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ABSTRACT: Being a nonlinear operator, fractional derivatives can affect the enforcement of existence at any given
time. As a result, the memory effect has an impact on all nonlinear processes modeled by fractional order differential
equations (FODEs). The goal of this study is to increase the fractional model of the TB virus’s (FMTBV) accuracy.
Stochastic solvers have never been used to solve FMTBV previously. The Bayesian regularized artificial (BRA) method
and neural networks (NNs), often referred to as BRA-NNs, were used to solve the FMTBV model. Each scenario features
five occurrences that each reflect a different order of derivatives, ranging from 0.8, 0.85, 0.9, 0.95, and 1, as well as five
potential rates for different parameters. Training data made up 90% of the data, testing data made up 5%, and validation
data made up 5% of the data used to illustrate the FMTBV’s approximations. To verify that the BRA-NNs were correct,
the generated simulations were described in the following solutions using the FOLotkaVolterra approach in MATLAB.
Comprehensive Simulink results in terms of mean square error, error histogram, and regression analysis investigations
further highlight the competence, dependability, and accuracy of the suggested BRA-NNs.
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1 Introduction
“Mycobacterium tuberculosis” is the bacterium that causes “tuberculosis” (TB). Although the lungs are

usually affected, other organs like the spine, brain, as well as kidneys may also be affected. Droplets containing
germs are released into the air and consumed by others when an infected person coughs, sneezes, or talks.
The bacteria-containing particles are inhaled by others when an infected person coughs, sneezes or speaks.
Once within the body, tuberculosis can spread and lead to an infection. On the other hand, not all TB patients
experience active illnesses. A persistent TB infection is typically the result of the immune system suppressing
the illness [1]. Congenital tuberculosis patients are asymptomatic and not contagious, but if their immune
systems are weakened, the bacteria may stay dormant in their organs and later emerge active. Worldwide
TB Burden: By 2020, the World Health Organization (WHO) predicts that 10 million people will get TB
globally. The number of TB-related deaths: According to [2], TB claimed the lives of almost 1.5 million people
in 2020. People who are actively TB-positive exhibit clinical TB symptoms and run the risk of spreading
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the illness to others. People who have active tuberculosis may cough up blood or sputum, have a phlegm-
producing cough, chest pain, exhaustion, loss of weight, night sweats, and appetite loss. Usually, symptoms
get worse with time, but they can also go away on their own and come back. One of the most important
methods for characterizing and comprehending systems of various degrees that result from interactions is
mathematical modelling [3]. Many mathematical models were created and examined over time to explain
the dynamics of tuberculosis epidemiology in the general population. A computational framework was
developed in [4] to investigate the dynamics of tuberculosis transmission that takes exogenous re-infection
into account. It was demonstrated that the inclusion of exogenous recurrence in the model significantly
alters the disease’s qualitative dynamics, increasing the likelihood of several chronic points of equilibrium at
the crucial basic reproduction number threshold. Huo et al. [5] developed and examined an unpredictable
mathematical model that took into account both hospital and home therapy for TB infectious persons. It was
found that home treatment significantly impacted the dynamics of TB transmission. Few research has taken
into account the fractional derivative operator while simulating the dynamics of TB epidemiology. Notably,
the authors in [6] investigated the issue of optimal control for the fractional-order TB infection model
combining diabetic and resistant strains using the Atangana–Baleanu–Caputo (ABC) derivative operator. A
discrete fractional framework for tuberculosis in the form of the Caputo derivative was proposed by Altaf
Khan et al. [7], who also looked into how the model parameters affected the system’s behavior. A TB model
with continuous control measures using the Caputo fractional operator was examined by Owolabi et al. [8].
The scientists concluded that a model that included a fractional order component could provide a good
control measure against the spread of tuberculosis in the population after conducting some numerical tests.
Using the Laguerre polynomial, the authors in [9] applied fractional-order derivatives of Caputo type to
the dynamics of TB transmission. The authors concluded that fractional-order derivatives are more capable
of handling real-world scenarios than the typical classical-order models. Ullah et al. [10] analyzed a five-
dimensional mathematical model that described the transmission dynamics of tuberculosis in the human
population using non-integer-order derivatives of Caputo sense. In a related advancement, Farman et al. [11]
used non-integer-order differential equations to create a six-dimensional system of differential equations to
investigate how treatment affects the dynamics of tuberculosis transmission. In [12], the authors have done
the mathematical analysis of a fractional operator-based TB model. To describe the changing patterns of
TB infection in vivo, this work presents a unique model that takes host cell encounters with Mycobacterium
tuberculosis into consideration. In addition to the TB virus, fractional derivatives have recently been used to
study the dynamics of a recently created co-infection model of the HIV and HCV [13] as well as the dynamic
behaviors of the HBV under the influence of cytokines and immune response [14].

An empirical concept called an Artificial Neural Network (ANN) aims to replicate the structure and
relationships between neurons in the brain. The basic mathematical model (function) of an ANN begins
with an input neuron. Three basic rules: amplification, gathering, and activation—control this model. At the
time of termination of an artificial neuron, the sum of the previous weights for connections and selectivity
passes through an activation function, also known as a transfer function. When ANNs are connected, their
full potential and decoding capability become apparent, even though their physics and basic set of rules may
not seem very remarkable. These ANNs are predicated on the idea that variation might result from a few
straightforward concepts. Instead of just making the system complex and unmanageable, we often don’t link
these artificial neurons carelessly to exactly benefit from the computational demands that may be met by
connecting numerous ANs. Several “highly standardised” surface properties for ANNs have previously been
produced by researchers. Problem solving may be facilitated by these preset traits, which have the potential to
be even more successful. Various problems can be solved more successfully with different ANN topographies.
Determine the type of problem that has to be solved before selecting and properly implementing the ANN’s
design. It is necessary to modify the architecture and its components. The ANN is a necessary component of
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every ANN. Its form and function were modelled after the genuine neuron, which is thought to be the basic
building component of biological NNs (operations) such as the cerebral cortex, brain stem, and surrounding
glands. Recently, ANN approach has been applied to investigate the plant virus [15] and the Stuxnet virus [16].

a) Objective:
All of the above amazing uses encourage authors to explore the machine learning paradigm by

developing a Bayesian regularization approach for fractional models of the TB virus (FMTBV) based on
neural network (BRA-NNs). The developed determining BRA-NNs plan has the following aims in the future:

• The findings obtained using the BRA-NNs approach are compared to the exact solutions for six different
FMTBV variants.

• Five suitable fractional-order versions based on the numerical solution of the FMTBV mathematical
model, demonstrating the reliability of the BRA-NNs.

• The outcomes of the FOLotkaVolterra technique’s produced and referenced solutions are compared, and
it is shown that they are extremely congruent, proving the correctness of the randomized computation-
ally integrator based on BRA-NNs.

• The performance of the created BRA-NNs system is assessed using in-depth study on the error
histogram, Mean Square Error, regression analysis and transition statistics measures.

b) Layout:
The study is arranged in the form that an orderly and step-by-step introduction of concepts and methods

used closely follows after the results and conclusions. Section 2, first of all, a general fundamental overview is
needed regarding some definitions of fractional derivatives, which are now considered to be necessary when
the modelization of complex dynamic systems requires it, followed then by the introduction of TB virus
fractional model, that mathematically frames the subject of the study. The discretization techniques used in
the analysis are further explained in Section 3, where the Grünwald-Letnikov scheme for the discretization of
fractional derivatives and BRA-NN, how to solve and analyze the model, are also presented. Section 4 states
the results and the analysis of the simulation. Finally, Section 5 summarizes key findings and implications
of further work that may be achieved for modeling fractional systems such as the TB virus, based on the
possible impact of BRA-NN and GL methods.

2 Preliminaries and Mathematical Model
In this section, firstly, we will discuss some basics regarding fractional integral and Caputo fractional

order derivative. After we will discuss the methodology that is Bayesian regularization.

a) Basic Definitions:

Definition 1: For a function g: Ŗ+ → Ŗ, the fractional integral of order α̃ > 0 is defined by

Iα̃
ú (g (ú)) =

1
′Υ (α̃) ∫

ú

0
(ú − Ẋ)α̃−1 g (Ẋ) dẊ

The Gamma function is denoted by Υ here and elsewhere.
Definition 2: The following gives the Caputo fractional order derivative for the function g ε Ân of order α̃:

cÐα̃
ú (g (ú)) = In−α̃Ðn g (ú) = 1

′Υ (n − α̃) ∫
ú

0

gn (Ẋ)

(ú − Ẋ)α̃+n−1 dẊ
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This is clearly defined for functions that are absolutely continuous and n − 1 < α̃ < n εÑ. Note that all
values of g(n), for Ẋ ε [0, ú], are included in the value of the Caputo fractional derivative of the function g
at point t. It is obvious that cÐα̃

ú (g (ú)) tends to g(ú) as α̃ →1.
Definition 3: The constant z.∗ is the system’s equilibrium point in the below-mentioned Caputo fractional
dynamical system.

cÐα̃
ú z. (ú) = f (ú, z. (ú)), α̃ ε (1, 0)

only if and when, f (ú, z.∗) = 0.

b) Mathematical Model:

We offer the proposed fractional model to explain the dynamics of TB infection (FMTBV) in this
section. The whole human population is separated into five epidemiological sub-divisions to develop the
model: susceptible Ş(ú), exposed L(ú), TB active I(ú), under treatment Ť(ú), and recovered persons after
treatment Ŗ(ú).

The system of non-linear fractional differential equations that follows provides the transmission model
for TB dynamics:

cÐα̃
ú Ş = 2 − βŞI

Ñ
− ûŞ

cÐα̃
ú L = βŞI

Ñ
− (û + ε)L + (1 − n) σ Ť

cÐα̃
ú I = εL + nσ Ť − (û + ′Υ + σ1) I

cÐα̃
ú Ť = ′ΥI − (û + σ + σ2 + ξ) Ť

cÐα̃
ú Ŗ = ξŤ − ûŖ

The starting circumstances are

Ş(0) = Ş0 , L(0) = L0, I(0) = I0, Ť(0) = Ť0, and Ŗ(0) = Ŗ0.

The parameter α̃ ε [0, 1] and the fractional derivatives used in the aforementioned model are both taken
in Caputo meaning. All of the functions Ş, L, I, Ť, and Ŗ, together with their Caputo fractional derivativses,
are considered to be continuous for all ú ≥ 0. Table 1 provides a detailed overview of the model parameters
and their fitted or estimated numerical values.

Table 1: Parameter’s description

Symbol Description Symbol Description
Λ Recruitment rate β Transmission rate
σ2 Disease induced death rate in T û Natural death rate
ε Rate of progression from L to I n Rate of treatment failure
ξ Moving rate from T to R σ Rate at which treated people leave T class
′Υ progression rate from I to T σ 1 Disease induced death rate of infected individuals
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3 Methodology

3.1 Fractional Differential Equation’s Stochastic Analyzer Based on Grunwald-Letnikov
The Grünwald-Letnikov (G-L) approach is regularly applied, but the total of the strategy lengthens over

time, highlighting the flaw. The factors c v are thorough approaches with properties that improve service, such
as being favorable and having a significant attenuation effect. They conclude that the approach offers seamless
features although the corrective term causes some disturbance. A discrete version of the Gronwall defense is
very helpful in demonstrations. The G-L approximation is used as a numerical tool to study robustness and
incorrect predictions related to linear test equations.

Consider generic version of an FDE and its initial circumstances to illustrate the numerical results for
FDEs relying on G-L:

.
α′D

β
t = f (r, s (t)) ,

s(i) (0) = s(i)
0 , i = 0, 1, . . . , n − 1

(1)

Ivo Petras provided a detailed final cyclical prescription of a GL-based solution obtained from Eq. (1):

1
hβ

[(r−a)∗1/h]

∑
o=0

(−1)o s (r − oh)( β
o ) ≈ f (s (t) t) (2)

To summarize the aforementioned relationship, we obtain

[(r−a)∗1/h]

∑
o=0

(−1)o s (r − oh)( β
o ) + r (t) ≈ h−β f (r, s (t)) (3)

In the form of nonlinear input grid systems, the interval t ε [0, T] = [0, h, 2h, . . . , Kh = T], where h
is the step size indicator, [0, T] = t0 = 0, t1 , . . . , tK = T , as well as any system to collect in the interval were
also depicted as tk = kh for k = 0, 1, 2. . . K. The aforementioned equation is represented as follows in discrete
form:

k
∑
o=1
(−1)o ( β

o ) s (rk − oh) + s (rk) = h−β f (rk , s (rk)) , k = 0, 1, 2, ..., K

In simple usage, the above term is written as:

k
∑
o=1

cβ
0 y (tk − ho) + y (rk) = h−β f (rk , s (rk)) , k = 0, 1, 2, ..., K

where co
β is defined as:

cβ
o = (

β
o )(−1)o

or equivalently with co
β = 1,

cβ
o = (1 −

1 + β
o
) cβ

o−1
, o = 0, 1, . . .
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The recursive form of the GL numerical solver is:

s (rk) = −
k
∑
o=1

cβ
o y (rk−o) + h−β f (rk , s (rk)) , k = 0, 1, 2, . . . , k

3.2 Proposed Methodology
As a suitable analogue to such a speculative neural network, we propose a Bayesian regularized artificial

neural network (BRA-NNs) with particular properties that relate readily to physiochemical features. The use
of BRA-NNs has the benefit of strong predictions without the need for the recognition technique, which
in traditional regression algorithms rises as O(N2). Strength training is difficult since it does not require
specific validation data to indicate overtraining and instead gives the ideal point at which to cease training.
The BRA-NN network architecture is essentially unimportant as long as a minimum design is offered.
To properly define the words Bayesian and regularized, basic regression procedures must be presented in
Bayesian terms. Because terminology and depictions differ from approach to approach, generating issues,
the included depictions are standard but occasionally strange. It is feasible to accomplish at an equilibrium
level rather than the generally accepted least amount because the approach employs a gradient decreasing
descent or an analogous lowest reported. Five times through this method is all that is necessary, according
to observation, to end any unusual behavior. In contrast, embodied ANNs enable trials with hundreds or
possibly thousands of repetitions. In addition to avoiding overfitting, it offers a more reliable estimation of
the model coefficients. An overview of the Bayesian regularization algorithm is provided below:

1. Initialize the variables: Define the model coefficients’ previous distribution.
2. Data preparation: Prepare your dataset, including the input features (X), goal values (Y), and any other

relevant information.
3. Feature standardization (optional): Standardizing the input features to have a zero mean and unit

variance is typically a good idea. Although this step is optional, it occasionally can be beneficial.
4. Model training: Apply Bayesian inference to estimate the model’s parameters. the following steps:

• Prior Distribution: Define the model coefficients’ previous distribution. The prior is often assumed
to be Gaussian with a variance parameter and a mean of zero in Bayesian ridge regression.

• Likelihood Function: Establish the likelihood function, which, given the model and the input
features, provides the likelihood of seeing the target values. The likelihood in linear regression is
frequently taken to be Gaussian.

• Distribution in the rear: Using Bayes’ theorem, combine the prior distribution and likelihood
function to get the posterior distribution of the model coefficients.

• Estimation of the parameter: To estimate the model coefficients from the posterior distribution,
use the appropriate technique (for instance, Maximum A Posteriori estimation or Markov Chain
Monte Carlo methods).

5. Model prediction: Use the obtained model coefficients to create predictions about fresh data points.
6. Model assessment (optional): Use the proper metrics (e.g., mean squared error, mean absolute

error, etc.) on a validation set or through cross-validation to assess the performance of the Bayesian
regularized model.

7. Tuning of hyperparameters (optional): Hyperparameters that are part of the Bayesian regularization
process, such as the variance parameter, can be tuned using methods like cross-validation to determine
the best values that maximize the model’s performance.

8. Forecast based on new data: You can use the model to generate predictions on fresh, unforeseen data
after it has been trained and tweaked.
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4 Results and Discussion
The FMTBV mathematical paradigm is discussed in this section utilizing the recommended BRA-NNs

structure. The approach consists of two elements. First, the fundamental BRA-NNs controller discoveries
are given. The BRA-NNs implementation approach is also used to resolve the FMTBV mathematical
framework. Fig. 1 shows the single-layer layout of neurons. The “nftool” function in MATLAB provides access
to the BRA-NNs processes, which use the following data configuration: 90% for training, 5% for testing,
and 5% for authorization. Fig. 2 depicts the graphical presentation of the proposed scheme, i.e., BRA-NNs
for FMTBV. Table A1 illustrates the simulations of BRA-NNs for FMTBV. Reference datasets are generated
using FOLotkavoltera which is based on Grunwald Letnikov method. The data set for scenario I’s case I is
presented in Table A2. Complete size of all data sets for each case is 200 × 5 with step size 0.5.

Figure 1: Single layer neuron formation
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Figure 2: (Continued)
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RESULTS ANALYSIS

Absolute error analysis and 
main graphs
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Graphical and numerical 
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Figure 2: Graphical simulations of BRA-NNs for FMTBV

Figures relating to performance plot, i.e., mean squared error (MSE), transition state (TS), fitness curve
(FC), error histogram (EH), and regression analysis (RA) are included in Figs. 3 and 4, which illustrate
the BRA-NNs numerical simulation for FMTBV for scenarios I-Case III and II-Case III, respectively. In
neural networks, the Mean Squared Error (MSE) loss function is frequently used to calculate the discrepancy
between expected and actual output values. It measures the total discrepancy between the predicted values of
the network and the exact target values. The neural network’s training function is referred to as “trainFcn”. The
network’s training performance and speed can be considerably impacted by the training function that is used.
Regularization is a method for keeping neural networks from overfitting. It aids in striking a balance between
the network’s capacity (complexity) and adaptability to new inputs. Typically, a regularization parameter
with a value between 0 and 1 is indicated. Overfitting may be avoided by using a larger regularization value,
prioritizing minimizing squared biases and weights above reducing errors. A preprocessing method called
normalization is used to scale data into a particular range. Normalization is used in the context of neural
networks to affect the input data and target values. Normalization choices include “no,” “standard,” and
“percent.” For BRA-NNs, the transition state consists of five different components: the gradient, Mu, Num
parameters, sum squared parameter, and validation check. The vector of a function’s partial derivatives about
its inputs is referred to as the gradient. The method of updating the model’s parameters during training is
employed in neural network optimization. As a hyper parameter used in optimization methods like gradient
descent, Mu often refers to the learning rate. The step size used for parameter updates is determined by the
learning rate. The number of learnable weights and biases is represented by the num-parameter in the context
of neural networks. In machine learning, the term “sum squared parameter” is not commonly used. Without
more information, it’s difficult to give a precise explanation, however, it might be a reference to a certain
formula or technique. The process of assessing a trained model’s performance using a different dataset known
as the validation set is known as the validation check.
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Figure 3: Graphical outputs based on BRA-NNs for scenario 1 case 3
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Figure 4: Graphical outputs based on BRA-NNs for scenario 2 case 3
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Figs. 5 and 6 show a graphic representation of the FMTBV numerical results and absolute error (AE)
for all situations, each with five cases. Despite the behavior of the TB virus model, we see Figs. 5 and 6a,c,e,g,i
for α = 0.80, 0.85, 0.90, 0.95, 1, respectively. We can see from Fig. 5a that the number of sensitive individuals
grows as α rises for scenario I, but in Fig. 6a the results fluctuated over time in scenario II. Fig. 5c,e,g,i shows
that this tendency alters when α increases, leading to a rapid increase in the population in the latent, infected,
treated, and recovered classes. Similarly, in Fig. 6c,e,g, the results have a chaotic behavior whereas Fig. 6i by
the increase of fractional order the recovery rate got increased. The simulation’s outputs using BRA-NNs and
the FOLotkaVolterra framework are essentially in line with the related AE. As can be observed, the AE for all
cases is in the range of 103 → 10−5. A visual representation of the AEs between actual (ground truth) values
and anticipated values in a dataset is called an AE graph. It is frequently employed to assess the effectiveness
of a regression model whose objective is to forecast continuous values. We can learn more about the model’s
performance by looking at the absolute error graph. It is preferable to have lower absolute errors and a more
condensed distribution of vertical lines near 0, which show that the model’s predictions are nearer to the
actual values. On the other hand, a wide range of vertical lines with big absolute errors indicates that the
model might need to be tweaked or improved.

Figure 5: (Continued)
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Figure 5: Dynamical and their corresponding absolute error plots of FMTBV for scenario-I
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Figure 6: (Continued)
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Figure 6: Dynamical and their corresponding absolute error plots of FMTBV for scenario-II

5 Conclusion
The TB-virus fractional model is discussed in this article. The purpose of this investigation is to supply

a fractional order assessment using a mathematical structure with an emphasis on epidemic phenomena
to deliver more reliable system efficiency. BRA-NNs are used to solve the FMTBV five-chamber design
computationally. While the best under distinct conditions corresponded to different fractional orders, the
orders of 0.80 and 0.95 were always the best in a comprehensive context. Such particular orders brought
model precision together with computation efficiency, thus describing the subtle dynamics of the TB virus
more effectively than other fractional values. The performance at 0.80 and 0.95 indicates that those orders are
very well suited to the representation of the complexity inherent in the system, offering strong and reliable
predictions across a variety of scenarios for simulations. The elements that follow are the main components
of the mathematically calculated FMTBV findings:
• Using the suggested randomized computing paradigm offered by BRA-NNs, the FMTBV simu-

lated solution has been effectively discovered. Modifications to the settings significantly alter how
FMTBV functions.

• In scenario I, there is proper increase/decrease behavior of performance in all the S , L, I, T , R cases, but
in scenario II, there is chaotic behavior with irregular fluctuations.
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• For several circumstances, the AE magnitude ranged from 103 → 10−5, suggesting accurate validation,
testing, and training modeling. The great accuracy, as well as convergence of the developed technique,
were proved by evaluations of the projected BRA-NNs findings along with the validated numerical
answers provided by the FOLotkaVolterra scheme.

• Fitness graphs show how well the data was processed and how accurate the results were. Regression
matrices, MSE learning curves, and histogram error visualizations show that the resultant BRA-NNs are
efficient, reliable, and robust for full computations.

Limitations: The study’s reliance on specific fractional orders (0.80 and 0.95) limits its generalizability
to other epidemic models. While BRA-NNs improve computational efficiency, the lack of comparison
with other numerical methods leaves uncertainty about its optimality. Additionally, chaotic behavior in
Scenario II suggests sensitivity to parameter variations, requiring further stability analysis. The absence of
validation with real-world TB data and exploration of alternative AI techniques also restricts the model’s
practical applicability.

In the future, the authors intend to implement AI solver based on transfer learning, physics-informing,
and deep learning for epidemic systems.
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Appendix A

Table A1: Simulations of BRA-NNs for FMTBV

Scenario Case Mean square error Performance Mu Gradient Epochs Time

Training Validation Testing
S-I I 18.63212E−00 0.0000E−00 9.12508E−00 18.6 500 1.31E−05 1000 18 s

II 44.78196E−00 0.0000E−00 71.03747 E−00 44.8 50.0 4.04E−06 1000 20 s
III 114.87782E−07 0.0000E− 00 77.72245E−00 115 500 1.53E−06 1000 20 s
IV 2.05271E−07 0.0000E−00 8.49377E−07 0.205 50.0 1.70E−05 1000 19 s
V 1.22770E−08 0.0000E−00 1.73364E−00 1.23 500 1.51E−04 1000 20 s

S-II I 13.50227 E−00 0.0000 E−00 27.47591 E−00 13.5 500 4.34E−05 1000 20 s
II 268.60562

E−00
0.0000E−00 55,547.94545

E−00
269 50.0 3.08E−05 1000 51 s

III 1056.4347
E−00

0.0000E−00 2344.49074E−00 272 500 1.06E−03 1000 31 s

IV 4285.52388
E−00

0.0000E−00 4290.01821
E−00

272 500 4.29E−03 1000 18 s

V 13,745.539
51E−00

0.0000E−00 66,736.41415
E−00

271 500 1.37E−04 1000 19 s

Table A2: Data set for SI/CI

t S (t) L (t) I (t) T (t) R (t)
0.5000 30432361 83000 8010 0 0

1 24,346,095.6146722 58,620.3027265495 13,572.8387959939 1321.73425474955 0
1.500 21,962,420.3133916 50,433.8953404672 14,321.5531956650 2115.32201164851 218.100054953600

2 20,562,799.5205937 45,905.6187283034 14,535.6364435187 2269.95153154265 521.680122218472
2.500 19,605,291.8580155 42,799.7755691519 14,515.5671051906 2396.51361394151 804.932183442074

3 18,894,979.8517505 40,508.8811059160 14,389.8114839113 2442.32361328388 1081.28047766835
3.500 18,340,942.2698431 38,699.1793176952 14,211.8276236869 2461.19141138679 1343.78706582586

4 17,893,841.0148119 37,210.9097206297 14,008.4492618553 2459.84410577268 1593.65030164086
4.500 17,524,085.4628792 35,947.1921384243 13,793.7007014898 2447.35491327219 1831.16690597844

5 17,212,615.2003427 34,848.6870040068 13,575.3659200906 2427.68922926422 2057.21900435744
5.500 16,946,476.2817403 33,876.0451344487 13,357.8433494139 2403.62345328350 2272.62930716556

6 16,716,488.9553668 33,002.2676846710 13,143.6425199593 2376.83205551880 2478.20626457393
6.500 16,515,926.1587317 32,208.0904148975 12,934.1725274372 2348.42563493267 2674.69032564751

7 16,339,720.6931027 31,479.3671168812 12,730.1877764349 2319.13540982477 2862.75447417244
7.500 16,183,966.9303223 30,805.4370023631 12,532.0462013630 2289.45457511229 3043.00451855872

8 16,045,595.3023561 30,178.0878156592 12,339.8638618541 2259.71772064073 3215.98479895394
8.500 15,922,152.6136571 29,590.8700504955 12,153.6093880388 2230.15317724321 3382.18441178416

9 15,811,649.5773861 29,038.6318271713 11,973.1627198020 2200.91655071119 3542.04354619576
9.500 15,712,452.4169834 28,517.1952073753 11,798.3520838391 2172.11308817213 3695.95933240270

10 15,623,204.1510636 28,023.1260686754 11,628.9774563045 2143.81275363681 3844.29108201207
10.50 15,542,766.3575930 27,553.5672665188 11,464.8254914289 2116.06057716582 3987.36488817814

11 15,470,175.3693274 27,106.1155577577 11,305.6789904355 2088.88385044563 4125.47762553564
11.50 15,404,608.8321127 26,678.7293641120 11,151.3228414057 2062.29719184342 4258.90041070771

12 15,345,359.8314468 26,269.6586515895 11,001.5476613689 2036.30614887515 4387.88159061831
12.50 15,291,816.6312495 25,877.3909215691 10,856.1519360232 2010.90978389786 4512.64932305946

13 15,243,446.6322635 25,500.6091099399 10,714.9431765374 1986.10254444522 4633.41380788913
13.50 15,199,783.5432517 25,138.1584046372 10,577.7384356593 1961.87562493633 4750.36922002569

14 15,160,417.0267314 24,789.0198244426 10,444.3644101367 1938.21796326830 4863.69538828562

(Continued)
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Table A2 (continued)

t S (t) L (t) I (t) T (t) R (t)
14.50 15,124,984.2708918 24,452.2889817761 10,314.6572807292 1915.11697305615 4973.55925758378

15 15,093,163.0755411 24,127.1588619268 10,188.4623908582 1892.55908300059 5080.11616626821
15.50 15,064,666.1388907 23,812.9057445421 10,065.6338313642 1870.53013457354 5183.51096541374

16 15,039,236.3047639 23,508.8776058557 9946.03397625082 1849.01567499936 5283.87900269800
16.50 15,016,642.5839382 23,214.4844960792 9829.53299902569 1828.00117245658 5381.34698994406

17 14,996,676.8040024 22,929.1905019598 9716.00838889330 1807.47217324760 5476.03377044659
17.50 14,979,150.7729670 22,652.5069910349 9605.34447902816 1787.41441551685 5568.05099971505

18 14,963,893.8654923 22,383.9868995079 9497.43199438649 1767.81391034736 5657.50375119169
18.50 14,950,750.9588385 22,123.2198755255 9392.16762329319 1748.65699832462 5744.49105676557

19 14,939,580.6598431 21,869.8281279732 9289.45361487812 1729.93038763832 5829.10639045013
19.50 14,930,253.7753584 21,623.4628606072 9189.19740300195 1711.62117829843 5911.43810237233

20 14,922,651.9873756 21,383.8011945325 9091.31125637893 1693.71687592787 5991.56980919702
20.50 14,916,666.7010455 21,150.5435002725 8995.71195401576 1676.20539776044 6069.58074624706

21 14,912,198.0393986 20,923.4110751011 8902.32048473278 1659.07507284418 6145.54608585124
21.50 14,909,153.9630593 20,702.1441128107 8811.06176934130 1642.31463797575 6219.53722583521

22 14,907,449.4968931 20,486.4999222935 8721.86440396664 1625.91323053050 6291.62205154749
22.50 14,907,006.0484794 20,276.2513587434 8634.66042299379 1609.86037907818 6361.86517436693

23 14,907,750.8057283 20,071.1854373000 8549.38508014599 1594.14599246364 6430.32814925847
23.50 14,909,616.2029452 19,871.1021038562 8465.97664626922 1578.76034787106 6497.06967361843

24 14,912,539.4462874 19,675.8131417666 8384.37622247488 1563.69407826573 6562.14576937230
24.50 14,916,462.0909203 19,485.1411964917 8304.52756738069 1548.93815951213 6625.60995004754

25 14,921,329.6633102 19,298.9189029428 8226.37693728110 1534.48389739323 6687.51337433777
25.50 14,927,091.3230402 19,116.9881025546 8149.87293816867 1520.32291469891 6747.90498749539

26 14,933,699.5593264 18,939.1991390024 8074.96638861561 1506.44713850742 6806.83165173507
26.50 14,941,109.9180848 18,765.4102230554 8001.61019260757 1492.84878774974 6864.33826669578

27 14,949,280.7559607 18,595.4868583893 7929.75922150005 1479.52036112037 6920.46788089204
27.50 14,958,173.0182129 18,429.3013212951 7859.37020434013 1466.45462537801 6975.26179498228

28 14,967,750.0377551 18,266.7321881715 7790.40162586310 1453.64460406380 7028.75965759321
28.50 14,977,977.3530000 18,107.6639054889 7722.81363153519 1441.08356665311 7080.99955436015

29 14,988,822.5424540 17,951.9863975993 7656.56793906950 1428.76501814765 7132.01809077450
29.50 15,000,255.0742635 17,799.5947083512 7591.62775589362 1416.68268910791 7181.85046936870

30 15,012,246.1691345 17,650.3886729699 7527.95770209396 1404.83052612094 7230.53056171529
30.50 15,024,768.6752375 17,504.2726170949 7465.52373840403 1393.20268269453 7278.09097566953

31 15,037,796.9538726 17,361.1550802380 7404.29309884241 1381.79351056627 7324.56311824254
31.50 15,051,306.7748147 17,220.9485612479 7344.23422764086 1370.59755141426 7369.97725445512

32 15,065,275.2203807 17,083.5692836438 7285.31672013457 1359.60952895461 7414.36256248884
32.50 15,079,680.5973683 16,948.9369789262 7227.51126731498 1348.82434141052 7457.74718542158

33 15,094,502.3561136 16,816.9746861801 7170.78960377177 1338.23705433709 7500.15827980820
33.50 15,109,721.0159925 16,687.6085664739 7115.12445877368 1327.84289378600 7541.62206134359

34 15,125,318.0967681 16,560.7677307158 7060.48951025933 1317.63723979445 7582.16384782379
34.50 15,141,276.0552466 16,436.3840797741 7006.85934152837 1307.61562018265 7621.80809960246

35 15,157,578.2267626 16,314.3921557886 6954.20940044071 1297.77370464510 7660.57845772241
35.50 15,174,208.7710624 16,194.7290037152 6902.51596094755 1288.10729912084 7698.49777988676

36 15,191,152.6222002 16,077.3340422364 6851.75608679227 1278.61234042873 7735.58817442050
36.50 15,208,395.4420973 15,962.1489432632 6801.90759723224 1269.28489115428 7771.87103236060

37 15,225,923.5774530 15,849.1175193233 6752.94903464483 1260.12113477505 7807.36705780156
37.50 15,243,724.0197233 15,738.1856182039 6704.85963389114 1251.11737101245 7842.09629661304

38 15,261,784.3679117 15,629.3010242730 6657.61929332169 1242.27001139816 7876.07816363705
38.50 15,280,092.7939425 15,522.4133659603 6611.20854731641 1233.57557504395 7909.33146846345

39 15,298,638.0104046 15,417.4740289226 6565.60854026019 1225.03068460456 7941.87443987526
39.50 15,317,409.2404789 15,314.4360744675 6520.80100186236 1216.63206242348 7973.72474904787

40 15,336,396.1898733 15,213.2541628404 6476.76822373544 1208.37652685221 8004.89953158026
40.50 15,355,589.0206116 15,113.8844810203 6433.49303715488 1200.26098873399 8035.41540843030

(Continued)
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Table A2 (continued)

t S (t) L (t) I (t) T (t) R (t)
41 15,374,978.3265305 15,016.2846746974 6390.95879192703 1192.28244804368 8065.28850582088

41.50 15,394,555.1103562 14,920.4137841351 6349.14933629805 1184.43799067558 8094.53447417907
42 15,414,310.7622410 14,826.2321836426 6308.04899784115 1176.72478537181 8123.16850616558

42.50 15,434,237.0396507 14,733.7015244090 6267.64256526418 1169.14008078397 8151.20535384820
43 15,454,326.0485041 14,642.7846804691 6227.91527108339 1161.68120266145 8178.65934506885

43.50 15,474,570.2254729 14,553.4456975890 6188.85277511323 1154.34555115993 8205.54439905047
44 15,494,962.3213593 14,465.6497448785 6150.44114872519 1147.13059826412 8231.87404128703

44.50 15,515,495.3854731 14,379.3630689511 6112.66685983222 1140.03388531901 8257.66141775670
45 15,536,162.7509398 14,294.5529504663 6075.51675855785 1133.05302066431 8282.91930849590

45.50 15,556,958.0208739 14,211.1876629026 6038.97806355208 1126.18567736698 8307.66014056903
46 15,577,875.0553570 14,129.2364334204 6003.03834891849 1119.42959104709 8331.89600046694

46.50 15,598,907.9591684 14,048.6694056844 5967.68553171941 1112.78255779247 8355.63864596464
47 15,620,051.0702147 13,969.4576045251 5932.90786002802 1106.24243215787 8378.89951746684

47.50 15,641,298.9486132 13,891.5729023278 5898.69390149827 1099.80712524466 8401.68974886855
48 15,662,646.3663861 13,814.9879870461 5865.03253242554 1093.47460285710 8424.02017795556

48.50 15,684,088.2977250 13,739.6763317421 5831.91292727216 1087.24288373173 8445.90135636880
49 15,705,619.9097887 13,665.6121655655 5799.32454863411 1081.11003783635 8467.34355915457

49.50 15,727,236.5540010 13,592.7704460873 5767.25713762628 1075.07418473545 8488.35679392151
50 15,748,933.7578162 13,521.1268329114 5735.70070466503 1069.13349201889 8508.95080962426

50.50 15,770,707.2169222 13,450.6576624911 5704.64552062833 1063.28617379107 8529.13510499169
51 15,792,552.7878561 13,381.3399240836 5674.08210837464 1057.53048921778 8548.91893661771

51.50 15,814,466.4810043 13,313.1512367797 5644.00123460299 1051.86474112809 8568.31132673057
52 15,836,444.4539659 13,246.0698275498 5614.39390203768 1046.28727466886 8587.32107065628

52.50 15,858,483.0052558 13,180.0745102504 5585.25134192187 1040.79647600959 8605.95674399072
53 15,880,578.5683284 13,115.1446655423 5556.56500680546 1035.39077109519 8624.22670949407

53.50 15,902,727.7059015 13,051.2602216685 5528.32656361318 1030.06862444481 8642.13912372064
54 15,924,927.1045645 12,988.4016360504 5500.52788697996 1024.82853799449 8659.70194339634

54.50 15,947,173.5696530 12,926.5498776578 5473.16105284103 1019.66904998200 8676.92293155516
55 15,969,464.0203746 12,865.6864101134 5446.21833226499 1014.58873387176 8693.80966344601

55.50 15,991,795.4851717 12,805.7931754948 5419.69218551894 1009.58619731836 8710.36953221993
56 16,014,165.0973088 12,746.8525787994 5393.57525635504 1004.66008116696 8726.60975440760

56.50 16,036,570.0906695 12,688.8474730383 5367.86036650862 999.809058489018 8742.53737519661
57 16,059,007.7957537 12,631.7611449283 5342.54051039839 995.031833651888 8758.15927351695

57.50 16,081,475.6358628 12,575.5773011540 5317.60885001993 990.327141420844 8773.48216694347
58 16,103,971.1234624 12,520.2800551712 5293.05871002395 985.693746092262 8788.51261642283

58.50 16,126,491.8567140 12,465.8539145261 5268.88357297130 981.130440656637 8803.25703083289
59 16,149,035.5161654 12,412.2837686664 5245.07707475718 976.636045990232 8817.72167138130

59.50 16,171,599.8615915 12,359.5548772199 5221.63300019727 972.209410074210 8831.91265585022
60 16,194,182.7289785 12,307.6528587205 5198.54527876902 967.849407240144 8845.83596269377

60.50 16,216,782.0276431 12,256.5636797599 5175.80798050147 963.554937440861 8859.49743499403
61 16,239,395.7374790 12,206.2736445456 5153.41531200746 959.324925545609 8872.90278428164

61.50 16,262,021.9063261 12,156.7693848473 5131.36161265247 955.158320658592 8886.05759422652
62 16,284,658.6474539 12,108.0378503138 5109.64135085423 951.054095459977 8898.96732420392

62.50 16,307,304.1371552 12,060.0662991444 5088.24912050794 947.011245568474 8911.63731274078
63 16,329,956.6124430 12,012.8422890985 5067.17963753210 943.028788924680 8924.07278084742

63.50 16,352,614.3688461 11,966.3536688289 5046.42773652993 939.105765194389 8936.27883523889
64 16,375,275.7582987 11,920.5885695259 5025.98836756180 935.241235191098 8948.26047145034

64.50 16,397,939.1871189 11,875.5353968558 5005.85659302445 931.434280316990 8960.02257685078
65 16,420,603.1140719 11,831.1828231855 4986.02758463266 927.684002021699 8971.56993355891

65.50 16,443,266.0485139 11,787.5197800768 4966.49662049936 923.989521278198 8982.90722126506
66 16,465,926.5486128 11,744.5354510426 4947.25908231050 920.349978075166 8994.03901996252

66.50 16,488,583.2196413 11,702.2192645514 4928.31045259084 916.764530925228 9004.96981259215
67 16,511,234.7123404 11,660.5608872722 4909.64631205748 913.232356388492 9015.70398760311
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Table A2 (continued)

t S (t) L (t) I (t) T (t) R (t)
67.50 16,533,879.7213486 11,619.5502175474 4891.26233705747 909.752648610813 9026.24584143318

68 16,556,516.9836943 11,579.1773790872 4873.15429708654 906.324618876278 9036.59958091148
68.50 16,579,145.2773486 11,539.4327148741 4855.31805238595 902.947495173352 9046.76932558664

69 16,601,763.4198353 11,500.3067812706 4837.74955161435 899.620521774252 9056.75910998297
69.50 16,624,370.2668955 11,461.7903423216 4820.44482959207 896.342958827036 9066.57288578751

70 16,646,964.7112052 11,423.8743642434 4803.40000511513 893.114081959966 9076.21452397013
70.50 16,669,545.6811417 11,386.5500100927 4786.61127883633 889.933181897737 9085.68781683959

71 16,692,112.1395986 11,349.8086346085 4770.07493121120 886.799564089122 9094.99648003733
71.50 16,714,663.0828457 11,313.6417792189 4753.78732050625 883.712548345658 9104.14415447162

72 16,737,197.5394327 11,278.0411672091 4737.74488086744 880.671468490985 9113.13440819400
72.50 16,759,714.5691343 11,242.9986990414 4721.94412044661 877.675672020475 9121.97073822003

73 16,782,213.2619355 11,208.5064478241 4706.38161958402 874.724519770779 9130.65657229645
73.50 16,804,692.7370537 11,174.5566549220 4691.05402904474 871.817385599005 9139.19527061650

74 16,827,152.1419988 11,141.1417257037 4675.95806830731 868.953656071114 9147.59012748511
74.50 16,849,590.6516668 11,108.2542254215 4661.09052390263 866.132730159339 9155.84437293602

75 16,872,007.4674674 11,075.8868752170 4646.44824780145 863.354018948201 9163.96117430200
75.50 16,894,401.8164831 11,044.0325482502 4632.02815584878 860.616945348950 9171.94363774026

76 16,916,772.9506592 11,012.6842659459 4617.82722624362 857.920943822055 9179.79480971420
76.50 16,939,120.1460229 10,981.8351943537 4603.84249806243 855.265460107548 9187.51767843311

77 16,961,442.7019301 10,951.4786406177 4590.07106982496 852.649950962932 9195.11517525130
77.50 16,983,739.9403400 10,921.6080495519 4576.51009810093 850.073883908398 9202.59017602785

78 17,006,011.2051141 10,892.2170003174 4563.15679615616 847.536736979158 9209.94550244839
78.50 17,028,255.8613418 10,863.2992031978 4550.00843263708 845.037998484588 9217.18392331019

79 17,050,473.2946874 10,834.8484964697 4537.06233029197 842.577166774060 9224.30815577165
79.50 17,072,662.9107619 10,806.8588433651 4524.31586472812 840.153750009154 9231.32086656745

80 17,094,824.1345156 10,779.3243291210 4511.76646320346 837.767265942112 9238.22467319041
80.50 17,116,956.4096518 10,752.2391581161 4499.41160345166 835.417241700307 9245.02214504119

81 17,139,059.1980608 10,725.5976510885 4487.24881253958 833.103213576557 9251.71580454682
81.50 17,161,131.9792729 10,699.3942424341 4475.27566575611 830.824726825059 9258.30812824901

82 17,183,174.2499308 10,673.6234775811 4463.48978553128 828.581335462840 9264.80154786335
82.50 17,205,185.5232784 10,648.2800104399 4451.88884038468 826.372602076470 9271.19845131018

83 17,227,165.3286685 10,623.3586009242 4440.47054390251 824.198097633937 9277.50118371803
83.50 17,249,113.2110856 10,598.8541125416 4429.23265374192 822.057401301511 9283.71204840059

84 17,271,028.7306850 10,574.7615100522 4418.17297066224 819.950100265407 9289.83330780799
84.50 17,292,911.4623477 10,551.0758571913 4407.28933758189 817.875789558167 9295.86718445294

85 17,314,760.9952492 10,527.7923144561 4396.57963866051 815.834071889548 9301.81586181307
85.50 17,336,576.9324424 10,504.9061369519 4386.04179840519 813.824557481844 9307.68148520956

86 17,358,358.8904553 10,482.4126722987 4375.67378080034 811.846863909453 9313.46616266330
86.50 17,380,106.4988999 10,460.3073585939 4365.47358846037 809.900615942600 9319.17196572887

87 17,401,819.4000954 10,438.5857224304 4355.43926180441 807.985445395082 9324.80093030725
87.50 17,423,497.2487024 10,417.2433769687 4345.56887825259 806.100990975904 9330.35505743788

88 17,445,139.7113695 10,396.2760200597 4335.86055144301 804.246898144706 9335.83631407060
88.50 17,466,746.4663906 10,375.6794324190 4326.31243046899 802.422818970862 9341.24663381804

89 17,488,317.2033733 10,355.4494758484 4316.92269913583 800.628411996156 9346.58791768927
89.50 17,509,851.6229180 10,335.5820915061 4307.68957523661 798.863342100896 9351.86203480495

90 17,531,349.4363066 10,316.0732982208 4298.61130984641 797.127280373423 9357.07082309475
90.50 17,552,810.3652013 10,296.9191908515 4289.68618663443 795.419903982857 9362.21608997748

91 17,574,234.1413523 10,278.1159386892 4280.91252119348 793.740896055030 9367.29961302444
91.50 17,595,620.5063152 10,259.6597839008 4272.28866038632 792.089945551497 9372.32314060646

92 17,616,969.2111766 10,241.5470400129 4263.81298170847 790.466747151536 9377.28839252515
92.50 17,638,280.0162881 10,223.7740904351 4255.48389266673 788.871001137070 9382.19706062874

93 17,659,552.6910091 10,206.3373870207 4247.29983017337 787.302413280383 9387.05080941297
93.50 17,680,787.0134562 10,189.2334486648 4239.25925995515 785.760694734624 9391.85127660758

(Continued)
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Table A2 (continued)

t S (t) L (t) I (t) T (t) R (t)
94 17,701,982.7702614 10,172.4588599378 4231.36067597707 784.245561926945 9396.60007374869

94.50 17,723,139.7563370 10,156.0102697535 4223.60259988011 782.756736454262 9401.29878673728
95 17,744,257.7746474 10,139.8843900712 4215.98358043292 781.293944981511 9405.94897638471

95.50 17,765,336.6359883 10,124.0779946300 4208.50219299673 779.856919142383 9410.55217894501
96 17,786,376.1587717 10,108.5879177148 4201.15703900339 778.445395442428 9415.10990663471

96.50 17,807,376.1688181 10,093.4110529541 4193.94674544592 777.059115164487 9419.62364814051
97 17,828,336.4991540 10,078.5443521460 4186.86996438153 775.697824276371 9424.09486911495

97.50 17,849,256.9898162 10,063.9848241149 4179.92537244638 774.361273340751 9428.52501266055
98 17,870,137.4876611 10,049.7295335952 4173.11167038213 773.049217427167 9432.91549980275

98.50 17,890,977.8461800 10,035.7756001433 4166.42758257370 771.761416026123 9437.26772995189
99 17,911,777.9253193 10,022.1201970755 4159.87185659809 770.497632965205 9441.58308135458

99.50 17,932,537.5913068 10,008.7605504325 4153.44326278385 769.257636327173 9445.86291153464
100 17,953,256.7164819 9995.69393796847 4147.14059378095 768.041198369941 9450.10855772411
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