n̂x)

(27)

where

û(n)0 = ∫
L

0
u0 (x) sin (n̂x) dx v̂(n)0 (x) = ∫

L

0
v0 sin (n̂x) dx

α(n)1 = −ηn ωn + ωn

√
(ηn)2 − 1 α(n)2 = −ηn ωn − ωn

√
(ηn)2 − 1

ωn (δ) =
√

c
ρ ∫

δ

−δ

1
∣ξ∣ [1 − cos (n̂ξ)] dξ ηn =

d
2ρωn

n̂ = (2n − 1) π
2L

c = 2EA
δ2

(28)

In particular, for a damped free system, i.e., d = 0 and Eqs. (27) and (28) reduce to

u (x , t) = 2
L

∞

∑
n=1

1
ωn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̂(n)0 sin ωn t + û(n)0 ωn cos ωn t

+ 1
ρ ∫

t

0
sin ωnu [∫

L

0
b (x , t − u) sin (n̂x) dx] du

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
sin (n̂x) (29)

in which

û(n)0 = ∫
L

0
u0 (x) sin (n̂x) dx v̂(n)0 (x) = ∫

L

0
v0 sin (n̂x) dx

ωn (δ) =
√

c
ρ ∫

δ

−δ

1
∣ξ∣ [1 − cos (n̂ξ)] dξ n̂ = (2n − 1) π

2L
c = 2EA

δ2

(30)

For a bar with clamped-free boundary conditions, the analytical solution has the same form except
n̂ = nπ

L other than n̂ = (2n−1)π
2L for Eqs. (27) to (29). Particular to the resonance condition, consider a damped-

free bar subjected to some harmonic load at an arbitrary point x0, as shown in Fig. 1.
If the loading frequency coincides with some natural frequencies of the bar, such that

b (x , t) = b0δ (x − xo) sin ωm t m = 1, 2, 3, . . . (31)
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Figure 1: A damped-free bar subjected to some harmonic load at an arbitrary point x0

Substituting Eq. (31) into Eq. (27) results in the following:

u (x , t) = 2
L

∞

∑
n=1

1
ωn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̂(n)0 sin ωn t + û(n)0 ωn cos ωn t

+ 1
ρ ∫

t

0
sin ωnu [∫

L

0
b0δ (x − xo) sin ωm (t − u) sin (n̂x) dx] du

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
sin (n̂x)

= 2
L

∞

∑
n=1

1
ωn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v̂(n)0 sin ωn t + û(n)0 ωn cos ωn t

+ 1
ρ

b0 sin (n̂x0)∫
t

0
sin (ωnu) sin [ωm (t − u)] du

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
sin (n̂x)

= 2
L

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞

∑
n = 1
n ≠ m

1
ωn

⎡⎢⎢⎢⎢⎢⎣

v̂(n)0 sin ωn t + û(n)0 ωn cos ωn t+
b0

ρ
sin (n̂x0)

ωm sin ωn t − ωn sin ωm t
ω2

m − ω2
n

⎤⎥⎥⎥⎥⎥⎦
sin n̂x

+ 1
ωm

⎡⎢⎢⎢⎢⎢⎣

v̂(m)0 sin ωm t + û(m)0 ωm cos ωm t+
b0

ρ
sin (m̂x0)

sin ωm t − ωm t cos ωm t
2ωm

⎤⎥⎥⎥⎥⎥⎦
sin m̂x

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(32)

As t →∞, Eq. (32) diverges.

4 Numerical Cases
To demonstrate the capability of the proposed approach, various scenarios are considered. Peridy-

namics results and the corresponding classical solutions are compared against each other for validation
purposes. A clamped-free bar with Young’s modulus of E = 200 GPa, density of ρ = 0.785 kg/m, length of
L = 1 m, cross-sectional area of A = 0.01 × 0.01 m2, and PD horizon of δ = 0.001 m are selected for the cases
given below.

4.1 Free Vibration of a Damped System
First, the free vibration behavior of a damped system is investigated. Suppose the initial conditions are

given as follows:

u0 (x) = 0.01x v0 (x) = 10x (x − 1) (33)

4.1.1 Case 1: Under Damped
A damping factor of d = 1000 Ns/m2 is considered in the first case. Fig. 2 depicts the variation of the

displacement at the center of the bar, i.e., x = 0.5 m, with respect to time. It indicates that oscillatory behavior
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is observed where the amplitude of the displacements decreases due to the effect of damping. Peridynamic
results agree very well with the classical solution.

Figure 2: The displacement variation at the center of the bar, i.e., x = 0.5 m, as the time progresses

4.1.2 Case 2: Critically Damped
The damping factor is specified as d = 2ρω1 = 1.2448 × 104 Ns/m2 in the second case. Concerning the

first case, the damping factor is relatively high. Fig. 3 indicates that the system is damped quickly rather than
showing an oscillatory behavior, and peridynamic results agree very well with the classical solution.

Figure 3: The displacement variation at the center of the bar, i.e., x = 0.5 m, as time progresses
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4.2 Forced Oscillation of Undamped System (Non-Resonant)
In this case, a bar that is initially at rest is subjected to a harmonic loading condition exerted at the free

end (Fig. 4):

b (x , t) = b0δ (x − L) sin ωt ω = ω1

2
b0 = 1000 (34)

Figure 4: A bar that is initially at rest is subjected to a harmonic loading condition at the free end

For this particular loading condition, an oscillatory behavior is observed, as shown in Fig. 5, since there
is damping in the system, and there is a very good agreement between peridynamic and classical results.

Figure 5: The displacement variation at the center of the bar, i.e., x = 0.5 m, as time progresses

4.3 Forced Vibration of a Damped System
This case is similar to the previous case by including damping in the system, as shown in Fig. 6.

b (x , t) = b0δ (x − L) sin ωt ω = ω1

2 b0 = 1000 and d = 1000 Ns/m2 (35)

Variation of the displacement at the center of the bar, i.e., x = 0.5 m, as time progresses, as shown in Fig. 7.
Different from the previous case, the amplitude of oscillations decreases due to damping. There is a very
good agreement between peridynamic and classical results.
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Figure 6: A damped system subjected to forced vibration

Figure 7: The displacement variation at the center of the bar, i.e., x = 0.5 m, as the time progresses

4.4 Horizon Size Analysis (Natural Frequencies)
The above results indicate that PD agrees with classical theory in oscillation behaviors. However,

those solutions are obtained for a small horizon size (δ ≪ L) so that the nonlocal character does not play
a significant role. It can compare the natural frequencies between peridynamics and classical theory by
considering different horizon sizes to investigate the subtlety of the nonlocal effect. The natural frequencies
from peridynamics are obtained from Eq. (30).

In this case, the horizon size, δ, is varied from 0.0001 to 0.1 m. The natural frequencies of the first four
modes (n = 1, 2, 3, 4) are shown in Fig. 8. Each mode corresponds to an independent motion of the structure.

Wang et al. [33] reported that as the horizon size converges to 0 the peridynamic solution should
converge to the classical continuum mechanics solution for the condition without the existence of damage
in the structure, and nonlocal effects are insignificant. In addition, as indicated in [34], peridynamics
can also represent wave dispersion, especially at short wavelengths, which is a phenomenon observed in
real materials. For such conditions, the horizon can be determined by comparing the peridynamic wave
dispersion curves against those obtained from lattice dynamics. As expected, peridynamic results converge
to classical results as the horizon size approaches zero and diverge as the horizon size increases, which can
represent non-classical nonlocal behavior that can occur, especially at small scales (see Fig. 8).
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(a) (b)

(c) (d)

Figure 8: Variation of the natural frequencies as the horizon size changes for (a) Mode 1, (b) Mode 2, (c) Mode 3, and
(d) Mode 4

4.5 Resonance Analysis
In the last numerical case, a bar subjected to a harmonic load at the free end is considered without the

damping effect (Fig. 9). If the loading frequency coincides with the first natural frequency, such as

b (x , t) = b0δ (x − L) sin ω1t b0 = 100

Figure 9: A rod subjected to a harmonic load at the free end without a damping effect
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And the bar is initially at rest, i.e.,

u (x , 0) = 0 v̇ (x , 0) = 0

The natural frequencies in PD are functions of the horizon size δ. In this study, two different scenarios
for external loading are chosen as follows:

ω1 (δ = 0.001m) =
√

c
ρ ∫

0.001

−0.001

1
∣ξ∣ [1 − cos( π

2L
ξ)] dξ ω1 (δ = 0.5m) =

√
c
ρ ∫

0.5

−0.5

1
∣ξ∣ [1 − cos( π

2L
ξ)] dξ

The displacement variation at the right edge of the bar, i.e., x = 1 m, for two different horizon sizes, 0.001
and 0.5 m, as the time progresses obtained by PD and classical theory are shown in Fig. 10. It can observe
that both PD and classical theory results show resonant oscillation condition as the amplitude of oscillations
increases as the time increases. In particular, for a loading frequency corresponding to a smaller horizon size,
the resonance behavior obtained from the PD model and that of Classical Continuum Mechanics (CCM)
is similar. In contrast, for a larger horizon size, the resonance of classical theory behaves more weakly than
PD. This is expected since natural frequencies of PD converge to classical results for small horizon sizes and
deviate from classical results as the horizon size increases, as indicated in Section 4.4.

Figure 10: The displacement variation at the right edge of the bar, i.e., x = 1 m, as the progresses for two different horizon
sizes (a) 0.001 m, (b) 0.5 m

4.6 Convergence Analysis of the PD Series Solution
This section presents the convergence analysis of the PD series solution for the free vibration of a fixed-

free rod by considering the following initial conditions:

u0 (x) = 0.01x v0 (x) = 0

The corresponding CCM solution truncated at the first 100 terms is chosen as the base reference:

uCC M (x , t) =
100
∑
n=1

[ 2
L ∫

L

0
0.01α sin(2n − 1

2L
πα) dα] cos(2n − 1

2L

√
E
ρ

πt) sin(2n − 1
2L

πx)

A small horizon of δ = 10−4 m is selected for the peridynamic solution. The variation of the displacement
of the material point at the right edge of the bar with respect to the number of terms in the PD series solution
at different times, 0.01, 0.015, 0.02, and 0.025 s, is shown in Fig. 11.
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(a) (b)

(c) (d)

Figure 11: The displacement variation at the right edge of the bar, i.e., x = 1 m, with respect to the number of terms in
PD series solution at difference times (a) 0.01 s, (b) 0.015 s, (c), 0.02 s, and (d) 0.025 s

Fig. 11 indicates that the PD solution converges to the CCM solution by using more than 10 terms in the
PD series solution.

5 Conclusions
This study presents a novel analytical solution for 1-Dimensional peridynamic systems by considering

the effect of damping. After demonstrating the details of the analytical solution, various demonstration
problems are given. First, the free vibration of a damped system is considered for under-damped and critically
damped conditions. Peridynamic solutions and results from the classical theory are compared against each
other, and an excellent agreement is observed between the two approaches. Next, forced vibration analyses
of undamped and damped conditions are performed. In addition, the effect of horizon size is investigated.
For smaller horizon sizes, peridynamic results agree well with classical results, whereas results from these
two approaches deviate from each other as the horizon size increases. In addition, it was presented that using
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more than 10 terms in the PD series solution, a good convergence is obtained by comparing it against the
CCM solution.

Finally, the proposed analytical solution can be utilized for optimization studies as a quick solution with-
out relying on numerical solutions. In addition, the proposed approach can be extended to 2-dimensional
and 3-dimensional configurations.
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Appendix A
Clamped Boundary

For a rod subjected to clamped boundary conditions at the left end (Fig. A1), a fictitious region can be
introduced outside the boundary with a width equal to the horizon size δ to ensure that each material point
of the real body is completely embedded within the horizon.

Figure A1: Introduction of the fictitious region for the clamped boundary condition

The PD governing equation for the boundary material point can be written as:

c∫
δ

−δ

u (0 + ξ) − u (0)
∣ξ∣ dξ = 0 (A1)

which can also be written as:

c∫
δ

0

u (0 + ξ) − 2���u (0) + u (0 − ξ)
ξ

dξ = 0 ⇒∫
δ

0

u (0 + ξ) + u (0 − ξ)
ξ

dξ (A2)
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(A2) is true for all horizon sizes, δ, and all deformation fields, u (x). Therefore, the following conditions
must be satisfied:

u (−ξ) = −u (ξ) ∀ξ ∈ [0, δ] (A3)

Free Boundary
For a rod subjected to a free boundary at the right end (Fig. A2), a fictitious region can be introduced

outside the free boundary with a width equal to the horizon size δ.

Figure A2: Introduction of the fictitious region for the free boundary condition

As a consequence of free boundary, it should be ensured that the resultant force acting on the real body
from a fictitious region is zero. Let us denote f (x + η, x − ξ) as the bond force exerting on the material point
located x − ξ from the material point located at x + η and it can be expressed as follows:

f (x + η, x − ξ) ∶ = c u (x + η) − u (x − ξ)
∣ξ + η∣ (A4)

Then, the following condition should hold:

∫
δ

0
∫

δ−ξ

0

u (x + η) − u (x − ξ)
∣ξ + η∣ dηdξ = 0 ⇔ ∫

δ

0
∫

δ−ξ

0
f (x + η, x − ξ) dηdξ = 0 (A5a)

Alternatively, if the integral order is changed, the following expression can be obtained:

0 = ∫
δ

0
∫

δ−η

0

u (x + η) − u (x − ξ)
∣ξ + η∣ dξdη

= ∫
δ

0
∫

δ−ξ

0

u (x + ξ) − u (x − η)
∣η + ξ∣ dηdξ

⇔
0 = ∫

δ

0
∫

δ−η

0
f (x + η, x − ξ) dξdη

= ∫
δ

0
∫

δ−ξ

0
f (x + ξ, x − η) dηdξ

(A5b)

By summing Eqs. (A5a) and (A5b) yields:

0 = ∫
δ

0
∫

δ−ξ

0
f (x + ξ, x − η) dηdξ + ∫

δ

0
∫

δ−ξ

0
f (x + η, x − ξ) dηdξ

= ∫
δ

0
∫

δ−ξ

0
[ f (x + ξ, x − η) + f (x + η, x − ξ)] dηdξ

(A6)

Utilizing the mean value theorem:

∫
δ−ξ

0
[ f (x + ξ, x − η) + f (x + η, x − ξ)] dη = (δ − ξ) [ f (x + ξ, x − α) + f (x + α, x − ξ)] (A7)
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For some α ∈ [0, δ − ξ], substituting Eq. (A7) into Eq. (A6) results in:

∫
δ

0
(δ − ξ) [ f (x + ξ, x − α) + f (x + α, x − ξ)] dξ = 0 (A8)

Again, if the mean value theorem is applied to Eq. (A8) yields:

∫
δ

0
(δ − ξ) [ f (x + ξ, x − α) + f (x + α, x − ξ)] dξ

= δ (δ − β) [ f (x + β, x − α) + f (x + α, x − β)] for some β ∈ [0, δ]
= 0

(A9)

Eq. (A9) must be true for any arbitrary function f , which implies

f (x + β, x − α) + f (x + α, x − β) = 0 (A10)

and can be written as follows:

c [u (x + β) − u (x − α)
∣α + β∣ + u (x + α) − u (x − β)

∣α + β∣ ]

= [u (x + β) − u (x − β)] + [u (x + α) − u (x − α)] = 0
∀u (x) (A11)

Hence, it can be concluded that the following must hold for a free boundary condition:

u (L + ξ) = u (L − ξ)∀ ξ ε [0, δ] (A12)

By assuming that the free boundary is located at x = L.
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