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ABSTRACT: This research investigates the influence of indoor and outdoor factors on photovoltaic (PV) power
generation at Utrecht University to accurately predict PV system performance by identifying critical impact factors and
improving renewable energy efficiency. To predict plant efficiency, nineteen variables are analyzed, consisting of nine
indoor photovoltaic panel characteristics (Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power
(Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Filling Factor (FF), Parallel Resistance (Rp), Series
Resistance (Rs), Module Temperature) and ten environmental factors (Air Temperature, Air Humidity, Dew Point, Air
Pressure, Irradiation, Irradiation Propagation, Wind Speed, Wind Speed Propagation, Wind Direction, Wind Direction
Propagation). This study provides a new perspective not previously addressed in the literature. In this study, different
machine learning methods such as Multilayer Perceptron (MLP), Multivariate Adaptive Regression Spline (MARS),
Multiple Linear Regression (MLR), and Random Forest (RF) models are used to predict power values using data from
installed PV panels. Panel values obtained under real field conditions were used to train the models, and the results were
compared. The Multilayer Perceptron (MLP) model was achieved with the highest classification accuracy of 0.990%.
The machine learning models used for solar energy forecasting show high performance and produce results close to
actual values. Models like Multi-Layer Perceptron (MLP) and Random Forest (RF) can be used in diverse locations
based on load demand.

KEYWORDS: Machine learning model; multi-layer perceptrons (MLP); random forest (RF); solar photovoltaic panel
energy efficiency; indoor and outdoor parameters; forecasting

1 Introduction
Solar energy is a highly promising renewable energy source, capable of fulfilling a substantial fraction

of global energy requirements [1]. Effective exploitation of this energy necessitates careful measurement
of solar insolation on Earth and a correct estimate of the resultant data. The intensity of solar insolation
influences both the types of products produced and is vital for numerous agricultural and meteorological
uses [2]. Traditionally, non-electronic sensors were employed in meteorological observation stations to
quantify insolation intensity, a crucial metric of solar energy. This change enhanced data quality but also
introduced issues, including the necessity for qualified workers and elevated operational costs, leading to
difficulty in acquiring long-term insolation intensity data.
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To address these challenges and provide access to historical insolation intensity data for planning,
numerous predictive models have been created utilizing diverse methodologies. The models encompass
artificial neural networks, time series techniques, physical radiative transfer models, and stochastic weather
methods [3]. These models generally forecast insolation intensity by employing diverse data as input param-
eters, with meteorological data being one of the most commonly used inputs worldwide [4]. Regression
approaches are frequently utilized in these models to forecast insolation intensity based on inputs such as
temperature, relative humidity, cloud cover, and sunshine duration. Numerous scholars have specifically
analyzed the correlation between historical maximum and minimum temperature data and insolation
intensity [5–7].

Recently, researchers have increasingly utilized artificial intelligence methodologies, including Artificial
Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), Genetic Programming (GP),
and Support Vector Machines (SVM), alongside conventional regression methods to predict insolation
intensity [8]. Numerous studies have utilized artificial intelligence techniques to forecast insolation intensity,
producing encouraging outcomes. A study calculated insolation intensity by utilizing the daily maximum
and minimum temperature readings from four meteorological stations in the Basque region of Northern
Spain from 1999 to 2003 [9]. The Gene Expression Programming (GEP) approach was employed, and the
outcomes were juxtaposed with other artificial intelligence methods (ANN, ANFIS) and empirical equations.
The research indicated that AI techniques were more effective in assessing insolation intensity, with the GEP
method surpassing ANN and ANFIS.

Another study determined insolation intensity utilizing the traditional Angström-Prescott equation,
which establishes a linear correlation between solar radiation and sunshine duration [10]. Nevertheless,
variable weather conditions cause fluctuations in energy derived from solar radiation, requiring the storage
of surplus energy for subsequent utilization [11]. The efficient storage and subsequent utilization of renewable
energy depend significantly on precise forecasting, with numerous studies concentrating on solar energy
prediction through weather data, statistical methods, and machine learning techniques. Solar energy
predictions can be conducted for both short-term and long-term periods [12]. In recent years, many studies
have focused on the application of deep learning in renewable energy. Studies by [13,14] support this claim.

In 2014, the American Meteorological Society (AMS) conducted a competition on Kaggle to determine
the most effective statistical and machine-learning techniques for short-term solar energy forecasting. The
competition sought to forecast total daily solar energy at 98 Oklahoma Mesonet locations. Meteorological
data was obtained from 144 Global Ensemble Forecast Systems (GEFS) across the United States [15].
Numerous research employing the AMS dataset have been undertaken since that time. Shahid et al. employed
Ridge Regression and Random Forest algorithms, attaining Mean Absolute Error (MAE) values of 22.84
and 22.75, respectively [14]. Díaz-Vico et al. achieved a Mean Absolute Error (MAE) of 2.56 using Deep
Convolutional Neural Networks (DCNN) [16]. Various studies have shown differing MAE values employing
distinct methodologies, hence underscoring the efficacy of machine learning techniques in solar energy
forecasting [12,15,17]. Furthermore, research has explored the utilization of artificial intelligence techniques
including Random Forest Regression (RFR), Gradient Boosted Regression (GBR), and Extreme Gradient
Boosting (XGB) for both global and local wind energy forecasting, in addition to solar radiation predic-
tion [18,19]. These investigations have consistently demonstrated that AI methodologies surpass conventional
regression techniques in forecasting insolation intensity. In a study, Nematirad and Pahwa employed a
Bayesian-optimized multilayer perceptron (MLP) and artificial neural network (ANN) to forecast solar
radiation, attaining mean absolute error (MAE) values of 109.45 and 111.24, respectively, when Pearson
correlation coefficients (PCC) were utilized [20–22]. A subsequent work formulated a novel Angström
equation that enhances the conventional model, markedly decreasing error rates in both short-term and
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long-term predictions [23,24]. The suggested model incorporated two novel dependence coefficients and
outperformed the standard Angström equation in forecasting insolation intensity utilizing meteorological
data from 163 sites in Turkey. Three solar irradiation locations in Turkey were evaluated for their solar
energy potential utilizing the HarLin model, which integrates harmonic and classical regression techniques.
The HarLin model surpassed the ANFIS and Angstrom-Prescott methods in forecasting insolation energy
potential [25]. In Algeria, daily and monthly insolation intensity was assessed using a Support Vector
Machine (SVM) in conjunction with meteorological information, with an Adaptive Neuro-Fuzzy Inference
System (ANFIS) marginally surpassing other methodologies according to the criteria of percentage of
prediction residuals (POPR), R2, and Mean Absolute Error (MAE) [26]. In five nations, Decision Tree (DT)
regression algorithms were employed to forecast insolation intensity, demonstrating performance on par
with ANN and SVM, underscoring the model’s potential [27]. Hourly insolation intensity was assessed
utilizing Support Vector Regression (SVR), ANN, and DT methodologies, all yielding satisfactory forecasts
based on POPR and R2 [13]. This research distinguishes itself from prior studies by employing both indoor
parameters namely Open Circuit Voltage (Voc), Short Circuit Current (Isc), Maximum Power (Pmpp),
Maximum Voltage (Umpp), Maximum Current (Impp), Fill Factor (FF), Parallel Resistance (Rp), Series
Resistance (Rs), and Module Temperature and outdoor parameters including Air Temperature, Humidity,
Dew Point, Air Pressure, Irradiation, Wind Speed, and Wind Direction—as input data. We utilized two
machine learning methodologies, Multi-Layer Perceptron’s (MLP) and Random Forest (RF), to forecast
the energy output of the Photovoltaic Outdoor Test Plant (UPOT) at Utrecht University. The integration
of both indoor and outdoor parameters, an aspect often overlooked in other studies, allows for a more
comprehensive analysis, capturing the complex interplay of factors influencing PV panel efficiency in
real-world conditions. The efficiency of photovoltaic panels is affected by several factors, including light-
induced degradation, temperature-induced degradation, oxygen and humidity-induced degradation, and
ion migration. Photovoltaic devices have self-healing capabilities, restoring deterioration overnight upon
exposure to light. This study examines the efficacy of novel solar module layouts and their performance under
various indoor and outdoor environments. The objective is to improve our comprehension of these aspects
by assessing specific energy yields (energy rating) in kWh/kWp in both indoor and outdoor environments.
The results seek to enhance photovoltaic system efficacy. Furthermore, Table 1 in the manuscript encapsulates
several machine learning methodologies employed in diverse facets of solar energy efficiency as derived from
the current literature.

Table 1: Literature review on energy efficiency and machine learning applications

Study Method Result
[28] Linear Regression Model Linear Regression Model in Estimating Solar

Radiation in Perlis.
[29] Multivariate adaptive regression

splines and M5 model tree
Pan evaporation modeling using least square

support vector machine, multivariate
adaptive regression splines and M5 model

tree.
[30] Multivariate Adaptive

Regression Spline (MARS)
Estimation of hourly global solar radiation

using Multivariate Adaptive Regression
Spline (MARS) A case study of Hong Kong.

[31] Neural network model A neural network model for UAV propulsion
system.

(Continued)
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Table 1 (continued)

Study Method Result
[32] Neural network and linear

regression
Evaluating neural network and linear

regression photovoltaic power forecasting
models based on different input methods,

[33] Big Data Analysis in Regression Use of a Big Data Analysis in Regression of
Solar Power Generation on Meteorological

Variables for a
[34] Multivariate Adaptive

Regression Splines (MARS)
Model Generalized Least Square

(GLS) Method

Estimation of Multivariate Adaptive
Regression Splines (MARS) Model

Parameters by Using Generalized Least
Square (GLS) Method.

[35] Linear regression Forecasting solar photovoltaic energy
production using linear regression-based

techniques
[36] Neural network Fault resistance estimation for line-line fault

in photovoltaic arrays using regression-based
dense neural network

[37] MLP-ANN Application of Multilayer Perceptron
Artificial Neural Network (MLP-ANN)

Algorithm for PM2.5 Mass Concentration
Estimation during Open Biomass Burning

This study is organized as follows: Section 2 provides a detailed overview of the materials and methods
used to obtain the research findings. Section 3 and 4 offers a thorough review of the results, accompanied by
a comprehensive discussion. Lastly, Section 5 presents a conclusive summary of the study.
Study Area

The Utrecht region (Fig. 1) experiences warm, partially overcast summers and long, extremely cold,
windy, and predominantly cloudy winters. Temperatures fluctuate between 0○C and 22○C, never falling
below −6○C or surpassing 28○C. Cloud cover exhibits seasonal variation, with July representing the month
of greatest clarity (56% of the sky clear or partly cloudy). December experiences the greatest frequency of
precipitation, averaging 9.9 days. Rain constitutes the predominant kind of precipitation, reaching a zenith of
34% on 22 December. The duration of daylight varies from 7 h and 44 min in December to 16 h and 45 min in
June. Humidity comfort levels stay rather consistent throughout the year. Wind velocities peak from October
to April, averaging in excess of 18.1 km/h. June is the month with the highest solar radiation, averaging
6.3 kWh. The area’s geography is predominantly flat, featuring a maximum elevation variation of 25 m and
an average altitude of 4 m above sea level.
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Figure 1: Utrecht/Netherland province Location map (Latitude: 52.0907374, Longitude: 5.1214201) [38]

2 Methodology
This section defines the variables and explains the data collection methodology. It then describes

different machine learning methods such as Multilayer Perceptron (MLP), Multivariate Adaptive Regression
Spline (MARS), Multiple Linear Regression (MLR), and Random Forest (RF) models, along with their
configuration details. Fig. 2 illustrates the overall research workflow, including data collection, preprocessing,
model training, evaluation, and final efficiency prediction.

The methods used to train and validate the models, data pre-processing, and evaluation techniques are
also specified. Model performance is assessed using the metrics shown in Fig. 3. The values corresponding
to each characteristic are presented in Table 2.
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Figure 2: Overview of the research methodology and workflow

Figure 3: The Utrecht University Photovoltaic Outdoor Test (UPOT) facility measures the real-world performance of
various commercial and prototype PV modules [38]

Table 2: Internal features

Feature Values between
Open Circuit Voltage (Voc) (V) 20–37
Short Circuit Current (Isc) (A) 5–7
Maximum Power (Pmpp) (W) 0.07–1.16
Solar Irradiation Spread (m2) 0.000506–0.007274

Maximum Voltage (Vmpp) (V) 15.08–29.04
Maximum Current (Impp) (A) 0.12–0.53

FillFactor (FF) (%) 50–75
Parallel Resistance (Rp) (Ohm) 0.17–1.19
Series Resistance (Rs) (Ohm) 0.17–0.95

(Continued)
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Table 2 (continued)

Feature Values between
Module Temperature (○C) 7.70–59.80

Efficiency (%) 7–20

2.1 Variables Used for PV Solar Power Plant Efficiency
The efficiency of a photovoltaic system is defined as the ratio of total power produced (kWh/year) to

the total global solar radiation received (kWh/year). It is affected by both ambient (outside) and modular
(interior) factors:

Outdoor Parameters
Solar Irradiation (W/m2): Intensity of sunlight received. Higher levels increase electricity generation.
Air Temperature (○C): Affects efficiency; higher temperatures usually decrease performance.
Wind Speed (m/s): Enhances heat dissipation, improving performance.
Relative Humidity (g/m3): Influences dust accumulation on panels.
Air Pressure (millibars): Affects panel structural integrity but not efficiency directly.
Dew Point: Temperature at which water vapor condenses.
Wind Speed Spread: Wind speed spread denotes the fluctuation and dispersion of wind velocities over a

temporal framework. Intense winds are seldom, although moderate to strong winds are more prevalent. The
Weibull distribution, utilized for modeling wind speed distribution, is asymmetrical and defined by shape
and scale factors. This distribution aids in optimizing turbine design and minimizing expenses.

Wind Direction and Spread: The direction of the wind influences turbine positioning, as turbines
diminish wind energy for downstream locations. Turbines should be oriented to align with the prevailing
wind direction to optimize efficiency. The design must account for the proximity to the grid and the
dimensions of the property to reduce expenses. Locations with a distinct prevailing wind direction facilitate
closer turbine installation, maximizing land utilization and reducing infrastructure expenses.

Indoor Parameters
Module Power (kW): Maximum electrical output.
Module Temperature (○C): Higher temperatures can reduce output.
Open Circuit Voltage (Voc): Maximum voltage when not connected to a circuit.
Short Circuit Current (Isc): Current when two points with different voltages touch.
Maximum Power (Pmpp), Voltage (Umpp), and Current (Impp): Key performance indicators.
Fill Factor (FF): Ratio of maximum power to the product of Voc and Isc.
Parallel Resistance (Rp) and Series Resistance (Rs): Affect current flow and efficiency.
Module Efficiency: Module efficiency is the ratio of generated electricity to incoming solar energy. It

indicates how effectively a PV system converts sunlight into electrical power.

2.2 Data Collection Process
The Utrecht University Photovoltaic Outdoor Test Facility (UPOT) collected data every 5 min to assess

the real-world performance of different PV modules. Solar radiation was measured using a pyranometer
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(Kipp & Zonen CMP11), with an uncertainty of approximately ±5%, caused by calibration errors and
environmental factors.

PV Panel Data: Daily measurements of panel characteristics, including temperature and power, were
recorded over a year to observe long-term trends.

Historical Weather Data: To assess the impact of weather on PV performance, historical data and
PV module parameters (e.g., Open Circuit Voltage, Short Circuit Current) were collected for the same
location. This included environmental factors such as air temperature, humidity, dew point, air pressure, and
wind conditions.

Data Validation: Measures were taken to ensure data accuracy by addressing outliers, inconsistencies,
and missing values.

Data Organization: The data were systematically organized and stored for effective analysis.

2.3 Statistical Analysis of the Dataset
Tables 3 and 4 present the statistical summary of the dataset used in our experiments. The tables contain

10 and 11 parameters, respectively. Among these, Efficiency represents the dependent variable predicted at
the output, while the remaining parameters are independent variables used as inputs.

Table 3: Descriptive statistics of indoor parameters

Vars n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se
OpenCircuitVoltage

(Voc)
1 466 34.548 1.543 34.808 34.732 1.056 15.901 36.711 20.810 −4.301 44.405 0.071

ShortCircuitCurrent
(Isc)

2 466 0.433 0.158 0.429 0.175 0.066 1.147 1.147 1.082 0.276 −0.006 0.007

MaximumPower
(Pmpp)

3 466 0.493 0.185 0.504 0.492 0.230 0.088 1.267 1.179 0.077 −0.556 0.009

MaximumVoltage
(Umpp)

4 466 23.465 3.703 4.544 23.600 4.593 12.995 29.346 16.350 −0.271 −1.299 0.172

MaximumCurent
(Impp)

5 466 0.287 0.080 0.266 0.280 0.077 0.127 0.549 0.422 0.787 0.275 0.004

FillFactor (FF) 6 466 5.649 1.680 6.152 5.759 1.882 1.934 7.657 5.723 −0.404 −1.374 0.078
ParallelResistance

(Rp)
7 466 0.431 0.113 0.418 0.425 0.096 0.157 1.207 1.050 1.039 4.431 0.005

SeriesResistance
(Rs)

8 466 0.447 0.133 0.439 0.443 0.120 0.102 0.975 0.873 0.467 0.552 0.006

ModuleTemperature 9 466 29.542 13.647 26.740 28.719 15.027 6.292 60.646 54.354 0.450 −0.968 0.632
EffIciency 10 466 0.290 0.173 0.226 0.255 0.056 0.000 0.846 0.846 1.723 1.845 0.008
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Table 4: Descriptive statistics of outdoor parameters

Vars n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se
AirTemperature 1 466 18.842 4.083 18.808 18.678 4.247 8.785 30.294 21.509 0.349 −0.116 0.189

AirHumidity 2 466 64.860 16.899 64.449 64.507 21.309 33.571 98.889 65.318 0.132 −1.091 0.783
DewPoint 3 466 3.114 3.046 1.296 2.643 0.393 0.868 9.858 8.991 1.086 −0.616 0.141

AirPressure 4 466 1.060.340 117.752 1.054.876 1.055.194 6.328 1.032.531 3.594.243 2.561.712 21.383 457.149 5.455
Irradiation 5 466 501.026 284.818 456.851 472.430 218.245 45.714 2.368.518 2.322.805 2.101 8.486 13.194

IrradiationSpread 6 466 0.286 0.043 0.280 0.283 0.038 0.149 0.451 0.302 0.633 0.783 0.002
WindSpeed 7 466 1.906 0.818 1.832 1.865 0.776 0.186 4.987 4.801 0.599 0.655 0.038

WindSpeedSpread 8 466 0.435 0.108 0.467 0.446 0.095 0.109 0.632 0.523 −0.887 0.340 0.005
Wind Direction 9 466 264.260 156.519 269.735 258.515 82.738 135.586 3.335.078 3.199.491 16.175 315.008 7.251

WindDirectionSpread 10 466 409.648 96.559 398.263 407.005 92.034 24.409 670.238 645.830 0.047 0.503 4.473
EffIciency 11 466 0.290 0.173 0.226 0.255 0.056 0.000 0.846 0.846 1.723 1.845 0.008

2.4 Multi-Layer Perceptrons (MLP) Architecture
This work utilized a Multi-Layer Perceptron (MLP) architecture to model and forecast performance

indicators under diverse situations. The MLP, a category of feedforward neural networks, comprises several
layers of nodes, including an input layer, one or more hidden layers, and an output layer. Each node, or
neuron, in one layer is connected with a certain weight to every node in the subsequent layer, and these
connections are modified during training to reduce prediction errors. The architecture of MLPs consists of
an input layer that accepts input data, with the number of neurons in this layer corresponding to the number
of features in the input dataset. The hidden layers comprise one or more layers where calculations occur, with
each layer’s neurons employing an activation function to introduce non-linearity, hence enabling the model
to learn intricate patterns. Prevalent activation functions comprise ReLU (Rectified Linear Unit). Ref. [39],
sigmoid, and hyperbolic tangent. The output layer generates the final prediction, with the quantity of neurons
in this layer aligned with the number of output classes or regression goals. This work constructed the MLPs
with different quantities of hidden layers and neurons per layer to assess their performance (Fig. 4). The
configurations evaluated comprised structures with three, four, and five layers. Each model was trained by
backpropagation to reduce the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE), while maximizing the R-squared (R2) value.

Figure 4: 5-layer MLP architecture
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The training procedure for the MLP models encompassed multiple stages. Initially, data normalization
was conducted to guarantee that feature values were on a comparable scale. Weights were initially allocated
using He initialization [40] to prevent problems such as vanishing or expanding gradients. The models were
trained utilizing a loss function suitable for regression tasks, namely the mean squared error loss. The Adam
optimizer [41] was employed to modify the weights according to the calculated gradients. Furthermore,
early stopping was utilized to avert overfitting by observing the validation loss and ceasing training if
the loss failed to improve for 5 epochs. Furthermore, early stopping was utilized to avert overfitting by
observing the validation loss and ceasing training if the loss failed to improve for 5 epochs. The MLP design
has been thoroughly examined and utilized across multiple areas owing to its adaptability and efficacy in
modeling nonlinear interactions. The book by [42] offers a comprehensive examination of deep learning
methodologies, featuring in-depth analyses of MLP designs and training procedures. Furthermore, Ref. [40]
employed a multi-layer perceptron (MLP) architecture to forecast environmental pollution, whereas Ref. [43]
utilized this design to anticipate power plant efficiency. Our study seeks to get high accuracy in predictive
modeling by utilizing the flexibility and capabilities of MLPs, thereby illustrating the efficacy of deep learning
methods in managing intricate datasets.

2.5 Multivariate Adaptive Regression Spline (MARS)
While model estimate with numerous data points typically yields accurate predictions, it may also result

in erroneous outcomes [44]. The application of conventional linear models significantly elevates the error
rate, particularly in the modeling of nonlinear connections. In this instance, it is more suitable to favor
nonlinear models. The MARS model is one of the techniques employed in the development of nonlinear
models. This model is a nonparametric regression model [45]. A precise functional pattern between the
dependent and independent variables is unnecessary. The methodology was established by [46]. This strategy
does not necessitate stringent assumptions like those of a linear regression model [46]. This model attains
nonlinearity by estimating piecewise linear regression lines, which involves partitioning the independent
variable into smaller segments and calculating distinct regression coefficients for each segment [47]. The
many lines produced are interconnected by nodal points. The efficacy of the MARS method in constructing
predictive models has been shown in various areas, including intrusion detection, energy price forecasting,
cancer diagnosis, software engineering, and credit scoring. This method allows for the inclusion of variables
in the model either individually or by the multiplication of several variables.

The basic function is defined as the MARS Eq. (1) [48,49].

y = ηo +
M
∑
m=1

ηm hm (X) (1)

where ηo is intercept, η1, . . . ,ηm are regression coefficients while the hm(X) are terms with a very specific
form. All the terms created will be of the form:

(Xi − ti)+ =
⎧⎪⎪⎨⎪⎪⎩

(Xi − ti) i f Xi > ti

0 i f Xi ≤ ti
(2)

(ti − Xi)+ =
⎧⎪⎪⎨⎪⎪⎩

(ti − Xi) i f Xi < ti

0 i f Xi ≥ ti
(3)

The MARS method employs a general-to-specific strategy in model construction. Initially, all subdi-
visions are divided into two sister subdivisions, with the division optimized according to goodness-of-fit
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criteria. This procedure iterates until a substantial quantity of discrete subdivisions is achieved, each with
its corresponding basis function. A model that is overlearned is thus generated. Subsequently, the basis
functions that do not substantially enhance the model’s fit are eliminated in reverse order. During pruning,
both the model’s accuracy and its complexity are meticulously regulated. The model’s complexity is so
diminished [46]. Upon the creation of the MARS model, the relative significance of the independent
variables used in the model can be assessed. To do this, all factors associated with the variable whose relative
significance is to be assessed are eliminated from the model, and the goodness of fit loss resulting from
the variable’s exclusion is computed. The goodness of fit loss is computed for all variables in this manner,
assigning each variable a score ranging from 0 to 100. The magnitude of the variable scores signifies their
importance [50].

The fundamental functions for linear and non-linear expansion are utilized in two distinct manners.
The bidirectional fundamental functions (x − t) + and (t − x) + are represented as the t node value, as
delineated in Eqs. (2) and (3). The (+) symbol adjacent to these functions signifies that the outcome of the
equation is positive. Alternatively, each function is assessed at the origin [44]. Fig. 5 illustrates a singular
node and two fundamental functions. Each function is piecewise linear, with the t value located at the node.
These two functions constitute reflected pairs. The fundamental functions are segmented linear regression
curves that partition the variables into intervals with optimal junctions. Another objective of MARS is to
identify the joints with the minimal sum of squares. In the model’s formation, the forward-stepping approach
generates several nodes that contribute minimally or not at all, but these superfluous nodes will be eliminated
by the stepwise pruning procedure. Model selection is predicated on the Generalized Cross Validation (GCV)
criterion established by references [51]. This coefficient considers both the residual error and the complexity
of the model. The GCV coefficient is expressed in the following equation [52].

GCV (λ) = ∑
n
i=1(Yi − Ŷi)2

[1 − M (λ)
n
]

2 (4)

where n is; the number of sample data, C, measures the cost-complexity of the added basic functions, Yi is the
observed value of a response variable, Ŷi is the predicted value of a response variable, M shows the number
of regression models established by the MARS Model [46].

Figure 5: Basis function
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If there are Multiple linear regression independent basic functions in the models are presented as
follows [43]:

R2 = [1 − ∑
n
i=1(Yi − Ŷi)2

∑n
i=1(Yi − Y)2

] (5)

Adjusted Coefficient of Determination was described by [53]:

R2
ADJ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −

1
n − k − 1 ∑

n
i=1(Yi − Ŷi)2

1
n − 1 ∑

n
i=1(Yi − Y)2

⎤⎥⎥⎥⎥⎥⎥⎦

(6)

Standard Deviation Ratio was defined by by [40,50,54]:

SDRATIO =

�
������

1
n − 1 ∑

n
i=1(εi − ε)2

1
n − 1 ∑

n
i=1(Yi − Y)2

(7)

Given that the equation is in linear form, the outcomes of the MARS model are assessed utilizing
ANOVA. MARS facilitates the comparison of low- and high-grade models by permitting the specification of
variables to be entered either individually or in combination. Reference [55] advocates for the use of corrected
R2 as a standard. A model incorporating interaction terms is favored alone if the adjusted R2 is substantially
elevated [56].

2.6 Multiple Linear Regression
In the multiple linear regression (MLR) method, the impact of several input parameters (independent

variables, predictors) on a single output parameter (dependent variable, response) is analyzed. In this study,
seven parameters were used as inputs to the MLR model to estimate the efficiency parameter. The general
form of the multiple linear regression equation is given by:

Yi = d0 + d1 X1 + . . . + di Xi + . . . + dk Xk + ε, i = 1, 2, . . . , k (8)

In Eq. (8), Yi represents the dependent variable in the multiple linear regression, Xi’s are the independent
variables, d’s are the regression coefficients, and ε (epsilon) is a constant error term. By applying the least
squares method, the regression coefficients in the MLR model can be estimated as follows [48]:

Ŷi = d̂0 + d̂1 X1 + d2 X2 + . . . + d̂k Xk + ε, i = 1, 2, . . . , k (9)

In Eq. (9), Ŷi is the predicted value of the dependent variable in the model, d̂’s are the estimated
regression coefficients, and ε (epsilon) remains a fixed constant.
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2.7 Random Forest Model
It enables the creation of diverse models and classifications by training each decision tree on distinct

observation samples using multiple decision trees (Fig. 6) [57]. Its user-friendliness and adaptability facil-
itated its rapid uptake and extensive utilization, as it effectively tackles both classification and regression
challenges. The algorithm’s most commendable aspect is its capacity to facilitate a deeper exploration of your
cluster by generating many models from your dataset [58,59].

Figure 6: Random forest model architecture

Algorithm: The dataset for analysis is prepared, including the creation of the set and, if necessary, data
cleansing. The algorithm generates a decision tree for each sample, and the estimated value outcome of each
decision tree is produced. Voting is conducted for each anticipated value. The algorithm ultimately produces
a result by choosing the most frequently voted value for the final prediction. It does the analysis methodically.

3 Experimental Setup and Procedures
This study assessed the efficacy of feedforward different machine learning methods such as the

Multilayer Perceptron (MLP) model, Multivariate Adaptive Regression Spline (MARS) model, Multiple
Linear Regression (MLR) model, and Random Forest (RF) models utilizing data from the Utrecht University
Photovoltaic Outdoor Test Facility (UPOT). Prior to inputting the data into the models, a sequence of
preparation procedures was executed to guarantee the dataset’s quality and compatibility. The stages
encompassed data cleansing, standardization, and partitioning into training and test sets via k-fold cross-
validation. The dataset included in the study comprised daily average values from January 2023. A total of 466
samples were collected at five-minute intervals every day from the solar panel, and the dataset was partitioned
into training and test sets utilizing k-fold cross-validation with k set to 10. The procedure entailed partitioning
the data into 10 segments, utilizing 9 segments for training and 1 segment for testing. The division of training
and test sets was conducted ten times to assure result consistency and mitigate randomness. The MLP model
utilized nine input features from the module, comprising Open Circuit Voltage (Voc), Short Circuit Current
(Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Fill Factor (FF),
Parallel Resistance (Rp), Series Resistance (Rs), and Module Temperature, alongside ten environmental
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output features, including Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation
Spread, Wind Speed, Wind Speed Spread, Wind Direction, and Wind Direction Spread, to forecast the
efficiency of the photovoltaic (PV) roof solar power plant. The characteristics were standardized to guarantee
uniform scaling among variables. The MLP model comprised an input layer with seven neurons, a solitary
hidden layer containing 15 neurons, and an output layer with one neuron tasked with forecasting efficiency
values. The results indicated that employing 15 neurons in a solitary hidden layer produced the optimal
performance (Fig. 4). Nonetheless, increasing the number of hidden layers to two resulted in a deterioration
of the network’s performance, signifying a problem of overfitting.

The Random Forest model utilized the identical nine input features and ten output factors to forecast the
effectiveness of the photovoltaic roof solar power plant. The dataset underwent preprocessing in a comparable
manner, with features standardized for uniformity. In contrast to MLP, the Random Forest model relies on
the binary correlations among input and output attributes and the target variable (efficiency). Regression
analysis was conducted to estimate continuous numerical values in the output layer.

In both models, the training data were utilized to develop the models, while the test data were applied
to assess their predictive efficacy. Multiple performance criteria, such as R-squared (R2), root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), were employed to
evaluate and compare the efficacy of the MLP and Random Forest models.

4 Results and Discussion
This study compares the performance of various models, including Multilayer Perceptrons (MLP),

Architecture, Multivariate Adaptive Regression Splines (MARS), Multiple Linear Regression, Training Con-
ditional Inference Trees, and Random Forest, demonstrating the superior efficacy of Multilayer Perceptrons
(MLP) in modeling complex relationships regarding solar panel efficiency, yielding better results than
other regression methods. The prevalent external factors influencing solar panel efficiency, specifically
environmental and inside parameters, are identified and examined. This study aims to investigate the
influence of outdoor and indoor conditions on panel power efficiency via machine learning techniques,
with the aforementioned metrics employed for comparison. The MLP multilayer sensors model exhibits a
R2 value of 0.983 for outdoor parameters and 0.983 for indoor parameters. The multiple linear regression
model demonstrates a R2 value of 0.87 for outdoor parameters and 0.901 for indoor parameters. The MARS
regression model reveals a R2 value of 0.916 for outdoor parameters and 0.7800244 for indoor parameters.
The Random Forest Model demonstrates a R2 value of 0.956 for the outside parameter and a R2 value of
0.9746905 for the inside parameters. The Multiple Linear Regression model exhibits a R2 value of 0.899 for
the outside parameter and a R2 value of 0.6979885 for the indoor parameters. The outcomes of the root
mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are
presented in Tables 4 and 5. The artificial neural network model surpassed the multiple linear regression
model by attaining superior outcomes across all evaluation criteria.



Comput Model Eng Sci. 2025;143(1) 1229

Ta
bl

e5
:(

a)
C

or
re

lat
io

ns
of

ex
te

rn
al

pa
ra

m
et

er
es

tim
at

es
.(

b)
C

or
re

lat
io

ns
of

in
te

rn
al

pa
ra

m
et

er
es

tim
at

es

(a
)

A
ir

te
m

pe
ra

tu
re

A
ir

hu
m

id
ity

D
ew

po
in

t
A

ir
pr

es
su

re
Ir

ra
di

at
io

n
Ir

ra
di

at
io

n
sp

re
ad

W
in

d
sp

ee
d

W
in

d
sp

ee
d

sp
re

ad

W
in

d
di

re
ct

io
n

W
in

d
di

re
ct

io
n

sp
re

ad

A
irT

em
pe

ra
tu

re
1

A
irH

um
id

ity
−

0.
74

43
65

1
D

ew
Po

in
t

−
0.

34
34

5
−

0.
13

58
93

1
A

irP
re

ss
ur

e
−

0.
04

35
4

0.
02

36
48

−
0.

01
55

35
1

Ir
ra

di
at

io
n

0.
07

34
9

−
0.

05
56

43
−

0.
04

80
33
−

0.
01

51
36

1
Ir

ra
di

at
io

nS
pr

ea
d

0.
08

90
66

−
0.

00
11

17
−

0.
08

28
60
−

0.
07

04
09

0.
25

02
52

1
W

in
dS

pe
ed

0.
02

91
39

−
0.

16
31

62
0.

04
67

81
−

0.
01

43
40

−
0.

00
79

86
−

0.
03

68
93

1
W

in
dS

pe
ed

Sp
re

ad
0.

20
25

59
−

0.
23

82
82

−
0.

07
36

52
0.

04
17

97
−

0,
08

88
9

0.
01

09
83

0.
70

68
97

1
W

in
d

D
ire

ct
io

n
−

0.
05

41
98

−
0.

05
95

15
0.

15
110

4
−

0.
01

91
12

−
0.

09
19

75
−

0.
05

56
07

0.
12

83
27

0.
07

89
78

1
W

in
dD

ire
ct

io
nS

pr
ea

d
−

0.
10

20
86

−
0.

04
61

78
0.

05
42

31
0.

03
46

18
−

0.
07

28
12

0.
04

25
87

0.
06

82
32

0.
29

81
16

0.
07

44
02

1
(b

)
Vo

c
Is

c
Pm

pp
U

m
pp

Im
pp

FF
Rp

Rs
M

od
ul

e
te

m
pe

ra
-

tu
re

O
pe

n
Ci

rc
ui

tV
ol

ta
ge

(V
oc

)
1

Sh
or

tC
irc

ui
tC

ur
re

nt
(Is

c)
0.

13
85

62
1

M
ax

im
um

Po
w

er
(P

m
pp

)
0.

36
50

35
0.

19
28

00
1

M
ax

im
um

Vo
lta

ge
(U

m
pp

)
−

0.
19

07
04

−
0.

45
110

6
−

0.
59

27
12

1
M

ax
im

um
Cu

re
nt

(Im
pp

)
0.

27
81

82
0.

69
33

33
0.

55
72

76
−

0.
64

78
45

1
Fi

llF
ac

to
r(

FF
)

−
0.

31
03

96
−

0.
51

05
46

−
0.

62
44

86
0.

97
94

29
−

0.
69

01
69

1
Pa

ra
lle

lR
es

ist
an

ce
(R

p)
−

0.
00

16
54

0.
03

25
92

0.
01

29
48

−
0.

03
86

76
0.

01
42

26
−

0.
07

43
36

1
Se

rie
sR

es
ist

an
ce

(R
s)

−
0.

04
02

66
0.

05
58

68
−

0.
10

80
08

0.
15

63
22

−
0.

28
06

56
0.

15
49

14
0.

01
49

82
1

M
od

ul
eT

em
pe

ra
tu

re
0.

32
50

85
0.

53
90

19
0.

55
34

77
−

0.
88

78
04

0.
63

75
97

−
0.

90
02

28
0.

07
24

29
−

0.
06

78
46

1



1230 Comput Model Eng Sci. 2025;143(1)

4.1 MARS, MLR and RF Model and Interpretation
The graph below illustrates a strong linear link between the Module Temperature variable and both the

Fill Factor (FF) and Maximum Voltage (Fig. 7a,b). This may lead to issues in the functioning of numerous
machine learning models, particularly MARS [56]. Multicollinearity may lead to the misinterpretation of
inconsequential variables as significant. A potential remedy to this issue could involve eliminating highly
interactive variables from the model. This issue can be addressed by generating alternative variables through
techniques like principal component analysis [44].

Figure 7: Correlation graph of internal and external parameters. (a) Correlation graph of internal parameters.
(b) Correlation graph of external parameters

To prevent overfitting in data mining models, datasets are typically divided into training and test sets
for result validation. The training, testing, and regression curves of the Random Forest (RF) model for
all data are illustrated in Fig. 8. The models developed from the training set are evaluated with the test
set in the final phase, therefore minimizing model bias. Nevertheless, the data set must have a sufficient
number of observations to employ this strategy. Seventy percent is allocated to training, while thirty percent
is designated for testing. The 5-repetition 10-fold method was used as the cross-validation technique to
ascertain the optimal fine-tuning value. The optimal sub-model was identified as the one with the highest
cross-validation R2 value. This section analyzes the goodness of fit criteria of the models, revealing that the
most effective model for both the training and test sets is the random forest. Upon examining all the models,
specifically the Multi-Layer Perceptron (MLP) model and the Random Forest (RF) model. The performance
disparity between the training and test sets suggests that the model is experiencing overfitting. Consequently,
the generalization of the model poses challenges. The performance disparity between the training and test
sets (Tables 6 and 7) suggests that the model is experiencing overfitting. Nevertheless, for all models, even if
the disparity is not as pronounced as that reported in RF, the same issue persists.
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Figure 8: Regression curve fitting of (a) training, (b) test and (c) all data for the RF

The correlations presented in Table 5 illustrate the distinct impact of internal and exterior characteristics
on panel efficiency through the subsequent calculations. This formula is derived from the Random Forest
model. These relationships are illustrated in Fig. 9.

Efficiency = −4.09104Voc + 1.82105Isc + 1.99105Pmpp − 2.18105Impp − 2.52105FF − 9.1410−2Rp
+ 1.38105Rs + 2.59103 (Modul Temperature) + 0.002957 (Air Temperature)
− 0.003579 (Air Humidity) − 0.001824 (Dew Point) − 0.000061 (Air Pressure)
− 0.000014 Irradiation − 0.023475 (Wind Speed) − 0.000056 (Wind Direction) (10)
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Table 6: Training and test sets to validate the results of the data sets according to the indoor parameters

Type Model R2 RMSE MAE MAPE
Test MLR 0.6788841 0.11650541 0.07892428 0.3340678
Test MARS 0.7674300 0.08625783 0.05409073 0.2185251
Test RF 0.8142259 0.08006698 0.04880173 0.1828864

Train MLR 0.6979885 0.10534992 0.07377370 Inf
Train MARS 0.7800244 0.07994351 0.04708140 Inf
Train RF 0.9746905 0.02995823 0.01640373 Inf

Table 7: Training and test sets to validate the results of the data sets according to the outdoor parameters

Type Model R2 RMSE MAE MAPE
Test MLR 0.149 0.387 0.150 0.7253
Test MARS 0.174 0.178 0.120 0.484
Test RF 0.190 0.161 0.110 0.427

Train MLR 0.899 0.153 0.110 Inf
Train MARS 0.916 0.132 0.0858 Inf
Train RF 0.956 0.0524 0.0342 Inf

To prevent overfitting in data mining models, datasets are typically divided into training and test sets for
result validation. The models developed from the training set are evaluated with the test set in the final phase,
therefore minimizing model bias. Nevertheless, the data set must have a sufficient number of observations
to employ this strategy. Seventy percent is allocated for training, while thirty percent is designated for
testing. This section compares Conditional Inference Trees, Random Forests, MARS, and Linear Regression
techniques. The caret package was utilized to train the models. The 5-repetition 10-fold method was used
as the cross-validation technique to ascertain the optimal fine-tuning value. The optimal sub-model was
identified as the one with the highest cross-validation R2 value. This section analyzes the goodness of fit
criteria of the models, revealing that the most effective model for both the training and test sets is the random
forest. Upon examining all the models, specifically the Multi-Layer Perceptron (MLP), Multivariate Adaptive
Regression Splines (MARS), Multiple Linear Regression (MLR), Conditional Inference Trees (CIT), Linear
Regression (LR), and Random Forest (RF) models. The performance disparity between the training and test
sets suggests that the model is experiencing overfitting. Consequently, the generalization of the model is
troublesome. Nevertheless, the MARS model, regarded as the second most effective model, had superior
performance in cross-validation, as the results for the test and training sets were closely aligned. Furthermore,
it is important to highlight that the outputs of the MARS model are elucidated. Upon analyzing the goodness
of fit criteria of the models, the random forest emerges as the most effective model for both the training
and test sets. Among all models, the Multi-Layer Perceptron (MLP) is a specific type of feed-forward neural
network. The performance disparity between the training and test sets (Tables 6 and 7) suggests that the
model is experiencing overfitting. Nonetheless, for all models, even if the disparity is not as pronounced as
that reported in RF, the same issue persists.

The effects of indoor parameters on PV solar panel efficiency can be seen in Figs. 10–13 as follows.

Efficiency = −0.1112713 pmax (0.17.8332 −Umpp) − 0.1112713 pmax (0.17.8332 −Umpp) (11)
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Figure 9: (Continued)
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Figure 9: Variables with strong correlations with PV solar power efficiency. (a) Effect of open circuit on PV panel
efficiency. (b) Effect of short circuit on PV panel efficiency. (c) Effect of maximum power on PV panel efficiency. (d)
Effect of maximum voltage on PV panel efficiency. (e) Effect of maximum current on PV panel efficiency. (f) Effect of
fill factor on PV panel efficiency. (g) Effect of parallel resistance on PV panel efficiency. (h) Effect of series resistance
on PV panel efficiency
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Figure 10: (a) Effect of oltage (Umpp) and maximum power on PV panel efficiency with multiple linear regressionbreak
(b) The effect of maximum voltage (Umpp) and maximum power of maximum power on PV panel efficiency with
Random Forest

Figure 11: (a) Effect of effect of Fill Factor (FF) and maximum power (Pmpp) on PV panel efficiency with multiple
linear regression (b) The effect of effect of Fill Factor (FF) and maximum power (Pmpp) of maximum power on PV
panel efficiency with Random Forest
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Figure 12: (a) Effect of parallel resistance (Rp) and maximum power (Pmpp) on PV panel efficiency with multiple
linear regression (b) The effect of parallel resistance (Rp) and maximum power (Pmpp) of maximum power on PV
panel efficiency with Random Forest

Figure 13: (a) Effect of series resistance (Rs) and maximum power (Pmpp) on PV panel efficiency with multiple linear
regression (b) The effect of series resistance (Rs) and maximum power (Pmpp) of maximum power on PV panel
efficiency with Random Forest

Fig. 10a distinctly illustrates the association among the parameters through its excessive dimensional
representation. Fig. 10b illustrates the Random Forest regression plot, which demonstrates a robust positive
association between the two variables. The ANOVA result of less than 0.0001 (p < 0.0001) in Fig. 10a signifies
a substantial enhancement in panel efficiency. The explanatory power of panel efficiency is around R2 =
0.724. The analysis of the goodness of fit of the values was conducted using linear regression within Random
Forest, revealing a strong correlation among the parameters. In Eq. (11), if the highest voltage (Umpp) is
below 17.8332, it is multiplied by the positive component of this difference and does not influence efficiency.
If the highest voltage (Umpp) exceeds 17.8332, this parameter becomes null and does not influence efficiency.
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Efficiency ∶ −0.7386826 pmax (FF − 2.8442) − 0.7386826 pmax (FF − 2.8442) (12)

Eq. (12) demonstrates that Maximum Power (Pmpp) and Fill Factor (FF) exert a consistently augment-
ing influence. This is seen in Fig. 11a,b. Fig. 11b illustrates that the darker hues are localized at a certain
location. A decreased fill factor (FF) correlates with an increased beneficial impact on panel efficiency. As the
FF increases, lighter colors ascend and exhibit a diminishing influence. The correlation between the binary
parameters (Maximum Power (Pmpp) and Fill Factor (FF)) and Maximum Power (Pmpp) for the panel is
about R2 = 0.987, indicating a very high goodness of fit.

Effect of Parallel Resistance (Rp) and Maximum power (Pmpp) on PV panel efficiency.

Efficiency ∶ +0.4210388 pmax (Rp − 0.5454) + 0.4210388 pmax (Rp) (13)

The impact of Parallel Resistance (Rp) and Maximum Power (Pmpp) on efficiency, as analyzed using
linear regression in Random Forest, exhibits a consistently diminishing effect, as illustrated in Fig. 12b.
The correlation between panel efficiency and Maximum Power (Pmpp) was determined to be R2 = 0.318,
indicating a substantial goodness of fit between the two parameters. In Fig. 12b, the augmentation of parallel
resistance diminishes the panel efficiency. The effect of parallel resistance diminishes. The identical scenario
is seen in Fig. 11a. Eq. (13) is also observable.

Effect of Series Resistance (Rs) and Maximum power on PV panel efficiency.

Efficiency ∶ 1.545448 pmax (Rs − 0.7217) + 1.545448 pmax (Rs − 0.7217) (14)

The correlation between panel efficiency and Pmax was determined to be R2 = 0.78, indicating a
strong goodness of fit between the two parameters. Fig. 13a illustrates that an increase in series resistance
correlates with an enhancement in solar panel efficiency. The efficiency of solar panels varies directly with
maximum power output. This phenomenon is also illustrated in Fig. 13b, demonstrating the impact of series
resistance on this direct proportion. Augmenting the series resistance is directly proportional to both the
panel efficiency and the maximum power. This is also seen in Eq. (14).

The elevated R2 values of the subsequent parameters indicate the influence of external factors on the
efficiency of PV solar panels, as illustrated in Figs. 14–17.

Effect of air humidity and air humidity on PV panel efficiency.

Efficiency ∶ −0.006171711 pmax (Air Humidity − 47.1993) (15)

Fig. 14a illustrates a distinctly weak association among the parameters in the spider web depic-
tion. Fig. 14b illustrates a similar weak and negative correlation in the linear regression of the Random Forest
plot. The disclosure percentage was approximately R2 = 0.243. If the Air Humidity value exceeds 47.1993, it
is multiplied by the positive component of this difference, resulting in a reduction of the efficiency rating
(Eq. (15)). If the Air Humidity value exceeds 75.4942, it is multiplied by the positive component of this
difference, hence enhancing the efficiency value.

Effect of air temperature and air humidity on PV panel efficiency.

Efficiency ∶ +0.007750025 pmax (Air Temperature − 21.3839) − pmax (Air Humidity − 47.1993) (16)
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Figure 14: (a) Effect of air humidity and air humidity on PV panel efficiency with multiple linear regression (b) The
effect of air humidity and air humidity of maximum power on PV panel efficiency with Random Forest

Figure 15: (a) Effect of air temperature and air humidity on PV panel efficiency with multiple linear regression (b) The
effect of air temperature and air humidity of maximum power on PV panel efficiency with Random Forest

Figure 16: (a) Effect of solar irradiation and air humidity on PV panel efficiency with multiple linear regression (b) The
effect of solar irradiation and air humidity of maximum power on PV panel efficiency with Random Forest
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Figure 17: (a) Effect of wind direction and air humidity on PV panel efficiency with multiple linear regression (b) The
effect of wind direction and air humidity of maximum power on PV panel efficiency with Random Forest

If the air temperature exceeds 21.3839 and the air humidity surpasses 47.1993, the efficiency value is
augmented by the product of the positive components of these two discrepancies. In Fig. 15a,b, Eq. (16)
indicates that temperature exerts a consistently diminishing influence, but humidity exerts a continually
augmenting effect. The goodness of fit between the binary parameters (temperature and air humidity) and
panel efficiency is around R2 = 0.712, showing a high level of correlation.

Effect of solar irradiation and air humidity on PV panel efficiency.

Efficiency ∶ −0.04923161 pmax (75.4942 −Air Humidity) pmax (Irradiation − 0.2518) (17)

In Fig. 16, if air humidity is below 75.4942 and irradiation exceeds 0.2518, it is amplified by the product
of the positive components of these two discrepancies, hence diminishing panel efficiency. If air humidity is
below 75.4942 and irradiation is below 0.2518, it is increased by the product of the positive components of
these two discrepancies, hence enhancing efficiency. The goodness of fit for the parameters is R2 = 0.64624,
indicating a strong correlation between them. The augmentation of solar radiation enhances panel efficiency,
whereas dampness diminishes it. This is shown in Eq. (17).

Effect of wind direction and air humidity on PV panel efficiency.

Efficiency ∶ −1.400964 × 10 − 6 pmax (75.4942 −Air Humidity) pmax (249.1621 −Wind Direction)
pmax (Wind Direction − 365.0159) (18)

If air humidity is below 75.4942, wind direction is below 249.1621, and wind direction spread exceeds
365.0159, multiply by the product of the positive components of these three discrepancies and decrease
efficiency. Fig. 17 in Eq. (18) illustrates the consistently diminishing effect of air humidity. Conversely, wind
direction exerts a perpetually amplifying influence. The goodness of fit between the binary parameters
(temperature and air humidity) and panel efficiency is around R2 = 0.612, showing a high level of correlation.
Similar to the impact of solar heat and humidity on panel efficiency, an increase in wind speed, correlated
with wind direction and humidity, will diminish the heating of the panel and enhance its efficiency. Elevated
humidity exerts a diminishing influence. Lower humidity enhances panel efficiency. This is seen in the figures
and the equation.
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4.2 Multi-Layer Perceptron’s (MLP) Architecture and Interpretation
We performed tests utilizing the MLP architecture with varying numbers of layers and activation

functions. Tables 8 and 9 display the efficiency forecasts based on indoor and outdoor characteristics,
respectively. The tables present the results of MAE, MSE, RMSE, and R2 derived from the models. The metrics
are determined using the subsequent equations. The MAE (Eq. (19)) measures the mean magnitude of the
absolute discrepancies between expected and actual values. The MSE (Eq. (20)) evaluates the mean squared
differences between expected and actual values. The RMSE (Eq. (21)), the square root of the MSE, quantifies
the model’s prediction accuracy by assessing the square root of the mean squared discrepancies between
predicted and observed values. The R2 (Eq. (22)) value indicates the extent to which the variance in the
dependent variable is elucidated by the independent factors.

MAE = 1
n

n
∑
i=1
∣yi − ŷi ∣ (19)

MSE = 1
n

n
∑
i=1
(yi − ŷi)2 (20)

RMSE =
�
��� 1

n

n
∑
i=1
(yi − ŷi)2 (21)

R2 = 1 − ∑
n
i=1 (yi − ŷi)2

∑n
i=1 (yi − y)2 (22)

Table 8: Performance metrics for indoor parameters

Experiments with, activation function # of layers (Neurons) MAE MSE RMSE R2

tanh
3 (32-16-1) 0.024 0.001 0.038 0.953

4 (64-32-16-1) 0.017 0.001 0.029 0.972
5 (128-64-32-16-1) 0.015 0.001 0.025 0.979

sigmoid
3 (32-16-1) 0.018 0.001 0.034 0.963

4 (64-32-16-1) 0.014 0.001 0.024 0.981
5 (128-64-32-16-1) 0.009 0.001 0.017 0.990

relu
3 (32-16-1) 0.023 0.001 0.038 0.954

4 (64-32-16-1) 0.019 0.001 0.031 0.969
5 (128-64-32-16-1) 0.014 0.001 0.023 0.983

The sigmoid activation function demonstrates optimal performance in the 5-layer model, achieving
an MAE of 0.009, MSE of 0.001, RMSE of 0.017, and R2 of 0.990. Typically, an increase in the number
of layers correlates with enhanced performance, evidenced by a reduction in MAE and RMSE, alongside
an elevation in R2. The tanh and ReLU activation functions exhibit commendable performance, however
they somewhat underperform relative to the sigmoid function. The tanh activation function demonstrates
optimal performance in the 4-layer and 5-layer models, with MAEs of 0.012 and 0.011, an MSE of 0.001,
an RMSE of 0.023, and a R2 of 0.983. The sigmoid activation function exhibits inferior performance with
outdoor parameters compared to interior characteristics, achieving optimal results in the 5-layer model.
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The reel activation function has inferior performance relative to indoor settings, however remains broadly
acceptable. Models trained with indoor parameters typically surpass those trained with outdoor parameters.
The sigmoid activation function exhibits optimal performance with indoor characteristics, whereas the tanh
function excels with outdoor parameters. Performance often enhanced with an increase in the number of
layers, indicating that deeper networks produce superior outcomes. Figs. 18 and 19 display the R2 values
generated by various models and activation functions for indoor and outdoor parameters, respectively. The
5-layer sigmoid model yields the greatest result in Fig. 18. Fig. 19 clearly indicates that the 4-layer and 5-layer
tanh models yield the highest R2 values for the outside parameters.

Table 9: Performance metrics for outdoor parameters

Activation function # of Layers (Neurons) MAE MSE RMSE R2

tanh
3 (32-16-1) 0.031 0.002 0.046 0.931

4 (64-32-16-1) 0.012 0.001 0.023 0.983
5 (128-64-32-16-1) 0.011 0.001 0.023 0.983

sigmoid
3 (32-16-1) 0.042 0.004 0.066 0.863

4 (64-32-16-1) 0.023 0.001 0.039 0.951
5 (128-64-32-16-1) 0.019 0.001 0.034 0.963

relu
3 (32-16-1) 0.028 0.002 0.045 0.936

4 (64-32-16-1) 0.026 0.002 0.046 0.933
5 (128-64-32-16-1) 0.022 0.001 0.038 0.953

Figure 18: The R2 values for different models and activation functions (indoor features)
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Figure 19: The R2 values for different models and activation functions (outdoor features)

Fig. 20 and Table 10 illustrate the impact of both indoor and outdoor parameters on the efficiency
estimates of photovoltaic systems. The analysis reveals that the most significant factor influencing efficiency
is the Fill Factor. The Fill Factor serves as a critical metric for evaluating the quality of a photovoltaic cell as a
power source, representing the ratio of the maximum power to the product of open circuit voltage and short
circuit current. The analysis presented in Fig. 20 was conducted using the IBM SPSS software (version 23), a
licensed statistical analysis program.

4.3 Discussion
Solar power plants are a clean and sustainable energy source, playing a crucial role in the future of

the energy sector. These resources are essential for meeting growing energy demands, with the potential to
generate vast amounts of power. In this context, research aimed at improving solar energy efficiency is of
paramount importance. Several factors influence solar energy production, including solar radiation intensity,
weather conditions, geographical location, seasonal variations, time of day, surface angle, and cleanliness.
These challenges can cause issues in energy production, such as difficulties in storing excess energy and
increased costs due to energy shortfalls. By leveraging this data, machine learning algorithms can analyze
the impact of weather conditions on solar energy generation and forecast future energy production levels. As
a result, integrating solar energy data with meteorological data provides a valuable resource for forecasting
solar energy production, enhancing system efficiency, and creating more sustainable energy strategies. A
precise analysis of this data, combined with machine learning techniques, can significantly improve the future
performance and effectiveness of the solar energy sector.
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Figure 20: Importance of indoor and outdoor parameters for MLP regression

Table 10: Independent variable Importance (percentage) for indoor and outdoor parameters

Importance Normalized importance
AirTemperature 0.071 37.80%

AirHumidity 0.021 11.00%
DewPoint 0.009 4.60%

AirPressure 0.03 16.00%
Irradiation 0.016 8.60%
WindSpeed 0.041 21.70%

WindDirection 0.01 5.10%
Power 0.187 100.00%

Voc 0.018 9.40%
Isc 0.145 77.20%

Umpp 0.063 33.70%
Impp 0.023 12.00%

FF 0.037 20.00%
Rp 0.121 64.50%

(Continued)
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Table 10 (continued)

Importance Normalized importance
Rs 0.142 75.50%

ModuleTemperature 0.068 36.50%

The study included distinct assessments of indoor and outdoor variables to evaluate their influence on
panel efficiency. Essential indoor parameters comprised Open Circuit Voltage (Voc), Short Circuit Current
(Isc), Maximum Power (Pmpp), Maximum Voltage (Umpp), Maximum Current (Impp), Fill Factor (FF),
Parallel Resistance (Rp), Series Resistance (Rs), and Module Temperature. Key outdoor factors encompassed
Air Temperature, Air Humidity, Dew Point, Air Pressure, Irradiation, Irradiation Variability, Wind Speed,
Wind Speed Variability, Wind Direction, and Wind Direction Variability. The inclusion of these factors as
input data enhanced the performance of the MLP model, especially for short-term predictions. Among
the interior parameters, Fill Factor (FF), Series Resistance (Rs), Parallel Resistance (Rp), Maximum Voltage
(Umpp), and Module Temperature were recognized as significantly influencing the energy efficiency of the
photovoltaic panels. Likewise, sun irradiance, air humidity, module power, wind speed direction, and the
dispersion of wind speed direction were among the most significant external variables. By understanding
the effect of these measures, stakeholders can analyze the PV panel design to improve the energy output. The
main aim of this work was to assess the efficiency of photovoltaic systems and to clarify the elements affecting
these estimations through several machine learning algorithms. Future research should validate the models’
performance using datasets from diverse climates and geographical regions to confirm their applicability
beyond the Utrecht University setting. The integration of new data and better efficiency processes are key
future areas of work for this study.

This study’s data is also limited to the specific conditions of Utrecht University and has a temperate
maritime climate, it is likely that models trained from this data will not be as effective in other areas. For
future modeling efforts, we hope to leverage the methods used by the ‘Dendrite neural network scheme for
estimating output power and efficiency for a class of solar free-piston Stirling engine generator’ [55] to create
a model that is effective despite locational differences and that can also utilize data from numerous locations.

5 Conclusion
This study examined the indoor and exterior variables and influencing factors affecting the energy

output of photovoltaic (PV) solar panels installed on the roof of the Faculty of Science at Utrecht University.
We utilized the Multi-Layer Perceptrons (MLP) model, Multivariate Adaptive Regression Splines (MARS)
model, Multiple Linear Regression (MLR) model, and the Random Forest (RF) model to assess the
energy efficiency of these photovoltaic systems. Future studies should compare these models with others,
using models from PVsyst, PVlib, or other reputable sources as benchmarks. Notwithstanding the data
irregularities, the MLP model exhibited enhanced performance throughout the evaluations. Artificial neural
networks, especially the MLP model, have garnered significant attention in recent years, owing to their strong
capacity to describe nonlinear interactions. This research employed both MLP and RF models to forecast the
efficiency of the solar power system. The regression analyses demonstrated robust predictive ability, with R2

values around 1, underscoring the models’ efficacy. The performance measures, comprising R2, RMSE, MAE,
and MAPE, substantiated the effectiveness of the MLP model, which attained a R2 value of 0.983 for both
indoor and outdoor parameters. In contrast, the RF model attained a R2 value of 0.956 for outdoor parameters
and 0.975 for inside parameters. The MLP model surpassed the RF model, attaining a Mean Absolute Error
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(MAE) of 0.012 for outdoor parameters and 0.09 for indoor values, as well as a Root Mean Square Error
(RMSE) of 0.023 for outdoor parameters and 0.017 for indoor parameters. These findings corroborate prior
research, highlighting the efficacy of the MLP model in assessing solar panel efficiency. This paper underlines
the underutilization of the MLP model in photovoltaic solar power plant efficiency research and highlights
its potential contributions to the energy forecasting literature.
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Nomenclature
PV Photovoltaic
MLP Multi-Layer Perceptron
MARS Multivariate Adaptive Regression Spline
MLR Multiple Linear Regression
RF Random Forest
Voc Open Circuit Voltage
Isc Short Circuit Current
Pmpp Maximum Power
Umpp Maximum Voltage
Impp Maximum Current
FF Fill Factor
Rp Parallel Resistance
Rs Series Resistance
MAE Mean Absolute Error
MSE Mean Squared Error
RMSE Root Mean Squared Error
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birds in Iğdir, Turkey by means of MARS algorithm. Pak J Zool. 2018;50(6):2317–24. doi:10.17582/journal.pjz/2018.
50.6.2317.2324.

50. Duzen H, Aydin H. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region
(Turkey). Energy Convers Manag. 2012;58(4):35–46. doi:10.1016/j.enconman.2011.11.028.

51. Eyduran E, Yakubu A, Duman H, Aliyev P, Tırınk C. Predictive modeling of multivariate adaptive regression
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