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ABSTRACT: In this manuscript, the notion of a hesitant fuzzy soft fixed point is introduced. Using this notion and the
concept of Suzuki-type (μ, ν)-weak contraction for hesitant fuzzy soft set valued-mapping, some fixed point results are
established in the framework of metric spaces. Based on the presented work, some examples reflecting decision-making
problems related to real life are also solved. The suggested method’s flexibility and efficacy compared to conventional
techniques are demonstrated in decision-making situations involving uncertainty, such as choosing the best options in
multi-criteria settings. We noted that the presented work combines and generalizes two major concepts, the idea of soft
sets and hesitant fuzzy set-valued mapping from the existing literature.
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1 Introduction
This part consists of two subsections. In the first section relevant literature is presented while the second

part is about the motivation and research gap.

1.1 Literature Review
The real world is full of complex issues. Engineering, social science, management science, and eco-

nomics are a few of the major real-world fields. Imprecision, vagueness, and uncertainty are the main issues
we are dealing with in the aforementioned fields. These problems have a variety of uncertainties, which
makes it impossible for us to solve them using traditional methods. The interval mathematics theory, theory
of probability, fuzzy set theory, and rough sets theory are just a few of the numerous theories. To improve
uncertainty modeling and provide more flexibility, Saeed et al. [1] provide refined fuzzy soft sets that offer
a comprehensive approach to analyzing data while addressing the challenges of uncertainty and ambiguity
in real-world data. A better representation of ambiguous and parameter-dependent data is possible with
this hybrid approach, which combines the best features of both techniques. The concept of the fuzzy soft
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set was applied to the decision-making problems by different researchers (see, e.g., references [2–4] and
the cited works within). To improve decision-making in situations when there is uncertainty among several
membership values, Ali et al. [5] expanded the hesitant fuzzy soft set architecture. This method provides a
deeper understanding of uncertainty, which offers a full range of information measures for hesitant fuzzy
soft sets. It is more adaptable than earlier models and may be used for intricate and unpredictable problems.
It develops decision-making scenarios by offering a more precise and flexible framework for dealing with
these difficulties. Similarly, fuzzy and hesitant fuzzy concepts [6] manipulate data uncertainty modeling in
a descent manner as well as a powerful tool for solving multi-criteria decision-making challenges raised in
machine learning problems [7]. Recent developments in fuzzy and hesitant fuzzy sets have greatly enhanced
frameworks for making decisions. For instance, an improved hesitant fuzzy model for multi-criteria decision-
making was presented by Shen et al. [8]. More recently, Ali et al. [9] suggested a hybrid approach for election
prediction scenarios that combine soft expert sets with dual hesitant fuzzy sets. Nevertheless, in spite of these
developments, Suzuki-type (μ, ν)-weak contractions have not yet been integrated with hesitant fuzzy soft
set-valued mappings, especially for scenarios with substantial ambiguity and hesitation. The purpose of this
study is to close this gap.

Now, such scenarios can be manipulated more appropriately by the representation of mappings. So
researchers are trying to model real-world complex issues using multi-valued mappings. So for this purpose,
fuzzy and soft set valued mappings are employed to manage and arrive at decisions in scenarios including
ambiguity, imprecision, or uncertainty. The main aim of the soft set-valued map is to assign items to sets
rather than single values to address data uncertainty. Similarly fuzzy soft set valued mappings are used for
managing even more complicated uncertainty. So, a family of fuzzy mapping that takes a broad view of the
idea of set-valued mappings was introduced in 1981 by Heilpern [10] using the concept of fuzzy sets. During
this procedure, he revealed the presence of the fuzzy fixed point theorem, advancing over Nadler’s fixed
point theorem [11] and the Banach contraction theorem [12] for multi-valued mapping. Frigon et al. [13]
enhanced the Heilpern fixed point theorem for the case in which it should be under observation that 1-level
sets are not supposed to be compact and convex beneath a contractive reservation. Later, on metric and quasi-
metric spaces, several researchers investigated the presence of fixed and joint fixed points of fuzzy mapping
sustaining different kinds of contractive constraints (see, e.g., references [14–17] and the cited works within).

1.2 Motivation
Existing fuzzy set frameworks are inadequate for solving many decision-making problems that involve

hesitation and ambiguity. Though their potential in conjunction with sophisticated contraction principles
is still unexplored, hesitant fuzzy soft sets provide a novel method for modeling such issues. Finding fixed-
point outcomes for hesitant fuzzy soft set-valued mappings using Suzuki-type (μ, ν)-weak contractions is
the goal of this work. The goals are to produce theoretical results, show how they might be used, and
compare them to current approaches. Suzuki-type weak contractions characterize metric completeness
and generalize the Banach contractions [18]. Suzuki-type contractions can handle multi-valued mapping
problems adequately [19–21]. For this reason, Suzuki-type weak contraction is chosen for this study. Because
it considers the inherent uncertainties and hesitation in real-world data, the Suzuki-type (μ, ν)-weak
contraction is especially well-suited for hesitant fuzzy soft set-valued mappings. Through its parameters μ
and ν, it provides more flexibility than classical contraction principles, allowing for more precise control
over the mapping process. This guarantees convergence to fixed points under more general circumstances
and enables a more accurate depiction of intricate interactions. It is the perfect option for applications
needing sophisticated decision-making frameworks because of these features [22]. Because it considers the
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two problems of uncertainty and hesitation that arise in real-world decision-making, the Suzuki-type (μ, ν)-
weak contraction is especially well-suited for hesitant fuzzy soft set-valued mappings. The dual-parameter
structure of Suzuki-type contractions provides for more precise control over mapping behavior than standard
fuzzy set generalizations, which might not be able to capture multi-valued dependencies. Because of this, it
is perfect for resolving difficult decision-making issues where conventional approaches are inadequate.

1.3 Research Gaps
The integration of hesitant fuzzy soft sets with sophisticated fixed-point theorems, such as Suzuki-

type (μ, ν)-Weak Contractions, has not been discovered, even though they have been thoroughly examined
in the context of uncertainty modeling. Current approaches, such as classical contraction principles, can
not ensure convergence under more general circumstances and have limitations when dealing with multi-
valued membership structures. Furthermore, although hesitant fuzzy sets have a wealth of research on their
usage in decision-making, nothing is known about how they might be used with dual-parameter contraction
techniques to address practical issues. By creating a thorough framework for hesitant fuzzy soft set-valued
mappings and showing its usefulness in real-world scenarios, this work seeks to close these gaps. So, in this
work, we study fixed point via Suzuki-type (μ, ν)-weak contraction under a new framework of study which
is a hesitant fuzzy soft set-valued mapping. We extend the concept of Suzuki-type (μ, ν)-weak contraction
in the context of hesitant fuzzy soft set-valued mapping and explore sufficient conditions for establishing a
hesitant fuzzy soft fixed point for the mentioned contractions, inspired by the work of Shagari et al. [23]. In
addition to expanding the scope of contraction principles, the suggested method tackles real-world decision-
making difficulties, which advances fuzzy mathematics and its purposes. The established work generalizes
the related notions of fuzzy sets, soft sets, and multi-valued maps within the framework of metric spaces.
Furthermore, a decision-making problem is also addressed using the presented results. With, the help of a
hesitant fuzzy soft fixed point we find out an optimal result in the example.

1.4 Proposed Decision-Making Application
A real-world decision-making problem involving multi-criteria group decision-making under uncer-

tainty is used in this study to test the suggested framework. Hesitancy and competing preferences are
considered when modeling the situation using hesitant fuzzy soft set-valued mappings. Suzuki-type (μ, ν)-
weak contractions permit dual-parameter control, which allows for iterative solution refining and optimal
decision-making. This method can be used, for instance, to choose the best option from a range of selections
or allocate resources while considering preference hesitancy.

1.5 Overview of the Methodology
Following the definition of hesitant fuzzy soft set-valued mappings, Suzuki-type (μ, ν)-weak contraction

principles are applied to construct fixed-point outcomes and conclude the approach. The hesitant fuzzy
values are refined by an iterative process that guarantees convergence to a fixed point representing the best
course of action. In order to validate the theoretical results and show how resilient the approach is, numerical
examples and a real-world application are given. This research manuscript is split into four parts. In the
first part, literature review and motivation are given, the second section consists of necessary definitions,
the third section consists of our main work, and in the fourth section, applications of the presented results
are discussed.
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2 Preliminaries
In this part of the paper, we need some results and definitions from the existing literature. Throughout

this manuscript, we represent a metric function by “D”, W be a non-empty set and the set of all hesitant fuzzy
soft sets by H̃(W)E.

Definition 1. [23] Let W be a non-empty set. A mapping Ľ: W�→W is known as weak contraction if ∃, a
constant ζ ∈ (0, 1) and K ≥ 0 such that

D(Ľw , Ľb) ≤ ζD(w , b) +KD(b, Ľw);∀, b, w ∈ W.

Definition 2. [23] Assume that ( W, D) be a metric space and Ľ: W�→ CB( W) is a multi-valued mapping.
Then Ľ is known as multi-valued weak contraction or multi-valued ( ϑ, K)-weak contraction iff ∃, constants ϑ
∈ (0, 1) and K ≥ 0 such that

H(Ľw , Ľb) ≤ ϑD(w , b) +KD(b, Ľw);∀, w , b ∈ W.

Definition 3. [22] A couple ( G, E) be known as a soft set on ( W) iff G is a function from E into the P(W).

Definition 4. [5] Assume that a hesitant fuzzy set B on W be in the form of a mapping over W, gives us a
subset of [0, 1], and mathematically be determined by

B = {⟨w , hB̃(w)⟩ ∣ w ∈ W} .

In the above set, hB̃(w) represents the possible values of membership degrees in [0, 1] of ‘w’ ∈W to B. For
simplicity, hB̃(w) is called a hesitant fuzzy element. So, all hesitant fuzzy elements are represented by a set H.

Definition 5. [23] Assume that h̵ is a hesitant fuzzy element in B. Then its score function is determined by

Sc(h̵) = ( 1
N(h̵))∑

ς∈h̵
ς.

So, N(h̵) shows number of objects in h̵ and actually Sc(h̵) represents the average of the objects in h̵
and Sc(h̵) ∈ [0, 1].

Definition 6. [23] Given that μ ∈ (0, 1], then ordinary crisp subset of W determined as

h̵A

μ = {t ∈ W ∶ Sc(h̵A(t)) ≥ μ},

be known as μ-cut of the hesitant fuzzy soft A on W.

Definition 7. [5] Suppose H̃(W) is the power set of hesitant fuzzy set in W; a pair (G̃,A) is said to be a
hesitant fuzzy soft set over W, where G̃ is a mapping given by G̃ ∶ A → H̃(W).

3 Hesitant Fuzzy Soft Fixed Points of Suzuki-Type (μ, ν)-Weak Contraction
In this part of our manuscript we present some definitions and the main results. Now motivated by the

Definition 6 we can defined μ-cut of the hesitant fuzzy soft set (G̃ ,A) as follows:

Definition 8. Given μ ∈ (0, 1] then the ordinary subset means crisp subset of W can be presented by

h̵G̃e
μ = {w ∈ W ∶ Sc(hG̃e(w)) ≥ μ},

is known as the μ-cut of the hesitant fuzzy soft set G̃ on W.



Comput Model Eng Sci. 2025;143(2) 2217

Definition 9. The mapping Ľ ∶W→ H̃(W)E is called hesitant fuzzy soft set valued mapping.

Remark 1. The above definition is the extended version of the hesitant fuzzy set-valued mapping of the
paper [22]. Where, note that if Ľ is a hesitant fuzzy soft set valued mapping on W, then Ľw: E → H̃(W) is a
hesitant fuzzy soft set, i.e., for each w ∈W and ( Ľw)(ë) = Ľ (w; e) ∈ H̃(W) is a hesitant fuzzy soft, so for each
w ∈W, Ľ (w; e) (w) ⊆ [0, 1] is a hesitant fuzzy element ( HFE).

Definition 10. Assume that Ľ ∶W→ H̃(W)E is a hesitant fuzzy soft set valued mapping, w ∈W, e ∈ Dom Ľw
and μ ∈ (0, 1]. So, the μ-level set of Ľ is represented by

[Ľ(w; e)]μ = {r ∈ W ∶ S([Ľ(w; e)](r) ≥ μ}.

Remark 2. Definition 10 is an extended form of μ-level set of hesitant fuzzy set valued mapping [22]. Here for w
∈W, Ľw H̃ (W)E, that is, Ľw ∶ E �→ H̃ (W). This represents that (Ľw)(e) = Ľ(w; e) ∈ H̃ (W). This implies
that Ľ(w; e) ∶ W → P(I), hence Ľ(w;e)(r) ⊆ I. So that for μ ∈I, [Ľ(w; e)]μ is well-given.

Here I = [0, 1], P(I) represents collection of all subsets of I = [0, 1].

Definition 11. A point w is said to be hesitant fuzzy soft-fixed point of Ľ ∶ W �→ H̃ (W)E, if ∃, e ∈ E and
μ ∈ (0, 1] for which w ∈ [Ľ(w; e)]μ . The point w is known as a common hesitant fuzzy soft-fixed point of Š,
Ľ∶ W �→ H̃ (W)E if w ∈ [Š(w; e)]μ∩[Ľ(w; e)]μ .

Remark 3. The Definition 11 is an enhanced form of hesitant fuzzy fixed point of the paper [22].

Definition 12. A mapping Ľ ∶ W → H̃ (W)E is said to be a hesitant fuzzy soft set valued mapping. A point
w ∈ W is known as an e-hesitant fuzzy soft-fixed point of Ľ if w ∈ [Ľ(w; e)]μ , for some e ∈ E and μ ∈ (0, 1].
It can be written as w ∈ [Ľw]μ , for short. If Dom(Ľw) = E, and w ∈ [Ľ(u; e)]μ , ∀, e ∈ E, then w is known as
an E-hesitant fuzzy soft fixed point of Ľ.

Here the set of all E-hesitant fuzzy soft fixed points of a hesitant fuzzy soft set valued mapping Ľ is
represented by E − HFSFix(Ľ).

Definition 13. Assume that W ≠/0 and E be set of parameters and Ľ be a hesitant fuzzy soft set onW. Choosing
(μ, ν) ∈ (0, 1] × [0, 1), the crisp subset of W determined by

(Ľw; e)(μ ,ν) = {t ∈ W ∶ Sc((Ľw; e)(t)) ≥ μ} ∪ {t ∈ W ∶ Sc((Ľw; e)(t)) ≤ ν},

is known as the (μ, ν)-level set of Ľ, and here Sc((Ľw; e)(t)) shows score function of Ľ. So, a point û ∈ W is
known hesitant fuzzy soft fixed point of Ľ if ∃, (μ, ν) ∈ (0, 1] × [0, 1) such that û ∈ (Ľû; e)(μ ,ν).

Note that in the whole manuscript, the function r ∶ (0, 1) �→ (1/2, 1] is defined by

r(μ) =
⎧⎪⎪⎨⎪⎪⎩

1, i f 0 < μ < 1/2,
1 − μ, i f 1/2 ≤ μ < 1.

(1)

For w , b ∈ W and (μ, ν) ∈ (0, 1] × [0, 1), defining

∨ (w , b) = max{D(w , b), D(w , (Ľw; e)(μ ,ν)), D(b, (Ľb; e)(μ ,ν)),

D(w , (Ľb; e)(μ ,ν)) + D(b, (Ľw; e)(μ ,ν))
2

,
D(w , (Ľw; e)(μ ,ν))D(b, (Ľb; e)(μ ,ν))

1 + D(w , b) },
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∧ (w , b) = min{D(w , (Ľw; e)(μ ,ν)), D(b, (Ľw; e)(μ ,ν)),
D(w , (Ľw; e)(μ ,ν))D(b, (Ľb; e)(μ ,ν))

1 + D(w , b) }.

Remark 4. Definition 13 generalizes the Definition [9] of the paper [23].

Definition 14. A hesitant fuzzy soft set valued mapping Ľ ∶ W �→ H̃(W)E is known as Suzuki-type (μ, ν)-
weak contraction if ∀, w , b ∈ W with w ≠ b and e ∈ A ⊆ E , ∃, some (μ, ν) ∈ (0, 1] × [0, 1) such that

r(μ)D(w , [Ľ(w; e)](μ ,ν)) ≤ D(w , b).

Then we have

H((Ľw; e)(μ ,ν), (Ľb; e)(μ ,ν)) ≤ μ ∨ (w , b) + ν ∧ (w , b).

Theorem 1. Assume that (W, D) is a complete metric space and Ľ ∶ W �→ H̃(W)E is a Suzuki-type (μ, ν)-
weak contraction. Suppose that ∀, w ∈ W, and e ∈ A ⊆ E, ∃, (μ, ν) ∈ (0, 1] × [0, 1) such that [Ľ(w; e)](μ ,ν) ≠/0,
closed and bounded subset of W. Then Fix(Ľ) ≠ ϕ.

Proof. Assume that (μ, ν) ∈ (0, 1] × [0, 1) be such that 0 < μ ≤ μ1 < 1, w1 ∈ W and ρ = 1/√μ. Assume that
(Ľw1; e)(μ ,ν) ≠/0. So, we can find w2 ∈ W such that w2 ∈ (Ľw1; e)(μ ,ν). Since ρ > 1, choose w3 ∈ (Ľw2; e)(μ ,ν)
such that

D(w2, w3) ≤ ρH((Ľw1; e)(μ ,ν), (Ľw2; e)(μ ,ν)).

If w1 = w2, then w1 ∈ (Ľw1; e)(μ ,ν) for some (μ, ν) ∈ (0, 1] × [0, 1) and hence theorem is proved. Suppose
w1 ≠ w2. Since r(μ) ≤ 1, Further suppose that

r(μ)D(w1 , (Ľw1; e)(μ ,ν)) ≤ D(w1 , (Ľw1; e)(μ ,ν)) ≤ D(w1 , w2)

Then we have

D(w2, w3) ≤ ρH((Ľw1; e)(μ ,ν), (Ľw2; e)(μ ,ν))

≤ 1
√μ

(μ ∨ (w , b) + ν ∧ (w , b)) (2)

≤ √μ max{D(w1 , w2), D(w1 , (Ľw1; e)(μ ,ν)), D(w2, (Ľw2; e)(μ ,ν)),

D(w1 , (Ľw2; e)(μ ,ν)) + D(w2, (Ľw1; e)(μ ,ν))
2

,
D(w1 , (Ľw1; e)(μ ,ν))D(w2, (Ľw2; e)(μ ,ν))

1 + D(w1 , w1)

+ ν
√μ

minD(w1 , (Ľw1; e)(μ ,ν)), D(w2, (Ľw1; e)(μ ,ν)),
D(w1 , (Ľw1)(μ ,ν))D(w2, (Ľw2)(μ ,ν))

1 + D(w1 , w2)
}

≤ √μmax{D(w1 , w2), D(w2, w3), D(w1 , w3) + D(w2, w2)
2

, D(w1 , w2)D(w2, w3)
1 + D(w1 , w2)

}

+ ν
√μ

min{D(w1 , w2), D(w2, w2), D(w1 , w2)D(w2, w3)
1 + D(w1 , w2)

}

≤ √μmax{D(w1 , w2), D(w2, w3), D(w1 , w2) + D(w2, w3)
2

}
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≤ √μmax{D(w1 , w2), D(w2, w3)} (3)

If D(w1 , w2) ≤ D(w2, w3), then from Eq. (3), we have

D(w2, w3) ≤ √μD(w2, w3) < D(w2, w3),

a contradiction. Hence, D(w1 , w2) > D(w2, w3) and Eq. (3) becomes

D(w2, w3) ≤ √μD(w1 , w2) ≤ √μ1D(w1 , w2).

To continue the above process, we can make a progression {wn}n∈N in W such that

wn+1 ∈ (Ľwn ; e)(μ ,ν)

and

D(wn , wn+1) ≤ √μ1D(wn−1 , wn).

So we obtain
∞

∑
n=1

D(wn , wn+1) ≤
∞

∑
n=1

(√μ1)n−1D(w1 , w2) < ∞.

As a result, we came to know that {wn}n∈N be a Cauchy progression inW. So, completeness of W shows
that ∃, û ∈ W such that wn �→ û as n �→ ∞. Assume: ∀, û ≠ w , then we get

D(û, (Ľw; e)(μ ,ν)) ≤ μmax{D(û, w), D(w , (Ľw; e)(μ ,ν))} (4)

Since wn �→ û as n �→ ∞, ∃, a natural number k such that

5D(wn , û) ≤ D(û, w)∀, n ≥ k.

We are given that wn+1 ∈ (Ľwn ; e)(μ ,ν), we obtain

r(μ)D(wn , (Ľwn ; e)(μ ,ν)) ≤ D(wn , (Ľwn ; e)(μ ,ν)) ≤ D(wn , wn+1) ≤ D(wn , û) + D(û, wn+1) ≤ 2
5

D(û, w)

Hence, for n ≥ k, we obtain

r(μ)D(wn , (Ľwn ; e)(μ ,ν)) ≤ 2
5

D(û, w) ≤ D(û, w) − 1
5

D(û, w) ≤ D(û, w) − D(û, wn) ≤ D(wn , w). (5)

Hence, applying Eq. (5) we get

D(wn+1 , (Ľw; e)(μ ,ν)) ≤ H((Ľwn ; e)(μ ,ν), (Ľw; e)(μ ,ν))

≤ μmax{D(wn , w), D(wn , (Ľwn ; e)(μ ,ν)), D(w , (Ľw; e)(μ ,ν)),

D(wn , (Ľw; e)(μ ,ν)) + D(w , (Ľwn ; e)(μ ,ν))
2

,
D(wn , (Ľwn ; e)(μ ,ν))D(w , (Ľw; e)(μ ,ν))

1 + D(wn , w) }
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+ ν min{D(wn , (Ľwn ; e)(μ ,ν)), D(w , (Ľwn ; e)(μ ,ν)),
D(wn , (Ľwn ; e)(μ ,ν))D(w , (Ľw; e)(μ ,ν))

1 + D(wn , w) }. (6)

From Eq. (6), we have

D(wn+1 , (Ľw; e)(μ ,ν)) ≤ μmax{D(wn , w), D(wn , wn+1), D(w , (Ľw; e)(μ ,ν)),

D(wn , (Ľw; e)(μ ,ν)) + D(w , wn+1)
2

,
D(wn , (Ľwn ; e)(μ ,ν))D(w , (Ľw; e)(μ ,ν))

1 + D(wn , w) }

+ νmin{D(wn , wn+1), D(w , wn+1),
D(wn , wn+1)D(w , (Ľw; e)(μ ,ν))

1 + D(wn , w).
}. (7)

Since we know that in (7) as n�→ ∞, so we get

D(û, (Ľw; e)(μ ,ν)) ≤ μmax{D(û, w), D(w , (Ľw; e)(μ ,ν)),
D(û, (Ľw; e)(μ ,ν)) + D(û, w)

2
}

+ νmin{0, D(û, w)} ≤ μmax{D(û, w), D(w , (Ľw; e)(μ ,ν))}.

Next we will show that û ∈ (Ľû; e)(μ ,ν), for this we assume the following two cases.
Case (1). 0 < μ < 1/2.
Assume that ∀, (μ, ν) ∈ (0, 1] × [0, 1) with μ < 1, û ≠ p, û ∉ (Ľû; e)(μ ,ν) and p ∈ (Ľû; e)(μ ,ν) such that

D(p, û) < D(û, (Ľû; e)(μ ,ν)).

Setting w = p in Eq. (4), we have

D(û, (Ľp; e)(μ ,ν)) ≤ μmax{D(û, p), D(p, (Ľp; e)(μ ,ν))} (8)

Now,

r(μ)D(û, (Ľû; e)(μ ,ν)) ≤ D(û, (Ľû; e)(μ ,ν)) ≤ D(û, p).

Then we have

D(p, (Ľp; e)(μ ,ν)) ≤ H((Ľû; e)(μ ,ν), (Ľp; e)(μ ,ν)) ≤ μmax{D(û, p), D(û, (Ľû; e)(μ ,ν)),

D(p, (Ľp; e)(μ ,ν)),
D(û, (Ľp; e)(μ ,ν)) + D(p, (Ľû; e)(μ ,ν))

2
,

D(û, (Ľû; e)(μ ,ν))D(p, (Ľp; e)(μ ,ν))
1 + D(û, p) } + νmin{D(û, (Ľû; e)(μ ,ν)), D(p, (Ľû; e)(μ ,ν)),

D(û, (Ľû; e)(μ ,ν))D(p, (Ľp; e)(μ ,ν))
1 + D(û, p) }. ≤ μmax{D(û, p), D(p, (Ľp; e)(μ ,ν)),
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D(û, (Ľp; e)(μ ,ν))
2

,
D(û, p)D(p, (Ľp; e)(μ ,ν))

1 + D(û, p) } + νmin{D(û, p), 0,

D(û, p)D(p, (Ľp; e)(μ ,ν))
1 + D(û, p) } ≤ max{D(û, p), D(p, (Ľp; e)(μ ,ν)),

D(û, p) + D(p, (Ľp; e)(μ ,ν))
2

} ≤ μmax{D(û, p), D(p, (Ľp; e)(μ ,ν))}.

Suppose that D(û, p) ≤ D(p, (Ľp; e)(μ ,ν)), so we get from the above inequalities as below:

D(p, (Ľp; e)(μ ,ν)) ≤ μD(p, (Ľp; e)(μ ,ν)) < D(p, (Ľp; e)(μ ,ν)),

which shows a contradiction. So,

D(û, p) > D(p, (Ľp; e)(μ ,ν)),

and

D(p, (Ľp; e)(μ ,ν)) ≤ μD(û, p) < D(û, p).

So Eq. (8) will be

D(û, (Ľp; e)(μ ,ν)) ≤ μD(û, p).

Consequently,

D(û, (Ľû; e)(μ ,ν)) ≤ D(û, (Ľp; e)(μ ,ν)) + H((Ľp; e)(μ ,ν), (Ľû; e)(μ ,ν))

≤ D(û, (Ľp; e)(μ ,ν)) + μmax{D(û, p), D(p, (Ľp; e)(μ ,ν))}

≤ μD(û, p) + μD(û, p) = 2μD(û, p) < D(û, p) < D(û, (Ľû; e)(μ ,ν)).

So, our supposition gives a contradiction. Therefore, û ∈ (Ľû; e)(μ ,ν). Case (2). 1/2 ≤ μ < 1. Now, we will
prove that

H((Ľw; e)(μ ,ν),(Ľû; e)(μ ,ν)) ≤ μmax{D(, w), D(w , (Ľw; e)(μ ,ν)), D(û, (Ľû; e)(μ ,ν)), (9)

D(w , (Ľû; e)(μ ,ν)) + D(û, (Ľw; e)(μ ,ν))
2

,
D(w , (Ľw; e)(μ ,ν))D(û, (Ľû; e)(μ ,ν))

1 + D(û, w) }+

νmin{D(w , (Ľw; e)(μ ,ν)), D(û, (Ľw; e)(μ ,ν)),
D(û, (Ľû; e)(μ ,ν))D(w , (Ľw; e)(μ ,ν))

1 + D(û, w) }.

satisfied ∀, w ∈ W with w ≠ û. Now, ∀, m ∈ N , ∃, vm ∈ (Ľw; e)(μ ,ν) such that

D(û, vm) ≤ D(û, (Ľw; e)(μ ,ν)) +
1

5m
D(û, w).
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Thus, we have

D(w , (Ľw; e)(μ ,ν)) ≤ D(w , vm) ≤ D(w , û) + D(û, vm) ≤ D(w , û) + D(û, (Ľw; e)(μ ,ν)) +
1

5m
D(w , û).

Using Eq. (4), we have

D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w) + μmax{D(û, w), D(w , (Ľw; e)(μ ,ν))} + 1
5m

. (10)

If D(w , û) > D(w , (Ľw; e)(μ ,ν)), then from Eq. (10), we get

D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w) + μD(û, w) + 1
5m

D(û, w) = [(1 + μ) + 1
5m

] D(û, w).

from which we have

[ 1
1 + μ

] D(w , (Ľw; e)(μ ,ν)) ≤ [1 + 1
5(1 + μ)m

] D(û, w).

Using r(μ) = 1 − μ, we get

r(μ)D(w , (Ľw; e)(μ ,ν)) = (1 − μ)D(w , (Ľw; e)(μ ,ν)) ≤ ( 1
1 + μ

) D(w , (Ľw; e)(μ ,ν))

≤ [1 + 1
5(1 + μ)m

] D(û, w)

From the above inequalities as m�→ ∞, we get

r(μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w).

From the other side, if

D(û, w) < D(w , (Ľw; e)(μ ,ν)),

then Eq. (10) gives

D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w) + μD(w , (Ľw; e)(μ ,ν)) +
1

5m
D(û, w)

Which yields

(1 − μ)D(w , (Ľw; e)(μ ,ν)) ≤ (1 + 1
5m

) D(û, w).

So, in the above inequality when m�→ ∞, we get

(1 − μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w).

It means that

r(μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(û, w).
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Which is an output of the Definitions 13 and 14 collectively. Furthermore, since

wn+1 ≠ wn∀, n ∈ N , thenû ≠ wn+1 .

Therefore, keeping wn = w in Eq. (9), we obtain

D(wn+1 ,(Ľû; e)(μ ,ν)) ≤ H((Ľwn ; e)(μ ,ν), (Ľû; e)(μ ,ν))

≤ μmax{D(wn , û), D(wn , (Ľwn ; e)(μ ,ν)), D(û, (Ľû; e)(μ ,ν)),

D(wn , (Ľû; e)(μ ,ν)) + D(û, (Ľwn ; e)(μ ,ν))
2

,
D(wn , (Ľwn ; e)(μ ,ν))D(û, (Ľû; e)(μ ,ν))

1 + D(wn , û) }+

kmin{D(wn , (Ľwn ; e)(μ ,ν)), D(û, (Ľwn ; e)(μ ,ν)),
D(wn , (Ľwn ; e)(μ ,ν))D(û, (Ľû; e)(μ ,ν))

1 + D(wn , û) }

≤ μmax{(D(wn , û), D(wn , wn+1), D(û, (Ľû; e)(μ ,ν)),
D(wn , (Ľû; e)(μ ,ν)) + D(û, wn+1)

2
,

D(wn , wn+1)D(û, (Ľû; e)(μ ,ν))
1 + D(wn , û) } + νmin{D(wn , wn+1), D(û, wn+1),

D(wn , wn+1)D(û, (Ľû; e)(μ ,ν))
1 + D(wn , û) }

In the above inequalities as n�→ ∞, we get

D(û, (Ľû; e)(μ ,ν)) ≤ μmax{D(û, (Ľû; e)(μ ,ν)),
D(û, (Ľû; e)(μ ,ν))

2
, 0}

≤ μD(û, (Ľû; e)(μ ,ν)). (11)

Since 1 − μ > 0, therefore, using Eq. (11), we get

D(û, (Ľû; e)(μ ,ν)) = 0,

and as a result, û ∈ (Ľû; e)(μ ,ν).◻

Corollary 1. Assume that ( W, D) be a complete metric space and Ľ ∶ W → H(W)E be a hesitant fuzzy soft
mapping. Assume that for w , b ∈ W with w ≠ b, ∃, (μ, ν) ∈ (0, 1] × [0, 1) such that (Ľw; e)(μ ,ν) ≠/0, bounded
and closed subset of W. If r(μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(w , b) implies H((Ľw; e)(μ ,ν), (Ľb; e)(μ ,ν)) ≤ μ ∨
(w , b), then Fix(Ľ) ≠ ϕ.

Further, we provide a local hesitant fuzzy fixed point theorem for Suzuki-type (μ, ν) −WC. First of
all, we remember the definition of the open ball having radius r̂ > 0, centered at w0 in a metric space W, is
represented by

Br̂(w0) = {w ∈ W ∶ D(w , w0) < r̂}.



2224 Comput Model Eng Sci. 2025;143(2)

Theorem 2. Assume that (W, D) be a complete metric space, Ľ ∶ Br̂(w0) �→ H(W)E be a Suzuki-type ( μ, ν)-
WC. Suppose that ∀, w ∈ W, ∃, (μ, ν) ∈ (0, 1] × [0, 1) such that (Ľw; e)(μ ,ν) ≠ ϕ, closed and bounded subset
of W, and D(w0, (Ľw0; e)(μ ,ν)) < (1 − μ)r̂. Then Fix(Ľ) ≠ ϕ.

Proof. Assume that 0 < γ < r̂ is chosen in such a way that

0 < (1 − μ)(1 +√μ) ≤ 1/(1 + γ), B∗γ(w0) ⊂ Br(w0)andD(w0, (Ľw0; e)(μ ,ν)) < (1 − μ)γ.

Therefore,

(1 − μ)γ − D(w0, (Ľw0; e)(μ ,ν)) > 0.

Choose γ = (1 − μ)γ − D(w0, (Ľw0; e)(μ ,ν)) > 0; then ∃, w1 ∈ (Ľw0; e)(μ ,ν) such that

D(w0, w1) < D(w0, (Ľw0; e)(μ ,ν)) + γ.

Thus, D(w0, w1) < (1 − μ)γ. Now, for ρ√μ = 1 and

w1 ∈ (Ľw0; e)(μ ,ν), ∃, w2 ∈ (Ľw1; e)(μ ,ν)

such that

D(w1 , w2) ≤ ρH((Ľw0; e)(μ ,ν), (Ľw1; e)(μ ,ν)).

Noting that r(μ)D(w0, (Ľw0; e)(μ ,ν)) ≤ r(μ)D(w0, w1) ≤ D(w0, w1).
We have

D(w1 , w2) ≤ ρH((Ľw0; e)(μ ,ν), (Ľw1; e)(μ ,ν)) = 1
√μ

H((Ľw0; e)(μ ,ν), (Ľw1; e)(μ ,ν))

≤ √μ ∨ (w0, w1) +
ν

√μ
∧ (w0, w1) ≤ √μmax{D(w0, w1), D(w0, (Ľw0; e)(μ ,ν)),

D(w1 , (Ľw1; e)(μ ,ν)),
D(w0, (Ľw1; e)(μ ,ν)) + D(w1 , (Ľw0; e)(μ ,ν))

2
,

D(w0, (Ľw0; e)(μ ,ν))D(w1 , (Ľw1; e)(μ ,ν))
1 + D(w0, w1)

} + ν
√μ

min{D(w0, (Ľw0; e)(μ ,ν)),

D(w1 , (Ľw0; e)(μ ,ν)),
D(w0, (Ľw0; e)(μ ,ν))D(w1 , (Ľw1; e)(μ ,ν))

1 + D(w0, w1)
}

≤ √μmax{D(w0, w1), D(w0, w1), D(w1 , w2), D(w0, w2) + D(w1 , w1)
2

, D(w0, w1)D(w1 , w2)
1 + D(w0, w1)

}

+ ν
√μ

min{D(w0, w1), D(w1 , w1), D(w0, w1)D(w1 , w2)
1 + D(w0, w2)

} ≤ √μmax{D(w0, w1), D(w1 , w2),

D(w0, w1) + D(w1 , w2)
2

} + ν
√μ

min{D(w0, w1), 0, D(w1 , w2)}

≤ √μmax{D(w0, w1), D(w1 , w2)}
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If D(w0, w1) ≤ D(w1 , w2), then the above gives

D(w1 , w2) ≤ √μD(w1 , w2) < D(w1 , w2),

a contradiction. Hence,

D(w0, w1) > D(w1 , w2)

and

D(w1 , w2) < √μD(w0, w1)
√μ(1 − μ)γ.

So by our supposition and the triangle inequality, we have

D(w0, w2) ≤ D(w0, w1) + D(w1 , w2) < (1 − μ)γ +√μ(1 − μ)γ

≤ γ
1 + γ

< γ

Hence, w2 ∈ Bγ(w0). So by recursive process we make a progression {wn}n∈N such that

1. wn ∈ Bγ(w0);∀, n ∈ N ;
2. wn ∈ (Ľwn ; e)(μ ,ν);∀, n ∈ N ;
3. D(wn , wn+1) ≤ (√μ)n(1 − μ)γ;∀, n ∈ N .

From (3), it is clearly known that {wn}n∈N is a Cauchy progression and shrinks to some û ∈ Br(w0).
Furthermore, after this step, we can follow the steps of the Theorem 1, as a result, we get that

Fix(Ľ) ≠ ϕ. ◻

Corollary 2. Assume that (W, D) be a complete metric space and Λ ∶ W �→ CB(W) be a multi-
valued mapping. Suppose that ∀, w , b ∈ W, ∃, (μ, ν) ∈ I+ × [0, 1) such that r(μ)D(w , Λw) ≤ D(w , b) implies
H(Λw , Λb) ≤ μ ∨ (w , b) + ν ∧ (w , b), and the mapping r ∶ (0, 1) �→ I+1 is determined by

r(μ) =
⎧⎪⎪⎨⎪⎪⎩

1, i f 0 ≤ μ < 1/2
1 − μ, i f 1/2 ≤ μ < 1.

(12)

Then Fix(Λ) ≠ ϕ.

Proof. Assume that I+ = (0, 1] and P(I+) be the power set of I+. Suppose we have a map Ψ ∶ W �→ P(I+)
and a hesitant fuzzy soft map Ľ ∶ W �→ H̃(W)E defined by

(Ľw; e)(ẗ) =
⎧⎪⎪⎨⎪⎪⎩

Ψ(w)/{1}, i f ẗ ∈ Λw ,
{1}, i f ẗ ∉ Λw .

(13)

Assume that, μ = in f {s((Ľw; e)(ẗ)) ∶ ẗ ∈ W} and ν = 0. Then,

(Ľw; e)(μ ,ν) = {ẗ ∈ W ∶ s((Ľw; e)(ẗ)) ≥ μ} ∪ {ẗ ∈ W ∶ Sc((Ľw; e)(ẗ)) ≤ ν} = Λw .
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Therefore,

D(w , b) ≥ r(μ)D(w , Λw) = r(μ)D(w , (Ľw; e)(μ ,ν)).

Hence, now we can use Theorem 1 to search out û ∈ W such that û ∈ Λû. ◻

4 Applications
This part of our manuscript consists of examples: In the consequence of Theorem 1 the following example

is provided.

Example 1. Assume that W = {4, 5, 6}, {4}, {5}, {6} be crisp sets andE = {ë1 , ë2} is the set of attributes. Define
D ∶ W ×W �→ R as follows:

D(w , b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i f w = b,
7/20, i f w ≠ b and w , b ∈ W /{5},
1, i f w ≠ b and w , b ∈ W /{6},
9/20, i f w ≠ b and w , b ∈ W /{4}.

Define a hesitant fuzzy soft mapping Ľ ∶ W �→ H̃(W)E as follows:

(Ľw; e1)ẗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{0.6, 0.8, 1}, i f ẗ = 4,
{0.2, 0.5, 0.7}, i f ẗ = 5,
{0, 0.3, 0.4}, i f ẗ = 6,

(Ľw; e2)ẗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{0.1, 0.4, 0.5}, i f ẗ = 4,
{0.3, 0.6, 0.8}, i f ẗ = 5,
{0.5, 0.7, 0.9}, i f ẗ = 6.

For w ∈ W and e1 ∈ E, the score values of Ľ with respect to ẗ = 4, 5 and ẗ = 6, are respectively evaluated
by Sc((Ľw; e1)(ẗ)) = (0.6+ 0.8+ 1)

3 = 0.8, Sc((Ľw; e1)(ẗ)) = (0.2+ 0.5+ 0.7)
3 = 0.47, Sc((Ľw; e1)(ẗ)) =

(0+ 0.3+ 0.4)
3 = 0.23; and for w ∈ W, and e2 ∈ E the score functions of Ľ corresponding to ẗ = 4, 5 and ẗ = 6,

are respectively evaluated by Sc((Ľw; e2)(ẗ)) = (0.1+ 0.4+ 0.5)
3 = 0.33, Sc((Ľw; e2)(ẗ)) = (0.3+ 0.6+ 0.8)

3 =
0.57, Sc((Ľw; e2)(ẗ)) = (0.5+ 0.7+ 0.9)

3 = 0.7. Then, for μ = 0.7 and ν = 0.16, we get

(Ľw; e)(μ ,ν) = {ẗ ∈ W ∶ Sc((Ľw; e)(ẗ)) ≥ μ} ∪ {ẗ ∈ W ∶ Sc((Ľw; e)(ẗ)) ≤ ν} =
⎧⎪⎪⎨⎪⎪⎩

{4}, i f e = e1

{6}, i f e = e2.

Case I.
For w ∈ W and for e ∈ E,

D(w , (Ľw; e)(μ ,ν)) = in f {D(w , b) ∶ b ∈ (Ľw; e)(μ ,ν)} = 0.
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Hence, for w = b, we have

r(μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(w , b).

Case II.
For w ∈ W/{4} and for e1 ∈ E,

D(w , (Ľw ∶ e1)(μ ,ν)) = in f {D(w , b) ∶ b ∈ (Ľw ∶ e1)(μ ,ν)} =
⎧⎪⎪⎨⎪⎪⎩

1 i f w = 5
7/20 i f w = 6.

Therefore, for w = 5, 6 and w ≠ b, we get
r(μ)D(w , (Ľw ∶ e1)(μ ,ν)) = 3/10 ≤ D(w , b) and
r(μ)D(w , (Ľw ∶ e1)(μ ,ν)) = 21/200 ≤ D(w , b), respectively.
Now for w ∈ W/{6} and for e2 ∈ E ,

D(w , (Ľw ∶ e2)(μ ,ν)) = in f {D(w , b) ∶ b ∈ (Ľw ∶ e2)(μ ,ν)} =
⎧⎪⎪⎨⎪⎪⎩

7/20 i f w = 4
9/20 i f w = 5.

Therefore, for w = 4, 5 and w ≠ b, we get
r(μ)D(w , (Ľw ∶ e2)(μ ,ν)) = 21/200 ≤ D(w , b)
r(μ)D(w , (Ľw ∶ e2)(μ ,ν)) = 27/200 ≤ D(w , b), respectively. Hence, we concluded from the above two

possibilities, it follows that ∃, (μ, ν) = (0.7, 0.16) ∈ (0, 1] × [0, 1) such that

r(μ)D(w , (Ľw; e)(μ ,ν)) ≤ D(w , b)

we get

H((Ľw; e)(μ ,ν), (Ľb; e)(μ ,ν)) ≤ μ ∨ (w , b) + ν ∧ (w , b).

In short, we can say that all the assumptions of Theorem 15 are satisfied to get 4 ∈ (Ľ4; e1)(0.7,0.16) and
6 ∈ (Ľ6; e2)(0.7,0.16).

For the supporting and generality of the Corollary 2 we present an example as follows:

Example 2. Assume that W = {x , y, z, m, n} and D ∶ W ×W �→ [0, ∞) be defined by D(x , y) = D(x , z) =
7, D(y, n) = D(z, m) = D(z, n) = D(y, z) = 12, D(x , m) = D(x , n) = 16,
D(y, m) = 14, D(m, n) = 8, D(ẗ, ẗ) = 0 and D(ẗ, s) = D(s, ẗ);∀, ẗ, s ∈ W.

Define Λ ∶ W �→ CB(W) by

Λ ẗ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{z}, i f ẗ ∈ W /{x , y, z, m},
{x , y}, i f ẗ ∈ W /{x , y, z, n},
{x}, i f ẗ ∈ W /{m, n}.

Next, we can easily testify that the assumptions of the second Corollary are mollified with μ = 10
16 and

ν = 0.5. Indeed, r(μ)D(m, Λm) = 5.25 ≤ D(m, n). We get
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H(∧m, ∧n) = H({x , y}, {z}) = 12 ≤ μ ∨ (m, n) + ν ∧ (m, n) ≤ 10
16 max{8, 14, 12, 12, 18.6} +

0.5min{12, 12, 16} ≤ 17.625.

Next, we see that ∃, ẗ = x ∈ W such that ẗ ∈ Λ ẗ. From the other side, we observe that if we set ẗ = m and
s = n, then

∨(m, n) = max{D(m, n), D(m, Λm), D(n, Λn), D(m, Λn) + D(n, Λm)
2

, D(m, Λm)D(n, Λn)
1 + D(m, n) }

= max{8, 14, 12, 12, 18.6} = 18.6,

and H(Λm, Λn) = 12 > 11.625 = μ ∨ (m, n). Therefore, [[24], Theorem 2.1] and [[25], Theorem 3] can not be
used at this movement to search out ẗ ∈ Λ ẗ.

4.1 Algorithm: Decision-Making Using Suzuki-Type (μ, ν)-Weak Contraction
Input
(i) A set of alternatives W = {w1 , w2, ..., wn}
(ii) A set of criteria E = {e1 , e2, ..., ek}
(iii) Hesitant fuzzy soft sets G(e), where G(e) maps each criterion e ∈ E to hesitant fuzzy membership

values for alternatives in W

(iv) Parameters (μ, ν), where μ ∈ (0, 1] and ν ∈ [0, 1)
Output
(v) Optimal alternative(s) w∗ ∈ W.
We provide a comprehensive decision-making case to illustrate the usefulness of the suggested Suzuki-

type (μ, ν)-Weak Contraction framework. The effectiveness of hesitant fuzzy soft set-valued mappings in
managing uncertainty and reluctance in practical situations is demonstrated by this example. Utilizing the
flexibility offered by the dual-parameter structure (μ, ν), we seek to find optimal solutions through the use
of the iterative contraction process. The following example demonstrates how well our method works when
dealing with challenging multi-criteria decision-making issues.
Example 3. Based on three evaluation criteria, a commuter selects one of three routes W = {A, B, C}.

E = {Tra f f icCondition(TC), Sa f ety(S), Time(T)}. In the following Table 1, each route’s hesitant
fuzzy values represent hesitancy and doubt in the decision-making process.

Step 1: Initial Hesitant Fuzzy Membership Values

Table 1: The hesitant fuzzy membership values

Route Time (T) Safety (S) Traffic condition (TC)
A {0.7, 0.8} {0.6, 0.7} {0.5, 0.6}
B {0.6, 0.7} {0.7, 0.8} {0.6, 0.7, 0.8}
C {0.5, 0.6} {0.7, 0.8} {0.6, 0.7}

Note: Each hesitant fuzzy value represents hesitation in rating a route for a particu-
lar criterion.
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Step 2: Compute the Score Function Sc
For each hesitant fuzzy set h = {v1 , v2, ..., vn}, we calculate the score function in the following Table 2:

Sc(h) = ( 1
N(h)) ∑

vi∈h
vi (14)

Thus the Route B has the highest total score “0.7”.

Table 2: The score values

Route Time score Sc(T) Safety score Sc(S) Traffic score Sc(TC) Total score (Average)
A 0.7+ 0.8

2 = 0.75 0.6+ 0.7
2 = 0.65 0.5+ 0.6

2 = 0.55 0.75+ 0.65+ 0.55
3 = 0.65

B 0.6+ 0.7
2 = 0.65 0.7+ 0.8

2 = 0.75 0.6+ 0.7+ 0.8
3 = 0.7 0.65+ 0.75+ 0.7

3 = 0.7

C 0.5+ 0.6
2 = 0.55 0.7+ 0.8

2 = 0.75 0.6+ 0.7
2 = 0.65 0.55+ 0.75+ 0.65

3 = 0.65

Step 3: Define the (μ, ν)-Level Set
Choosing (μ, ν) Parameters
let us suppose μ = 0.6 and ν = 0.3.
Definition 12 states that the (μ, ν)-level set of Ľ is

(Ľw; e)(μ ,ν) = {t ∈ W ∶ Sc((Ľw; e)(t)) ≥ μ} ∪ {t ∈ W ∶ Sc((Ľw; e)(t)) ≤ ν}

It means that the route satisfying either Sc((Ľw; e)(t)) ≥ μ or Sc((Ľw; e)(t)) ≤ ν belongs to the (μ, ν)
level set.

Step 4: Identify Routes in the (μ, ν)-Level Set
Routes with Sc((Ľw; e)(t)) ≥ μ = 0.6 are
{A, B, C} and routes with Sc((Ľw; e)(t)) ≤ ν = 0.3 are {}
Thus, the (μ, ν)-level set contains:

(Ľw; e)(μ ,ν) = {A, B, C}

Step 5: Identify Hesitant Fuzzy Soft Fixed Points
A hesitant fuzzy soft fixed point û is a route such that:

û ∈ (Ľw; e)(μ ,ν)

From the (μ, ν)-level set, we see that all routes satisfy the fixed-point condition, meaning: A, B, C are
hesitant fuzzy soft fixed points. However, since B has the highest score (0.7), it is the most optimal choice.

Step 6: Decision Making
i) The (μ, ν)-level set contains all three routes.
ii) Since route B has the highest hesitant fuzzy score (0.7), it is the best choice for the selection.
iii) Thus, B is selected as the final route.
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Final Conclusion
i) Definition 12 ensures that the best route is within the (μ, ν)-level set.
ii) Hesitant fuzzy soft fixed points guarantee decision stability.
iii) B is the best route, as it has the highest hesitant fuzzy score and belongs to the level set.
The following example shows real world problem solved by Definitions 10 and 11.

Example 4. Let’s say that a cricket organisation t ravels the nation doing trials to find local talent. Three
well-known Test and first-class cricket players, who are also among the top instructors in the sport, have led
the tryouts. After 15 players have been chosen, it is agreed to hold a camp for training to choose the top 11
players before the cricket team is finalised. First of all, these three trainers have scheduled a coaching event.
After the final trials, these trainers and instructors are asked to serve as assessors by offering their unbiased
thoughts. With the use of the hesitant fuzzy soft set theory, let’s examine this event mathematically as follows:
W = {p̈1 , p̈2, p̈3, p̈4, p̈5, p̈6, p̈7, p̈8, p̈9, p̈10 , p̈11 , p̈12 , p̈13 , p̈14 , p̈15} (set of players) and M ⊂ E be given by M =
{bt , bl , b f }, where bt , bl , and b f represents batting, bowling, and fielding, respectively. The three trainers’
opinions, F1 , F2, and F3, are represented by the following hesitant fuzzy soft set F:

F(bt) = {p̈1/{0.8, 0.7, 0.9}, p̈2/{0.5, 0.5, 0.6}, p̈3/{0.8, 0.7, 0.9}, p̈4/{0.8, 0.8, 0.9}, p̈5/{0.5, 0.5, 0.6},

p̈6/{0.5, 0.5, 0.6}, p̈7/{0.4, 0.4, 0.5}, p̈8/{0.4, 0.4, 0.5}, p̈9/{0.5, 0.5, 0.6}, p̈10/{0.8, 0.7, 0.9},

p̈11/{0.8, 0.7, 0.9}, p̈12/{0.8, 0.7, 0.6}, p̈13/{0.5, 0.6, 0.7}, p̈14/{0.6, 0.6, 0.7}, p̈15/{0.4, 0.4, 0.4}}.

F(bl) = {p̈1/{0.4, 0.5, 0.6}, p̈2/{0.8, 0.7, 0.8}, p̈3/{0.4, 0.5, 0.6}, p̈4/{0.4, 0.6, 0.5}, p̈5/{0.5, 0.4, 0.5},

p̈6/{0.5, 0.6, 0.7}, p̈7/{0.7, 0.8, 0.6}, p̈8/{0.4, 0.5, 0.4}, p̈9/{0.5, 0.6, 0.7}, p̈10/{0.6, 0.5, 0.6},

p̈11/{0.5, 0.4, 0.6}, p̈12/{0.5, 0.6, 0.7}, p̈13/{0.5, 0.4, 0.5}, p̈14/{0.7, 0.8, 0.9}, p̈15/{0.5, 0.6, 0.4}}.

F(b f ) = {p̈1/{0.7, 0.8, 0.6}, p̈2/{0.6, 0.7, 0.7}, p̈3/{0.9, 0.7, 0.8}, p̈4/{0.8, 0.6, 0.6}, p̈5/{0.6, 0.4, 0.5},

p̈6/{0.7, 0.7, 0.8}, p̈7/{0.6, 0.7, 0.8}, p̈8/{0.6, 0.6, 0.5}, p̈9/{0.6, 0.6, 0.7}, p̈10/{0.7, 0.8, 0.6},

p̈11/{0.5, 0.4, 0.6}, p̈12/{0.7, 0.6, 0.7}, p̈13/{0.4, 0.4, 0.6}, p̈14/{0.8, 0.9, 0.7}, p̈15/{0.6, 0.7, 0.6}}.

Presume that the weights assigned to batting, bowling, and fielding are 5:4:3. In this manner, a
player’s ultimate score is determined using the following formula. Score = 5Sc (F (bt)) + 4Sc (F (bl)) +
3Sc (F (b f )).

This data is presented in Table 3.
A selection of this data is displayed in the following charts. Each player individual score is represented

by Fig. 1. A cursory examination of these charts reveals that p̈1 , p̈3, p̈4, p̈10 , p̈11 are the best five batsman;
p̈2, p̈7, p̈9, p̈12 , p̈14 are the best five bowlers; and p̈3, p̈6, p̈14 are the best fielders.
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Table 3: The trainers’ survey results

Players F(bt) Sc(F(bt)) F(bl) Sc(F(bl)) F(b f ) Sc(F(b f )) Score
p̈1 {0.8, 0.7, 0.9} 0.8 {0.4, 0.5, 0.6} 0.5 {0.7, 0.8, 0.6} 0.7 8.1
p̈2 {0.5, 0.5, 0.6} 0.53 {0.8, 0.7, 0.8} 0.76 {0.6, 0.7, 0.7} 0.66 7.67
p̈3 {0.8, 0.7, 0.9} 0.8 {0.4, 0.5, 0.6} 0.5 {0.9, 0.7, 0.8} 0.8 8.4
p̈4 {0.8, 0.8, 0.9} 0.83 {0.4, 0.6, 0.5} 0.5 {0.8, 0.6, 0.6} 0.66 8.13
p̈5 {0.5, 0.5, 0.6} 0.53 {0.5, 0.4, 0.5} 0.46 {0.6, 0.4, 0.5} 0.5 5.99
p̈6 {0.5, 0.5, 0.6} 0.53 {0.5, 0.6, 0.7} 0.6 {0.7, 0.7, 0.8} 0.73 7.24
p̈7 {0.7, 0.8, 0.6} 0.43 {0.7, 0.8, 0.6} 0.7 {0.7, 0.7, 0.8} 0.7 7.05
p̈8 {0.4, 0.4, 0.5} 0.43 {0.4, 0.5, 0.4} 0.43 {0.6, 0.6, 0.5} 0.56 5.55
p̈9 {0.5, 0.5, 0.6} 0.53 {0.5, 0.6, 0.7} 0.6 {0.6, 0.6, 0.7} 0.63 6.94
p̈10 {0.8, 0.7, 0.9} 0.8 {0.6, 0.5, 0.6} 0.56 {0.7, 0.8, 0.6} 0.7 8.34
p̈11 {0.8, 0.7, 0.9} 0.8 {0.5, 0.4, 0.6} 0.5 {0.5, 0.4, 0.6} 0.5 7.5
p̈12 {0.8, 0.7, 0.6} 0.7 {0.5, 0.6, 0.7} 0.6 {0.7, 0.6, 0.7} 0.66 7.88
p̈13 {0.5, 0.6, 0.7} 0.6 {0.5, 0.4, 0.5} 0.46 {0.4, 0.4, 0.6} 0.46 6.22
p̈14 {0.6, 0.6, 0.7} 0.63 {0.7, 0.8, 0.9} 0.8 {0.8, 0.9, 0.7} 0.8 8.75
p̈15 {0.4, 0.4, 0.4} 0.4 {0.5, 0.6, 0.4} 0.5 {0.6, 0.7, 0.6} 0.63 5.89

Note: bt , bl , b f are parameters used for batting, bowling and fielding.

Figure 1: Score for each individual
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The following Fig. 2 represents the final score of each player.

Figure 2: Last tally

Here the mid-level decision rule and the mid-level threshold fuzzy set of ΔF is as mid

ΔF = {(bt , 0.62) , (bl , 0.5) , (b f , 0.65)} .

Furthering, we can get the mid-level soft set ΔF = {(bt , {p1 , p3, p4, p10 , p11 , p12 , p14}), (bl , {p2, p6, p7,

p9, p10 , p12 , p14}) (b f , {p1 , p2, p3, p4, p6, p7, p10 , p12 , p14})}.

Now let us define hesitant fuzzy soft set valued mapping Ľ ∶ W → H̃(W)E by Ľ (p) = F;∀, p ∈ W. For
μ = 0.62 ∈ (0, 1] we note that p14 ∈ Ľ [p14]0.62 be E-hesitant fuzzy soft fixed point of Ľ, which is the best
player of the team. The above mechanism of the problem is represented by the Fig. 3.

The above methodology can be summarised in the following Fig. 4. It is clearly shown from the results
that hesitant fuzzy soft set mechanism gives us more prominent results as compared to the other mechanisms.
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Figure 3: An illustrative representation of a hesitant fuzzy soft set-valued mapping F, where a universal setW is mapped
into hesitant fuzzy soft set within H̃(W)E. The parameters M ⊆ E influence the mapping, defining hesitant fuzzy
decision components bt, bl , bf, each associated with a power set transformation into P(I)



2234 Comput Model Eng Sci. 2025;143(2)

Figure 4: Decision-making methodology
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5 Conclusion
Fixed points theory plays a significant role in decision-making problems, particularly in economics,

game theory, and optimization. In the context of decision-making problems, fixed points are often used
to identify stable solutions. Applications in decision-making issues like risk management and resource
allocation show how helpful and reliable the suggested method is. We introduced the Suzuki-type (μ, ν)-weak
contraction and hesitant fuzzy soft set valued-mapping. Further, using these concepts, we established some
fixed point theorems in the framework of metric spaces. We also solved some decision-making problems
based on the presented work. Moreover, these theorems only show the existence of the “hesitant fuzzy soft
fixed point.”

The suggested approach assumes the completeness of the metric space and uses Suzuki-Type (μ, ν)-Weak
Contraction for hesitant fuzzy soft set-valued mappings. In some real-world applications, especially those
involving substantially non-convex or fragmented datasets, this assumption might not hold. To increase
the method’s usefulness, future research could examine expansions to quasi-metric spaces or loosen the
completeness assumption.

Acknowledgement: The authors Muhammad Sarwar and Kamaleldin Abodayeh are thankful to Prince Sultan
University for the support of this manuscript through TAS research lab.

Funding Statement: This research was funded by National Science, Research and Innovation Fund (NSRF), and King
Mongkut’s University of Technology North Bangkok with Contract No. KMUTNB-FF-68-B-46.

Author Contributions: Conceptualization, writing—review and editing, Muhammad Sarwar and Rafiq Alam;
Supervision, project administration, formal analysis, Muhammad Sarwar and Kamaleldin Abodayeh; Visualization,
investigation, funding acquisition, Saowaluck Chasreechai and Thanin Sitthiwirattham; Writing—original draft prepa-
ration, data curation, Rafiq Alam. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Saeed M, Saif Ud Din I, Tariq I, Garg H. Refined fuzzy soft sets: properties, set-theoretic operations and axiomatic

results. J Comput Cogn Eng. 2023;3(1):24–33. doi:10.47852/bonviewJCCE3202847.
2. Liu X. Fuzzy soft expert matrix theory and its application in decision-making. Open J Appl Sci. 2023;13:1403–17.

doi:10.4236/ojapps.2023.138111.
3. Bhardwaj N, Sharma P. An advanced uncertainty measure using fuzzy soft sets: application to decision-making

problems. Big Data Min Anal. 2021;4(2):94–103. doi:10.26599/BDMA.2020.9020020.
4. Kirisci M. New type pythagorean fuzzy soft set and decision-making application. arXiv:1904.04064. 2019.
5. Ali MS, Ghorbani A, Ozyer T. A series of information measures of hesitant fuzzy soft sets and their application in

decision making. Soft Comput. 2020;24(10):7107–20. doi:10.1007/s00500-020-05485-4.
6. Xu Z, Cai X. Hesitant fuzzy set: theory and extension. Springer; 2021. doi:10.1007/978-981-16-7301-6.
7. Eftekhari M, Mehrpooya A, Saberi-Movahed F, Torra V. How fuzzy concepts contribute to machine learning.

Cham, Switzerland: Springer; 2022.
8. Shen Q, Lou J, Liu Y, Jian Y. Hesitant fuzzy multi-attribute decision making based on binary connection number

of set pair analysis. Soft Comput. 2021;25(23):14797–807. doi:10.1007/s00500-021-06215-0.

https://doi.org/10.47852/bonviewJCCE3202847
https://doi.org/10.4236/ojapps.2023.138111
https://doi.org/10.26599/BDMA.2020.9020020
https://doi.org/10.1007/s00500-020-05485-4
https://doi.org/10.1007/978-981-16-7301-6
https://doi.org/10.1007/s00500-021-06215-0


2236 Comput Model Eng Sci. 2025;143(2)

9. Ali G, Afzal A, Sheikh U, Nabeel M. Multi-criteria group decision-making based on the combination of
dual hesitant fuzzy sets with soft expert sets for the prediction of a local election scenario. Granul Comput.
2023;8(6):2039–66. doi:10.1007/s41066-023-00414-w.

10. Heilpern S. Fuzzy mappings and fixed point theorem. J Math Anal Appl. 1981;83(2):566–9. doi:10.1016/0022-
247X(81)90141-4.

11. Nadler SB. Multi-valued contraction mappings. Pac J Math. 1969;30(2):475–88. doi:10.2140/pjm.1969.30.475.
12. Banach S. Sur les operations dans les ensembles abstraits et leur application aux equations intexgrales. Fund Math.

1922;3(1):133–81. doi:10.4064/fm-3-1-133-181.
13. Frigon M, O’Regan D. Fuzzy contractive maps and fuzzy fixed points. Fuzzy Sets Syst. 2002;129(1):39–45. doi:10.

1016/S0165-0114(01)00171-3.
14. Adhya S, Deb Ray A. Common fixed point theorems on complete and weak G-Complete fuzzy metric spaces.

arXiv:2111.08938. 2021.
15. Mohammed SS. On Bilateral fuzzy contractions. Funct Anal Approx Comput. 2020;12(1):1–13.
16. Mohammed SS, Awam A. Fixed points of soft-set valued and fuzzy set-valued maps with applications. J Intell Fuzzy

Syst. 2019;37(3):3865–77. doi:10.3233/JIFS-190126.
17. Ahmad J, Aydi H, Mlaiki N. Fuzzy fixed points of fuzzy mappings via F-contractions and an application. J Intell

Fuzzy Syst. 2019;37(4):5487–93. doi:10.3233/JIFS-190580.
18. Ali B, Ali H, Nazir T, Ali Z. Existence of fixed points of suzuki-type contractions of quasi-metric spaces.

Mathematics. 2023;11(21):4445. doi:10.3390/math11214445.
19. Doric D, Lawovic R. Some Suzuki-type fixed point theorems for generalized multivalued mappings and applica-

tions. Fixed Point Theory Appl. 2011;40(1):1861. doi:10.1186/1687-1812-2011-40.
20. Qawaqneh HA, Noorani MS, Shatanawi W. Fixed point results for geraghty type generalized F-contraction for

weak alpha-admissible mapping in metric-like spaces. Eur J Pure Appl Math. 2018;11(3):702–16. doi:10.29020/nybg.
ejpam.v11i3.3294.

21. Qawaqneh HA, Noorani MS, Shatanawi W. Fixed point theorem for (α, k, υ)-contractive multi-valued mapping
in b-metric space and applications. Int J Math Comput Sci. 2019;14(1):263–83.

22. Shagari MS, Noorwali M, Awam A. Hybrid fixed point theorems of fuzzy soft set-valued maps with applications
in integral inclusions and decision making. Mathematics. 2023;11(6):1393. doi:10.3390/math11061393.

23. Shagari MS, Awam A. Fixed points of hesitant fuzzy set-valued maps with applications. Carpathian Math Publ.
2021;13(3):711–26. doi:10.15330/cmp.13.3.711-726.

24. Driguew RM, Martinew L, Torra V, Xu ZS, Herrera F. Hesitant fuzzy sets: state of the art and future directions. Int
J Intell Syst. 2014;29(6):495–524. doi:10.1002/int.21654.

25. Ciric LB. Fixed points for generalized multi-valued contractions. Mat Vesnik. 1972;9(24):265–72.

https://doi.org/10.1007/s41066-023-00414-w
https://doi.org/10.1016/0022-247X(81)90141-4
https://doi.org/10.1016/0022-247X(81)90141-4
https://doi.org/10.2140/pjm.1969.30.475
https://doi.org/10.4064/fm-3-1-133-181
https://doi.org/10.1016/S0165-0114(01)00171-3
https://doi.org/10.1016/S0165-0114(01)00171-3
https://doi.org/10.3233/JIFS-190126
https://doi.org/10.3233/JIFS-190580
https://doi.org/10.3390/math11214445
https://doi.org/10.1186/1687-1812-2011-40
https://doi.org/10.29020/nybg.ejpam.v11i3.3294
https://doi.org/10.29020/nybg.ejpam.v11i3.3294
https://doi.org/10.3390/math11061393
https://doi.org/10.15330/cmp.13.3.711-726
https://doi.org/10.1002/int.21654

	Suzuki-Type ieqn-1.tif�oldsymbol u , �oldsymbol 
u  -Weak Contraction for the Hesitant Fuzzy Soft Set Valued Mappings with Applications in Decision Making
	1 Introduction
	2 Preliminaries
	3 Hesitant Fuzzy Soft Fixed Points of Suzuki-Type ieqn-73.tif�oldsymbol u ,
u  -Weak Contraction
	4 Applications
	5 Conclusion
	References


