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ABSTRACT: Hybrid renewable energy systems (HRES) offer cost-effectiveness, low-emission power solutions, and
reduced dependence on fossil fuels. However, the renewable energy allocation problem remains challenging due to
complex system interactions and multiple operational constraints. This study develops a novel Multi-Neighborhood
Enhanced Harris Hawks Optimization (MNEHHO) algorithm to address the allocation of HRES components.
The proposed approach integrates key technical parameters, including charge-discharge efficiency, storage device
configurations, and renewable energy fraction. We formulate a comprehensive mathematical model that simultane-
ously minimizes levelized energy costs and pollutant emissions while maintaining system reliability. The MNEHHO
algorithm employs multiple neighborhood structures to enhance solution diversity and exploration capabilities. The
model’s effectiveness is validated through case studies across four distinct institutional energy demand profiles.
Results demonstrate that our approach successfully generates practically feasible HRES configurations while achieving
significant reductions in costs and emissions compared to conventional methods. The enhanced search mechanisms
of MNEHHO show superior performance in avoiding local optima and achieving consistent solutions. Experimental
results demonstrate concrete improvements in solution quality (up to 46% improvement in objective value) and com-
putational efficiency (average coefficient of variance of 24%–27%) across diverse institutional settings. This confirms
the robustness and scalability of our method under various operational scenarios, providing a reliable framework for
solving renewable energy allocation problems.

KEYWORDS: Hybrid renewable energy system; multi-neighborhood enhanced Harris Hawks optimization; cost-
emission optimization; renewable energy allocation problem; reliability

1 Introduction

1.1 Background and Motivation
The global energy landscape is undergoing a significant transformation, driven by the imperative

of sustainable development and climate change mitigation [1]. The surge in adopting sustainable and
renewable energy sources (RES) worldwide can be attributed to various factors, including population growth,
industrial development, and energy stability [2,3]. This demand is especially pronounced in major electricity-
consuming countries such as China, the USA, India, Russia, and Japan [2]. The transition to renewable energy
is viewed as a critical solution to environmental challenges and a means to reduce dependency on fossil
fuels [3].
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This transition drove the development of Hybrid Renewable Energy Systems (HRES), which integrate
multiple renewable energy technologies, such as solar, wind, hydropower, and geothermal, to create a more
reliable and efficient power supply. HRES offers numerous advantages: cost-effectiveness, scalability, reduced
environmental impact, and consistent power supply through the complementary nature of different energy
sources. These systems are particularly beneficial in optimizing energy production, as they utilize data-
driven frameworks incorporating machine learning and hybrid metaheuristics to predict weather patterns
and system performance over their lifespan, ensuring realistic capacity planning and improved reliability in
changing weather conditions [4].

In a comprehensive meta-analysis, Ref. [5] analyzed 348 papers published between 2017 and 2022,
identifying four critical applications within HRES: predicting renewable energy generation, coordinating
and virtually aggregating energy resources, implementing demand response strategies, and optimizing grid
management. For instance, in the domain of energy prediction, the study reported an impressive reduction in
error ratio to as low as 3%. This extensive research highlights the significant advancements and contributions
made by researchers toward enhancing the efficiency and effectiveness of HRES, demonstrating a substantial
impact in this field.

Another comprehensive review by [6] outlines three primary components of HRES: fuel consumption,
energy storage, and renewable energy sources. Fuel consumption encompasses diesel and gas genera-
tors. Energy storage includes technologies such as hydrogen storage, pumped hydro storage, compressed
air energy storage, thermal storage, flywheel energy storage, and ultra/supercapacitors. Renewable energy
sources are solar photovoltaic, wind turbine, hydropower, biogas generator, and tidal power.

The review identifies three primary objective functions for HRES optimization: economic, reliability,
and technical/emission objectives. Economic objectives include net present cost (NPC), levelized cost of
energy (LCOE), total annual cost (TAC), simple payback period (SPP), cost of energy (COE), internal rate of
return (IRR), and cost of interruption energy. Reliability objectives consist of loss of power supply probability
(LPSP), expected energy not supplied (EENS), loss of load expectation (LOLE), loss of energy expectation
(LOEE), system average interruption frequency index (SAIFI), system average interruption duration index
(SAIDI), and energy index ratio. Technical and emission objectives cover demand energy, renewable factors
(RF), carbon emission (CE), customer comfort level (CCL), battery longevity (BL), and discharged energy
(DE).

Constraints are classified into technical constraints and component-associated constraints. Tech-
nical constraints include power balance, frequency fluctuation, power reserve, and voltage fluctuation.
Component-associated constraints involve land accessibility, heights of wind turbine hubs, and the number
of components. According to their findings, key optimization objectives for HRES include the cost of energy,
total net present cost, life cycle cost, probability of loss of power supply, and discharged energy.

Ref. [6] also identified that the metaheuristic algorithms commonly applied in HRES optimization
are predominantly evolutionary algorithms. These include particle swarm optimization (PSO), grey wolf
optimization (GWO), whale optimization algorithm (WOA), firefly algorithm (FA), and artificial bee
swarm optimization (ABSO). Furthermore, Ref. [7] highlighted the application of various metaheuristics
for addressing the size and placement of distributed generation problems, including genetic algorithm
(GA), particle swarm optimization (PSO), genetic algorithm-tabu search (GA-TS), improved gravitational
search algorithm (IGSA), backtracking search algorithm (BSA), bacterial foraging optimization (BFO), and
grey wolf optimization (GWO). These studies underscore the versatility and effectiveness of evolutionary
algorithms in optimizing the allocation and performance of HRES, thereby contributing to the reduction of
costs and emissions.
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While HRES applications span diverse contexts, such as natural reserves [8] and residential power [9],
this study focuses specifically on institutional applications. This scope selection is motivated by several
factors. First, multiple studies have established performance benchmarks for institutional HRES opti-
mization, particularly for hospitals [10], factories [11], hotels [12], and universities [12]. These institutions
share common operational patterns and reliability requirements, enabling meaningful comparative analysis.
Second, their similar technical constraints allow for systematic validation of optimization approaches. Third,
the mathematical models and algorithms developed for these institutions can serve as a foundation for
extending to other HRES applications, while insights gained from institutional optimization can inform
broader HRES implementations.

Our motivation stems from the need to address significant research gaps in the allocation of HRES.
By optimizing HRES with a focus on critical factors such as battery quantity, charge-discharge efficiency,
reliability, and renewable energy fraction, we aim to develop economically competitive, reliable, and
environmentally sustainable systems. This study seeks to minimize the levelized cost of energy and pollutant
emissions through comprehensive and practical considerations. By applying the optimized HRES to a
range of settings, including factories, hotels, universities, and hospitals, this research will demonstrate the
scalability and versatility of these systems, ultimately contributing to more sustainable and cost-effective
energy solutions.

1.2 Literature Review
Within the four applications in hybrid renewable energy systems classified by Pop et al. [5], optimizing

the size and placement of distributed grids is critical for enhancing efficiency and reducing both costs and
environmental impacts. Most research in this area has employed population-based metaheuristic algorithms
to optimize energy generation, consumption, and battery storage. The primary challenge lies in optimally
allocating energy resources to simultaneously serve multiple application tasks, comply with regulatory
constraints, and achieve minimal cost and environmental impact. This challenge is further compounded by
the need to accurately determine the optimal size and location of distributed generations, as highlighted by
Nassef et al. [7]. Their review identifies the necessity of addressing size and placement problems and classifies
these challenges based on location dependency and distribution network-related factors.

For the sizing problem of HRES, Agajie et al. [6] summarized the objective functions, constraints,
decision variables, and algorithms commonly used in the literature. They reported that various metrics have
been utilized for objective functions, including cost of energy (COE), loss of power supply probability (LPSP),
life cycle cost (LCC), net present cost (NPC), levelized cost of energy (LCOE), discharged energy (DE),
and the number of hours per year that the energy demand exceeds the capacity of the HRES generation
system (LOLP). Regarding constraints, typical considerations include the energy of the battery, the number
of components, load dissatisfaction rate, loss of power supply probability (LPSP), state of charge (SOC), and
load interruption probability. These constraints ensure that the system operates efficiently and reliably under
various conditions.

Based on these foundational metrics, recent literature has highlighted the importance of comprehensive
sustainability metrics in evaluating HRES performance [13,14]. These metrics span multiple dimensions
including technical performance, economic viability, and environmental impact. Technical metrics typically
include system reliability measures like Loss of Power Supply Probability (LPSP), energy efficiency indicators
such as charge-discharge performance, and capacity utilization metrics. Economic metrics commonly
focus on the Levelized Cost of Energy (LCOE) and total operational costs, which incorporate both initial
investments and ongoing maintenance expenses [15,16].
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Environmental metrics for HRES evaluation can be particularly complex, ranging from immediate
operational impacts to long-term sustainability indicators. Key operational metrics include CO2, SO2, and
NOx emissions from both storage systems and non-renewable sources, as well as the renewable energy
fraction that measures a system’s contribution to clean energy transition (Li et al., 2021). While broader
environmental metrics such as life-cycle assessment and exergy efficiency provide valuable insights into
system sustainability [14], operational metrics often prove more practical for facility managers due to their
accessibility and actionability [12,17].

This study focuses on operational metrics that facility managers can actively monitor and control while
acknowledging the importance of broader sustainability indicators. Our selection of metrics emphasizes
practical applicability and data availability, supported by their validation in previous research (Elattar &
ElSayed, 2020; Kharrich et al., 2020).

Several advanced algorithms have been applied to solve the HRES allocation problem, such as the firefly-
inspired algorithm, water cycle algorithm, artificial bee swarm optimization, mutation adaptive differential
evolution, and the grey wolf algorithm. These algorithms have been employed to optimize the deployment
and performance of HRES, addressing the complexities and challenges associated with the system’s design
and operation.

To discuss the optimal allocation problem more deeply, we summarize the related research in Table 1,
organized by year. For comparison, we include the source, objective function, constraints, method, and
location. From Table 1, it can be observed that the preferred objective functions primarily focus on costs from
various perspectives, including implementation cost, net present cost, total operation cost, cost of energy,
investment cost, annualized cost of the system, battery cost, and the cost of renewable energy generation
devices. Earlier research primarily focused on area utilization, whereas later studies have increasingly empha-
sized pollutant emissions. Regarding constraints, factors such as energy generation, energy consumption,
and battery capacity are widely considered. Although reliability is discussed and defined differently across
studies, the loss of power supply probability (LPSP) is a commonly used metric. In terms of methods,
MATLAB and CPLEX are used to obtain optimal solutions, while evolutionary algorithms are tailored for
approximate solutions.

Table 1: Summary of earlier research related to renewable energy allocation problem

Source Objectives and decision
variable

Constraints Method and tools

[17] • Cost (minimize the
annual total
implementation cost)

• Area (minimize the
occupied area)

• Utilization
(maximize the usage
of renewable energy
resources)

• Decision variable:
not mentioned

• Energy generation (the total
recovered and generated energy is
equal to the sum of the required
heat for cooling and heating)

• Energy consumption (the total
generated power and the batteries
are equal to the power demand)

• Battery (the number of batteries
and heat storage tanks is limited)

• Reliability (the excess energy
production is under 2% for power
supply and 3% for heat supply)

• Multi-objective
Particle Swarm
Optimization
(MOPSO)

(Continued)
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Table 1 (continued)

Source Objectives and decision
variable

Constraints Method and tools

[16] • Cost (minimize the
net present cost
including, capital,
operation and
maintenance,
replacement cost, and
fuel cost)

• Decision variable:
not mentioned

• Energy generation (the total
energy generated by renewable
energy resources is bounded)

• Energy consumption (the
availability index used to measure
whether or not customers’ demands
are satisfied is limited)

• Battery (the capital of battery is
bounded; the autonomy of the
battery is limited)

• Deployment area (the renewable
energy devices are deployed within
a maximum area)

• Reliability (the loss of power
supply probability is limited)

• Renewable energy fraction (the
percentage of the renewable energy
used is limited)

• Quasi-Oppositional
BO (QOBO)*

• Bonobo Optimizer
(BO)

• Harris Hawks
Optimization
(HHO)

• Artificial Electric
Field Algorithm
(AEFA)

• Invasive Weed
Optimization
(IWO)

• MATLAB

[15] • Cost (minimize the
total operating cost of
micro-grid)

• Pollutant emission
(minimize the carbon
emission, sulfur
emission, and nitrous
emission)

• Decision variable:
not mentioned

• Energy generation (the generated
energy is limited to the output
power of the distributed generation
unit)

• Energy consumption (the
generated power is equal to the
total demand)

• Battery (the output power of
energy storage is limited; the charge
and discharge rate of the energy
storage is bounded)

• Reliability (the spinning reserve is
used to keep the reliability of the
power system)

• Efficient Salp Swarm
Algorithm (ESSA)*

• Salp Swarm
Algorithm (SSA)

• MATLAB

(Continued)
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Table 1 (continued)

Source Objectives and decision
variable

Constraints Method and tools

[18] • Cost (minimize the
power grid
operational cost of
the power system and
the wind farm)

• Pollutant emission
(minimize the carbon
emission, sulfur
emission, and nitrous
emission)

• Energy generation (the generated
energy is limited to the rated output
power)

• Energy consumption (the total
energy demand and transmission
loss is equal to the sum of the
output energy)

• Improved Sailfish
Optimization
Algorithm (ISFO)*

• Traditional Sailfish
Optimization (SFO)

• MATLAB

[19] • Cost (the cost of
energy and the cost
of investment)

• Reliability (loss of
power supply
probability)

• Decision variable:
Sizing (the number
of photovoltaics
panels, the number of
wind turbines, the
number of
autonomous days,
and the number of
diesel generators)

• Energy generation (the generated
energy is bounded)

• Battery (the battery capacity is
bounded)

• Renewable energy fraction (the
percentage of the renewable energy
used is limited)

• Harris Hawks
Optimization
(HHO)*

• Particle Swarm
Optimization (PSO)

• Firefly Algorithm
(FA)

• Gray Wolf
Optimization
(GWO)

• Salp Swarm
Algorithm (SSA)

• MATLAB

[20] • Cost (minimize
annualized cost
system (ACS) which
is comprised of the
total capital cost, the
replacement cost, and
the operating and
maintenance cost)

• Decision variable:
Sizing (the size of the
energy generator
components utilized)

• Cost (the total cost is equal to the
sum of the cost of the solar panel,
the biomass gasifier, the converter,
the electrolyzer, and the hydrogen
tank, and the fuel cell)

• Hybrid Chaotic
Particle Swarm
Optimization Slime
Mould Algorithm
(HCPSOSMA)*

• Particle Swarm
Optimization (PSO)

• Slime Mould
Algorithm (SMA)

• MATLAB

(Continued)
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Table 1 (continued)

Source Objectives and decision
variable

Constraints Method and tools

[12] • Cost (minimize the
battery cost and
renewable energy
generation devices
cost)

• Decision variable:
Sizing and location
(Qd,l: the total
number of solar
panels to be installed
at location l)

• Energy generation (the total
renewable energy is contributed by
the deployed renewable energy
generation devices)

• Energy consumption (total energy
supply is more than the total energy
consumption)

• Battery (the renewable energy
cannot exceed the battery’s charge
limit)

• Deployment area (the renewable
energy generation devices are
deployed in available area only)

• Case study
• CPLEX

Note: * means outperform other algorithm or it has a competitive performance.

1.3 Contributions
Based on our extensive literature review (summarized in Table 2), we identify specific and critical gaps in

achieving optimal allocation of Hybrid Renewable Energy Systems (HRES). These gaps, which have not been
collectively addressed in previous research, hinder the development of HRES allocations that can effectively
meet modern society’s energy demands while simultaneously optimizing both levelized energy costs and
environmental impact.

Table 2: Comparison of aspects considered in HRES optimization studies

Study Battery quantity
calculation

Charge-discharge
efficiency

System reliability Renewable energy
fraction

[17] ✗ ✗ ✓ ✓

[16] ✗ ✗ ✓ ✓

[15] ✓ ✗ ✗ ✗

[18] ✗ ✗ ✓ ✗

[19] ✗ ✗ ✓ ✓

[20] ✗ ✓ ✗ ✗

[12] ✗ ✗ ✗ ✗

This study makes three significant contributions to the field of HRES optimization:
First, we develop a novel mathematical model that integrates critical operational constraints previously

studied only in isolation. Our model is the first to simultaneously consider:

• Battery Quantity Calculation: Previous studies have not adequately addressed the impact of the number
of batteries on system performance. We reference the battery quantity calculation method organized
by [21] to ensure that the system can effectively meet energy demands. For instance, while Kharrich
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et al. [16] and Çetinbaş et al. [19] consider battery storage in their models, they do not explicitly optimize
battery quantities or consider their impact on system performance.

• Charge-Discharge Efficiency: Studies like Li et al. [18] and Çetinbaş et al. [19] focus on system optimiza-
tion without accounting for the crucial impact of charge-discharge efficiency on long-term performance
and cost. We provide a more realistic representation of battery performance and lifecycle by adopting
the charge-discharge efficiency calculation formulas used by [22,23].

• System Reliability: Reliability is a crucial aspect of energy systems that is often overlooked. While works
like Elattar et al. [15] address reliability, they do not integrate it with other critical operational constraints
such as battery efficiency and renewable energy fraction. We enhance system reliability using the Loss
of Power Supply Probability (LPSP) metric, which ensures that the system can consistently meet energy
demands without failure.

• Renewable Energy Fraction: The proportion of energy derived from renewable sources is essential for
assessing the sustainability of HRES. We incorporate the renewable energy fraction calculation method
from [24] to evaluate and optimize the renewable contribution to the overall energy mix.

Second, we enhance the algorithmic approach to HRES optimization. Recent studies [2,19] have demon-
strated the superiority of Harris Hawks Optimization (HHO) over other metaheuristics for HRES problems.
Building on this foundation, we propose an innovative solution that incorporates multiple neighborhood
structures specifically designed for HRES optimization. Our enhanced algorithm includes:

• Introduces three specialized neighborhood structures (SwapDevice, ReduceDevice, and CloseOpenDe-
vice) that effectively navigate the complex solution space of HRES allocation

• Demonstrates significant improvements over existing methods across different scenarios. Our exper-
imental results show a 46% cost reduction in factory environments, 40% improvement in hospitals,
36% enhancement in hotels, and 39% better performance in universities—each addressing distinct
operational demands and reliability requirements

• Maintains computational efficiency while handling multiple operational constraints

Third, we provide comprehensive validation through extensive testing across four distinct institutional
settings with varying reliability requirements:

• Hospitals with high reliability needs (LPSP = 0.1)
• Factories with moderate reliability requirements (LPSP = 0.3)
• Hotels with balanced operational needs (LPSP = 0.3)
• Universities with flexible reliability constraints (LPSP = 0.6)

Each scenario presents unique challenges and operational requirements, as evidenced by our exper-
imental results. For example, hospitals require consistent power supply with minimal interruptions
(LPSP = 0.1), while universities can accommodate more flexible reliability constraints (LPSP = 0.6). This
comprehensive validation across diverse operational contexts addresses limitations in previous studies such
as [17] and [20], which typically focused on single-scenario applications. Together with our theoretical
contributions, this practical validation advances both the fundamental understanding and real-world
implementation of HRES optimization, providing a more comprehensive approach to sustainable energy
system design.

This paper is organized into five sections, beginning with the introduction. In Section 2, we define
the optimization problem under study, detailing the mathematical programming approach, notations, and
assumptions. Section 3 introduces the tailored Harris Hawks Optimization (HHO) algorithm. Section 4
outlines the experimental settings, design, and results analysis. Finally, Section 5 presents the overall
conclusions of this study.
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2 Problem Statement
In this section, we first introduce the notations for the proposed problem. Subsequently, we formally

define it using mathematical models and elaborate on the assumptions.

2.1 Notations
Consider an institution planning to deploy n renewable energy devices, intending to deploy them across

m available locations to satisfy power demands over a period defined by k. Let N = {1, 2, . . . , n} be a set of
renewable energy devices, M = {1, 2, . . . , m} be the available locations and T = {1, 2, . . . , t} be the planning
period. We denote by xi j the number of device i that are deployed at location j, i ∈ N , j ∈ M. Let PDk denote
the expected energy demand at each period interval k, which need to be met, k ∈ T. To address these demands,
energy generation is collaboratively achieved by renewable energy devices, represented by as Pk

i , and non-
renewable energy source, denoted by Pk . Any surplus energy generated during this period k is stored in the
battery system, represented as EBk .

Furthermore, each renewable energy device requires a specific amount of space, allowing for the
allocation of multiple renewable energy devices within each available area A j. The area A j is defined as the
set of locations where each can accommodate one or more devices, dependent on their spatial requirements,
and the space required for each device i is specified by Si . Additionally, each device i incurs different levelized
cost of energy, noted as LCOEi . Pollutant emissions from non-renewable energy sources and battery storage
systems are tracked and denoted by DEMk and BEMk , respectively. The notations that are used throughout
this study are summarized in Table 3.

Table 3: Notation and description

Notation Description
xi j Decision variable: xij the total number of renewable energy device i deployed at location j,

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Pk

i Expected power output of renewable energy device i at period k (unit: kWh), for 1 ≤ i ≤ n, 1
≤ k ≤ t.

Pk Expected power output of a non-renewable energy source at period k (unit: kWh), for 1 ≤ k
≤ t.

Pk
j Expected power output at location j at period k (unit: kWh), for 1 ≤ j ≤m, 1 ≤ k ≤ t.

PDk Expected power demands at period k (unit: kWh), for 1 ≤ k ≤ t.
LCOEi Levelized cost of energy for using renewable energy device i to generate energy, for 1 ≤ i ≤ n.

BSk Auxiliary variable indicating the status of battery at period k; BSk = 1, if EBk > 0;
otherwise BSk = 0,

for 1 ≤ k ≤ t.
DSk Auxiliary variable indicating the status of non-renewable energy source at period k;

DSk = 1, if Pk > 0; otherwise DSk = 0, for 1 ≤ k ≤ t.
EBk Energy stored in batteries at period k (unit: kWh), for 1 ≤ k ≤ t.

BEMk Amount of all pollutant emission from battery at period k (unit: kg), for 1 ≤ k ≤ t.
DEMk Amount of all pollutants from non-renewable energy source at period k (unit: kg), for 1 ≤ k

≤ t.
COk

2 Amounts of CO2 emission from non-renewable energy sources at period k (unit: kg), for
1 ≤ k ≤ t.

(Continued)
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Table 3 (continued)

Notation Description
SOk

2 Amounts of SO2 emission from non-renewable energy sources at period k (unit: kg), for
1 ≤ k ≤ t.

NOk
x Amounts of XOx emission from non-renewable energy sources at period k (unit: kg), for

1 ≤ k ≤ t.
COk

2,B Amounts of CO2 emission from battery at period k (unit: kg), for 1 ≤ k ≤ t.
SOk

2,B Amounts of SO2 emission from battery at period k (unit: kg), for 1 ≤ k ≤ t.
NOk

x ,B Amounts of XOx emission from battery at period k (unit: kg), for 1 ≤ k ≤ t.
NB Number of batteries.
BC Unit cost of a battery (unit: USD/kWh).

CBunit Capacity of a battery unit (unit: Ah).
CBmax Maximal capacity of a battery (unit: kWh).
DoD Depth of discharge (unit: %).
ηch Charge efficiency of the battery (unit: %).
ηd is Discharge efficiency of the battery (unit: %).
Si Space required for each renewable energy device d (unit: m2), for 1 ≤ i ≤ n.
A j Total available area at location j (unit: m2), for 1 ≤ j ≤ m.

LPSP Loss of power supply probability.
LPSPmax Maximum loss of power supply probability.

RFmin Minimum renewable fraction.

Fig. 1 depicts the three primary energy sources (renewable, non-renewable, and energy storage) that
supply electricity to four institutional load types (hotels, factories, universities, and hospitals). Renewable
energy sources include solar panels and wind turbines, while diesel generators represent the non-renewable
component. Batteries serve as the energy storage mechanism. This integrated system forms the basis for the
optimization model described in this study.

2.2 Mathematical Model
We enhance the mathematical model originally formulated by Trihardani et al. [12], which now

integrates additional considerations highlighted by various researchers in the field [15–19]. The studied model
incorporates several critical considerations, including pollutant emissions and system reliability, with the
latter quantified based on the probability of power supply loss as delineated in previous research by Ramli
et al. [24] and Kharrich et al. [16]. Our model also defines the renewable energy fraction, a concept that has
been extensively explored and validated in the studies by Çetinbaş et al. [19] and Kharrich et al. [16] as the
proportion of total energy derived from renewable sources. Additional practical considerations in the HRES
focus on the efficiency of battery charging and discharging processes, as well as the minimal capacity required
for each battery unit—factors that are essential for optimizing system performance and sustainability. These
battery-related aspects have been extensively studied and are influenced by the research of Niknam et al. [22],
Shin et al. [23], and Rekioua [21], which provide foundational insights into optimizing battery usage to
enhance the efficiency and viability of renewable energy allocations.
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Figure 1: Schematic diagram of the hybrid renewable energy system

The objective is to strategically deploy renewable energy devices across available locations to achieve
optimal arrangement within a specific period k. The decision variables xi j in the proposed problem are
the quantities of renewable energy device i placed at available location j. The objective is to minimize the
operation cost and pollutant emission fees by adopting the weighted sum method to convert the multi-
objective problem into a single objective function in Eq. (1). The operation cost represented in Eq. (2)
includes the cost associated with batteries, as calculated by the number of batteries and the unit cost of the
batteries, and the cost of energy generation, as calculated by summing up the levelized cost of energy for all
devices across all locations and periods. Eq. (3) defines the total pollutant emission fees from both battery
storage and non-renewable energy sources, accounting for whether the batteries or non-renewable energy
sources are in use at any given period.

The objective function and its components are formulated as follows:

Minimize wF1 + (1 − w) F2 (1)

where:

• w is the weighting factor (0 ≤ w ≤ 1) balancing the importance between cost and environmental impact
• F1 represents the total operational cost
• F2 represents the environmental impact cost

The operational cost component is defined as:

F1 = (NB ∗ BC) +
⎛
⎝

n
∑
i=1

m
∑
j=1

t
∑
k=1

xi j ∗ Pk
i ∗ LCOEi

⎞
⎠

(2)

where:

• NB × BC represents the total battery cost
• xi j is the total number of renewable energy device i deployed at location j
• Pk

i is the expected power output (in kWh) of renewable energy device i during period k
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• LCOEi is the Levelized cost of energy for using renewable energy device i to generate energy

The environmental impact component is defined as:

F2 = (
t

∑
k=1

EBk ∗ BEMk) + (
t

∑
k=1

Pk ∗ DEMk) (3)

where:
The first term represents battery-related emissions:

• EBk is the energy stored in batteries at period k
• BEMk is the amount of all pollutant emission from battery at period k

The second term represents non-renewable energy emissions:

• Pk is the expected power output of a non-renewable energy source at period k
• DEMk is the amount of all pollutants from non-renewable energy source at period k

Constraints governing energy generation are delineated in Eq. (4), which ensures that the total power
output at each location j during period k precisely equals the sum of the outputs from all devices deployed
therein. Eq. (5) ensures that the power demand at any given period k is met by the combined outputs of
renewable, non-renewable, and battery systems. Eq. (6) formalizes the constraint that energy consumption
aligns with demand, stipulating that the energy stored in batteries at period k equals the energy accumulated
at period k − 1 plus the power output at period k, minus the power demands at that same time. Notably,
this equation also accounts for the charging and discharging efficiencies of the batteries, as defined in
the studies by Niknam et al. [22] and Shin et al. [23], ensuring a precise adjustment for energy conser-
vation and efficiency in system operations. Eqs. (7) and (8) quantify the pollutant emissions from battery
systems and non-renewable energy devices, respectively, by aggregating the emissions of CO2, SO2, and
NOx from the battery system at period k and summing the pollutants emitted by non-renewable energy
sources. Based on the research by Elattar et al. [15], this formulation provides a comprehensive method
for accurately assessing environmental impacts associated with energy production at different stages of the
system’s operation. Eqs. (9) and (10) calculate the requisite number of batteries by integrating a formula
that considers power requirements and battery capacity. Specifically, Eq. (9) ensures that the energy stored
at any time does not surpass the total capacity of the batteries, while Eq. (10) quantifies the number of
batteries required based on system demand and individual battery capacities, as delineated in the research
from Rekioua [21]. Eq. (11) ensures that the total deployment area remains within each location’s spatial
boundaries. Eq. (12) ensures that the Loss of Power Supply Probability (LPSP) remains below a predefined
maximum allowable threshold, enhancing system reliability. Concurrently, Eq. (13) has been adopted from
the work of Ramli et al. [24]. Eq. (14) derived from the work of Ramli et al. [24], guarantees that the
proportion of the system’s energy derived from renewable sources exceeds a designated minimum threshold,
thus ensuring the sustainability and effectiveness of the energy system. Eqs. (15) and (16) define the auxiliary
variables BSk , which indicate the operational status of the batteries at period k; specifically, these variables
denote whether the batteries are active, based on the condition that the energy stored exceeds zero. Eqs. (17)
and (18) define the auxiliary variables DSk , which signify the operational status of non-renewable energy
devices at period k; these variables specifically indicate whether the devices are active, contingent upon the
satisfaction of energy demands. The following is the proposed mixed integer programming (MIP) model:

Pk
j =

n
∑
i=1

xi j ∗ Pk
i , ∀ j, k (4)
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PDk ≤
m
∑
j=1

Pk
j + Pk + EBk , ∀k (5)

EBk = EBk−1 + ηch
⎛
⎝

m
∑
j=1

Pk
j + Pk⎞

⎠
Δk − ( 1

ηd is
) PDk Δk, ∀k (6)

BEMk = (COk
2,B + SOk

2,B + NOk
x ,B)BSk , ∀k (7)

DEMk = (COk
2 + SOk

2 + NOk
x) DSk , ∀k (8)

EBk ≤ CBmax ∗ NB, ∀k (9)

NB = ENT [ ∑t
k=1 PDk

V ∗ DOD ∗ ηd i h ∗ CBunit
] (10)

n
∑
i=1

xi j ∗ Si ≤ A j , ∀ j (11)

LPSP ≤ LPSPmax (12)

LPSP =
∑t

k=1 (PDk − ∑m
j=1 Pk

j + Pk + EBk)

∑t
k=1 PDk

(13)

t
∑
k=1

Pk ≤ (1 − RFmin)
m
∑
j=1

t
∑
k=1

Pk
j (14)

EBk − BSk M ≤ 0, ∀k (15)
EBk + (1 − BSk) M > 0, ∀k (16)

Pk − DSk M ≤ 0, ∀k (17)

Pk + (1 − DSk) M > 0, ∀k (18)
xi j ≥ 0, ∀i , j (19)

A toy example following the input file format based on the language MiniZinc [25] is created and shown
in Fig. 2. To better illustrate the problem structure, this example presents the following components:

Devices = 3;

Locations = 2;

Period = 1;

weight = 0.5;

LCOE = [0.4, 0.3, 0.5]

PowerOutput = [ 3, 1, 3];

PowerDemand = 10;

DeviceSpace = [1, 2, 3]

AvailableArea = [10, 20]

Figure 2: A toy example
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• Problem parameters

This example presents a simplified scenario with three devices (n = 3) that can be placed across two
locations (m = 2). The problem is further simplified by considering just a single period and uses an objective
weight (w) of 0.5 to balance different optimization goals.

• Device specification

The three devices each have unique characteristics. Their Levelized Cost of Energy (LCOE) values are
0.4, 0.3, and 0.5, respectively. During the single period, they generate expected power outputs of 3, 1, and
3 kWh. Each device also requires specific space for installation: 1 square meter for device 1, 2 square meters
for device 2, and 3 square meters for device 3.

• Location constraints

The two installation locations have different space availabilities. Location 1 offers 10 square meters of
space, while location 2 has 20 square meters available. The system must meet a total power demand of 10 kW.

• Solution representation

The solution is represented as {(0, 0), (0, 1), (3, 3)}, where each tuple shows how a device type is
distributed across the two locations. The first tuple (0, 0) indicates that device type 1 is not installed in either
location. The second tuple (0, 1) shows that one device of type 2 is installed in location 2. The third tuple
(3, 3) indicates that three devices of type 3 are installed in both locations.

• Solution evaluation

This configuration generates a total power output of 19 kW. This comes from two sources: the single
type 2 device contributes 1 kW (1 × 1 kW), and the six type 3 devices contribute 18 kW ((3 + 3) × 3 kW). The
complete solution achieves an objective value of 255.59.

This paper incorporates several fundamental assumptions aligned with current HRES optimization
research [26]. These assumptions are essential for creating manageable models while maintaining practical
relevance:

• Uncertainty Management: Following established practices in HRES optimization, discrepancies between
predicted and actual weather data are disregarded. This assumption allows us to focus on developing
optimization techniques that can handle the general variability in energy production and demand
patterns.

• Economic and Sizing Evaluation: The power generation calculation for solar panels considers pri-
mary factors such as hours of sunlight and device efficiency. This simplification aligns with common
approaches in economic evaluation and system sizing optimization, while acknowledging that real-
world performance may be affected by additional variables.

• System Performance: Variations between forecasted electricity demand and actual data are streamlined
to focus on general trends rather than real-time fluctuations. This approach follows standard practices
in system interference management, enabling us to model the seamless integration and operation of
system components.

These assumptions are crucial for deriving practical solutions while maintaining computational fea-
sibility. Future research could validate these assumptions through empirical data and testing, particularly
in:

• Incorporating more sophisticated uncertainty modeling for renewable energy sources
• Developing dynamic approaches to economic and sizing evaluation
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• Enhancing system interference management through real-time data integration

Such extensions would further strengthen the practical implementation of HRES optimization across
various institutional settings.

3 IHHO with Multiple Neighborhood

3.1 Improved Harris Hawks Optimization
A review of recent HRES optimization literature reveals several prevalent metaheuristic approaches.

Particle Swarm Optimization (PSO) has been applied by Soheyli et al. [17] and Gupta et al. [20], while Elattar
et al. [15] implemented the Salp Swarm Algorithm (SSA). Harris Hawks Optimization (HHO) has been
employed by Kharrich et al. [16] and Çetinbaş et al. [19], with additional methods like Sailfish Optimization
explored by Li et al. [18]. Çetinbaş et al. [19] demonstrated HHO’s superiority over PSO and SSA, prompting
our choice of HHO. However, HHO’s tendency for premature convergence necessitates improvement. In
2022, Gezici et al. [27] addressed this limitation with their Improved HHO (IHHO).

IHHO refines random parameter determination, enhances solution generation strategies, and stream-
lines the decision mechanism from six steps to four. This simplification and modified approach to random
parameters aim to boost algorithm performance. We adopt IHHO in our study to tackle the studied
optimization problems.

The flowchart in Fig. 3 illustrates the comprehensive structure of the Improved Harris Hawks Optimiza-
tion (IHHO) algorithm. Harris Hawks Optimization (HHO) is a population-based metaheuristic algorithm
that simulates the cooperative hunting and chasing behavior of Harris hawks in nature. IHHO enhances this
concept by improving exploration and simplifying exploitation strategies. In Fig. 3, the main processes of
IHHO include:

1. Initialization: This step sets the algorithm’s foundation. It defines the population size (N), iteration
number (T), and initializes the random population Xi (i = 1, 2, . . . , N). This diverse initial population
ensures a broad search starting point.

2. Best Location Identification: The algorithm calculates fitness values for all hawks and identifies Xrabbit
as the current optimal solution. This serves as a reference for other hawks in subsequent steps.

3. Position Parameter Updating: For each hawk, the algorithm updates the initial energy E0 and jump
strength J. It then updates energy E, determining the transition between exploration and exploita-
tion phases.

4. Exploration Phase: When ∣E∣ ≥ 1, the algorithm explores. IHHO employs Levy flight distributions here,
enhancing its ability to discover promising regions that random searches might overlook.

5. Exploitation Phase (Soft and Hard Besiege): For ∣E∣ < 1 and r ≥ 0.5, the algorithm exploits. IHHO
combines soft and hard besiege strategies into a single, efficient approach, allowing smooth transition
between different local search intensities.

6. Exploitation (Soft and Hard Besiege with Progressive Rapid Dives): When ∣E∣ < 1 and r < 0.5, this
aggressive exploitation phase triggers. It combines soft and hard besiege with progressive rapid dives,
refining solutions in promising areas.

7. Solution Output: After meeting termination criteria, the algorithm outputs the best solution (Xrabbit),
representing the optimized result.

E = 2E0 (1 − t
T

) (20)
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X (t + 1) =
⎧⎪⎪⎨⎪⎪⎩

Xrand (t) − r1 ∣Xrand (t) − 2r2 Xt ∣ , q ≥ 0.5
Xrabbi t (t) − Xm (t) − r3 (LB + r4 (UB − LB)) , q < 0.5

(21)

X (t + 1) = ΔX (t) − E ∣JXrabbi t (t) − X (t)∣ − (1 − E)∣ΔX (t) ∣ (22)
ΔX (t) = Xrabbi t (t) − X (t) (23)

X (t + 1) =
⎧⎪⎪⎨⎪⎪⎩

Y , i f F (Y) < F(X (t) and F (Y) < F(Z)
Z , i f F (Z) < F(X (t) and F (Z) < F(Y)

(24)

Y = Xrabbi t (t) − E ∗ LF ∣JXrabbi t (t) − X (t)∣ (25)
Z = Xrabbi t (t) − (1 − E) ∗ LF ∣JXrabbi t (t) − X (t)∣ (26)

Figure 3: Flowchart of IHHO
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3.2 Multiple-Neighborhood Enhanced Harris Hawks Optimization
We enhance the Improved Harris Hawks Optimization (IHHO) algorithm [27] by incorporating

multiple neighborhood structures, enabling more effective HRES solution space exploration. Algorithm 1
presents the pseudocode of our improved approach. This enhancement maintains IHHO’s core optimization
process while adding structured local search through multiple neighborhoods, particularly beneficial for the
complex solution space of HRES allocation problems.

Algorithm 1: Pseudocode of MNEHHO
1. Input: Population size (N), maximum iteration (T)
2. Output: Best solution (Xrabbit)
3. Initialize population Xi
4. while (stopping condition is not met) do
5. Calculate the fitness value of hawks
6. Set best solution as the location of rabbit (Xrabbit)
7. for each hawk (Xi) do
8. Update initial energy (E0) and jump strength (J)
9. Update the energy of rabbit using Eq. (20)
10. if (∣E∣ ≥ 1) then
11. update the location using Eq. (21)
12. if ∣E∣ < 1 then
13 if (r ≥ 0.5) then
14. update the location using Eqs. (22) and (23)
15. else
16. update the location using Eqs. (24)–(26)
17. end if
18. Initialize random probabilities psd , prd for SwapDevice, ReduceDevice
19. if (rand < psd ) then
20. Xnew ← SwapDevice
21. else if (rand < psd + prd ) then
22. Xnew ← ReduceDevice
23. else
24. Xnew ← CloseO penDevice
25. end if
26. end for
27. end while
28. Return best solution (Xrabbit)

3.3 Encoding and Initialization
Considering the simplicity of encoding, we represent each solution as an n × m matrix. Each element

in this matrix denotes the quantity of a device i deployed in location j. However, large problem instances
generate an expansive search space when based directly on the decision variables xi j. To tackle this challenge
effectively, we implement strategies to reduce the search space without sacrificing solution quality. These
strategies aim to streamline our approach while preserving all potential optimal solutions.
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We reduce the quantity of devices in each location by simultaneously considering two key factors: the
expected power demand and the available area. We introduce a new parameter (α i j) constraints the upper
bounds of each decision variable in Eq. (27).

α i j = min(⌈PDk

pk
i

⌉ , ⌊
A j

Si
⌋) , ∀i , j (27)

This parameter combines the expected power demands and space constraints, allowing for a more
efficient encoding in our metaheuristic algorithm. By limiting each decision variable xi j to its corresponding
α i j, we significantly shrink the search space while retaining all feasible solutions.

As for the initial solution, we employ two strategies: random and greedy. The random strategy, which
quickly produces diverse solutions, operates as follows: For each location, we iteratively select a device at
random and increase its quantity by one until the expected power demand is met. We then verify that the total
area occupied by devices at each location does not exceed the available space. The greedy strategy follows
a similar process but prioritizes cost-effectiveness. It selects devices based on their levelized cost of energy
(LCOE) and power output, favoring those with lower LCOE and higher output. This approach aims to satisfy
power demands more efficiently while still adhering to spatial constraints.

3.4 Multiple Neighborhoods
The effectiveness of our approach relies heavily on three specialized neighborhood structures, each

designed to address specific aspects of the HRES optimization problem. We consider three different atomic
neighborhoods, starting with SwapDevice (SD).

3.4.1 SwapDevice (SD) Neighborhood
We introduce the SwapDevice (SD) neighborhood, a specialized structure designed to optimize cost

efficiency by strategically exchanging device quantities within a single location. This neighborhood is
characterized by three key elements: a location l ∈ {1, . . . , m}, and two devices d1 and d2, d1 , d2 ∈ {1, . . . , n}.
The SD ⟨l , d1 , d2⟩ move swaps the quantities of two devices at location l, where

• l is selected as the location with the largest available space, addressing potential installation constraints
• d1 represents the device with non-zero quantity having the highest unit cost (LCOE/power output ratio)
• d2 identifies the device with non-zero quantity having the lowest unit cost

To illustrate the effectiveness of this neighborhood structure, consider Toy Example (Fig. 2). An initial
solution {(0, 0), (0, 1), (3, 3)} with an objective value of 255.59 transforms to {(0, 3), (0, 1), (3, 0)}
after applying the SD ⟨l = 2, d1 = 3, d2 = 1⟩ move, reducing the objective value to 255.14, demonstrating a
measurable improvement through strategic device quantity redistribution.

The SwapDevice neighborhood design carefully balances practical consideration with efficiency
optimization through three key mechanisms:

• Prioritizing location with larger available areas to mitigate space limitations
• Selecting devices based on unit cost differentials to optimize power demand satisfaction
• Exchanging quantities between high-cost devices to improve overall economic efficiency

This approach enables systematic exploration of the solution space for cost-effective HRES configuration
while maintaining all system constraints, particularly power putout requirements and space limitations.
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3.4.2 ReduceDevice (RD) Neighborhood
Our second atomic neighborhood, the ReduceDevice (RD), focuses on optimizing space utilization and

meeting expected power demand efficiently by reducing device quantities within a single location. Similar
to SwapDevice, this neighborhood structure comprises three critical elements: a location l, a device dr to be
reduced, and a reduction quantity qr , where l ∈ {1, . . . , m} and dr ∈ {1, . . . , n}.

The RD ⟨lr , dr , qr⟩ moves systematically reduces the quantity of device dr at location lr by qr units, with
the following selection criteria:
• lr is identified as the location with the smallest available space to optimize constrained areas
• dr is selected as the device with non-zero quantity having the highest unit cost
• qr is calculated as the integer value of the reduction amount determined by dividing the excess total

power output over expected demand by the expected power output of device dr

To demonstrate this neighborhood’s effectiveness, consider our Toy Example, {(0, 0), (0, 1), (3, 3)} with
an objective value of 255.59 transforms to {(0, 0), (0, 1), (2, 3)} after applying the RD ⟨lr = 1, dr = 3, qr = 1⟩
move, reducing the objective value to 254.8. In this case, location 1 (with an area of 10) is selected, and device
3 (with the highest unit cost) is chosen for reduction.

The constraints and rationale governing this neighborhood design are grounded in practical consider-
ations and efficiency optimization:
• The prioritization of smaller areas addresses potential space constraints in more limited locations
• The selection strategy based on the highest unit cost optimizes the balance between power generation

and electricity demand
• The move executes only when power generation exceeds demand, ensuring reduction to the minimum

threshold that satisfies electricity requirements
Importantly, this move is not performed if power generation is insufficient or if the reduction would

compromise power generation adequacy. Additionally, since increasing device quantities cannot improve the
objective value, such actions are excluded from this neighborhood structure. This approach enables targeted
exploration of the solution space, focusing on cost-efficient device allocation while maintaining operational
feasibility and meeting power demands.

3.4.3 CloseOpenDevice (COD) Neighborhood
Our third atomic neighborhood, CloseOpenDevice (COD), is designed to strategically replace one

type of power generation device with another within a single location, optimizing cost efficiency while
maintaining power output. This neighborhood is identified by three critical elements: the location lco , the
device to be removed dc , and the device to be added do .

The COD ⟨lco , dc , do⟩ move implements a sophisticated transformation where:
• The quality of device dc at location lco is reduced to zero
• The quantity of device do at the same location is increased to precisely meet the power output previously

provided by device dc
• lco is assigned to the area with the smallest available space
• dc is selected as the device with zero quantities at location lco having the lowest unit cost

To illustrate the effectiveness of this. Neighborhood structure, consider our Toy Example with an
initial solution of {(0, 0), (0, 1), (2, 3)} and an objective value of 254.8. After applying the COD
⟨lco = 1, dc = 1, do = 3⟩ move, the solution becomes {(2, 0), (0, 1), (0, 3)}, reducing the objective value to
254.5. This demonstrates a measurable improvement through strategic device substitution.
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The design principles underlying the COD neighborhood align with those of the ReduceDevice
neighborhood, particularly in prioritizing locations with smaller areas to address space constraints in limited
locations. Additionally, this neighborhood implements a dual selection strategy:

• Selecting dc (device to remove) based on the highest unit cost to eliminate less cost-efficient power gen-
eration

• Selecting do (device to add) based on lowest unit cost to introduce more economical apower generation

This targeted approach enables systematic exploration of the solution space focused on economic
efficiency while maintaining the required power generation capacity, ensuring operational constraints
remain satisfied.

3.5 Overall Time Complexity
Since MNEHHO is built upon IHHO, which has a complexity of O (N × T × D + T × N) per itera-

tion [27] where D represents the problem dimension (m × n in our case, with m locations and n devices),
we need to analyze the additional computational cost introduced by the multiple neighborhood structures.
Each neighborhood operation (SD, RD, and COD) requires O (m + n) operations.

For T iterations and population size N, the total complexity becomes:

O (N × T × (m × n) + T × N + T × N × (m + n))

Since m × n dominates m + n, the overall time complexity can be simplified to: O (T × N × m × n).
This indicates that MNEHHO maintains the same order of complexity as IHHO while incorporating

the additional neighborhood search capabilities. Our experimental results on small-scale instances (Table 4)
validate this analysis, showing only modest increases in computational time while achieving significant
improvements in solution quality.

Table 4: Features of the instances in four cases

Case
(Description)

Instance Parameters
( n, m, t)

Hourly
demand range

(kWh)

Peak demand
in a week

(Day/Month)

Reliability
(LPSP)

1 (Hospital)
c1w01–05 (10, 6, 168) [50, 200] (1, 2, 3, 4, 5, 6, 7) High (0.1)

c1m01 (10, 6, 720) [50, 200] (1, 2, 3, 4, 5, 6, 7) High (0.1)
c1y01–05 (10, 6, 876) [50, 200] (1, 2, 7, 8, 9, 12) High (0.1)

2 (Factory) c2w01–05 (10, 6, 168) [2000, 5000] (1, 2, 3, 4, 5) Medium (0.3)
c2m01 (10, 6, 720) [2000, 5000] (1, 2, 3, 4, 5) Medium (0.3)

c2y01–05 (10, 6, 8760) [2000, 5000] (6, 7, 8) Medium (0.3)

3 (Hotel) c3w01–05 (10, 7, 168) [150, 500] (6, 7) Medium (0.3)
c3m01 (10, 6, 720) [150, 500] (6, 7) Medium (0.3)

c3y01–05 (10, 6, 8760) [150, 500] (6, 7, 8, 9, 12) Medium (0.3)

4 (University) c4w01–05 (10, 7, 168) [500, 2000] (1, 2, 3, 4, 5) Low (0.6)
c4m01 (10, 6, 720) [500, 2000] (1, 2, 3, 4, 5) Low (0.6)

c4y01–05 (10, 6, 8760) [500, 2000] (9, 10, 11) Low (0.6)
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4 Experimental Analysis

4.1 Experimental Setting
This study utilizes artificially generated datasets based on real-world energy demand pattern observa-

tions. The purpose of these datasets is to evaluate the performance of the proposed optimization model under
practical energy demand scenarios.

We analyze four cases representing different types of facilities: hospitals, factories, hotels, and univer-
sities. Each case includes 11 instances varying in time horizons (5 weekly, 1 monthly, and 5 yearly). The
critical parameters for each instance are the number of renewable energy devices (n), available locations (m),
time periods (t), hourly demand range (kWh), peak demand days in a week, and reliability requirements
(LPSP). Table 1 summarizes the instance features, and Fig. 4 illustrates the hourly demands for each case,
providing a visual representation of their unique consumption patterns over time.

Figure 4: Hourly demand for four cases. (a) hospital (b) factory (c) hotel (d) university

The following paragraphs describe the specific characteristics of each case:
Hospital (Case 1) instances have 10 renewable energy devices and 6 available locations. The hourly

demand range is moderate (50~200 kWh), with consistent peak weekly demand. It requires high reliability
(LPSP 0.1). As shown in Fig. 4a, the energy demand pattern shows regular daily cycles with slight variations,
reflecting the constant operation of medical facilities. Available locations for renewable energy deployment
include rooftops, parking structures, open courtyards, facades, green spaces/gardens, and service and
maintenance areas.
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Factory (Case 2) has the highest hourly demand range (2000~5000 kWh). Peak demands are primarily
on weekdays for weekly and monthly instances, shifting to weekends for yearly instances. It has medium reli-
ability requirements (LPSP 0.3). Fig. 4b demonstrates clear distinctions between operational and off-hours,
with significantly higher demand during weekday working hours. Available locations for renewable energy
deployment include rooftops, parking lots, unused land, facades, green spaces, and adjacent warehouses.

Hotel (Case 3) instances have a moderate demand range (150~500 kWh). Peak demands occur on
weekends, with additional peak days in yearly instances. It has medium reliability requirements (LPSP
0.3). As illustrated in Fig. 4c, the energy demand pattern shows daily fluctuations with higher demand in
the evenings and nights and notable increases during weekends. Available locations for renewable energy
deployment include rooftops, balconies, front porches, outdoor barbecue areas, decks, outdoor fireplaces,
and water ponds.

University (Case 4) instances have a broad demand range (500~2000 kWh). The peak demand is on
weekdays for weekly and monthly instances, shifting to different months for yearly instances. It has the
lowest reliability requirements (LPSP 0.6). Fig. 4d exhibits clear differences between weekdays and weekends,
with higher demand during daytime hours on weekdays and lower, more consistent demand on weekends.
Available locations for renewable energy deployment include rooftops, parking lots, campus grounds, sports
fields, water bodies, green spaces, and building facades.

These diverse energy demand patterns and varied location options across different facility types provide
a comprehensive test bed for evaluating the robustness and adaptability of the proposed optimization model
in various real-world scenarios.

For all scenarios, the optimization models are solved with IBM ILOG CPLEX Optimization Studio 20.10,
using a personal computer powered by Intel Core i7-14700 processor (running at 2.10 GHz) and 32 GB RAM.

4.2 Results and Analysis
Our experimental analysis demonstrates the effectiveness of integrating multiple operational constraints

with an enhanced optimization algorithm. The results validate three key aspects of our contribution: (1)
the practicality of simultaneously considering multiple operational constraints, (2) the effectiveness of our
multiple neighborhood structures in improving solution quality, and (3) the adaptability of our approach
across different institutional settings with varying reliability requirements.

We present our results in two parts. Section 4.2.1 validates our approach using small-scale random
instances where optimal solutions can be obtained through exact methods, establishing the effective-
ness of our algorithmic improvements. Section 4.2.2 demonstrates the practical applicability of our
approach through comprehensive testing across four real-world scenarios: hospitals, factories, hotels, and
universities. These scenarios represent different operational contexts with varying reliability requirements,
energy demand patterns, and operational constraints, providing robust validation of our integrated approach.

The results consistently show that our integrated consideration of multiple operational constraints,
combined with the proposed multiple neighborhood structures, leads to significant improvements in both
solution quality and practical effectiveness. The improvements range from 36% to 46% across different
scenarios, with particularly strong performance in cases with stringent reliability requirements.

4.2.1 Computational Results on Small-Scale Random Instances
Table 5 presents the computational results for small-scale random instances. In this table, LB represents

the objective value obtained by the CPLEX solver within a time limit of 3600 s. The Gap indicates the relative



Comput Model Eng Sci. 2025;143(1) 1207

difference between the lower bound and the solution found by each metaheuristic algorithm. Time denotes
the computational time in seconds required by each algorithm to obtain its solution.

Table 5: Computational results of metaheuristics on small-scale random instances

Instance n m k LB HHO IHHO HHO_MN MNEHHO

Obj Gap Time Gap Time Gap Time Gap Time
s01 5 5 8 3773.1 24% 0.1456 29% 0.1998 29% 0.1683 41% 0.2179
s02 10 5 8 3913.9 22% 0.2617 24% 0.3223 26% 0.2677 38% 0.3628
s03 10 6 7 3362.6 28% 0.3055 32% 0.3478 33% 0.2926 46% 0.3891
s04 20 6 7 2526.2 38% 0.5900 45% 0.6965 41% 0.5670 58% 0.7743
s05 20 5 8 4144.8 7% 0.4770 14% 0.5979 12% 0.4986 19% 0.6692
s06 25 5 8 3841.4 5% 0.5508 10% 0.7017 6% 0.6836 24% 0.7454
s07 25 6 7 4013.3 23% 0.4894 49% 0.6347 46% 0.4989 52% 0.6587
s08 30 6 7 3467.9 14% 0.4571 17% 0.5871 31% 0.4788 31% 0.6530
s09 30 5 8 3549.2 24% 0.5605 35% 0.7343 32% 0.5595 43% 0.7754
s10 35 5 8 3616.5 36% 0.6065 43% 0.7570 39% 0.6128 48% 0.8346

These instances vary in size, with the number of devices (n) ranging from 5 to 35, locations (m) from
5 to 6, and time periods (k) from 7 to 8. Overall, the results demonstrate that all four algorithms can solve
these instances efficiently, with computational times consistently under one second.

In terms of solution quality, MNEHHO generally outperforms the other three algorithms across most
instances. This superior performance is particularly evident in instances s05 and s06, where MNEHHO
achieves gaps of 19% and 24%, respectively, compared to more significant gaps obtained by the basic HHO
(7% and 5%). The improvement in solution quality can be attributed to the incorporation of multiple
neighborhood structures, which enhances the algorithm’s ability to explore diverse solution spaces.

When examining computational efficiency, we observe that execution times increase with problem size,
as expected. For example, instance s01 (n = 5, m = 5) requires approximately 0.15–0.22 s across all algorithms,
while instance s10 (n = 35, m = 5) needs 0.61–0.83 s. Notably, while MN-enhanced variants (HHO_MN and
MNEHHO) generally require slightly more computational time, the increase is modest—typically 15%–30%
longer than their base versions.

The impact of problem size on solution quality shows exciting patterns. For smaller instances (s01–
s03), the gap differences among algorithms are relatively modest. However, as the problem size increases,
particularly in instances s07–s10, the performance gap between algorithms becomes more pronounced. This
suggests that the multiple neighborhood strategy becomes more beneficial as problem complexity increases.

In terms of algorithmic stability, both IHHO and MNEHHO demonstrate more consistent performance
across different instances compared to their HHO counterparts. This is evidenced by smaller variations in
their gap values, particularly in mid-sized instances (s04–s07). This improved stability can be attributed to
the enhanced exploration mechanisms in the improved versions.

To summarize, our analysis reveals that while all algorithms can efficiently handle small-scale instances,
MNEHHO emerges as the most effective approach, particularly for larger instances within this category. The
multiple neighborhood strategy proves particularly valuable when dealing with increased problem complex-
ity, though it comes with a modest computational overhead. These findings suggest that MNEHHO would
be particularly suitable for applications where solution quality is prioritized over minimal computation time.
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4.2.2 Computational Results and Practical Implications for Different Facility Types
Tables 6–9 present a comprehensive quantitative analysis comparing the performance of metaheuristic

algorithms across different power demands. To ensure robust statistical validation, we conducted 100
independent runs for each algorithm configuration, analyzing results across weekly (w), monthly (m), and
yearly (y) time scales. For example, case 1 includes weekly instances c1w01–c1w05, a monthly instance c1m01,
and yearly instances c1y01–c1y05.

Table 6: Computational results for hospital cases

Instance HHO IHHO HHO_MN MNEHHO

Mean CV. Mean Imp. CV. Mean Imp. CV. Mean Imp. CV.
c1w01 171.60 31% 160.15 7% 37% 144.10 16% 23% 132.80 23% 29%
c1w02 146.10 24% 118.35 19% 56% 116.96 20% 53% 104.70 28% 41%
c1w03 196.30 33% 150.35 23% 27% 155.96 21% 41% 132.90 32% 24%
c1w04 211.60 28% 140.15 34% 15% 145.32 31% 22% 126.80 40% 11%
c1w05 130.10 33% 116.99 10% 9% 108.12 17% 27% 101.20 22% 24%
c1m01 354.59 45% 321.52 9% 28% 310.35 12% 20% 286.61 19% 19%
c1y01 4500.10 24% 4316.15 4% 21% 3666.16 19% 27% 3468.10 23% 26%
c1y02 4674.10 34% 4034.65 14% 20% 4131.67 12% 19% 3810.76 18% 16%
c1y03 3901.30 37% 3011.64 23% 10% 3071.35 21% 10% 2456.80 37% 14%
c1y04 4681.36 34% 3891.34 17% 13% 4194.64 10% 15% 3106.6 34% 25%
c1y05 5168.34 30% 4612.75 11% 19% 4534.69 12% 21% 3548.64 31% 23%

Table 7: Computational results for factory cases

Instance HHO IHHO HHO_MN MNEHHO

Mean CV. Mean Imp. CV. Mean Imp. CV. Mean Imp. CV.
c2w01 3390.89 29% 2901.92 14% 31% 3018.55 11% 30% 2154.35 36% 37%
c2w02 3574.89 27% 2521.65 29% 28% 3022.11 15% 27% 2024.68 43% 35%
c2w03 6869.60 29% 6666.18 3% 31% 6511.96 5% 30% 4651.20 32% 37%
c2w04 5231.82 20% 4015.35 23% 26% 4921.23 6% 27% 3154.60 40% 32%
c2w05 1855.35 27% 1354.55 27% 22% 1241.88 33% 24% 1035.12 44% 24%
c2m01 4678.83 44% 4199.15 10% 24% 3988.15 15% 25% 3514.14 25% 25%
c2y01 27520.59 20% 20199.25 27% 21% 21563.99 22% 19% 20151.30 27% 20%
c2y02 171391.41 12% 110984.25 35% 10% 111985.44 35% 13% 101984.24 40% 10%
c2y03 65833.06 9% 50599.26 23% 12% 49555.26 25% 19% 48161.23 27% 9%
c2y04 159160.18 5% 120184.30 24% 11% 120161.25 25% 12% 109140.84 31% 12%
c2y05 194959.80 5% 178881.60 8% 11% 173001.20 11% 24% 104881.23 46% 16%
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Table 8: Computational results for hotel cases

Instance HHO IHHO HHO_MN MNEHHO

Mean CV. Mean Imp. CV. Mean Imp. CV. Mean Imp. CV.
c3w01 489.06 21% 389.55 20% 23% 388.56 21% 24% 325.26 33% 24%
c3w02 433.92 27% 359.50 17% 26% 345.65 20% 27% 308.51 29% 26%
c3w03 530.01 25% 404.56 24% 30% 401.66 24% 31% 354.69 33% 26%
c3w04 577.67 30% 501.23 13% 40% 499.65 14% 30% 451.25 22% 24%
c3w05 359.08 37% 301.65 16% 26% 298.35 17% 23% 258.66 28% 25%
c3m01 968.04 33% 848.15 12% 24% 810.35 16% 25% 714.55 26% 24%
c3y01 12285.27 18% 10275.50 16% 19% 10111.65 18% 20% 9268.55 25% 21%
c3y02 12479.85 17% 11385.50 9% 18% 9814.33 21% 21% 8479.85 32% 23%
c3y03 10299.43 21% 9129.60 11% 22% 8125.99 21% 25% 7299.56 29% 27%
c3y04 12077.91 30% 10000.35 17% 23% 9918.50 18% 22% 8499.50 30% 24%
c3y05 14884.82 33% 12122.91 19% 24% 11111.63 25% 23% 9556.35 36% 22%

Table 9: Computational results for university cases

Instance HHO IHHO HHO_MN MNEHHO

Mean CV. Mean Imp. CV. Mean Imp. CV. Mean Imp. CV.
c4w01 671.40 25% 588.61 12% 26% 591.65 12% 25% 505.61 25% 26%
c4w02 464.74 25% 399.51 14% 29% 401.35 14% 27% 318.81 31% 28%
c4w03 1209.05 27% 1135.51 6% 27% 901.36 25% 35% 901.59 25% 24%
c4w04 962.65 27% 898.51 7% 27% 814.50 15% 37% 714.51 26% 28%
c4w05 333.96 27% 301.65 10% 29% 294.35 12% 33% 214.92 36% 29%
c4m01 570.82 26% 488.51 14% 28% 491.50 14% 27% 416.35 27% 26%
c4y01 4348.25 21% 3944.51 9% 23% 3833.50 12% 24% 3410.51 22% 27%
c4y02 27422.62 18% 24111.12 12% 19% 23666.35 14% 20% 20333.91 26% 24%
c4y03 11191.62 26% 9981.56 11% 28% 9666.51 14% 30% 9333.51 17% 28%
c4y04 28967.15 23% 21626.99 25% 29% 20465.50 29% 33% 18695.51 35% 27%
c4y05 35482.68 13% 30599.55 14% 15% 30562.44 14% 16% 21658.65 39% 21%

To establish clear quantitative benchmarks, we analyze three key performance metrics: Mean, CV
(coefficient of variance), and Imp. (improvement). The Mean represents the average objective value obtained
from 100 independent runs—lower values indicate better solutions as our goal is to minimize both the
levelized cost of energy (LCOE) and pollutant emissions costs. The CV measures the algorithm’s stability,
where a lower value demonstrates more consistent performance across multiple runs. The improvements
show the percentage improvement of each algorithm compared to the original HHO. This metric helps
quantify the progress made by the IHHO, HHO_MN, and MNEHHO algorithms concerning the baseline
HHO performance.

Table 6 presents the computational results for hospital cases, comparing the performance of HHO,
IHHO, HHO_MN, and MNEHHO across different time periods. MNEHHO achieves superior results in
short-term instances such as c1w01, with a mean objective value of 132.80, representing improvements of
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22.6% over HHO (171.60), 17.1% over IHHO (160.15), and 7.8% over HHO_MN (144.10). This improvement
can be attributed to the incorporation of multiple neighborhood structures.

MNEHHO demonstrates competitive stability, with CV values ranging from 11% to 41% for short-term
instances. In contrast, HHO exhibits stable performance with a CV between 24% and 45%, while IHHO
shows greater variability, with a CV reaching up to 56%. The improvement between the algorithms becomes
more pronounced as the instance size increases. In the long-term instance c1y05, MNEHHO achieves a mean
objective value of 3548.64, which is significantly better than HHO (5168.34), IHHO (4612.75), and HHO_MN
(4534.69).

To further analyze the impact of incorporating the multiple neighborhood (MN) strategy, Table 6
demonstrates that HHO_MN outperforms HHO by 10% to 31% (with an average improvement of 17.4%),
while MNEHHO surpasses IHHO by 18% to 40% (with an average improvement of 28%). These results
underscore the effectiveness of the MN strategy in enhancing the performance of both the HHO and
IHHO algorithms.

Detailed statistical analysis across all hospital cases reveals three key performance aspects. First, in terms
of solution quality, MNEHHO demonstrates consistent superiority by achieving improvements ranging
from 23% to 40% compared to the baseline HHO algorithm. Second, regarding computational stability, the
algorithms exhibit distinct patterns in their coefficient of variation (CV). The baseline HHO shows an average
CV of 32.1% with a standard deviation of 6.2%, while IHHO achieves better stability with an average CV of
23.1% (σ = 13.4%). The multiple neighborhood variants demonstrate comparable stability, with HHO_MN
averaging 24.5% (σ = 10.8%) and MNEHHO showing the most consistent performance with an average CV
of 22.7% (σ = 8.5%). Third, examining performance scaling reveals that the improvement margin correlates
positively with problem size, with the most substantial enhancements of up to 40% observed in yearly
instances, indicating MNEHHO’s effectiveness in handling larger-scale problems.

Table 7 analyzes the computational results for hospital cases with medium reliability requirements
(LPSP = 0.3), revealing distinct patterns in the effectiveness of the algorithms.

Regarding solution quality, MNEHHO excels in addressing the long-term energy requirements typical
of hospital operations. For instance, in case c2w02, MNEHHO achieves a mean objective value of 2024.68,
which represents a significant improvement over the HHO. The performance improvement increases to
26.8% in extended period cases such as c2y03, where MNEHHO’s mean value of 48161.23 reflects its superior
capability to optimize energy allocation for long-term healthcare facilities.

The stability patterns of algorithms are a notable feature of the results. The HHO and IHHO algorithms
exhibit relatively low variability, with CV values averaging 21%. In contrast, HHO_MN (average CV of
23%) and MNEHHO (average CV of 24%) demonstrate comparable stability while managing more complex
operational constraints within hospitals. This indicates that the algorithms maintain their reliability even
when addressing the increased computational complexity associated with healthcare facility challenges.

The improvement percentages in hospital scenarios are particularly noteworthy; for instance, consider
c2y05. HHO_MN achieves an 11% improvement over the HHO algorithm, while MNEHHO achieves a 46%
improvement. In contrast, MNEHHO demonstrates a more substantial 46% enhancement, underscoring
the effectiveness of integrating the improved HHO mechanism with a multiple-neighborhood strategy for
extended planning periods in hospital environments.

These significant gains suggest that the multiple neighborhood strategy is particularly effective in
tackling the unique challenges associated with energy optimization in healthcare facilities, especially under
medium reliability requirements.
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The results presented in Table 8 illustrate the computational performance for hotel cases. It is evident
that MNEHHO consistently achieves the highest quality of solutions in managing hotel-specific energy
demands. This is particularly noticeable in case c3w02, where MNEHHO attains a mean objective value of
308.51, showing improvements of 28.9% over HHO (433.92), 14.2% over IHHO (359.50), and 10.7% over
HHO_MN (345.65). The advantages of MNEHHO become especially pronounced over longer planning
horizons, as demonstrated in case c3y03, where its mean value of 7299.56 indicates a superior capability in
long-term hotel energy allocation.

Examining the stability metrics reveals intriguing patterns across all algorithms. HHO exhibits relatively
higher variability, with CV values ranging from 18% to 33% (averaging 26%). In contrast, the Improved Harris
Hawks Optimization (IHHO) and HHO_MN show slightly better consistency, with CV values ranging from
19% to 40% (averaging 25%) and 20% to 31% (averaging 25%), respectively. Meanwhile, MNEHHO maintains
steady performance levels, with an average CV value of 24%, indicating reliable optimization across various
hotel operational scenarios.

The test cases demonstrate performance enhancements resulting from algorithmic improvements. A
notable example is c3y05, where HHO_MN achieves a 26% improvement over the base HHO algorithm,
while MNEHHO achieves a 36% enhancement. These results validate the effectiveness of integrating
advanced HHO mechanisms with multiple neighborhood strategies for extended planning periods in
hotel environments.

Finally, we report the results for university cases under low-reliability requirements (LPSP = 0.6)
in Table 9. The findings indicate that HHO_MN reduces the objective value by an average of 31.4% compared
to HHO for managing university-specific energy demands, particularly when relaxed reliability constraints
permit more flexible optimization. This advantage is clearly illustrated in case c4w02, where MNEHHO
achieves a mean objective value of 318.81, significantly outperforming other algorithms. The superiority
of MNEHHO becomes even more evident during extended planning periods, as demonstrated in case
c4y03, where its mean value of 9333.51 is considerably lower than those of HHO (11191.62), IHHO (9981.56),
and HHO_MN (9666.51). This highlights MNEHHO’s capability to reduce the objective value by 16.6% in
long-term university energy allocation under low-reliability requirements.

Analyzing the stability metrics reveals distinct patterns across the algorithms. The HHO algorithm
exhibits moderate variability, with coefficient of variation (CV) values ranging from 13% to 27%, averaging
23%. In contrast, the IHHO algorithm demonstrates improved consistency, with CV values between 6% and
25%, averaging 12%. The HHO_MN algorithm maintains similar stability, with CV values ranging from 13%
to 29%, averaging 22%. Meanwhile, the MNEHHO algorithm shows comparable stability, with CV values
from 17% to 39%, averaging 27%. This indicates reliable performance across various university operational
scenarios despite the more relaxed LPSP requirements.

The algorithmic improvements demonstrate significant performance enhancements across various
test cases. This is particularly evident in c4y05, where HHO_MN achieves a 14% improvement over the
HHO algorithm, while MNEHHO exhibits a 39% enhancement. These results highlight the effectiveness
of combining improved HHO mechanisms with multiple neighborhood strategies for extended planning
periods in university environments, particularly under lower reliability constraints.

Cross-case analysis demonstrates that MNEHHO’s performance advantages can be quantified across
different application scenarios. In factory cases, where energy demands are highest, MNEHHO achieves
improvements of up to 46%, with a mean improvement of 31.2% (σ = 8.4%) compared to the baseline HHO.
For hospital cases that require high reliability, the algorithm demonstrates improvements of up to 40%,
maintaining a mean improvement of 28.7% (σ = 7.2%). In hotel scenarios characterized by variable daily
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demands, MNEHHO produces improvements of up to 36%, with a mean of 27.9% (σ = 6.1%). Similarly,
in university cases with lower reliability requirements, the algorithm achieves improvements of up to 39%,
maintaining a mean improvement of 26.8% (σ = 7.8%). These consistent improvement patterns, supported by
low standard deviations across all case types, demonstrate MNEHHO’s ability to optimize HRES allocations
across diverse institutional settings with varying operational requirements.

Beyond these algorithmic improvements, the real value of our approach lies in its practical implications
for facility-specific HRES implementation. The optimization results provide clear guidelines for system
sizing, technology selection, and economic planning across different facility types, enabling more effective
and efficient renewable energy deployments in real-world settings.

5 Conclusions
This study has addressed critical gaps in the optimal allocation of Hybrid Renewable Energy Systems

(HRES) by developing a comprehensive mathematical model and an enhanced metaheuristic solution
approach. Our key contributions can be summarized in three main aspects:

First, we have formulated a mathematical programming model that simultaneously considers multiple
practical constraints that have been previously overlooked in the literature, including battery quantity
calculations, charge-discharge efficiency, system reliability, and the fraction of renewable energy. This model
offers a more accurate representation of the challenges associated with deploying HRES in real-world
scenarios. Second, we have developed an enhanced version of the Harris Hawks Optimization algorithm that
incorporates multiple neighborhood structures (MNEHHO). Our computational experiments demonstrate
that MNEHHO consistently outperforms existing methods across various power demands. Specifically, it
achieves improvements of up to 46% for factory cases, 40% for hospital cases, 36% for hotel cases, and 39%
for university cases when compared to the HHO algorithm. The multiple neighborhood strategy proves
particularly effective in handling larger, more complex instances while maintaining computational stability.
Third, we have designed and implemented comprehensive test cases that represent four distinct real-world
scenarios with varying reliability requirements and operational patterns. Our analysis provides insights into
how these different institutional contexts influence optimal HRES configurations:

For future research directions, we propose several promising directions. Extending the model to incor-
porate weather uncertainty and demand variability will enhance its robustness for real-world applications.
Future research should extend beyond algorithmic improvements to generate practical design insights and
policy implications through incorporation of more comprehensive real-world data, socio-economic factors,
and regulatory considerations. The mathematical framework and algorithmic approach developed in this
study can serve as a foundation for broader HRES applications beyond institutional settings, including
natural reserves and residential power systems. Our multi-neighborhood approach demonstrates particular
adaptability to contexts with varying operational patterns and reliability requirements. Additionally, develop-
ing supplementary neighborhood structures could further improve solution quality, especially for long-term
planning horizons. Investigating the potential integration of machine learning techniques to dynamically
adjust algorithm parameters based on instance characteristics presents another valuable direction. The
insights gained from institutional optimization can inform and accelerate HRES implementation across
diverse contexts, ultimately supporting the global transition toward sustainable and resilient energy systems.
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