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ABSTRACT: The Internet of Medical Things (IoMT) connects healthcare devices and sensors to the Internet, driving
transformative advancements in healthcare delivery. However, expanding IoMT infrastructures face growing security
threats, necessitating robust Intrusion Detection Systems (IDS). Maintaining the confidentiality of patient data is critical
in AI-driven healthcare systems, especially when securing interconnected medical devices. This paper introduces
SNN-IoMT (Stacked Neural Network Ensemble for IoMT Security), an AI-driven IDS framework designed to secure
dynamic IoMT environments. Leveraging a stacked deep learning architecture combining Multi-Layer Perceptron
(MLP), Convolutional Neural Networks (CNN), and Long Short-Term Memory (LSTM), the model optimizes data
management and integration while ensuring system scalability and interoperability. Trained on the WUSTL-EHMS-
2020 and IoT-Healthcare-Security datasets, SNN-IoMT surpasses existing IDS frameworks in accuracy, precision,
and detecting novel threats. By addressing the primary challenges in AI-driven healthcare systems, including privacy,
reliability, and ethical data management, our approach exemplifies the importance of AI to enhance security and trust
in IoMT-enabled healthcare.
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1 Introduction
Internet of Things (IoT) encompasses a collection of networked physical objects and devices that

incorporate sensors, software, and connectivity to support the sharing of information via the Internet [1].
The definition and scope of IoT continue to expand, but it generally includes smart consumer devices [2],
homes [3], enterprises [4], utilities [5], vehicles [6], wearables [7], cities [8] and healthcare [9]. IoT allows
devices to remotely monitor, collect, analyze, and share data, transforming traditional objects into intelligent
interconnected endpoints [10].

The deployment of IoT technologies in healthcare, specifically through the integration of medical
devices and equipment, is often termed the Internet of Medical Things (IoMT) [11]. Other terms are used in
the literature to describe this concept, such as Internet of Healthcare Things (IoHT), Smart Healthcare, and
Healthcare 4.0 [12].

In IoMT systems, sensors, wearables, and smart medical devices are integrated to allow continuous
tracking, data collection, and exchange of data between patients and healthcare providers [13]. IoMT has
experienced significant growth, particularly in the aftermath of COVID-19, as the demand for remote
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healthcare supervision became increasingly critical [14]. Healthcare providers needed to track patient
vitals and manage diseases from a distance to minimize infection risks and provide opportunities for
instant interventions.

However, despite their benefits, the increasing number of medical devices introduces pressing security
and ethical issues. The network attack surface is increasing, enabling hackers to exploit vulnerabilities within
these networks. Such breaches allow the unauthorized retrieval of sensitive patient data and disruption of
medical device functionality, raising significant privacy and data management concerns. In 2017, a White
House report indicated that cyber-criminals had begun targeting the IoMT devices [15]. During the COVID-
19 era, the healthcare sector became a prime target for cyber-attacks [16]. Accordingly, several security
measures have been implemented to safeguard IoMT networks. These measures include key management,
authentication, encryption, and intrusion detection systems [17].

Protecting patient privacy is a critical aspect of deploying AI-driven Intrusion Detection Systems
(IDSs) in healthcare environments, ensuring that patients’ sensitive information remains confidential while
maintaining the system integrity. In this work, we focus on detecting intrusions in IoMT environments
through the use of IDS. These systems are vital for the early detection of threats and the mitigation of
potential harm. Traditional methods of intrusion detection often struggle with the complex data generated by
IoMT. Additionally, they lack support for a wide range of advanced IoT protocols, such as Message Queuing
Telemetry Transport (MQTT) [17]. Hence, more advanced approaches are required that not only enhance
security but also ensure effective data integration and uphold ethical standards in data handling.

In this context, IDSs leveraging Machine Learning (ML) and Deep Learning (DL) techniques have
surfaced as a potential solution. These methods can mitigate cyber-threats by analyzing network traffic data
to differentiate between normal and abnormal activities.

Ensemble methods are a widely used approach in ML/DL, based on combining multiple models to
address complex problems. By aggregating the predictions of several models, this paradigm outperforms
individual models across various performance metrics, especially in terms of accuracy [18]. The most
commonly used ensemble techniques involve Bagging, Boosting, and Stacking. Each method improves
performance by reducing variance, reducing bias, or improving generalization. Bagging is a technique that
combines predictions from multiple models by averaging them, assigning the same weight to each model’s
output [19]. Boosting combines models iteratively, where each new model assigns higher weights to poorly
handled cases to address the errors made by previous ones [19]. Stacking is a technique that aggregates
predictions from several base models and uses them as inputs to train a meta-model, to improve the overall
accuracy [17].

Several previous studies have proposed innovative approaches to enhance IDSs capabilities in IoMT
environments. Despite these advances, significant challenges and gaps persist in this domain. Firstly, there
is a notable lack of datasets that capture network traffic generated by interconnected healthcare devices,
limiting the development and evaluation of effective IDSs tailored for IoMT. Secondly, many of the proposed
methods exhibit weaknesses in performance metrics, particularly in accuracy, which is critically important
in the healthcare sector, a field where even minor inaccuracies can lead to serious consequences. Lastly,
a considerable number of previous works have relied on datasets collected from standard networks or
generic IoT infrastructures, instead of being specifically derived from IoMT environments. These challenges
undermine the applicability and effectiveness of their solutions in real-world healthcare settings.

To address these challenges, we propose SNN-IoMT (Stacked Neural Network Ensemble for IoMT
Security), a novel DL-based framework for identifying intrusions in IoMT systems. Our framework
employs a stacked ensemble architecture that combines the distinctive strengths of multiple DL approaches:
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Multi-Layer Perceptron (MLP) for pattern recognition, Convolutional Neural Networks (CNN) for feature
extraction, Long Short-Term Memory (LSTM) for temporal pattern analysis, and Artificial Neural Networks
(ANN) for complex data processing. This comprehensive integration aims to achieve highly accurate
intrusion detection in medical device networks. Fig. 1 presents the key steps of our proposed framework.

Figure 1: Flowchart of the proposed framework

Our work makes several key contributions:

• We introduce SNN-IoMT, a novel DL stacking model designed to enhance intrusion detection
capabilities in interconnected medical networks.

• We implement a LightGBM-based feature selection technique to optimize our model’s efficiency. This
method employs gradient boosting algorithms to rank and filter the most important features depending
on their contribution.

• We train the meta-learner using k-fold cross-validation, which improves the stacking ensemble’s
resilience and generalization. This technique enables extensive assessment and reduces overfitting,
resulting in better model performance.

• We validate our model using two domain-specific datasets: WUSTL-EHMS-2020 and IoT-Healthcare-
Security-Dataset. Both datasets are generated from medical environments and have been previously
used in IoMT intrusion detection research. Our extensive evaluation demonstrates that SNN-IoMT
achieves superior performance compared to existing solutions across multiple metrics. The evaluation
on two distinct datasets confirms the model’s reliability and versatility in different IoMT use cases.
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The paper is organized as follows: In Section 2, we highlight existing research on IDS that explores ML
and DL techniques in IoMT environments, highlighting the strengths and weaknesses of each approach pre-
sented. Section 3 provides a background about IoMT and IDSs. In Section 4, we explain our new approach,
called SNN-IoMT. Datasets, data preprocessing and feature selection are presented in Section 5. Section 6
provides an in-depth analysis of the model’s robustness and validation process. Details of the results are
provided in Section 7. Section 8 discusses the challenges and considerations for deploying the model in
real-world IoMT environments. Section 9 is a conclusion that summarizes our findings.

2 Related Work
Recently, the fast-paced development of IoMT has brought several innovations to healthcare. Numerous

studies have focused on developing IDSs for securing IoMT environments, leveraging ML and/or DL
approaches to improve cyber threats detection. To enhance clarity, Table 1 contains the abbreviations used
in this work.

Table 1: List of abbreviations

Abbreviation Meaning
ADB Adaptive Boosting
ANN Artificial Neural Network
BG Bagging

BiLSTM Bidirectional Long Short-Term Memory
DT Decision Tree

GBC Gradient Boosting Classifier
KNN K-Nearest Neighbors

LR Logistic Regression
LRSGD Logistic Regression with SGD
LSVC Linear Support Vector Classifier
MNB Multinomial Naive Bayes
NB Naive Bayes
RF Random Forest

SVM Support Vector Machine
XGB XGBoost

Hady et al. [20] introduced a new methodology utilizing KNN, SVM, RF, and ANN applied on the
WUSTL-EHMS-2020 dataset. The RF model achieved a notable accuracy of 93%. This high accuracy is
achieved due to its ensemble learning approach, which combines multiple DTs. Furthermore, RF ranks
feature importance, allowing it to focus on the most relevant attributes. However, this level of accuracy
remains insufficient in a critical healthcare domain.

Hussain et al. [15] created a new dataset called IoT-Healthcare-Security, and proposed a framework
incorporating several ML models, including RF, KNN, DT, LR and NB. Among all models, the RF attained
the highest accuracy of 99.51%. While this high level of accuracy is promising, the model must be trained on
other datasets to demonstrate that it can be generalized across various IoMT infrastructures.

Saheed et al. [21] presented an IDS that employs a wrapper-based Particle Swarm Optimization
(PSO) combined with ML models, leveraging the NSL-KDD dataset for detect anomalies within intelligent
healthcare systems. Their framework included RF, KNN, DT, and ANN. Although the RF model achieved
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an accuracy of 99.76%, the drawback lies in the fact that the dataset used is outdated and not derived
from a healthcare system. As a result, the findings may not adequately reflect the challenges in current
IoMT environments.

The NSL-KDD dataset was also used by Subasi et al. [22] to explore several ML algorithms, including
SVM, RF, and bagging techniques. Their comparative analysis revealed that RF with bagging proved to be the
most robust model, with an accuracy of 97.67%. Similarly to the previous work, the dataset used is outdated,
and does not represent real IoMT traffic patterns.

A novel DL approach named Swarm-Neural Network (Swarm-NN) was proposed by Nandy et al. [23].
This model generates and trains a set of neural networks to predict malicious traffic in IoMT data. To evaluate
their approach, the authors leveraged the ToN-IoT dataset. The accuracy achieved was 99.5%. Nevertheless,
the dataset used is not derived from actual IoMT environments, raising concerns about the capacity of the
model to adapt to real-life healthcare scenarios.

Binbusayyis et al. [24] applied several ML models including NB, DT, SVM DT, and ANN on the
BoT-IoT dataset, aiming to develop an anomaly-based framework for threat detection in Smart Healthcare
environments. Similar to the previous work, this dataset does not represent an IoMT network.

BlueTrack is a dataset introduced by Zubair et al. in [25]. It contains data about Bluetooth Low Energy
(BLE) communications. This dataset was used to develop an IDS based on both ML and DL models. NB, LR,
K-means, SVM, RF, and MLP are the leveraged models in their framework. Their results demonstrated that
MLP outperformed others, achieving an accuracy of 99.8%. However, the dataset used has a limited scope
in terms of attack variety, as it focuses only on BLE attacks. This limitation reduces its applicability to other
communication protocols.

In [26], Gupta et al. used RF, LR, and DT to develop a model based on a novel tree classifier. They
performed an analysis of average, standard deviation, 25th percentile, 75th percentile, and frequency statistics
for selecting features and reducing the number of dimensions. Applied to the WUSTL-EHMS-2020 dataset,
the RF model attained the best accuracy of 94.23%. Nevertheless, their proposed model still demonstrates a
relatively low accuracy.

Wagan et al. [27] presented a new framework utilizing a BiLSTM model and the WUSTL-EHMS-2020
dataset to make the difference between normal and abnormal traffic in IoMT infrastructure. The BiLSTM
architecture reached an accuracy of 92.95%. However, this accuracy is still insufficient in the healthcare
domain, given its critical nature. In another work, Zukaib et al. [28] used three datasets: IoTID20, WUSTL-
IIoT-2021, and WUSTL-EHMS-2020 to develop a new approach called Meta-IDS, which is based on weak
learners (RF, AdaBoost, DT, MLP, MNB), combined with the Bat algorithm, a meta-heuristic algorithm
to optimize the hyperparameters of weak learners. Additionally, another meta-learner was incorporated to
enhance the accuracy by learning from pre-trained weak learners. The highest accuracy achieved by Meta-
IDS was 99.99% with the WUSTL-IIoT-2021 dataset. However, the authors mentioned that, despite the very
high accuracy achieved, their approach requires substantial computational resources, which is a notable
limitation of the methodology.

An ML-based IDS was designed by Kulshrestha et al. [29] using several classifiers including MNB, LR,
LRSGD, LSVC, BG, GBC, RF, ADB, and XGB. Applying these models to the ToN-IoT dataset, ADB achieved
the best accuracy of 99.18%. Nevertheless, the dataset employed in this work is not derived from an IoMT
network, which increases the concern about its applicability in real-world healthcare scenarios. However,
this dataset does not represent IoMT network traffic patterns.

Table 2 presents a summary of existing ML/DL-based IDSs for IoMT, the highest metrics achieved by
the best classifier, along with the advantages and limitations of each approach.
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Table 2: Summary of related work

Work Dataset Classifier Metrics Pros (+) and Cons (-)

M1 M2 M3 M4

[20] WUSTL-EHMS-2020 ANN 90.04% – – – + Simple effective classifier
- Accuracy still insufficient

[15] IoT healthcare security RF 99.51% 99.70% 99.79% 99.65% +High accuracy with novel dataset
- Lack of validation on diverse datasets

[21] NSL-KDD RF 99.76% 99.75% 96.45% 96.45% +High accuracy using wrapper-based PSO
- Not validated in real IoMT dataset

[22] NSL-KDD Bagging 97.67% – – 97.7% + Robust comparative analysis
- Not validated in real IoMT dataset

[23] ToN-IoT Swarm-NN 99.5% – – – + Innovative DL approach
- Not validated in real IoMT dataset

[24] BoT-IoT DT 100% – – – + Perfect accuracy
- Not realistic dataset for IoMT

[25] BlueTrack MLP 99.8% 99.7% 99.06% 99.38% +High accuracy with MLP model
- Limited scope to BLE attacks

[26] WUSTL-EHMS- 2020 RF 94.23% – – 93.8% + Comprehensive feature analysis
- Weak overall accuracy

[27] WUSTL-EHMS- 2020 BiLSTM 92.95% 91.61% 95.64% 95.64% + Advanced LSTM architecture
- Insufficient accuracy for healthcare

[28] WUSTL-EHSM- 2020 Meta-IDS 99.57% 99.57% 99.57% 99.56% +High accuracy
- High computational resource requirement

[28] WUSTL-IIoT- 2021 Meta-IDS 99.99% 99.99% 99.99% 99.99% +High accuracy
- High computational resource requirement

[28] IoTID20 Meta-IDS 99.91% 99.93% 99.91% 99.91% +High accuracy
- High computational resource requirement

[29] ToN-IoT ADB 99.18% 98.68% 98.98% 98.83% +High accuracy
- Not validated in real IoMT dataset

Note: Metrics: M1: Accuracy, M2: Precision, M3: Recall, M4: F1-Score.

3 Background
This section provides the foundational concepts and necessary background information relevant to our

study, including the IoMT architecture and the fundamentals of IDSs.

3.1 IoMT Architectures
IoMT is a set of interconnected biomedical devices and tools, seamlessly integrated with various

software applications. These technologies are designed to communicate with healthcare infrastructures, facil-
itating the efficient management and exchange of healthcare data [30]. An IoMT network is based on several
layers, that contribute to the systematic collection, processing, and application of healthcare [30]. Fig. 2
illustrates the multi-level of this architecture. These layers can be subdivided as follows:

1. Perception Layer: This bottom physical layer works at the edge level. It plays a crucial role in collecting
information from various sources such as wearable (glucose monitors, smartwatches) or other smart
medical devices. At this level, Patient data is gathered through sensors and sent to other layers for
additional evaluation. For example, wearable Electrocardiogram (ECG) monitors track heart activity
rates, and send the collected signals in real-time to other layers. Similarly, smart insulin pumps measure
glucose levels and adjust insulin delivery.

2. Network Layer: This layer ensures reliable data transmission, including communication protocols
(short-range protocols like Bluetooth, Zigbee, Z-Wave, 6LoWPAN, and longer-range protocols like
WiFi, 2G/3G/4G/5G cellular, Low Power Wide Area Network (LPWAN)), gateways, and cloud infras-
tructure. This layer is susceptible to many types of network threats such as Transmission Control
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Protocol Synchronize (TCP SYN) Flood, ARP Spoofing, Hijacking, eavesdropping, and ransomware,
necessitating robust security measures for this layer. For instance, a smart hospital may use WiFi or 5G
to transmit a patient’s vital signs from perception layer devices to databases. Any disruption in this layer
could affect medical interventions.

3. Application Layer: This important layer comprises software applications that enable the analysis,
visualization, and generation of insights from data. Since it directly interacts with end-users and critical
services, it is vulnerable to application-level attacks such as unauthorized access, malicious software,
and data breaches. For example, a telemedicine application processes and displays ECG signals. If this
layer is compromised, sensitive data could be leaked or manipulated.

Figure 2: IoMT architecture

3.2 Intrusion Detection System (IDS)
An IDS serves as a system aimed at securing and protecting activities within networks and systems from

malicious actions, unauthorized access attempts, and policy violations [31]. IDSs are used in various digital
environments, including networks, applications, and host systems, to ensure the security of essential data
and infrastructure. IDSs have emerged as a vital component in cybersecurity strategies for organizations
to protect critical data, prevent disruption, and safeguard digital infrastructure. IDSs have two primary
functions: detection and response. Once a threat is detected, the system alerts security teams, allowing rapid
responses or mitigation actions to prevent damages and data loss. There are two notable types of IDSs:

• Signature-based IDS: Identifies attacks by examining data for predefined signatures or attack patterns.
It compares the new activities with a database of signatures or known attacks such as malware types,
virus signatures, or specific exploit patterns. Its strength lies in its ability to identify known threats but
is poor at detecting new/unknown threats as there are no signatures to match them against.

• Anomaly-based IDS: Detects adversarial behavior by measuring current activity against normal activi-
ties. A baseline is usually created through ML models or statistical analysis and changes when a system is
constantly monitored. It is based on heuristic techniques that efficiently identify zero-day and unknown
attacks, hence authentication in dynamic environments. This solution is also more adaptive to changing
network conditions or behaviors.
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In this regard, IDSs provide a critical service for IoMT environments, protecting the security of
patients and the integrity of medical devices. Considering the criticality of healthcare data and patient safety,
anomaly-based detection is usually employed in IDSs focused on IoMT, which are a critical defense layer for
IoMT infrastructure security.

4 Proposed Model
Our model, SNN-IoMT, is a stacking ensemble architecture that integrates three types of neural

networks, categorized into two levels:

• Level 0: Base learners
• Level 1: Meta-learner

The classification outputs from the base learners serve as inputs for the meta-learner. This architecture
allows combining the strengths of various heterogeneous model types to improve classification quality.

SNN-IoMT employs three distinct models in Level 0. These models include an MLP, a CNN, and an
LSTM. The outputs from these base learners are integrated into a high-level ANN, serving as the meta-
learner, which combines their predictions to produce the final classification. Fig. 3 shows a representation of
the SNN-IoMT framework. The following subsections outline the architectures of each base learner and the
meta-learner.

Figure 3: SNN-IoMT model

4.1 Base Learners
The stacking model employs three different base learners, each contributing its strengths to enhance the

overall performance. These base learners are selected to capture diverse patterns in the data. An outline of
each model is provided in the following subsections.

4.1.1 Multi Layer Perceptron (MLP)
The MLP implemented in this ensemble is a simple feedforward neural network. It is selected for its

simplicity and computational efficiency. It is composed of two layers:

• A hidden layer with 8 neurons, each neuron uses the Rectified Linear Unit (ReLU) activation function (1):

f (x) =max(0, x) (1)

• A single neuron as an output, employing the sigmoid function for binary classification (2):

σ(x) = 1
1 + e−x (2)
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Training of the model is performed using the Adam optimizer (3), a gradient-based optimization
algorithm that converges faster than other optimizers and requires less tuning, making it useful in real-world
applications.

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

θ t = θt−1 −
αmt√vt+ ε

(3)

mt and vt represent the moving averages of the gradient and squared gradient, respectively, gt denotes
the gradient at time step t, and θt represents the updated parameters.

To enhance classification performance, two callbacks are used to monitor training:

• ReduceLROnPlateau: When there is no improvement in the validation loss for 5 successive epochs, the
learning rate is reduced by 0.2.

• EarlyStopping: Training is stopped if the validation loss does not show improvement after 10 consecutive
epochs, and the model with the best validation performance is recovered.

The model is optimized using the binary cross-entropy loss function (4):

Loss(y, ŷ) = − 1
N

N
∑
i=1
[yi log( ŷi) + (1 − yi) log(1 − ŷi)] (4)

where yi represents the true label and ŷi corresponds to the predicted value of class i.

4.1.2 Convolutional Neural Networks (CNN)
The CNN used within our stacking model is a one-dimensional network, adapted with binary

classification. It offers a reliable technique for managing large datasets. Its architecture comprises:

• A one-dimensional layer featuring two filters, each having a kernel size of 5. The activation function used
is ReLU (1).

• A MaxPooling layer with a pool size of 2. It reduces the dimensionality of the feature map, and selects
the highest value in each pooling window (5):

p j =max(xi∶ j) (5)

where xi∶ j represents the values within the pooling window.
• A flatten layer to extract a 1D vector from the pooled feature map. The vector is used as input for the

dense layer.
• A dense layer containing one neuron and the sigmoid function (2).

The Adam optimizer (3) is applied throughout the training process to adjust the weights during the
backpropagation. The model incorporates binary cross-entropy (4) to compute the loss. Similarly to the MLP,
ReduceLROnPlateau and EarlyStopping are used during the training.

4.1.3 Long Short-Term Memory (LSTM)
The LSTM architecture used is simple and processes data for binary classification. It is perfectly adapted

for analyzing sequential data. Given that network traffic is inherently sequential, this model is chosen. Its
architecture consists of the following:



1166 Comput Model Eng Sci. 2025;143(1)

• A layer with 13 LSTM units.
• A dense layer with one neuron, using the sigmoid classification function (2).

The training process is carried out using the Adam optimizer (3), and the binary cross-entropy loss
function (4). Similarly to the previous models, two callbacks are used: (1) the learning rate reduction on
plateau and (2) early stopping.

4.2 Meta-Learner
The meta-learner in this stacking ensemble is an ANN, which takes as input the prediction of the base

learners (MLP, CNN, and LSTM). It aggregates these predictions to produce the final classification. The
model is structured as follows:

• The initial dense layer features 16 neurons and incorporates the ReLU function (1).
• The second dense layer is composed of 8 neurons, further reducing the dimensionality and refining the

learned features.
• The output layer has a single neuron with a sigmoid activation function (2).

Training the ANN involves the Adam optimizer (3) and binary cross-entropy loss (4).
The hyperparameters for training the models (CNN, LSTM, MLP, ANN) are selected manually based

on empirical experimentation, aiming to ensure a balance between accuracy and computational efficiency.
While a single large model could achieve high accuracy, it would be useless for IoMT devices. Instead,
we combine multiple lightweight architectures with carefully chosen hyperparameter values in a stack-
ing approach, resulting in an optimized resource usage, while achieving impressive intrusion detection
performance. Table 3 summarizes the hyperparametres of each model.

Table 3: Summary of hyperparameters for MLP, CNN, LSTM, and meta-learner models in the SNN-IoMT ensemble

Model Hyperparameter Value/Function
MLP Hidden layer neurons 8

Activation (output layer) Sigmoid
Activation (hidden layer) ReLU

CNN Convolutional layer filters 2
Kernel size 5

Activation (convolutional layer) ReLU
Pooling type MaxPooling
Pooling size 2

Activation (output layer) Sigmoid
LSTM LSTM units 13

Activation (LSTM) Tanh (default)
Activation (output layer) Sigmoid

Meta-Learner (ANN) First dense layer neurons 16
Activation (first dense layer) ReLU
Second dense layer neurons 8

Activation (second dense layer) ReLU
Activation (output layer) Sigmoid

All Models Optimizer Adam

(Continued)
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Table 3 (continued)

Model Hyperparameter Value/Function
Loss function Binary Cross-Entropy

Training epochs 20
Batch size 32

Callbacks ReduceLROnPlateau factor 0.2
EarlyStopping patience (epochs) 10

5 Datasets, Data Preprocessing and Feature Selection
The experiments were conducted on Google Colab using a GPU-enabled environment. The hardware

setup includes 12.7 GB of system RAM and 15.0 GB of GPU memory, used with 112.6 GB of disk space. The
model training and testing were performed using Python version 3.10.12 with the following libraries:

• TensorFlow (2.17.0): Used for building and training DL models.
• Scikit-learn (1.5.2): Used for model evaluation, including accuracy calculations and confusion matrices

(CM).
• Pandas (2.2.2): Employed in the processing and evaluation of data.
• Matplotlib (3.7.1): Used for visualizing data and model performance.
• NumPy (1.26.4): Utilized for numerical computations.
• Keras (3.4.1): Served as an interface for TensorFlow to simplify the definition of neural networks models.

5.1 Datasets
Two datasets available to the public are used for the experiments: WUSTL-EHMS-2020 and IoT-

Healthcare-Security. These datasets contain data obtained from IoMT networks. Two datasets were chosen
to demonstrate that the SNN-IoMT model is capable of effectively generalizing across several IoMT
healthcare environments. In the rest of the paper, we denote WUSTL-EHMS-2020 as W-EHMS, and
IoT-Healthcare-Security as IHS.

5.1.1 WUSTL-EHMS-2020 Dataset
This dataset was generated through an Enhanced Healthcare Monitoring System (EHMS) testbed [20].

The EHMS is a controlled environment dedicated to simulate and evaluate real-world healthcare systems.
From the patient’s sensors, the data flow starts transmitting bio-metric information to the gateway. Then, the
server receives the data forwarded by the gateway via a switch and router to facilitate visualization. While
being transmitted, attackers can intercept the data before it reaches the server. The dataset includes two types
of attacks:

• Spoofing Attack: The adversary intercepts the communication between the server and the gateway,
violating the privacy of patient data.

• Data Injection Attack: The adversary alters packets during transmission, violating data integrity by
modifying its content before reaching its destination.

The dataset comprises 44 features, including 35 network flow metrics, 8 patient biometric characteristics,
and 1 label feature. Table 4 and Fig. 4 highlight the dataset statistical information.
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Table 4: Statistical characteristics of W-EHMS dataset

Label Value
Normal instances 14,272

Malicious instances 2,046
Total instances 16,318

Figure 4: Breakdown of normal vs. attack traffic in W-EHMS dataset

The dataset effectively simulates real-world network traffic, with a significantly higher number of normal
samples compared to attack samples. Typically, adversarial traffic in networks represents only a small fraction
of the overall traffic.

5.1.2 IoT-Healthcare-Security Dataset
The IoT-Healthcare-Security dataset is collected from a traffic in healthcare systems powered by IoT.

It was generated utilizing the IoT-Flock tool, which creates standard and malicious network traffic for IoT
devices in various scenarios. A two-bed IoT-based Intensive Care Unit (ICU) setup was established. Every
bed is furnished with a collection of nine devices for monitoring a patient and a solitary control unit. This
setup provides a realistic environment to study the interactions across multiple medical devices and their
associated security risks.

The dataset includes various attack types that can target IoMT infrastructure. The following attacks are
represented in the dataset:

• MQTT Publish Flood: This threat aims to overwhelm the message broker by inundating it with a high
amount of MQTT publish messages.

• Authentication Bypass Attack: This attack circumvents established authentication mechanisms to gain
unauthorized access to IoMT networks.
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• Denial of Service (DoS) Attack: Its purpose is to make a service unavailable by flooding the target with
excessive requests.

• Man-in-the-Middle (MitM) Attack: The cyber-attacker intercepts the traffic between two parties
without their knowledge. It involves data manipulation or eavesdropping.

• Device Impersonation: In this attack, an attacker pretends to be a legitimate IoT device by copying its
identity, like an IP address.

• Data Manipulation Attack: It happens when an attacker alters the data sent via the IoT networks, such
as patient data (e.g., vital signs), leading to incorrect treatments.

There are three Comma-Separated Values (CSV) files that make up the dataset: Attack.csv, patient-
Monitoring.csv, and environmentMonitoring.csv. These files contain a total of 52 features that represent
various network flow metrics, including IP addresses, TCP data, MQTT traffic, and more. Table 5 and Fig. 5
highlight the dataset statistical information.

Table 5: Statistical characteristics of IHS dataset

Label Value
Normal instances 108,568

Malicious instances 80,126
Total instances 188,694

Figure 5: Breakdown of normal vs. attack traffic in IHS dataset

5.2 Data Preprocessing
The preprocessing steps applied to both datasets were designed to ensure that they are clean and suitable

for model training.
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5.2.1 W-EHMS Dataset
Let X ∈ Rn×m represent the dataset, with n indicating the number of samples and m referring to the

number of features. The first, second, and last columns were dropped, resulting in a new dataset X′ = X[∶, 2 ∶
m − 1].

Then, we create a binary target variable T ∈ {0, 1}, in which 0 denotes normal traffic and 1 denotes adver-
sarial traffic, computed as Ti = {0 if Attack Categoryi = normal, 1 otherwise}, which defined our binary
classification target y = T .

For the origin and target Media Access Control address (MAC) addresses, the colons are removed, and
the values are label-encoded to transform them into numerical values.

Label encoding is also applied to other categorical features, including Source Address (SrcAddr) and
Destination Address (DstAddr).

Missing values in the numeric columns are imputed with the mean of the respective column j (6):

xi j =
1

n j

n j

∑
i=1

xi j (6)

where n j is the number of non-missing entries in column j.
Feature scaling was then applied using standardization to ensure each feature has a mean of 0 and a

standard deviation of 1, computed as:

zi j =
xi j − μ j

σ j
(7)

where:

μ j =
1
n

n
∑
i=1

xi j (8)

and

σ 2
j =

1
n

n
∑
i=1
(xi j − μ j)2 (9)

Class imbalance is a challenge in the dataset, as the number of attack traffic samples is significantly
smaller compared to normal traffic samples. This imbalance can lead to a poor detection of attack traffic,
favoring the majority class resulting in a biased model.

To address this, we apply Synthetic Minority Over-sampling Technique (SMOTE), which creates
artificial samples for the underrepresented instances (attack traffic) to balance the dataset:

Xres , yres = SMOTE(random_state=42).fit_resample(Xbefore , y) (10)

where:
• Xbefore is the feature matrix before applying SMOTE.
• y is the target variable.
• Xres is the feature matrix after applying SMOTE.
• yres is the target variable after applying SMOTE.

Using SMOTE helps prevent the model from favoring the dominant class, resulting in enhanced
generalization and performance.
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5.2.2 IHS Dataset
In the initial step, we load 3 CSV files: Attack.csv, environmentMonitoring.csv, and patientMonitoring.csv.
The three datasets, Xi ∈ Rni×mi , where ni denotes the number of samples and mi represents the features,

are concatenated into a single dataset:

X = concat(X1 , X2, X3)

The missing values in the numeric columns are filled with the mean of each respective column. Finally,
feature scaling was then applied using standardization.

This dataset is already reasonably balanced. The difference between the percentage of the two classes is
15%. Thus, we don’t need to apply a balancing technique.

5.3 Feature Selection
Since feature selection greatly influences accuracy, it is a key process before training ML and DL

models [32]. It aims to enhance model performance by selecting the most relevant features. Additionally, this
process improves computational efficiency. There are three feature selection methods:

1. Filter Methods: They evaluate the importance of features using statistical techniques, such as Chi-
square tests and correlation coefficients, without relying on any ML model.

2. Wrapper Methods: They select feature subsets by using a ML model and evaluate its performance. The
most commonly used methods are forward selection and backward elimination.

3. Embedded Methods: They conduct feature selection during the model’s training process, employing a
particular model such as DT.

In our work, we employ an embedded feature selection method that uses LightGBM to extract the
features that contribute significantly in the classification task. Initially, a LightGBM classifier is trained on
the dataset. The model constructs DTs and computes feature importance scores, which represent how much
each feature contributes to reducing the loss at each node. The importance of a feature is determined by
aggregating its contributions across all DTs in the ensemble. The importance scores I j for each feature j are
calculated from the model during the training phase, based on how each importance score I j for the feature j
is used in tree splits. Then, we select features whose importance scores exceed the median importance score.
Formally, the selected feature set Xselected consists of features j where:

I j >median(I) (11)

This thresholding approach ensures that we focus our training on features that have a significant
influence on the classification tasks.

Figs. 6 and 7 represent the importance scores of the top selected features from the two datasets. The
highest importance scores highlight the most influential features in model performance, demonstrating their
significant contribution to the prediction outcomes.

Each dataset is then split into three subsets: 70% is allocated for training, 10% for validation, while the
remaining 20% is reserved for testing.
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Figure 6: Feature importance scores for W-EHMS dataset

6 Evaluation Metrics and Experimental Validation
In this section, we provide an overview of the evaluation metrics and explain the experimental validation

methodology adopted to ensure the model’s effectiveness.

6.1 Performance Metrics
To assess the robustness of the model, numerous performance metrics are used. They are derived from

the Confusion Matrix (CM) [17]. CM summarizes results on a classification scenario providing True Positive
(TP), True Negative (TN), False Negative (FN), and False Positive (FP).

6.1.1 Accuracy
Accuracy represents the proportion of instances that are correctly classified (both positive and negative)

out of all instances, reflecting the model’s overall performance. The formula used is:

Accuracy = TP + TN
TP + TN + FP + FN

(12)
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Figure 7: Feature importance scores for IHS dataset

6.1.2 Recall
Recall assesses the proportion of true positives to the whole actual positive cases. It is very important

when missing positive cases is costly in security applications, since a high rate of undetected attacks can lead
to severe consequences. It is calculated using the equation:

Recall = TP
TP + FN

(13)

6.1.3 Precision
This metric examines the ratio of true positives to the overall number of samples classified as positive.

This metric is particularly important because false alarms in real-world intrusion detection (false positives)
can lead to unnecessary interventions. Its formula is:

Precision = TP
TP + FP

(14)
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6.1.4 F1-Score
It combines precision and recall into a single metric by calculating their harmonic mean, balancing the

trade-off between them. The formula used is:

F1-Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

(15)

6.1.5 Area Under the Curve (AUC)
It denotes the area under the Receiver Operating Characteristics (ROC) curve, where the True Positive

Rate (TPR) is plotted against the False Positive Rate (FPR) using several classification thresholds. The TRP
and FRP are calculated as:

TPR = TP
TP + FN

= Recall (16)

FPR = FP
FP + TN

(17)

The AUC assesses the model’s proficiency in distinguishing between classes, with values falling between
0 and 1. A higher AUC value signifies that the model ranks positive instances better than negative ones. It is
determined by:

AUC = ∫
1

0
TPR(FPR) dFPR (18)

6.1.6 Logistic Loss (Log Loss)
Log Loss evaluates the performance by measuring the probability output, that ranges between 0 and 1.

It assigns a higher penalty to incorrect predictions made with high confidence. A lower Log Loss means that
the model assigns meaningful probability scores, which is important for risk assessment. It is calculated as:

Log Loss = − 1
n

n
∑
i=1
[yi log( ŷi) + (1 − yi) log(1 − ŷi)] (19)

where ŷi is the predicted probability for the i-th instance, yi is the actual label, and n is the total number
of instances.

6.2 Model Evaluation
One of the challenges we face during the stacking process is the limited data available for training the

meta-learner. In stacking, we use the predictions generated by the validation process of the base learners to
train the meta-learner. Usually, the validation data represents a small portion of the whole dataset, which
leads to a weak generalization and a low AUC, sometimes below 0.5, indicating that the meta-model predicts
randomly. This is a common issue in stacking architectures where the meta-learner suffers from insufficient
and potentially noisy data, leading to poor performance.

Another major challenge we encounter in developing a stacked architecture is overfitting. This problem
happens when a model captures the noise. As a result, the model performs well on the training data but
struggles to generalize to unseen test data [33].
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To address these two major challenges in the implementation of our model (SNN-IoMT), we employ the
k-fold cross-validation approach. This method is based on dividing the training dataset into k approximately
equal subsets or folds, in our case k = 5, denoted as D1 , D2, . . . , D5. In each iteration, a different fold Di is
used for validation, and the remaining subsets D − Di serve as the training subsets. This process guarantees
that every data point is used both for training and validation at least once. Algorithm 1 and Fig. 8 briefly
explain this mechanism.

Algorithm 1: 5-fold cross-validation process for model training and meta-learner integration
1: Input: Dataset D of size n
2: Parameters: Number of folds k = 5
3: Divide dataset D into k folds: D1 , D2, D3, D4, D5
4: Generate combinations of training and validation sets:
5: for each fold i from 1 to k do
6: Set validation set V ← Di
7: Set training set T ← D/Di (i.e., all folds except Di )
8: Store combination (T, V)
9: end for
10: for each combination (T, V) do
11: for each model in {CNN, LSTM, MLP} do
12: Train model on T
13: Validate model on V
14: Compute performance metrics, and store as P
15: Store predictions on V as Predictions
16: end for
17: Aggregate predictions from all models for the current combination
18: end for
19: Train meta-learner (ANN) on aggregated predictions from all combinations
20: Output: Trained meta-learner model

Figure 8: 5-fold cross-validation
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This method has several benefits:
• Improve Meta-Learner Performance: The meta-model benefits from k-fold cross-validation by being

trained on more diverse predictions from the base-learners, increasing the variability of training data for
the meta-learner. This mechanism allows to reduce the risk of poor generalization caused by limited data.

• Reduce Overfitting: By using different subsets of the data for model training, this technique results in a
more robust evaluation. Since the model is repeatedly trained and validated multiple times on different
sub-datasets, it is forced to learn patterns that generalize well to new data, rather than memorizing
specific patterns.

• Bias-Variance Trade-off: Bias refers to the expected difference between the estimated and true accuracy,
while variance represents the variability of the model’s accuracy across different data splits. K-fold cross-
validation provides insight into bias and variance, which are important for understanding its predictive
behavior [34].

7 Results and Discussions
This section highlights the findings of the experiments on the two datasets. The classification task

involves a binary classification, where the model SNN-IoMT is trained and assessed based on the following
metrics: accuracy, recall, precision, F1-Score, AUC, and Log Loss. These metrics highlight the model’s
effectiveness and performance in classifying the traffic, and generalizing across different folds of the dataset.

Binary classification focuses on identifying adversarial traffic within the network, distinguishing
between normal traffic and potential attacks.

Additionally, our results are compared against established state-of-the-art methods, showcasing the
improvements of each model.

7.1 Performance Evaluation
7.1.1 W-EHMS Dataset

Table 6 illustrates the performance metrics of each base learner model (CNN, LSTM, MLP) and the
SNN-IoMT classifier across this dataset.

Table 6: Performance of models on W-EHMS dataset (Average over 5 folds)

Model Accuracy Recall F1-Score Precision AUC Log loss
CNN 97.18% 99.29% 97.29% 95.48% 99.62% 22.89%
LSTM 97.13% 98.28% 97.22% 96.33% 99.30% 9.78%
MLP 99.07% 99.92% 99.08% 98.27% 99.84% 15.93%

SNN-IoMT 99.65% 99.84% 99.65% 99.46% 99.93% 1.17%

The table demonstrates that all models perform well in detecting anomalies in IoMT, showing high
accuracies. However, SNN-IoMT shows a noticeable improvement across several metrics compared to the
base learners. For accuracy, SNN-IoMT achieves 99.65%, outperforming all base models, with CNN, LSTM,
and MLP achieving 97.18%, 97.13% and 99.07%, respectively. SNN-IoMT also achieves a very high recall
(99.84%), ensuring that few malicious patterns are missed. This very high value of recall is crucial for security-
focused applications. The F1-Score of SNN-IoMT achieves 99.65%, reflecting an excellent balance between
precision and recall, and demonstrating a high performance across the two metrics. Although the CNN,
LSTM and MLP models exhibit high F1-Scores (97.29%, 97.22% and 99.08%, respectively), the stacking model
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reflects its ability to fine-tune the combined outputs of the base learners. For precision, MLP is the best model
among the base learners with 98.27%, followed by LSTM with 96.33%, and CNN with 95.48%. The SNN-
IoMT exceeds the base learners achieving 99.46%, indicating its possibility to decrease the false positive,
which is very important in environments with low tolerance for false alarms, like IoMT security. The AUC
for SNN-IoMT is very higher, achieving 99.93%, compared to the base learners, showing that it has a better
ability to differentiate between standard and adversarial traffics. Finally, SNN-IoMT has the lowest Log Loss
(1.77%) among all models, reflecting its superior confidence in predictions.

7.1.2 IHS Dataset
Table 7 illustrates the performance metrics of each base learner model (CNN, LSTM, MLP) and the

SNN-IoMT classifier across this dataset.

Table 7: Performances of models on IHS dataset (Average over 5 folds)

Model Accuracy Recall F1-Score Precision AUC Log loss
CNN 99.93% 99.93% 99.92% 99.91% 100.00% 0.13
LSTM 99.74% 99.46% 99.68% 99.91% 99.94% 1.57%
MLP 99.92% 99.95% 99.90% 99.86% 100.00% 0.13%

SNN-IoMT 99.95% 99.90% 99.94% 99.98% 100.00% 0.19%

The table shows that all models are very effective in identifying anomalies within the IoMT environment,
demonstrating high accuracies. Similar to the previous dataset results, the stacking model, SNN-IoMT,
exhibits notable performance improvements across several metrics compared to the base learners. Specifi-
cally, SNN-IoMT achieves an accuracy of 99.95% surpassing all base models, with CNN, LSTM, and MLP
attaining accuracies of 99.93%, 99.74%, and 99.92%, respectively. In terms of recall, SNN-IoMT achieves
99.90%, indicating a minimal chance of missing adversarial traffic patterns. The F1-Score of SNN-IoMT
reaches 99.94%, reflecting a well-balanced relationship between precision and recall. While CNN, LSTM,
and MLP also exhibit high F1-Scores (99.92%, 99.68%, and 99.90%, respectively), SNN-IoMT further refines
the predictions by leveraging the strengths of each base learner. For precision, the stacking model achieves
99.98%, showing its effectiveness in minimizing false positives, which is important for IoMT security systems.
The AUC also achieves an impressive value of 100%, surpassing the base models and demonstrating its
capabilities in distinguishing between normal and abnormal traffic. Lastly, the Log Loss of SNN-IoMT is
0.19%, the lowest value among all models, reflecting a high degree of confidence in its predictions.

7.1.3 Overall Discussion
Fig. 9a,b shows the confusion matrices for the two datasets: W-EHMS and IHS, respectively. As shown

in the confusion matrices, the model identifies true positives, while the number of false positives and false
negatives remains extremely low, contributing to the high performance of our model.
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Figure 9: Comparison of confusion matrices for W-EHMS and IHS datasets

7.2 Training and Validation Curves Analysis
Fig. 10 represents the accuracy and loss curves of training and validation of the base learners in the first

two folds of the W-EHMS dataset. Furthermore, Fig. 11 illustrates the curves of the IHS dataset.
The plots clearly show strong performance, with both training and validation accuracy increasing

together over time, indicating that the models generalize well to unseen data and learn efficiently. Addition-
ally, for each model, the training values closely match the validation values, reflecting that the models are
not overfitting and the validation performance is consistently strong. These results highlight the robustness
and stability of the model’s effectiveness on various data splits, confirming the effectiveness of the training
process and model generalization.

Figure 10: (Continued)
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Figure 10: Training and validation curves for W-EHMS dataset

Figure 11: Training and validation curves for IHS dataset
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7.3 Feature Selection Impact
To assess the impact of the feature selection process (FS) impact on model performance, we conduct

experiments with and without FS on both datasets. The training times in two cases are summarized in Table 8.

Table 8: Training time comparison with and without feature selection

Feature selection Dataset Training time
With FS W-EHMS 919.81 s

IHS 4664.25 s
Without FS W-EHMS 1319.247 s

IHS 8809.90 s

The results demonstrate that applying FS enhances efficiency by reducing training time. Removing
irrelevant or redundant attributes allows the model to focus on the most informative features, leading to
faster convergence and reduced computational cost.

7.4 Comparison with Previous Works
This section focuses on comparing the results obtained by SNN-IoMT with those of state-of-the-art

approaches. The studies being compared utilized the same datasets as in our research. Table 9 and Fig. 12a
display a comparison of the results for the W-EHMS dataset with previous work, while Table 10 and Fig. 12b
show the results for the IHS dataset.

For W-EHMS dataset, Meta-IDS [28] emerged as the top classifier, achieving an accuracy of 99.57%.
However, our SNN-IoMT model outperforms all existing works, achieving an accuracy of 99.65%, a precision
of 99.84%, and a recall of 99.65%. For the second dataset, our approach achieves an accuracy of 99.95%,
surpassing all previous methods. Previous methods such as RF, KNN, and DT [15] reached high accuracy
levels, ranging from 99.59% to 99.71%. However, the SNN-IoMT demonstrates superior performance across
all metrics. These improvements highlight the robustness of our architecture in anomaly detection tasks
across these datasets.

Table 9: Comparison of classifier performance on W-EHMS dataset

Work Classifier Accuracy Precision Recall F1-Score
[20] ANN 90.04% – – –
[26] RF 94.23% – – 93.8%
[27] BiLSTM 92.95% 91.61% 95.64% 95.64%
[28] Meta-IDS 99.57% 99.57% 99.57% 99.56%

Our work SNN-IoMT 99.65% 99.84% 99.65% 99.46%
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Figure 12: Classifier performance on W-EHMS and IHS datasets

Table 10: Comparison of classifier performance on IHS dataset

Work Classifier Accuracy Precision Recall F1-Score
[15] NB 79.67% 99.71% 52.18% 68.51%
[15] KNN 99.59% 99.69% 99.49% 93.8%
[15] RF 99.71% 99.80% 99.51% 99.65%
[15] DT 99.69% 99.80% 99.48% 99.64%

Our work SNN-IoMT 99.95% 99.90% 99.94% 99.98%

8 Challenges and Deployment Considerations
While our model (SNN-IoMT) demonstrates high accuracy, various challenges in real-world deploy-

ment in IoMT systems have to be addressed:

• IoMT devices often have limited computational power, making real-time intrusion detection challeng-
ing. Our stacking DL approach is based on lightweight architectures and an optimized feature extraction
process, to reduce the complexity. However, other improvements, such as model pruning, can be used
to reduce computational overhead and maintain high performance.

• Since IoMT devices are resource-constrained, deploying DL models is very challenging. Our stacking
model, while optimized, may require other optimizations like reducing redundant parameters, to
minimize memory usage and improve deployment feasibility.

Addressing these challenges ensures a balance between high accuracy and practical usability, making it
well-suited for real-time intrusion detection on resource-limited IoMT devices.

9 Conclusion
Detection of adversarial attacks and malicious activities in IoMT infrastructures has become increas-

ingly vital. As the number of cyberattacks increases, developing tools capable of identifying anomalies
efficiently and accurately is essential. In this work, we presented a novel framework, SNN-IoMT, which is a
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stack of CNN, LSTM, and MLP models. The main objective of this ensemble model is to minimize the rates
of FPs and FNs, thereby enhancing the reliability and trustworthiness of IoMT security systems. Moreover,
our SNN-IoMT model not only enhances the intrusion detection capabilities but also protects patient data
confidentiality and integrity, which is essential for preserving trust in AI-driven healthcare solutions.

Using two publicly available datasets, WUSTL-EHMS-2020 and IoT-Healthcare-Security, our results
showed that our classifier outperforms the current state-of-the-art approaches in terms of accuracy, pre-
cision, recall, and F1-Score. While the simple classifiers provide comparatively lower performance, our
advanced DL framework has been shown to provide very high effectiveness for IoMT threat detection.

In future work, we recommend optimizing our model by tuning hyperparameters using other tech-
niques, including grid search, Bayesian optimization, and reinforcement learning, to enhance model
performance and generalization. Furthermore, we recommend integrating federated learning to improve
privacy preservation, enabling secure and decentralized anomaly detection. Moreover, extending the evalu-
ation to larger and more diverse datasets would better demonstrate the model’s applicability in production
environments. Finally, exploring advanced AI techniques, such as transfer learning and self-supervised
learning, may enhance scalability and robustness against evolving cyber attacks.
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