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ABSTRACT: Maximizing the efficiency of thermal engineering equipment involves minimizing entropy generation,
which arises from irreversible processes. This study examines thermal transport and entropy generation in viscous
flow over a radially stretching disk, incorporating the effects of magnetohydrodynamics (MHD), viscous dissipation,
Joule heating, and radiation. Similarity transformations are used to obtain dimensionless nonlinear ordinary differential
equations (ODEs) from the governing coupled partial differential equations (PDEs). The converted equations are then
solved by using the BVP4C solver in MATLAB. To validate the findings, the results are compared with previously
published studies under fixed parameter conditions, demonstrating strong agreement. Various key parameters are
analyzed graphically to assess their impact on velocity and temperature distributions. Additionally, Bejan number and
entropy generation variations are presented for different physical parameters. The injection parameter (S < 0) increases
the heat transfer rate, while the suction parameter (S > 0) reduces it, exhibiting similar effects on fluid velocity. The
magnetic parameter (M) effectively decreases entropy generation within the range of approximately 0 < 7 < 0.6. Beyond
this interval, its influence diminishes as entropy generation values converge, with similar trends observed for the
Bejan number. Furthermore, increased thermal radiation intensity is identified as a critical factor in enhancing entropy
generation and the Bejan number.

KEYWORDS: Partial differential equations; modeling; stretched surface; joule heating; viscous dissipation; radiation;
suction/injection

1 Introduction

Recent advancements across numerous scientific and technological disciplines have led researchers to
explore boundary layer flow over stretched surfaces as an emerging area of study.

When it comes to engineering problems, the flow behaviour of a physical phenomenon toward
stretching problems (for both linear and non-linear cases) is critical. The analysis of fluid flow and its entropy
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characteristics over a stretching sheet holds significant relevance in various industrial and manufacturing
processes. It finds extensive applications in advanced manufacturing techniques such as metal spinning,
rubber sheet production, and fiber-reinforced composite manufacturing, including fiberglass fabrication.
Additionally, this study is critical in processes like wire drawing, polymer sheet extrusion, and polymer
processing, which are integral to the development of high-performance materials. Moreover, the insights
gained from such analyses are invaluable in optimizing operations in petroleum industries, where fluid
dynamics play a crucial role in processes such as drilling, extraction, and refining. These applications under-
score the importance of understanding and controlling fluid behavior for improving efficiency, ensuring
product quality, and reducing energy consumption in modern industrial systems. The pace at which the
material cools during the technique, as well as the amount of stretching that occurs, determine the desirable
qualities of the end product in these conditions. Sakiadis [1-3] analyzed viscous flow over a moving surface
using an unsteady incompressible fluid. He investigated the behaviour of boundary layers over continuous
surfaces and compared his findings to those of previously published studies [4]. Crane [5] studied continuous
viscous flow on a stretched surface in a quiescent fluid with varying velocity. For example, in Hiemenz [6]
viscous flow around a stagnation point, the outer flow’s free stream velocity is proportional to distance.
Crane [7] expanded the work of Sakiadis [3] to include a stretched cylinder and observed that, despite the
boundary layer being significantly thicker than the cylinder, the solution remains stable over a long axial
distance despite the thicker boundary layer. A comprehensive investigation into magnetohydrodynamic
(MHD) mixed convection heat transfer in a lid-driven wavy enclosure with a fin attached to the bottom
was conducted by Fayz-Al-Asad et al. [8]. They employed the Galerkin finite element method to solve
the governing equations, yielding valuable insights into the complex interactions between fluid flow and
thermal dynamics influenced by magnetic fields. Their parametric analysis revealed that the dimensions
of the fin, in addition to the Hartmann and Richardson numbers, play a crucial role in determining flow
patterns, temperature distribution, and heat transfer effectiveness. Specifically, it was found that longer fins
significantly enhance heat transfer under certain conditions, highlighting the potential of these surfaces to
optimize fluid mixing, reduce operational costs, and increase thermal efficiency in enclosure systems.

Furthermore, the study leveraged similarity transformations alongside MATLAB’s bvp4c solver, which
indicated that higher Weissenberg numbers enhance flow velocities while concurrently diminishing the
concentration boundary layer. These findings have important implications for cooling technologies and
various industrial applications. In a separate but related work, Sohail et al. [9] investigated the effects of bio-
convection in tree-dimensional Casson Nanofluid subjected to an induced magnetic stretching field. Their
findings highlight the relevance of this phenomenon in various applications. Additionally, another research
effort [10] focused on the numerical analysis of how a magnetic dipole influences the behavior of a radiative
ferromagnetic liquid flowing over a porous stretched sheet. There were a lot of academics who were inspired
by Crane’s work and made important contributions by studying the effects of thermal transportation across
stretched sheets (see [11-15]).

Rott [16] studied a viscous flow past a moving wall approaching a stagnation point. Danberg et al. [17]
recently studied a variation of this problem where the wall is expanded proportionally to Chakrabarti
et al. [18] explored an electrically conducting fluid that moved exclusively owing to wall stretching. They
observed that temperature increases with the increase of magnetic parameter. The MHD viscoelastic fluid
flow across a stretched surface was studied by Andersson [19]. By analytically analyzing the non-linear
boundary layer problem, they demonstrate that the influence of viscoelasticity and external magnetic field
are the same. Sohail et al. [20] analyzed the effects of magnetic field and viscous dissipation over stretching
sheet for the non-Newtonian nanofluid flow. The pace of cooling affects several industrial items’ properties.
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A magnetic field can also be used to clear molten metals of non-metallic contaminants. Many researchers
have addressed the challenge of stretching surfaces using magneto-hydrodynamics [21-24].

Many specialists [25-28] have recently taken an interest in the study of thermal transportation over
radiated material through the stretch surface as a result of its extensive use in engineering and industrial
activities. These include rubber manufacturing, colloidal suspension and glass sock manufacture, metal
spinning and plastic film drawing, paper and textile production, as well as the food processing and
geothermal energy sectors. Radiation occurs often in engineering difficulties. Li et al. [29] discussed the
usage of radioactive nanofluid flow in light of its applications. Several researchers have recently looked at
heat transport issues. Kumam et al. [30] conducted an in-depth study of Casson fluid dynamics within a
rotating channel, focusing on magnetohydrodynamic (MHD) radiative flow and the effects of an internal heat
source. The research provides a comprehensive analysis of how these combined influences impact the fluid’s
behavior, including its velocity, temperature distribution, and energy transfer mechanisms. By addressing
the interplay of magnetic fields, radiation, and heat generation, the study offers valuable insights into the
applications of Casson fluid in engineering and industrial processes, such as in cooling systems, chemical
re-actors, and material processing under complex flow conditions.

The method of minimizing entropy generation is utilized in order to optimize thermal engineering
devices with the aim of achieving greater energy efficiency. The availability of engineering equipment is
diminished as a result of irreversibilities. The idea of entropy generation serves as a measure to evaluate the
degree of irreversibility that is inherent in a particular process. It is crucial to emphasize that the second law
of thermodynamics exhibits higher dependability compared to the first law of thermo-dynamics, due to the
efficacy limitations of the latter in the domain of heat transfer engineering systems. In recent years, there
has been a growing focus among researchers on exploring the practical applications and implications of the
second law of thermodynamics within thermal engineering systems. This trend highlights the importance
of entropy analysis, energy efficiency, and irreversibility minimization as critical tools for optimizing the
performance of engineering systems. By studying the second law, scholars aim to identify and quantify
sources of energy loss, thereby enabling the design of more efficient systems across various applications,
including power generation, refrigeration, air conditioning, and industrial heat exchangers.

The interest also stems from the increasing demand for sustainable and energy-efficient technologies
to address global energy challenges. Understanding the second law facilitates the development of advanced
methodologies for energy recovery, waste heat utilization, and process optimization, which are vital for
reducing carbon footprints. Furthermore, the integration of the second law’s principles into modern
computational tools has allowed for more precise simulations and real-world applications, reinforcing its
role as a cornerstone in the advancement of thermal engineering. Bejan [31] conducted an investigation into
the entropy analysis in a process of convective heat transfer. Shit et al. [32] analyzed an entropy generation
in an unsteady two-dimensional magnetohydrodynamic (MHD) nanofluid flow over porous exponentially
radiated stretching surface. Building on this work, Shit and Mandal [33] investigated entropy generation in an
unsteady MHD flow of Casson nanofluid over a vertically radiated stretching plate using Buongiorno’s model.
Their results revealed that the Casson parameter significantly increases the entropy number, while thermal
radiation intensifies the entropy number near the plate. Within this particular context, several pertinent and
noteworthy inquiries are expounded upon within the aforementioned articles [34-37].

The literature review highlights a notable gap in research focusing on axisymmetric flow, particularly
over radially stretched surfaces. Shahzad et al. [38] addressed this gap by investigating the unsteady
axisymmetric flow and heat transfer phenomena under the combined influences of Ohmic heating, viscosity,
magnetic fields, and radiation over a stretched surface, with a particular emphasis on irreversibility effects.
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The study stands out for its novel approach of employing a similarity transformation to convert the
governing equations into nonlinear coupled ordinary differential equations, which were subsequently, solved
numerically using the MATLAB BVP4C solver. The analysis meticulously examines the impact of various
physical parameters on velocity and temperature profiles, with results presented both graphically and in
tabular form for clarity and comprehensiveness.

The findings not only provide fresh insights into the interplay of multiple physical effects on axisym-
metric flow but also demonstrate strong agreement with existing literature, thereby validating the robustness
and accuracy of the proposed model. This work contributes significantly to the field by advancing the
understanding of complex flow and heat transfer phenomena in radially stretched systems, a topic previously
underexplored in the literature.

2 Mathematical Form of Physical Phenomena

Think about the time-dependent heat transfer and radially extended viscous fluid flow represented
in Fig. 1 as an example. The Reynolds number (Re) was reportedly low. Consequently, the induced magnetic
field can be neglected. The fluid begins to flow as the surface stretches (radially) at a velocity U,, = t*-.
Ty = Too + lf—rct, where T is the ambient temperature, and T, > T..; moreover,a >0, b >0, and ¢ > 0 are
all constants (with ct < 1), and a and ¢ have dimension ¢™'. T,, is assumed to be the wall temperature. The
mathematical representation of the aforementioned physical phenomena of fluid flow and heat transfer is

described by the following coupled partial differential equations (PDEs) [38]:
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where ¢,,4 presents the radiative heat flux and described by Rosseland approximation [39] as:

40,0T* 4o, T38T

T =35 5 T 3k L o

here, k, and o;, denote the mean absorption coefficient and the Stefan-Boltzmann constant, respectively.
Assuming the temperature variations within the flow are relatively small, the term T* can be approximated
using a Taylor series expansion around the ambient temperature T, with higher-order terms being neglected
for simplification. As a result, the radiative heat flux g,,4 can be linearized and expressed in the following
form:

T* = 4T2 T - 3T,,.

with the corresponding boundary conditions

1-ct
u—>0,T —> Too as z —> oo.
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where W, stands for surface mass transfer for injection (W, > 0) and suction (W, < 0) and kinematic viscosity
are defined as:
vU,,

Wo =—2(—)2andv= E.
r P

U, =ar/(1-ct) T.=Ts +ar/(1-ct)

B(t)= B/(1- ¢

Figure 1: A diagram explains the physics

The dimensionless governing equations are subjected to the similarity transformation given as:

T-Tsw

T T ()

Y (r,z) = —rZUWRe_TIf(n) = ZRe?,and 0 (n) =
r

The Stokes streams function is defined u = _71%—3 and w = %%—\f, U,, being the stretching velocity. The

velocity component along r and z-axes can be simply computed as follows:
u="U,f (1) andw = —2U,Re? f (1), (6)

by using the above defined transformation Eqs. (2)-(4) takes the form:
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pir(l +RA)O" + 20— f1O+ A (e " %170') + ME.f" + %ch"z ~0 ®)
as long as the transform boundary conditions are:

f(n)=Sf (n)=1and 6 (n) =lat =0, 9)

f'(n)=0and 0 () =0 as n — oo, (10)
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A = a/c is unsteadiness parameter, Pr = “TC” Prandtl number, and mass transfer is denoted by S, where
S > 0 indicates mass suction and S > 0 indicates mass injection. The formulae for the physical quantities Nu
and Cy, which are local Nusselt number and skin friction respectively, are given as:
Tw rqw
Cr=—and Ny = —————, 11
f 1 , u k (Tw _ Too) ( )
~pU
2
where 7,, and g,, are, respectively, known as shear stress (wall) and heat flux (wall) which are mathematically
described as:

T
TW:yg—Z z=0andqw=—k(a—)z:0. (12)

0z

hence Eq. (11) takes the form:
1 1 o1
ERefcf = f"(0),Re? N, =-6'(0). (13)

2.1 Mathematical Description of Entropy

The volumetric rate of entropy generation in the presence of a magnetic field and radiation number for
a viscous fluid is defined as [40,41]:

k 4 OT\* u (ou\’ o
Se=——(1+=Rd || =— — = — B*u?, 14
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Eq. (14) highlights the various sources of entropy generation. The first term corresponds to the
irreversibility caused by heat transfer along a finite temperature gradient, while the remaining two terms
account for the contributions of fluid friction and magnetic effect to local entropy generation. By applying the
transformation specified in Eq. (5), the non-dimensional form of Fq. (14) is obtained and is mathematically
expressed as follows:

Re,Br

Re, ., Re,BrM
0+ — —_—
XQ

X <0 ", (15)

le +

S
Ng = =2 = (1+Rd)
So

where Sg = k (T, — Too )/ TooL? is the entropy (characteristic) rate, Q = (T, — Ts,) / T}y, the tempera-
ture difference (dimensionless), Re, = U,,r/v, the local Reynold’s number, Br = U2 /kAT, the Brinkman
number, and X = r/L, the axial distance(dimensionless).

The Bejan number, a crucial variable in the irreversibility distribution, is defined as follows:

(1+Rd) %9’
Be = 1+ 4RJ) Recgr 4 ReBrM ¢ ReBr rin (16)
( t3 ) x YT 7 xa e+ XQ f

It can be inferred from Eq. (16) that the Bejan number is constrained within the range of 0 to 1. When
the value of Be exceeds 0.5, the dominant factor affecting entropy is the transfer of heat, while when Be is less
than 0.5, the primary contributors to entropy are viscous dissipation and the magnetic field. At a magnetic
field strength of Be = 0.5, the impact of fluid friction and magnetic field is commensurate with that of entropy
resulting from heat transfer.
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2.2 Solution Methodology

To deal with the nonlinear complicated issues that arise in mathematical physics, several numeri-
cal [17,19,42] and analytical approaches [43] are available. Due to significant nonlinearity, complex geometry,
and mixed boundary conditions, it is not possible to obtain precise solutions for all cases. Fig. 2 presents the
flow chart for BVP4C.

Variable declaration

Y

v

Domain discretization

v
Call bvpde

system of the 1st-order

ordinary differential equation
¥
Boundary conditions

Guess boundary
conditions against the 3rd
and 4th solutions

Figure 2: Flow chart of BVP4C

The BVP4C computational method is employed to ascertain the solution of a nonlinear system
of ordinary differential equations, specifically Eqgs. (7) and (8), while taking into account the boundary
conditions outlined in Eqs. (9) and (10). By means of similarity transformation, it is possible to reduce third-
and second-order nonlinear ordinary differential equations to first-order difference equations.

t
F=yuf =y f =y f" =2py+ " +A(yz 23 +Myz), 17)
_ I _ " _ Pr t 2 1 2
9—)’4,9 —)’5>9 —m =2y1y5+ Y2ya — A )’4+£)’5 - MEcy, _P_ry3 > (18)
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and subject to conditions
71(0) =S, ¥2(0) =1, y4(0) =1, y2(00) = 0, ys(o0) = 0. (19)

Similarly, the Eqs. (15) and (16) can be expressed as:

S 4 Re Re,.BrM Re,Br
N :—g:(1+—Rd) L s + — 24—y 20
C7%, 3 " 7xa 7 TTxa (20)
and
4 Re,
Be = (1+3R4) s (21)
(1+3Rd) B ys + R ya? + 55 ys?

with the proper level of precision, the iterative procedure will come to an end.

3 Outcomes and Discussion

The mathematical model in this study is numerically analyzed to evaluate the effects of various factors,
including magnetohydrodynamics (MHD), radiation, dissipation, Joule heating, entropy generation number,
and Bejan number. The analysis incorporates appropriate boundary conditions. The physical phenomena,
involving momentum and energy, are described by nonlinear partial differential equations (PDEs) in both
time and space. These PDEs are transformed into a system of nonlinear ordinary differential equations
(ODEs) using a suitable similarity transformation. The resulting ODEs are solved numerically using the
BVP4C method in MATLAB, ensuring adherence to the relevant boundary conditions. The influence of
parameters such as A, (unsteadiness parameter), S > 0, (suction parameter), S < 0, (injection parameter), and
the magnetic parameter on velocity and temperature is analyzed and presented graphically. Additional graphs
illustrate the effects of the Prandtl number, Eckert number, and magnetic parameter on the temperature
profile. Furthermore, the entropy generation number and Bejan number are graphically depicted. Default
parameter values are specified in the descriptions accompanying each figure.

3.1 Impacts of Physical Parameters on Velocity Profile

Fig. 3 depicts the effect of the unsteadiness parameter on velocity profiles. The results reveal that
increasing the unsteadiness parameter reduces velocity profiles, which corresponds to a decrease in the
momentum thickness of the boundary layer. This reduction indicates that the unsteadiness parameter lowers
the flow rate induced by the stretched disk.

Figs. 4 and 5 demonstrate that suction decreases fluid velocity, while injection increases it. Physically,
this occurs because a stronger blowing force (injection) pushes the heated fluid farther from the wall,
positioning it in a region where buoyant forces enhance flow with a reduced viscosity effect. Consequently,
this action increases shear forces and elevates the maximum velocity within the boundary layer. Suction
operates in the reverse manner, pulling fluid toward the wall and reducing flow velocity.

Fig. 6 illustrates how changes in the magnetic field influence fluid velocity. As the magnetic parameter
(M) increases, the boundary layer thickness and fluid velocity de-crease. This behavior is attributed to the
Lorentz force, a resistive body force generated by the magnetic field that impedes fluid motion. Higher
magnetic flux amplifies this resistance, further reducing the fluid’s velocity.
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Figure 3: Unsteadiness parameter (A) vs. velocity profile
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Figure 4: Suction parameter (S > 0) vs. velocity profile
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Figure 6: Magnetic parameter (M) vs. velocity profile

3.2 Impacts of Physical Parameters on Temperature Profile

The effect of unsteadiness parameter A on the temperature profile is shown in Fig. 7. The temperature
profile exhibits a decreasing trend as the unsteadiness parameter A increases, as depicted in the given
figure. The data indicates that the cooling rate is significantly accelerated for larger values of A, whereas the
cooling process may exhibit a prolonged duration during a state of constant flow. The Prandtl number Pr
is seen in Fig. 8. As the Prandtl number Pr grows, thermal diffusivity decreases, resulting in a decrease in
temperature. The effect of suction and injection parameter is presented in Figs. 9 and 10 on the temperature
field. From Fig. 9, it is clear that with the increasing parameter of suction the temperature profile decreases
while the reverse behaviour is noted for of injection parameter on the temperature profile this is because of
reduction of thickness of the thermal boundary layer as a result of suction at ambient temperatures whereas,
with injections, the same principle holds true but in the other way.

1 T T T T T T T T T
os —— A=0.0
' Pr=6.9,5=0.5, Ec=3.0, M=0.1, Rd=0.1 ——A=0.5
——A=1.0
——A=1.5
0.6 - ]
S
I
0.4+ .
0.2+ .
0 1 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5

Figure 7: Unsteadiness parameter (A) vs. temperature profile
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Figure 9: Suction parameter (S > 0) vs. temperature profile
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Figure 10: Injection parameter (S < 0) vs. temperature distribution

Fig. 11 illustrates the effect of the Eckert number (Ec) on the temperature distribution. A positive

correlation is observed, indicating that as Ec increases, the temperature profile also rises. The Eckert number
represents the ratio of kinetic energy to enthalpy in the flow. This reflects the conversion of kinetic energy
into internal energy due to viscous forces. Higher Ec values signify greater kinetic energy, which leads
to intensified molecular vibrations and collisions within the fluid. These increased collisions enhance heat

dissipation in the boundary layer, thereby raising the temperature profile in this region.

T T T T T T T T T
Ec=1.0
0.8 .
$=0.5, Pr=6.9, A=0.5,M=0.1, Rd=0.1 Ec=2.0
Ec=3.0
0.6 Ec=4.0 -
3 0.18
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6.20.28
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0 02 04 06 08 1 12 1.4 1.6 1.8 2

7

Figure 11: Eckert number (Ec) vs. temperature distribution

Fig. 12 shows the influence of the radiation parameter (Rd) on the temperature profile. As Rd increases,
the temperature profile also rises. This is consistent with theoretical expectations since Rd represents the
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balance between conduction and radiative heat transfer. A higher Rd indicates a greater contribution of
radiative heat transfer, leading to an increase in the temperature profile.

1 T T T T T T
——Rd=0.1
o8 Pr=6.9, Ec=3.0, A=0.5,M=0.1, $=0.5 Rd=0.3
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S
0.4 1
0.2 -
0 .
0 6 7

Figure 12: Radiation (Rd) parameter vs. temperature profile

Fig. 13 demonstrates the effect of the magnetic parameter (M) on the temperature profile. As M
increases, the velocity profile within the boundary layer decreases due to the Lorentz force, which resists
fluid motion. This reduction in velocity leads to higher thermal energy retention in the fluid, causing the
temperature profile to rise.

1 T T T T T T T T
——M=0.0
0l Pr=6.9, Ec=3.0, A=0.5,5=0.5, Rd=0.1 —_—M=0.5 |
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7

Figure 13: Magnetic parameter (M) vs. temperature profile
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Tables 1 and 2 summarize the results of a comparative analysis, showing that the findings of this study
align closely with those of previous research conducted by [38], confirming the reliability and accuracy of
the present results.

Table 1: Relevant element’s effects on surface shear stress

A S Pr -f"(0)
[38] Present
0.5 -1 1 0.620400 0.62043436
- =05 - 0.887200 0.88724316
- 0 - 1308999 1.3086626
- 0.5 - 1907999 1.9079693
- 1 - 2.655999  2.655588
0 0.5 1 1798999  1.7986679
0.5 - 1.907999  1.9079693
1 - 2.016999  2.0166622

05 0.5 0.5 1907999 1.9079699
- - 0.7 1907999 1.9079694
- - 1 1.907999  1.9079693

Table 2: Relevant element’s effects on local heat transmission

A S Pr -6(0)
[38] Present
0.5 -1 1 0.620400 0.10992243
- -0.5 - 0.887200 0.21888713
- 0 - 1.308999 0.45448468
- 0.5 - 1.907999  0.79851912
- 1 - 2.655999 1.2097214
0 0.5 1 1.798999  0.98038262
0.5 - 1.907999  0.79851912
1 - 2.016999 0.60799946

0.5 0.5 0.5 1119999 0.011034301
- - 0.7 1.450000 0.33052076
- - 1 1907999  0.79851912

3.3 Impacts of Physical Parameters on Entropy Generation and Bejan Numbers

Figs. 14 and 15 illustrate the effect of the magnetic parameter (M) on entropy generation (Ng) and the
Bejan number (Be). As shown in Fig. 14, an initial increase in M reduces entropy generation near the disk.
However, at higher values of M, entropy generation begins to increase. A similar trend is observed in Fig. 15
for the Bejan number. This behavior is attributed to the resistive Lorentz force produced at high M, which
slows fluid motion. Additionally, a strong magnetic field induces Ohmic heating, leading to a temperature
rise and an associated increase in heat generation, thereby contributing to greater entropy production. Away
from the disk, for large values of M, heat transfer irreversibility dominates over fluid friction irreversibility.
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Figure 14: Magnetic parameter (M) vs. entropy generation number
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Figure 15: Magnetic parameter (M) vs. Bejan number

Fig. 16 presents the relationship between entropy generation and various values of the Brinkman
number (Br). The Brinkman number represents the ratio of heat generated by viscous dissipation to heat
transferred through molecular conduction. As Br increases, the conduction rate of heat generated by viscous
dissipation decreases, leading to a rise in entropy generation. Fig. 17 shows the variation of the Bejan number
with respect to Br, revealing a negative correlation. An increase in Br elevates the overall entropy generation
rate, which, in turn, reduces the Bejan number due to the dominant effect of viscous dissipation.
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Figure 16: Brickman number (Br) vs. entropy generation number
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Figure 17: Brickman number (Br) vs. Bejan number

Figs. 18 and 19 demonstrate that an increase in the thermal radiation parameter (Rd) significantly
enhances both entropy generation and the Bejan number. Higher temperatures associated with increased Rd
amplify radiative heat transfer, leading to greater entropy generation and an elevated Bejan number. In this
case, thermal irreversibility becomes the predominant factor contributing to the overall entropy generation.
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Figure 18: Radiation parameter (Rd) vs. entropy number
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Figure 19: Radiation parameter (Rd) vs. Bejan number

4 Conclusions

This study analyzed entropy generation and thermophysical properties in radiative materials using a
radially stretching disk as the model. Tables 1 and 2 detail the effects of various physical parameters on skin
friction and the local Nusselt number (wall heat flux and transfer rate). A comparison with previous studies
revealed excellent agreement, affirming the validity of the results. The influence of thermophysical properties
on flow behavior, entropy generation, and the Bejan number was illustrated and interpreted graphically. The
key findings of the analysis are summarized below:

- Increasing the radiation parameter raises the temperature, with a similar trend observed for the
magnetic parameter.
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- Suction reduces fluid velocity and temperature profiles, while injection increases them.

- The temperature profile decreases with higher Prandtl (Pr) and Eckert (Ec) numbers.

- The magnetic parameter decreases entropy generation near the disk but significantly increases it farther
from the disk, a pattern also reflected in the Bejan number.

- Enhanced thermal radiation intensity is a major factor in the elevated production of both entropy and
the Bejan number.

Additionally, the utilization of entropy generation analysis in unsteady processes is a more intricate task,
as it requires identifying an optimal time history to minimize the entropy generated within a finite time span.
For this reason, entropy generation is infrequently applied in addressing transient operations and off-design
conditions. These results provide valuable insights into the thermal management of radiative systems and
the optimization of energy processes in various engineering applications.

This study is constrained by its focus on a simplified model, which may not fully represent the
complexities found in practical applications. Additionally, the investigation did not account for the effects of
varying material properties or complex geometries, which could significantly impact the results.

Acknowledgement: The authors acknowledge their affiliations.
Funding Statement: The authors received no specific funding for this study.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, investigation,
resources, data curation, writing—original draft preparation, writing—review and editing, visualization, project admin-
istration, funding acquisition: Tahir Naseem, Fateh Mebarek-Oudina, Hanumesh Vaidya, Nagina Bibi, Katta Ramesh,
Sami Ullah Khan; supervision, Fateh Mebarek-Oudina. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Not applicable.
Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest. The authors assert that they do not possess any
associations or engagements with any institution or entity that has any monetary stakes in the topic or materials
deliberated in this manuscript.

Nomenclature

a,b,c Constants

B Uniform magnetic field (external)
By Magnetic flux density (constant)
k Thermal conductivity

M Magnetic parameter

C, Specific heat at constant pressure
Cy Skin friction coefhicient

Nu, Local Nusselt number

qw Surface heat flux

qw Surface heat flux

f Self-similar velocity

u,w Velocity components

t Time

T Temperature

Sy’ Actual entropy generation rate
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SIII
0
S>0
S$<0
X

Characteristic entropy generation rate
Suction parameter

Injection parameter

Dimensionless axial distance

Dimensionless Parameters

Ec Eckert number

Re Reynolds number

Pr Prandtl number

A Unsteadiness parameter

Br Brinkman number

M Hartman number

Ng Entropy generation number

Rd Radiation parameter

Greek Symbols

n Similarity variable

p Density

U Dynamic viscosity

o Electrical conductivity

Subscripts

s Solid phase

w Condition of wall

o0 Condition of free stream

References

1. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-
dimensional and axisymmetric flow. AIChE J. 1961;7(1):26-8. d0i:10.1002/aic.690070108.

2. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat
surface. AIChE J. 1961;7(2):221-5. d0i:10.1002/aic.690070211.

3. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces: III. The boundary layer on a continuous
cylindrical surface. AIChE J. 1961;7(3):467-72. d0i:10.1002/aic.690070325.

4.  Blasius H. Grenzschichten in Fliissigkeiten mit kleiner Reibung. Berlin, Germany: Druck von BG Teubner; 1907.

5. Crane L]. Flow past a stretching plate. Z Fiir Angew Math Und Phys ZAMP. 1970;21(4):645-7. doi:10.1007/
BF01587695.

6. Hiemenz K. Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden
Kreiszylinder. Dinglers Polytech J. 1911;326:321-4.

7. Cranel]. Boundary layer flow due to a stretching cylinder. Z Fiir Angew Math Und Phys ZAMP. 1975;26(5):619-22.
doi:10.1007/BF01594034.

8.  Fayz-Al-Asad M, Mebarek-Oudina F, Vaidya H, Hasan MS, Sarker MMA, Ismail Al Finite element analysis for
magneto-convection heat transfer performance in vertical wavy surface enclosure: fin size impact. Front Heat
Mass Transf. 2024;22(3):817-37. d0i:10.32604/thmt.2024.050814.

9. Sohail M, Hussain Shah SQ, Sultan F, Jahan S, Abbas ST. Three-dimensional stretched boundary layer flow of
casson nanofluid in rotating frame with bio-convection phenomenon. Sci Iran. 2024. doi:10.24200/sci.2024.63534.
8450.

10. Dharmaiah G, Mebarek-Oudina F, Balamurugan KS, Vedavathi N. Numerical analysis of the magnetic dipole

effect on a radiative ferromagnetic liquid flowing over a porous stretched sheet. Fluid Dyn Mater Process.
2024;20(2):293-310. doi:10.32604/fdmp.2023.030325.


https://doi.org/10.1002/aic.690070108
https://doi.org/10.1002/aic.690070211
https://doi.org/10.1002/aic.690070325
https://doi.org/10.1007/BF01587695
https://doi.org/10.1007/BF01587695
https://doi.org/10.1007/BF01594034
https://doi.org/10.32604/fhmt.2024.050814
https://doi.org/10.24200/sci.2024.63534.8450
https://doi.org/10.24200/sci.2024.63534.8450
https://doi.org/10.32604/fdmp.2023.030325

370

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Comput Model Eng Sci. 2025;143(1)

Mallikarjuna HB, Nirmala T, Punith Gowda RJ, Manghat R, Varun Kumar RS. Two-dimensional Darcy-
Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation. Heat Transf.
2021;50(4):3934-47. doi:10.1002/htj.22058.

Sohail M, Ali MH, Abodayeh K, Abbas ST. Bio-convective boundary layer flow of Maxwell nanofluid via optimal
homotopic procedure with radiation and Darcy-Forchheimer impacts over a stretched sheet. Int ] Ambient Energy.
2025;46(1):2462583. d0i:10.1080/01430750.2025.2462583.

Sarkar GM, Sahoo B. On dual solutions of the unsteady MHD flow on a stretchable rotating disk with heat transfer
and a linear temporal stability analysis. Eur ] Mech-B/Fluids. 2021;85:149-57. doi:10.1016/j.euromechflu.2020.09.
010.

Ramesh K, Mebarek-Oudina F, Souayeh B, editors. Mathematical modelling of fluid dynamics and nanofluids.
Boca Raton, FL, USA: CRC Press; 2024.

Kumar MA, Mebarek-Oudina F, Mangathai P, Shah NA, Vijayabhaskar C, Venkatesh N, et al. The impact of Soret
Dufour and radiation on the laminar flow of a rotating liquid past a porous plate via chemical reaction. Mod Phys
Lett B. 2025;39(10):2450458. d0i:10.1142/5021798492450458X.

Rott N. Unsteady viscous flow in the vicinity of a stagnation point. Q Appl Math. 1956;13(4):444-51. doi:10.1090/
qam/74194.

Danberg JE, Fansler KS. A nonsimilar moving-wall boundary-layer problem. Q Appl Math. 1976;34(3):305-9.
doi:10.1090/qam/99653.

Chakrabarti A, Gupta AS. Hydromagnetic flow and heat transfer over a stretching sheet. Q Appl Math.
1979;37(1):73-8. doi:10.1090/qam/99636.

Andersson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95(1):227-30. doi:10.
1007/BF01170814.

Sohail M, Rafique E, Singh A, Tulu A. Engagement of modified heat and mass fluxes on thermally radiated
boundary layer flow past over a stretched sheet via OHAM analysis. Discov Appl Sci. 2024;6(5):240. doi:10.1007/
$42452-024-05833-1.

Fatunmbi EO, Adeosun AT, Salawu SO. Irreversibility analysis for eyring-powell nanoliquid flow past magnetized
riga device with nonlinear thermal radiation. Fluids. 2021;6(11):416. doi:10.3390/fluids6110416.

Pattanavanitkul P, Pakdee W. Parametric study of unsteady flow and heat transfer of compressible helium-xenon
binary gas through a porous channel subjected to a magnetic field. Fluids. 2021;6(11):392. d0i:10.3390/fluids6110392.
Abbas N, Shatanawi W, Mustafa Z. Thermal analysis of non-Newtonian fluid with radiation and MHD effects over
permeable exponential stretching sheet. Case Stud Therm Eng. 2025;68(1):105895. doi:10.1016/j.csite.2025.105895.
Hou E, Wang E El-Zahar ER, Nazir U, Sohail M. Computational assessment of thermal and solute mechanisms
in carreau-yasuda hybrid nanoparticles involving soret and dufour effects over porous surfa. Micromachines.
2024;12(11):1302. d0i:10.3390/mil12111302.

Shah Z, Islam S, Ayaz H, Khan S. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson
fluid between two rotating parallel plates with effects of Hall current. ] Heat Transf. 2019;141(2):022401. doi:10.1115/
1.4040415.

Khan AS, Nie Y, Shah Z, Dawar A, Khan W, Islam S. Three-dimensional nanofluid flow with heat and mass transfer
analysis over a linear stretching surface with convective boundary conditions. Appl Sci. 2018;8(11):2244. doi:10.
3390/app8112244.

Mebarek-Oudina F, Dharmaiah G, Rama Prasad JL, Vaidya H, Kumari MA. Thermal and flow dynamics of mag-
netohydrodynamic burgers’ fluid induced by a stretching cylinder with internal heat generation and absorption.
Int ] Thermophys. 2025;25(3):100986. doi:10.1016/j.ij{t.2024.100986.

Imran N, Javed M, Qayyum M, Sohail M, Kashif M. Heat transfer analysis for particle-fluid suspension ther-
momagnetohydrodynamic peristaltic flow with Darcy-Forchheimer medium. Heat Transfer. 2021;50(4):3547-63.
doi:10.1002/htj.22040.

Li Z, Sheikholeslami M, Shah Z, Shafee A, Al-Qawasmi A, Tlili I. Time dependent heat transfer in a finned triplex
tube during phase changing of nanoparticle enhanced PCM. Eur Phys ] Plus. 2019;134(4):173. doi:10.1140/epjp/
i2019-12627-9.


https://doi.org/10.1002/htj.22058
https://doi.org/10.1080/01430750.2025.2462583
https://doi.org/10.1016/j.euromechflu.2020.09.010
https://doi.org/10.1016/j.euromechflu.2020.09.010
https://doi.org/10.1142/S021798492450458X
https://doi.org/10.1090/qam/74194
https://doi.org/10.1090/qam/74194
https://doi.org/10.1090/qam/99653
https://doi.org/10.1090/qam/99636
https://doi.org/10.1007/BF01170814
https://doi.org/10.1007/BF01170814
https://doi.org/10.1007/s42452-024-05833-1
https://doi.org/10.1007/s42452-024-05833-1
https://doi.org/10.3390/fluids6110416
https://doi.org/10.3390/fluids6110392
https://doi.org/10.1016/j.csite.2025.105895
https://doi.org/10.3390/mi12111302
https://doi.org/10.1115/1.4040415
https://doi.org/10.1115/1.4040415
https://doi.org/10.3390/app8112244
https://doi.org/10.3390/app8112244
https://doi.org/10.1016/j.ijft.2024.100986
https://doi.org/10.1002/htj.22040
https://doi.org/10.1140/epjp/i2019-12627-9
https://doi.org/10.1140/epjp/i2019-12627-9

Comput Model Eng Sci. 2025;143(1) 371

30.

31

32.

33.

34.

35.

36.

37

38.

39.
40.

41.

42.

43.

Kumam P, Shah Z, Dawar A, Rasheed HU, Islam S. Entropy generation in MHD radiative flow of CNTs Casson
nanofluid in rotating channels with heat source/sink. Math Probl Eng. 2019;2019(1):9158093. doi:10.1155/2019/
9158093.

Bejan A. Second law analysis in heat transfer. Energy. 1980;5(8-9):720-32. d0i:10.1016/0360-5442(80)90091- 2.
Shit G.C.Haldar R, Mandal S. Entropy generation on MHD flow and convective heat transfer in a porous medium
of exponentially stretching surface saturated by nanofluids. Adv Powder Technol. 2017;28(6):1519-30. doi:10.1016/
j.apt.2017.03.023.

Shit GC, Mandal S. Entropy analysis on unsteady MHD flow of Casson nanofluid over a stretching vertical plate
with thermal radiation effect. Int ] Appl Comput Math. 2020;6(1):2. doi:10.1007/s40819-019-0754- 4.

Bartwal P, Upreti H, Pandey AK. Heat transfer assessment of magnetized tangent hyperbolic fluid flow
through porous disk using LWCM: application in solar thermal power plant. Nano. 2024;2450157. doi:10.1142/
$1793292024501571.

Upreti H, Uddin Z, Pandey AK, Joshi N. Particle swarm optimization based numerical study for pressure, flow,
and heat transfer over a rotating disk with temperature dependent nanofluid properties. Numer Heat Transf Part
A Appl. 2023;83(8):815-44. doi:10.1080/10407782.2022.2156412.

Raza ], Mebarek-Oudina E, Ali H, Sarris IE. Slip effects on Casson Nanofluid over a Stretching sheet with activation
energy: RSM Analysis. Front Heat Mass Transf. 2024;22(4):1017-41. doi:10.32604/thmt.2024.052749.

Das S, Chakraborty S, Jana RN, Makinde OD. Entropy analysis of unsteady magneto-nanofluid flow past
accelerating stretching sheet with convective boundary condition. Appl Math Mech. 2015;36(12):1593-610. doi:10.
1007/510483-015-2003-6.

Shahzad A, Ali R, Hussain M, Kamran M. Unsteady axisymmetric flow and heat transfer over time-dependent
radially stretching sheet. Alex Eng J. 2017;56(1):35-41. d0i:10.1016/j.a¢j.2016.08.030.

Brewster MQ. Thermal radiative transfer and properties. Hoboken, NJ, USA: John Wiley & Sons; 1992.

Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and
finite-time processes. Boca Raton, FL, USA: CRC Press; 2013.

Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid. Phys Lett A.
2006;355(1):18-26. doi:10.1016/.physleta.2006.01.092.

Sohail M, Ilyas K, Rafique E, Singh A, Jahan S. OHAM analysis on bio-convective flow of partial differential
equations of Casson nanofluid under thermal radiation impact past over a stretching sheet. BioNanoScience.
2024;14(2):1572-82. d0i:10.1007/s12668-024-01329-9.

Ghasemi SE, Vatani M, Hatami M, Ganji DD. Analytical and numerical investigation of nanoparticle effect on
peristaltic fluid flow in drug delivery systems. ] Mol Liq. 2016;215(11):88-97. doi:10.1016/j.molliq.2015.12.001.


https://doi.org/10.1155/2019/9158093
https://doi.org/10.1155/2019/9158093
https://doi.org/10.1016/0360-5442(80)90091-2
https://doi.org/10.1016/j.apt.2017.03.023
https://doi.org/10.1016/j.apt.2017.03.023
https://doi.org/10.1007/s40819-019-0754-4
https://doi.org/10.1142/S1793292024501571
https://doi.org/10.1142/S1793292024501571
https://doi.org/10.1080/10407782.2022.2156412
https://doi.org/10.32604/fhmt.2024.052749
https://doi.org/10.1007/s10483-015-2003-6
https://doi.org/10.1007/s10483-015-2003-6
https://doi.org/10.1016/j.aej.2016.08.030
https://doi.org/10.1016/j.physleta.2006.01.092
https://doi.org/10.1007/s12668-024-01329-9
https://doi.org/10.1016/j.molliq.2015.12.001

	Numerical Analysis of Entropy Generation in Joule Heated Radiative Viscous Fluid Flow over a Permeable Radially Stretching Disk
	1 Introduction
	2 Mathematical Form of Physical Phenomena
	3 Outcomes and Discussion
	4 Conclusions
	Nomenclature
	References


