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ABSTRACT: Visual question answering (VQA) is a multimodal task, involving a deep understanding of the image
scene and the question’s meaning and capturing the relevant correlations between both modalities to infer the
appropriate answer. In this paper, we propose a VQA system intended to answer yes/no questions about real-world
images, in Arabic. To support a robust VQA system, we work in two directions: (1) Using deep neural networks to
semantically represent the given image and question in a �ne-grainedmanner, namely ResNet-152 andGated Recurrent
Units (GRU). (2) Studying the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-o� between
the model complexity and the overall model performance. Some fusion techniques could signi�cantly increase the
model complexity, which seriously limits their applicability for VQAmodels. So far, there is no evidence of how e�cient
these multimodal bilinear pooling fusion techniques are for VQA systems dedicated to yes/no questions. Hence, a
comparative analysis is conducted between eight bilinear pooling fusion techniques, in terms of their ability to reduce
themodel complexity and improve themodel performance in this case of VQA systems. Experiments indicate that these
multimodal bilinear pooling fusion techniques have improved the VQA model’s performance, until reaching the best
performance of 89.25%. Further, experiments have proven that the number of answers in the developed VQA system
is a critical factor that a�ects the e�ectiveness of these multimodal bilinear pooling techniques in achieving their main
objective of reducing the model complexity. �e Multimodal Local Perception Bilinear Pooling (MLPB) technique
has shown the best balance between the model complexity and its performance, for VQA systems designed to answer
yes/no questions.

KEYWORDS: Arabic-VQA; deep learning-based VQA; deep multimodal information fusion; multimodal representa-
tion learning; VQA of yes/no questions; VQA model complexity; VQA model performance; performance-complexity
trade-o�

1 Introduction

Visual question answering (VQA) is about automatically answering a textual question based on the
content of a given image or video, in a certain natural language. VQA is a multimodal task, that was recently
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introduced in 2014 [1] and has gained signi�cant interest over the last decade. Solving such a problem requires
high-level perceptual capabilities for understanding the image and question semantics and cross-modal
reasoning of language and vision.�erefore, it can be used as a key measurement for evaluating AI agents in
both domains [2].

VQA systems generally involve four main modules, which are image features extraction, question
features extraction, feature fusion, and answer prediction. Fig. 1 exhibits the general framework of VQA
systems. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) can improve
the VQA model’s performance, due to extracting robust and �ne-grained representations for the input
image and question, respectively. Several studies have adopted pre-trained VGGNet, GoogLeNet, AlexNet,
InceptionNet, ResNet, and Faster R-CNN models for representing the input image, exploiting the principle
of transfer learning [3]. Similarly, the Long Short-TermMemory (LSTM) and Gated Recurrent Units (GRU)
networks are widely used in the VQA �eld for question representation, as they can preserve long-term
contextual information [3,4]. �e feature fusion module is the core of VQA systems, where features from
both modalities deeply interact to enable the VQA model to predict the best-matching answer correctly.
Multimodal feature fusion is a challenging task that can greatly impact the overall model performance. �is
requires an e�cient and expressive fusion technique that allows dense and high-level interactions to jointly
embed features from the two di�erent modalities and narrows the heterogeneity gap between their feature
distributions. Hence, several studies compete to propose new multimodal fusion techniques or investigate
di�erent fusion techniques, aiming to achieve superior performance while maintaining minimal model
complexity. Lastly, the answer prediction process can be formulated as a classi�cation task over a pre-de�ned
set of candidate answers, or as a sequence generation task for generating variable-length answers [3]. Most
studies have adopted the multi-class classi�cation approach over the top N most frequent answers in the
training set.

Figure 1: General framework of VQA systems

Feature fusion techniques play a vital role in the trade-o� between the VQA model complexity and its
performance [5]. �is is because some fusion techniques tend to dramatically expand the joint feature space
dimensionality, add multiple and large-sized fully connected layers during the fusion process, or cascade
multiple fusion blocks several times. �is is to achieve a highly discriminative and powerful joint feature
representation.�is not onlywould greatly improve theVQAaccuracy, but it could also signi�cantly increase
the model size and the number of parameters to train. �is seriously limits the applicability of such fusion
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techniques for VQA models, due to requiring more powerful resources to train these VQA models with a
tremendous memory consumption [6–9].

�e fully parameterized bilinear pooling technique (FBP) [10] is a straightforward fusion technique
that allows each element in one embedding to interact with every element in the other embedding, in a
multiplicative manner. Although it allows rich interactions between the input embeddings, many studies
have considered that the FBP technique is inapplicable for VQAmodels. �is is because it leads to a massive
number of learnable parameters, which makes the multimodal fusion module the most computationally
expensive part of theVQA framework [5]. Recently, several bilinear pooling fusion techniqueswere proposed
to solve the huge parameter space issue of the FBP technique, including the Multimodal Compact Bilinear
Pooling (MCB) [11], Multimodal low-rank Bilinear pooling (MLB) [6], Multimodal Factorized Bilinear
Pooling (MFB) [7], Multimodal Factorized High-order Pooling (MFH) [8], Multimodal Tucker Fusion
(MUTAN) [12], Multimodal Local Perception Bilinear Pooling (MLPB) [9], and Bilinear Superdiagonal
Fusion (BLOCK) [13].

�ese bilinear pooling fusion techniques have proven e�ective in reducing the number of model
parameters, hence minimizing the model complexity, while preserving the model performance. However, in
literature, all these bilinear pooling fusion techniques have been examined only for VQA systems designed
to answer various question types with thousands of candidate answers (i.e., 3000 answers). But, what about
VQA systems with a small set of candidate answers, as in the case of VQA systems designed to answer
yes/no questions where there are only two candidate answers (i.e., two classes l = 2)?�ere is a severe lack of
validating the e�ciency of these multimodal bilinear pooling fusion techniques for VQA systems dedicated
to yes/no questions, in terms of the model complexity and its performance as well. Hence, this article aims
to answer several research questions about applying these bilinear pooling fusion techniques for this case of
VQA systems, where VQA is formulated as a binary classi�cation task over two candidate answers. �ese
research questions are as follows:

1. Will the FBP technique remain inapplicable due to the number of its learnable parameters?
2. Will all these multimodal bilinear pooling fusion techniques accomplish their main objective of

reducing the number of model parameters?
3. Will using these multimodal bilinear pooling fusion techniques improve the overall model perfor-

mance?

In this work, we study the role of the utilizedmultimodal bilinear pooling fusion technique in the trade-
o� between the model complexity and the overall model performance, for VQA systems developed based on
deep learning technology. We target VQA systems specialized in yes/no questions, to spotlight the impact of
the number of answers in VQA systems on the e�ectiveness of these fusion techniques. Our contributions
can be summarized as follows:

1. We propose aVQA system intended to answer yes/no questions about real-world images, in Arabic. Our
Arabic-VQA system is developed on deep learning approaches, where the ResNet-152 and GRUmodels
are employed for extracting discriminative and �ne-grained representations for the given image and
question, respectively. For feature fusion from both modalities, eight of the most popular multimodal
bilinear pooling fusion techniques in theVQA�eld have been utilized, which are FBP,MCB,MLB,MFB,
MFH, MUTAN, BLOCK, and MLPB. It is a novel research paper, since to the best of our knowledge,
it is the �rst work to conduct a comprehensive study of all these fusion techniques in the case of VQA
systems dedicated to yes/no questions.�is is to validate their e�ectiveness for this case of VQA systems,
in terms of their ability to improve the model performance and reduce the model complexity.
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2. Proposing simple models for calculating the total number of learnable parameters for each multimodal
bilinear pooling fusion technique.

3. Based on the model complexity and the achieved performance of the developed VQA models, several
recommendations of these multimodal bilinear pooling fusion techniques are proposed for future VQA
systems according to their number of answers.

�e remaining of the paper is structured as follows: Since we study the role of multimodal fusion
techniques used in VQA systems developed on deep learning technology, Section 2 provides a review
of the most widely used fusion techniques in the VQA �eld with their di�erent categories. Section 3
brie�y covers the FBP technique, its huge parameter space issue, and how other bilinear pooling fusion
techniques have tried to solve this issue. Section 4 demonstrates the framework and the deep learning
approaches used to develop our Arabic-VQA system. It also presents simple models for calculating the
number of model parameters for each bilinear pooling fusion technique. Section 5 exhibits the experimental
results of all the developed Arabic-VQA models using all these bilinear pooling fusion techniques, showing
which fusion techniques have contributed to improving the model’s performance. It also discusses why
some bilinear pooling fusion techniques have succeeded in achieving their main objective of reducing the
model complexity while some other techniques have not, for VQA systems specialized in yes/no questions.
Moreover, it presents recommendations for these multimodal bilinear pooling fusion techniques for future
VQA systems according to their number of answers. Finally, Section 6 concludes the paper with a summary
of the proposed Arabic-VQA system. It also summarizes our �ndings of which bilinear pooling fusion
techniques provide good balances between model complexity and overall performance in the case of VQA
systems intended to answer yes/no questions.�is is in addition to providing an outlook for potential future
work in the Arabic-VQA �eld.

2 Literature Review

Recently, several multimodal feature fusion techniques have been proposed for the VQA task. �ese
techniques can be classi�ed into three categories [4], according to the way of jointly embedding the extracted
image and question representations into a common feature space. �ese fusion categories include simple
vector operations performed on the image and question embeddings, non-linearly deep fusion procedures,
or bilinear pooling fusion approaches. Fig. 2 presents the classi�cation of multimodal fusion techniques that
are widely utilized in the VQA research �eld.

Figure 2: Classi�cation of multimodal fusion techniques for VQA systems
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Tables 1–3 summarize the related works, in terms of the utilized techniques during the VQA pipeline,
andwhether the answer predictionmodule is formulated as a classi�cation task or a sequence generation task.
Further, the size of the answers set for each VQA model is included (i.e., if mentioned in published articles)
in these review tables.�is is because this parameter matters in the classi�cation-based VQA systems, where
it represents the number of the model classes.

�e simple vector operations category involves concatenating the two input embeddings or applying
either element-wise summation or element-wise multiplication operations.�is category has been a popular
choice for feature fusion since the beginning of the VQA research �eld.�ese techniques can generate a joint
feature representation, but they are not e�ective enough to fully capture the complex correlations between
both modalities [11]. Element-wise summation and multiplication operations allow only elements in the
same position in both embeddings to interact, which limits a rich interaction between features from both
modalities. Further, these techniques directly integrate features from two di�erent modalities, neglecting
that their feature distributions may di�er dramatically [7]. �us, these simple vector operators have shown
average performance among studies. Several deep learning-based VQA systems have utilized these simple
fusion operators to integrate features from both modalities, whether they adopt an attention mechanism
through their pipelines or not, as adopting the vector concatenation in [14–17], the element-wise summation
in [18–20], and the element-wise multiplication in [21–25]. Similarly, many transformer-based VQA systems
have employed this category of feature fusion techniques, whether they adopt a cross-modal attention
mechanism through their pipelines or not, as utilizing the vector concatenation in [26–28], the element-wise
summation in [29,30], and the element-wise multiplication in [31,32]. Table 1 summarizes the related work
that used the simple vector operations category, where the three fusion techniques are abbreviated as vector
concatenation (VC), element-wise summation (EWS), and element-wise multiplication (EWM).

Table 1: Summary of related work that used the simple vector operations category, in terms of the utilized techniques
during the VQA pipeline, the answer prediction process, and the number of answers in each VQA model

VQA research ref. Image
representation

Question
representation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Gao et al. (2015) [18] GoogleNet LSTM EWS Seq. Gen. Not speci�ed
Antol et al.
(2015) [21]

VGGNet LSTM EWM Classi�cation 1000

Lu et al. (2016) [14] ResNet LSTM VC Classi�cation 1000
Zhu et al. (2016) [22] VGG-16 LSTM EWM Classi�cation 5000
Xu et al. (2016) [19] GoogleNet Bag-of-Words EWS Classi�cation 1000
Anderson et al.
(2018) [23]

Faster R-CNN GRU EWM Classi�cation 3129

Ma et al. (2018) [15] VGG-16 &
ResNet-101

LSTM VC Classi�cation 3000

Shi et al. (2018) [16] Faster R-CNN
& ResNet-152

LSTM VC &
MCB

Classi�cation Not speci�ed

Gao et al. (2019) [24] Faster R-CNN GRU EWM Classi�cation Not speci�ed
Gupta et al.
(2021) [17]

Inception-
Resnet-v2

Bi-LSTM VC Classi�cation Not speci�ed

(Continued)
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Table 1 (continued)

VQA research ref. Image
representation

Question
representation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Yang et al. (2021) [29] Faster-RCNN BERT, XLNet,
RoBERTa,
ALBERT

EWS Classi�cation Not speci�ed

Alsaleh et al.
(2022) [26]

ViT-16 Bert VC Seq. Gen. Not speci�ed

Yan et al. (2022) [31] Faster-RCNN Bert EWM Classi�cation 3129
Kamel et al.
(2023) [25]

VGG-16 LSTM EWM Classi�cation Two

Hackel et al.
(2023) [32]

Deit_Tiny,
MobileViT-S,
XCiT Nano

BERT_TINY EWM Classi�cation 1000

Bazi et al. (2023) [27] ViT-32 Bert VC Seq. Gen. Not speci�ed
Liu et al. (2023) [28] ViT-16 Bert VC Classi�cation 99

Chen et al.
(2024) [20]

Faster-RCNN LSTM EWS Classi�cation Not speci�ed

Huang et al.
(2024) [30]

ResNet-152 TSE EWS Classi�cation 1483

�e FBP can generate richer joint representations than fusion techniques from the simple vector
operations category, because of allows all pairwise interactions between the two input embeddings via
applying the outer product operation. However, the major limitation of applying this technique for VQA
systems is the high dimensionality of its feature space, which is usually in millions. For VQA systems having
thousands of answers, this could lead to a massive model size with billions of model parameters that need to
be trained, in the fusion stage only.

MCB [11] is one of the �rst attempts to compress the bilinear pooling operation. It enables a rich
interaction between the image and question embeddings via approximating the outer product operation by
computing their count sketches, followed by Fast Fourier Transformation (FFT).MCB can reduce the feature
space dimensionality of the FBP frommillions to thousands. However, this joint feature space is still required
to be relatively high-dimensional, as the authors in [11] have set this hyperparameter to dz = 16,000. �is is
to reach a reasonable performance and avoid biases [4]. �erefore, compared to the FBP, for a VQA model
having thousands of answers, the number of model parameters will be decreased from billions to millions.
MCB has been utilized in [11,33] for both attention and feature fusion purposes, while in [34] it has been
used for feature fusion.

MLB [6] tries to factorize the 3-Dhugeweightmatrix of the FBP technique into three low-rankmatrices,
to reduce the total number of the model parameters. MLB can achieve comparable performance to MCB
while generating amuch lower-dimensional joint feature representation thanMCB.Hence, for a VQAmodel
having thousands of answers, MLB can have much fewer parameters than MCB. However, MLB is slower to
converge, and it is sensitive to the hyper-parameter dz that represents its feature space dimensionality [4].
MLB has been utilized in [6,35] for both attention and feature fusion purposes, while in [36,37] a comparison
between the MLB and MUTAN techniques has been conducted for the feature fusion purpose.
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MFB [7] is inspired by the matrix factorization concept adopted in the MLB method, where the huge
weightmatrix of the fully parameterized bilinear pooling is decomposed into threeweightmatrices.However,
unlike MLB, MFB tends to integrate the input embeddings in a higher dimensional space instead of a lower
dimensional space, to capture richer interaction information. �e higher the value of k for the MFB model,
themore powerful the joint feature representation, and hence the higher the performance of the VQAmodel,
but also the higher the number of model parameters. MLB can be viewed as a special case of MFB when
k = 1. �erefore, MLB has much fewer parameters than MFB, but MFB can achieve a more powerful joint
feature representation than MLB [4]. MFB has been utilized in [7,38–40] for both attention and feature
fusion purposes.

MFH [8] is an extension of MFB, where multiple MFB blocks are cascaded. Although MFH multiplies
the number ofMFB parameters by p times, it can generate amore discriminative joint feature representation,
hence increasing the VQA model robustness. �is is because the cascading of multiple MFB blocks can
capture higher-order interactions between the image and question features than just one MFB block [8].
MFH has been utilized in [8,41–43] for both attention and feature fusion purposes, while in [44] a
comparison between the MFB and MFH techniques has been conducted for both purposes.

In [12], two versions of MUTAN techniques have been proposed. �e �rst version of the MUTAN
technique aims to utilize the outer product operation for integrating the image and question embeddings.
�is outer product operation causes a 3-D core matrix Tc , that its dimensions dv , dq , and dz directly impact
the model complexity. To keep the number of the model parameters within an applicable range, the authors
in [12] have restricted these dimensions to be relatively small (≤200). However, this could a�ect the model’s
robustness and cause a bottleneck in the modeling. �erefore, the authors of [12] have suggested a second
version of the MUTAN technique, that tries to handle this bottleneck. �e second version of the MUTAN
technique presents an approximation of the 3-D corematrixTc , where the outer product operation is replaced
by the element-wise multiplication operation. �is enabled the authors to slightly increase the values of the
three dimensions to dv = dq = dz = 360, thus still maintaining themodel complexity under control.MUTAN
has beenutilized in [45] as a feature fusion technique,while it has beenutilized in [12,46,47] for both attention
and feature fusion purposes. In [48], a comparison between the MLB, MUTAN, and BLOCK techniques has
been conducted for the feature fusion purpose, where MUTAN has shown the best performance.

BLOCK [13] is an extension of MUTAN, where some modi�cations have been introduced to both
versions of theMUTAN technique. Like the �rst version ofMUTAN, the �rst version of BLOCK also applies
the outer product operation for feature fusion. �is version of the BLOCK technique tries to solve the
bottleneck of the �rst version of theMUTAN technique.�is is achieved by dividing the image and question
representations v̂ and q̂ into small chunks and hence dividing the 3-D core matrix Tc of MUTAN into
several smaller core blocks Dc . �is enables the v̂ and q̂ representations to be of relatively high dimensions,
thus improving the model robustness, while minimizing the model complexity as much as possible. In the
second version of BLOCK, the outer product operation performed between the image and question chunks
is replaced by the element-wise multiplication operation. �is replacement helps in reducing the number of
model parameters for VQA models having thousands of answers. BLOCK has been utilized in [13] for both
attention and feature fusion purposes, while in [49–51] it has been used for feature fusion.

MLPB [9] is another attempt to utilize the outer product operation for integrating the image and
question embeddings without converting it into the element-wise multiplication operation as done in the
other bilinear pooling fusion techniques. To achieve thiswhile reducing the number of themodel parameters,
the outer product operation is performed between a low-dimensional image/question kernel with small
question/image clips separately, then concatenating all results. �is results in multiple 3-D weight matrices,
which could signi�cantly increase the number of model parameters. To solve this issue, the authors in [9]
have suggested sharing the same 3-Dweightmatrix for all the performed outer product operations. However,
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the image kernel vk and the question kernel qk are restricted to be relatively low-dimensional (≤150), to
maintain the number of the model parameters within an applicable range. Table 2 summarizes the related
work that used the bilinear pooling fusion category, where it can be noticed that all these techniques are
investigated only for VQA models having thousands of answers.

Table 2: Summary of related work that used the bilinear pooling fusion category, in terms of the techniques utilized
during the VQA pipeline, the answer prediction process, and the number of answers in each VQA model

VQA research ref. Image
representation

Question
representation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Fukui et al. (2016) [11] ResNet-152 LSTM MCB Classi�cation 3000
Kim et al. (2017) [6] ResNet-152 GRU MLB Classi�cation 2000
Yu et al. (2017) [7] ResNet-152 LSTM MFB Classi�cation 3000
Ben-younes et al.

(2017) [12]
ResNet-152 GRU MUTAN Classi�cation 2000

Yu et al. (2018) [8] ResNet-152 LSTM MFH Classi�cation 3000
Lao et al. (2018) [9] ResNet LSTM MLPB Classi�cation 3000
Shi et al. (2018) [16] Faster R-CNN

& ResNet-152
LSTM VC &

MCB
Classi�cation Not speci�ed

Abacha et al.
(2018) [33]

ResNet-152 &
ResNet-50

LSTM MCB Classi�cation Not speci�ed

Su et al. (2018) [35] ResNet-152 LSTM MLB Classi�cation 2000
Li et al. (2018) [46] ResNet-152 LSTM MUTAN Classi�cation 2000
Ben-younes et al.

(2019) [13]
Faster R-CNN GRU BLOCK Classi�cation 3000

Osman et al.
(2019) [34]

Faster R-CNN LSTM MCB Classi�cation 3000

Vu et al. (2019) [37] ResNet-152 BERT MLB &
MUTAN

Classi�cation 1700

Liu et al. (2019) [44] ResNet-152 LSTM MFB &
MFH

Classi�cation Not speci�ed

Jung et al. (2020) [41] VGG-16 BioBERT MFH Classi�cation Not speci�ed
Zheng et al. (2020) [49] VGG-16 BERT BLOCK Classi�cation Not speci�ed

Sharma et al.
(2021) [38]

ResNet-152 BERT MFB Classi�cation
& Seq. Gen.

Not speci�ed

Li et al. (2021) [39] ResNet-34 LSTM MFB Classi�cation Not speci�ed
Li et al. (2021) [42] VGG-16 BioBERT MFH Classi�cation Not speci�ed

Bozinis et al.
(2021) [47]

ResNet-50 GRU MUTAN Classi�cation Not speci�ed

Li et al. (2022) [40] ResNet-34 LSTM MFB Classi�cation 3794
Shuang et al.
(2022) [45]

Faster R-CNN GRU MUTAN Classi�cation Not speci�ed

Miao et al. (2022) [50] Faster R-CNN GRU BLOCK Classi�cation Not speci�ed
Lu et al. (2023) [36] ResNet-152 GRU MLB &

MUTAN
Classi�cation Not speci�ed

Upadhyay et al.
(2023) [43]

VGG-19 BioBERT MFH Classi�cation Not speci�ed

Mohamud et al.
(2023) [51]

Faster R-CNN GRU BLOCK Classi�cation 3000

(Continued)



Comput Model Eng Sci. 2025;143(1) 381

Table 2 (continued)

VQA research ref. Image
representation

Question
representation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Mao (2024) [48] ResNet-152 LSTM MLB,
MUTAN,
BLOCK

Classi�cation Not speci�ed

Other than linear and bilinear pooling fusion techniques, another fusionmechanism is about non-linear
fusing the image and question features using deep neural networks. In the RNN-based fusion strategy, as
in [52,53], the image embedding extracted from a CNN is projected to the question word embedding space
and treated as one of the question words. �en, the question word embeddings and the image embedding
are fed together to the utilized RNN to handle the semantic features of the input question and generate a
joint feature representation, simultaneously. Despite the simplicity of the VQAmodel design, this strategy is
not e�cient enough to capture the complex correlations between both modalities. �is is because the image
e�ect will vanish at each step of the utilized RNN [54]. To tackle this issue, the CNN-based fusion strategy
was proposed in [54]. An end-to-end CNN-based VQAmodel was developed, where the image and question
embeddings are both extracted by CNNs and then fused by amultimodal convolution layer. However, CNNs
cannot process the question’s sequential information well. Hence, only a few early studies have utilized RNN
and CNN-based fusion strategies.

Recently, some transformer-based VQA studies have adopted multimodal transformers for encoding
and fusing the input image and question simultaneously, as in [55–59]. In this strategy, the mono-modal
representations are kept extremely simple, while the complex processing is performed in a BERT-like
transformer encoder. �is fusion strategy is like the RNN-based fusion strategy to some extent, where the
image embedding extracted from a CNN is projected to the question word embedding space, and both
embeddings are fed together to the utilized multimodal transformer encoder. However, recent studies tend
to utilize a specialized transformer for eachmodality separately, to obtain richmono-modal representations,
and then use one of the fusion approaches from the other fusion categories, as in the transformer-basedVQA
systems mentioned earlier in Tables 1 and 2. Table 3 summarizes the related work that used the non-linear
deep fusion category.

Table 3: Summary of related work that used the non-linear deep fusion category, in terms of the utilized techniques
during the VQA pipeline, the answer prediction process, and the number of answers in each VQA model

VQA research ref. Image rep-
resentation

Question rep-
resentation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Malinowski et al.
(2015) [52]

GoogleNet FC embedding
layer

LSTM-
based
fusion

Seq. Gen. Not speci�ed

Ren et al. (2015) [53] VGG-19 Skip-gram
word

embedding

LSTM-
based
fusion

Classi�cation Not speci�ed

Ma et al. (2015) [54] VGGNet Sentence CNN CNN-
based
fusion

Classi�cation Not speci�ed

(Continued)
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Table 3 (continued)

VQA research ref. Image rep-
resentation

Question rep-
resentation

Feature
fusion

Answer
prediction

Num. of candidate
answers

Khare et al.
(2021) [55]

ResNet-152 BERT
wordpiece
tokenizer

MMBERT Classi�cation Not speci�ed

Silva et al.
(2022) [56]

E�cientNetV2 BERT
wordpiece
tokenizer

Real-
Former
Trans-
former

Classi�cation Not speci�ed

Seenivasan et al.
(2022) [57]

ResNet-18 BERT
wordpiece
tokenizer

VisualBERT
ResMLP

Classi�cation
& Seq.
Gen.

Not speci�ed

Siebert et al.
(2022) [58]

ResNet-152 BERT
wordpiece
tokenizer

VisualBERT Classi�cation Not speci�ed

Naseem et al.
(2023) [59]

ResNet50 Bi-LSTM Transformer
encoder

Seq. Gen.
using
trans-
former
decoder

Not speci�ed

From Tables 1–3, we can observe that most VQA studies have employed deep learning approaches to
develop high-performance VQAmodels. However, only a few studies have investigated di�erentmultimodal
fusion techniques for capturing the relevant correlations from both modalities, with a maximum investi-
gation of three bilinear pooling fusion techniques as in [48]. Moreover, these multimodal bilinear pooling
fusion techniques have been widely investigated only for VQA models containing thousands of answers.
So far, there is no evidence of how e�cient these fusion techniques are for VQA systems specialized in
answering yes/no questions, in terms of the model complexity and its performance as well. �erefore, in
this work, we extensively analyze the e�ectiveness of eight bilinear pooling fusion techniques for this case
of VQA models, which are FBP, MCB, MLB, MFB, MFH, MUTAN, BLOCK, and MLPB. For this purpose,
we propose an Arabic-VQA system specialized in answering yes/no questions, that is developed using deep
learning approaches.

3 Preliminaries of Multimodal Bilinear Pooling Fusion

�is section presents a brief description of the FBP technique and its huge parameter space issue. It also
discusses how several bilinear pooling fusion techniques have attempted to reduce the dimensionality of the
generated bilinear vector z, hence solving this parameter space issue.

3.1 FBP
Given an image embedding v ∈ Rm and a question embedding q ∈ Rn , the fully parameterized bilinear

pooling (FBP) [10] is simply about applying the outer product operation between the two vectors. �is
technique tends to quadratic expand the feature space dimensionality, producing a bilinear vector z ∈ Rm×n .
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�is bilinear vector z is then passed through a fully connected layer to obtain the �nal joint representation
y ∈ R l . �e FBP operation is formulated as follows [11]:

y =W [v ⊗ q] = vTWq (1)

where W ∈ Rm×n×l is the weight matrix, l typically equals the number of classes in the VQA model and ⊗
denotes outer product operation. For example, suppose a VQA model that extracts an image embedding
of size m = 2048 and a question embedding of size n = 2048, that has a set of candidate answers of size
l = 3000.�e number of learnable parameters for the fusion stage will exceed 12.5 billion parameters, which
is a huge space of learnable parameters. Hence, several studies have considered that the direct application
of fully parameterized bilinear pooling in VQA is inapplicable because such a huge number of parameters
leads to tremendous resource consumption and a very expensive computational cost. Numerous attempts
were proposed to reduce the feature space dimensionality of the bilinear pooling, hence reducing the huge
parameter space issue. �ese methods are brie�y described in the following sub-sections.

3.2 MCB
MCB [11] presents an approximation of the outer product operation, by exploiting two di�erent

properties. �e �rst property is that the count sketch of the outer product of two vectors is equal to the
convolution of their count sketches [11].�us, the outer product between the image and question embeddings
is approximated as follows [11]:

C (v ⊗ q) = C(v) ∗ C(q) (2)

where C denotes the count sketch projection function and ∗ implies the convolution operator. �e second
property is that the convolution in the time domain is equal to element-wise multiplication (i.e., Hadamard
product) in the frequency domain [11]. �e output of frequency domain multiplication is then transformed
back to the original domain by applying inverse FFT, to obtain the bilinear vector z ∈ Rdz . �erefore, Eq. (2)
is re-formulated as follows [11]:

z = C (v ⊗ q) = FFT−1(FFT (C(v)) ⊙ FFT (C(q))) (3)

where ⊙ implies element-wise multiplication, C(v) ∈ Rdz and C(q) ∈ Rdz are the count sketches of the
image and question embeddings, and dz is a hyper-parameter that refers to the feature space dimensionality.
�is bilinear vector z is then normalized into znorm using the signed square root normalization and the
l2 normalization operations. Lastly, the bilinear vector znorm is passed through a fully connected layer to
generate the �nal joint representation y ∈ R l .

3.3 MLB
MLB [6] decomposes the 3-D weight matrix of bilinear pooling into the multiplication of three

smaller 2-D weight matrices. Firstly, the image embedding v ∈ Rm and the question embedding q ∈ Rn are
linearly projected to a lower dimensional space, using two projection matricesWv ∈ Rm×dz andWq ∈ Rn×dz ,
respectively. dz is a hyper-parameter that represents the feature space dimensionality and should be dz ≤
min(m, n). �en, the projected vectors v̂ ∈ Rdz and q̂ ∈ Rdz are integrated by using the Hadamard product.
Lastly, the resultant bilinear vector z ∈ Rdz is linearly projected by a third weight matrixWz ∈ Rdz×l , to obtain
the �nal joint representation y ∈ R l . �e MLB operation can also be represented as follows [6]:

y =WT
z (WT

v v ⊙ WT
q q) (4)
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3.4 MFB
MFB [7] tries to solve the convergence issue of the MLB, by adding a sum-pooling operation on the

integrated feature vector. �e MFB process is divided into two stages:

1. Expansion stage, where the image and question embeddings are expanded to a higher dimensional
space, using two projection matrices Wv ∈ Rm×ko and Wq ∈ Rn×ko , respectively. �en, the projected
vectors are integrated by using the Hadamard product. To prevent over�tting, a dropout layer is added
a�er integrating features from both modalities.

2. Squeezing stage, where the high dimensional multiplication result x ∈ Rko is squeezed by sum pooling
into a bilinear vector z ∈ Ro . �is is to compress the feature space dimensionality again. �e bilin-
ear vector z is then normalized into znorm using the signed square root normalization and the l2
normalization operations.

Finally, the bilinear vector znorm is linearly projected by a third weight matrixWz ∈ Ro×l , to obtain the
�nal joint representation y ∈ R l . �e MFB process is formulated as follows [7]:

z = SumPool ing(WT
v v ⊙ WT

q q, k) (5)

where the function SumPool ing(x , k) stands for performing sum pooling over x by a 1-D non-overlapped
window of size k. k and o are hyper-parameters, where k is the factorization rank of the two projection
matrices and o represents the feature space dimensionality.

3.5 MFH
MFH [8] is the cascading of multiple MFB blocks, where the same procedures of MFB fusion are

performed p number of times. For the ith MFB block, the Hadamard product is performed between the
expanded inputs of the current block and the expansion output of the (i − 1)th MFB block. �e bilinear
vector z ∈ Rpo is obtained by concatenating all the normalized bilinear vectors znorm generated from all the
pMFB blocks. Lastly, this bilinear vector is linearly projected by a weight matrixWz ∈ Rp×o×l , to obtain the
�nal joint representation y ∈ R l . Hence, MFB is a special case of MFHp, when p = 1.

3.6 MUTAN
In [12], the authors have proposed two versions of the MUTAN technique. In the �rst version, there are

no structural constraints enforced on the 3-D core matrix Tc . In the second version, a �xed rank constraint
is enforced on the core matrix. �e two versions are brie�y described in the following two sub-sections.

3.6.1 MUTAN without a Fixed Rank Constraint
MUTAN [12] decomposes the huge 3-D weight matrix of bilinear pooling into the mode product of

three 2-D projection matrices and a small 3-D core matrix, using the Tucker decomposition. Firstly, the
image embedding v ∈ Rm and the question embedding q ∈ Rn are linearly projected to a lower dimensional
space, using two projectionmatricesWv ∈ Rm×dv andWq ∈ Rn×dq , respectively. To integrate the two projected
embeddings v̂ ∈ Rdv and q̂ ∈ Rdq into a bilinear vector z ∈ Rdz using the outer product operation, a 3-Dweight
matrix Tc ∈ Rdv×dq×dz is needed. �is core matrix Tc is responsible for capturing the bilinear interactions
between the projected embeddings v̂ and q̂. Lastly, the resultant bilinear vector z is linearly projected by a
weight matrixWz ∈ Rdz×l , to obtain the �nal joint representation y ∈ R l . �is version of MUTAN technique
is represented as follows [12]:

y = ((Tc ×1 (qTWq)) ×2 (vTWv)) ×3 Wz (6)
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where the operator ×i denotes the ith mode product between matrices. dv , dq , and dz are hyper-parameters
that represent the dimensions of the core matrix.

3.6.2 MUTAN with Enforcing a Fixed Rank Constraint
In this MUTAN version, an additional constraint is imposed on the core matrix Tc , where each slice of

the core matrix is forced to have a constant rank R. By introducing this structural constraint on Tc , each slice
Tc[∶ , ∶ , k] where ∀k ∈ [1, dz] is re-de�ned as the sum of the outer product of R weight vectors akr ∈ Rdq and
bkr ∈ Rdv , which is represented as follows [12]:

Tc [∶ , ∶ , k] =
R
∑
r=1

akr ⊗ bkr (7)

For each value r where ∀r ∈ [1, R], two projection matrices Ar ∈ Rdq×dz and Br ∈ Rdv×dz can be de�ned,
where Ar [∶ , k] = akr and Br [∶ , k] = bkr . �us, it can be summarized that the 3-D core matrix Tc is replaced
by two groups of matrices, namely A and B. Each group consists of R projection matrices, such as A =
[A1 , . . . ,Ar , . . . ,AR] and B = [B1 , . . . , Br , . . . , BR].�e low-dimensional question and image representations
q̂ and v̂ are projected R times, each time with two di�erent projection matrices Ar and Br , respectively, and
then integrated by the Hadamard product. Hence, the bilinear vector Z ∈ Rdz is formulated as follows [12]:

Z =
R
∑
r=1

Zr (8)

Zr = (q̂TAr)⊙(v̂TBr) (9)

3.7 BLOCK
BLOCK [13] technique can be considered as a modi�ed edition of the MUTAN technique. Just like

MUTAN, two versions of the BLOCK technique were proposed. In the �rst version, there are no constraints
enforced on the 3-D core blocks Dc . In the second version, a �xed rank constraint is enforced on the core
blocks. For both cases of enforcing or not enforcing a �xed rank constraint on the corematrices,MUTANcan
be viewed as a special case of BLOCKwhenC = 1, while using the same values of the other hyper-parameters.
�e two versions are brie�y described in the following two sub-sections.

3.7.1 BLOCK without a Fixed Rank Constraint
BLOCK decomposes the 3-D core matrix Tc of the MUTAN technique into C core blocks. Each core

block is responsible for capturing the bilinear interactions between small chunks of the image and question
embeddings. Firstly, the image embedding v ∈ Rm and the question embedding q ∈ Rn are linearly projected
to a lower dimensional space, using two projection matricesWv ∈ Rm×ckv andWq ∈ Rn×ckq , respectively.�e
projected image and question feature vectors v̂ ∈ RCkv and q̂ ∈ RCkq are divided into C chunks of sizes kv
and kq , respectively. Each pair of corresponding chunks of the image and question features are integrated
via the outer product operation, and then the product result xc ∈ Rkv×kq is linearly mapped to zc ∈ Rkz

using a 3-D core block Dc ∈ Rkv×kq×kz . �e bilinear vector z ∈ RCkz is obtained by concatenating all the zc
vectors. Lastly, this bilinear vector is linearly projected by a weight matrixWz ∈ RCkz×l , to generate the �nal
joint representation y ∈ R l . For each chunk c where ∀c ∈ [1,C], the BLOCK operation can be written as
follows [13]:

zc = Dc ×1 q̂ckq ∶(c+1)kq ×2 v̂ckv ∶(c+1)kv (10)
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z = [z1 , . . . , zc , . . . , zC] (11)

3.7.2 BLOCK with Enforcing a Fixed Rank Constraint
To reduce the number of the model parameters while preserving the model robustness, another version

was proposed where a constraint is imposed on the rank of the slice matrices of each core block Dc . Just
like the MUTAN technique, the outer product operation between each pair of corresponding image and
question chunks is replaced by element-wisemultiplication, and each core blockDc is replaced by two groups
of matrices, namely Ac and Bc . For each chunk c, each group consists of R projection matrices, such as
Ac = [Ac

1 , . . . ,Ac
r , . . . ,Ac

R] and Bc = [Bc
1 , . . . , Bc

r , . . . , Bc
R].

3.8 MLPB
MLPB [9] technique is composed of two phases, namely the question-kernel-based pooling phase and

the image-kernel-based pooling phase.�ese two phases of operation are symmetric. In the question-kernel-
based pooling phase, the question embedding q ∈ Rn is linearly projected to amuch lower dimensional space,
using a weight matrixWq ∈ Rn×p.�is is to obtain the question kernel qk ∈ Rp, where p is a hyper-parameter
that represents the question-kernel dimensionality. �is question kernel slides over the image embedding
with a pre-de�ned stride s, and interacts with the corresponding image clip via the outer product operation.
�erea�er, for each sliding step t, the product result x t

q ∈ Rp×p is linearly projected to a lower dimensional
space using a weight matrix W t

xq ∈ R
p×p×o , to obtain the joint feature vector h t

q ∈ Ro of the current step t.
Lastly, the question-kernel-based fusion representation zq is the concatenation of the joint feature vectors
from all these steps, which is represented as follows [9]:

zq = [h1q , . . . , h t
q , . . . , h

T
q ] ∈ Ro×Tq (12)

where Tq is the total number of sliding steps needed for passing the question kernel over the entire
image embedding with the stride s, and o is a hyper-parameter that represents the output feature space
dimensionality for each sliding step t.�e same procedures are performed in the image-kernel-based pooling
phase, where the image kernel slides over the question embedding to interact with the small question clips.
�e bilinear vector z is obtained by concatenating the two output representations from both phases together,
as represented in Eq. (13) [9]. Finally, this bilinear vector is passed through a fully connected layer to obtain
the �nal joint representation y ∈ R l .

z = [zq , zv] ∈ Ro×Tq+o×Tv (13)

4 Proposed Methodology

�e proposed Arabic-VQA system consists of �ve main modules, all of which are developed using
deep learning approaches. �ese modules are: (1) image features extraction, (2) question pre-processing, (3)
question features extraction, (4) feature fusion, and (5) answer prediction. Fig. 3 presents the framework of
our Arabic-VQA system. �e proposed Arabic-VQA system is developed using the VAQA dataset [25]. For
non-Arabic native readers, the English translation of the input question and the output answer are provided
in the lower le� corner of the same �gure.
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Figure 3: Framework of the proposed Arabic-VQA system

4.1 Image Features Extraction
In this module, we have adopted the Image Level (IL) representation approach, where the image

embedding is extracted from the whole image. According to [60], the VGG and ResNet are the top-used
networks among the VQA studies for image representation. Although ResNet-152 [61] is much deeper than
both VGG-16 and VGG-19, it has a much lower model complexity [61]. �is is due to the use of global
average pooling instead of the fully connected layers in VGG networks. VGG networks not only have
more parameters compared to ResNet-152, and therefore take longer to train, but they also have lower
performance [61]. Hence, a ResNet-152 model that is pre-trained on the ImageNet dataset [62] is adopted,
where its parameters remain frozen during train our Arabic-VQA models. �e last fully connected layer of
classi�cation in the ResNet-152 model is discarded and the image embedding is obtained as the output of
the last pooling layer, as shown in Fig. 4. �e given image is initially re-scaled to 448 × 448 pixels and then
passed through the ResNet-152 network to obtain the image embedding as a 2048-dim feature vector. �is
feature vector is then normalized by applying l2 normalization operation. �is is to restrict the values to
being within a narrow range.

Figure 4: Block diagram of the ResNet-152 model
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4.2 Question Channel
Arabic questions from the VAQAdataset have three di�erent tasks: COCO object existence veri�cation,

COCO super-category existence veri�cation, and image scene recognition [25]. All questions in the VAQA
dataset were automatically generated using three grammatically structured formulas, whichwere represented
as follows [25]:

In Arabic, there are only two question tools for yes/no questions, namely “Éë” and “


@”. On the other

hand, several values were used for each of the other question components to generate questions of great
diversity, as discussed in [25]. �is resulted in 110 unique question templates being used through the VAQA
dataset for yes/no question generation [25].

�rough the question channel, the semanticmeaning of the input question should bewell understood to
support the VQA system to infer the appropriate answer. �is is done during both modules of question pre-
processing and question feature representation, starting from cleaning and normalizing the raw question,
passing through understanding the meanings of each word, followed by capturing the sequential relation-
ships between the questionwords.�e following two sub-sections describe the operations of the two question
modules in detail.

4.2.1 Question Pre-Processing
In this module, the raw Arabic question is pre-processed through �ve steps, which are brie�y described

as follows:

1. Question cleaning, where all non-alphabetic symbols in the given question are eliminated, such as
diacritics and question marks.

2. Question normalization, where letters that can come in various forms are uni�ed into a single form.
3. Question Tokenization, where the question is segmented into individual tokens. �e special case of

separating the question tool “


@” into a distinct token is considered during Arabic yes/no questions

tokenization, as proven in [25]. �is is because the question tool “


@” is equivalent to the question tool

“Éë” which always comes as a separate word but “


@” does not.

4. Word embedding, where each question word is encoded into a numerical representation that expresses
its meaning and context. For this purpose, the SG model from the pre-trained AraVec2.0 tool [63] is
utilized a�er �ne-tuning it with all questions of the VAQAdataset to handle themissing questionwords.
�is is to represent each question word as a 300-dim word embedding vector.

5. Merging and padding, where long questions are trimmed to a prede�ned �xed question length of
F = 10 words, while shorter questions are padded. �is is followed by merging all the question’s word
embeddings into a single matrix.

4.2.2 Question Features Extraction
Usually, one of the recurrent neural networks (RNNs) is used to capture the semantic features and

sequential relationships between the question words. LSTMs and GRUs are widely used for question features
extracted in the VQA �eld. GRU has fewer gates and fewer parameters compared to LSTM, as represented
in Fig. 5. �is makes it faster to train and execute while using less memory and retaining the same ability to



Comput Model Eng Sci. 2025;143(1) 389

preserve long-term contextual information as LSTM. Hence, a one-layer unidirectional GRU (1-layer Uni-
GRU) [64] with an internal hidden state of dimension 2048 is adopted for Arabic-question representation,
where the question embedding is obtained as the output of the last hidden state in this hidden layer.
�erea�er, a dropout process with a ratio of p = 0.3 is applied to prevent over�tting.

Figure 5: Di�erence between LSTM and GRU, (a) LSTM architecture and (b) GRU architecture

4.3 Feature Fusion
In this module, eight multimodal bilinear pooling fusion techniques are utilized, which are the FBP,

MCB, MLB, MFB, MFH, MUTAN, BLOCK, and MLPB. �is is to explore how e�ciently these fusion
techniques will perform in the case of VQA systems intended to answer yes/no questions and determine the
most e�ective technique for this case of VQA systems. For conducting an impartial comparison between
all the utilized bilinear pooling fusion techniques, we have followed the hyperparameter values that have
been used for each technique in its published article. For the same reason, both normalization and dropout
operations are generalized for all the utilized bilinear pooling fusion techniques.�erefore, the bilinear vector
z is normalized into znorm using the signed square root normalization and l2 normalization operations.�is
is to restrict the values of the bilinear vector generated from each fusion technique to be within a narrow
range, resulting in more stable VQA models [7]. �erea�er, the dropout process with a ratio of p = 0.1 is
applied to prevent over�tting. On the other hand, the dropout and normalization operations are already
included as part of the framework of the MFB and MFH fusion techniques.

4.3.1 FBP
�e FBP is included in our experiments for two reasons: (1) to validate its applicability for the VQA sys-

tems containing a small set of candidate answers, and (2) to be a reference for the other fusion techniques, to
assess their abilities to improve the model performance and reduce the model complexity. Fig. 6 graphically
represents the fully parameterized bilinear pooling operation, including all generated feature vectors step
by step with their dimension values, and all weight matrices needed during fusion. �e fully parameterized
bilinear pooling doesn’t require any hyper-parameters during the fusion process. Including the bias inputs,
the number of learnable parameters for the fully parameterized bilinear pooling is calculated as follows:

Num. of FBP parameters = size o f W = (m × n + 1) × l (14)

Hence, the number of parameters for the fusion module in our Arabic-VQA system using the fully
parameterized FBP is 8,388,610 parameters.
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Figure 6: Graphical representation of the fully parameterized bilinear pooling technique

4.3.2 MCB
�e performance of the MCB fusion technique highly depends on its feature space dimensionality,

which is required to be high-dimensional. �us, we set this hyper-parameter as dz = 16,000. Fig. 7 demon-
strates a graphical map for the MCB operation, including all hyper-parameter values, all generated feature
vectors step by step with their dimension values, and all weight matrices needed during fusion. Including
the bias inputs, the number of learnable parameters for MCB is calculated as:

Num.of MCB parameters = size o f Wz = (dz + 1) × l (15)

�erefore, the fusionmodule in ourArabic-VQA systemusing theMCB fusion technique has just 32,002
learnable parameters.

Figure 7: Graphical representation of the MCB fusion technique

4.3.3 MLB
Although the MLB fusion technique can generate a much lower-dimensional joint feature represen-

tation than MCB, it is still sensitive to its feature space dimensionality. Hence, in our system, the value of
this hyper-parameter is set to dz = 1200. Fig. 8 exhibits a graphical map of the MLB operation, including all
hyper-parameter values, all generated feature vectors step by step with their dimension values, and all weight
matrices needed during fusion. Including the bias inputs, the number of learnable parameters for MLB is
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calculated as:

Num.of MLB parameters = size o f Wv + size o f Wq + size o f Wz
= (m + 1) × dz + (n + 1) × dz + (dz + 1) × l (16)

�us, there are 4,920,002 learnable parameters just for the fusion module in our Arabic-VQA system
using the MLB fusion technique.

Figure 8: Graphical representation of the MLB fusion technique

4.3.4 MFB
As previously discussed in Section 2, the values of the two hyper-parameters k and o highly impact

the VQA model performance and the model complexity as well. For this reason, the values of these hyper-
parameters are de�ned as k = 5 and o = 1000. Fig. 9 graphically represents theMFB fusion technique with its
two phases of operation, including all hyper-parameter values, all generated feature vectors step by step with
their dimension values, and all weight matrices needed during fusion. Including the bias inputs, the number
of learnable parameters for MFB is calculated as:

Num.of MFB parameters = size o f Wv + size o f Wq + size o f Wz
= (m + 1) × k × o + (n + 1) × k × o + (o + 1) × l (17)

Subsequently, the fusion module in our Arabic-VQA system using the MFB technique contains
20,492,002 learnable parameters.
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Figure 9: Graphical representation of the MFB fusion technique

4.3.5 MFH
�eMFH technique has been utilized in our system so that only two MFB blocks are cascaded, where

p = 2. �is is because the authors in [8] have found that MFH3 (i.e., cascading three MFB blocks) has a
slightly worse performance thanMFH2, other than increasing themodel complexity.We have used the same
values of k = 5 and o = 1000 as we have done in the MFB technique. Fig. 10 illustrates the general block
diagram of the MFH fusion technique, where in our system the MFB block is repeated only two times.
Including the bias inputs, the number of learnable parameters for MFB is calculated as:

Num.of MFH parameters = p × (size o f Wv + size o f Wq) + size o f Wz
= p × [(m + 1) × k × o + (n + 1) × k × o] + (p × o + 1) × l
≈ p × number o f MFB parameters

(18)

So, the number of learnable parameters for the fusion module in our Arabic-VQA system using the
MFH technique is 40,984,002 parameters.

Figure 10: Block diagram of the MFH fusion technique
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4.3.6 MUTAN
Both versions of the MUTAN technique are utilized in our Arabic-VQA system. For the �rst version,

the three dimensions dv , dq , and dz represent a stumbling block between the VQAmodel robustness and the
model complexity. So, the values of these hyper-parameters are set to dv = dq = dz = 160. Fig. 11a exhibits a
graphical representation of the �rst version of the MUTAN technique, where no structural constraints are
enforced on the 3-D core matrix Tc . Including the bias inputs, the number of parameters for this version of
the MUTAN technique is calculated as:

Num. of parameters f or MUTAN_without_Rank
= size o f Wv + size o f Wq + size o f Tc + size o f Wz
= (m + 1) × dv + (n + 1) × dq + (dv × dq + 1) × dz + (dz + 1) × l

(19)

�us, the number of learnable parameters contained in the fusion module in our Arabic-VQA system
using theMUTAN technique without enforcing a rank constraint on the core matrix is 4,752,162 parameters.

Figure 11: Graphical representation for MUTAN fusion (a) without and (b) with enforcing a �xed rank constraint on
the core matrix
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In the second version, the values for the three dimensions are allowed to be slightly increased, while an
additional hyper-parameter R is enforced. �e values of the three dimensions and the enforced rank are set
to dv = dq = dz = 360 and R = 10. Fig. 11b graphically represents the MUTAN operation while introducing a
�xed rank constraint on the core matrices. Including the bias inputs, the number of MUTAN parameters in
this case is de�ned as:

Num. of parameters f or MUTAN_with_Rank
= size o f Wv + size o f Wq + R × (size o f Ar + size o f Br) + size o f Wz
= (m + 1) × dv + (n + 1) × dq + R × [(dq + 1) × dz + (dv + 1) × dz] + (dz + 1) × l

(20)

Hence, there are 4,075,202 learnable parameters present in the fusionmodule in ourArabic-VQA system
using the MUTAN technique while a �xed rank constraint is enforced on the core matrix.

4.3.7 BLOCK
Just like MUTAN, we have utilized both versions of the BLOCK technique in our Arabic-VQA system.

For the �rst version, the hyper-parameters are set as kv = kq = kz = 80 and the number of chunks C =
20. Fig. 12a shows a graphical representation of the BLOCK technique without enforcing a �xed rank
constraint to the core blocks Dc . Including the bias inputs, the number of parameters for BLOCK without
enforcing a �xed rank constraint is calculated as:

Num. of parameters f or BLOCK_without_Rank
= size o f Wv + size o f Wq + C × size o f Dc + size o f Wz
= (m + 1) × Ckv + (n + 1) × Ckq + C × (kv × kq + 1) × kz + (Ckz + 1) × l

(21)

Subsequently, the total number of learnable parameters for the fusionmodule in ourArabic-VQAsystem
using the BLOCK technique without enforcing a rank constraint on the core blocks is 16,801,602 parameters.

Like the �rst version of the BLOCK technique, the values of kv = kq = kz = 80 and C = 20 are adopted
for the second version, while the enforced rank is set to R = 10. Fig. 12b graphically represents the BLOCK
fusion technique while enforcing a �xed rank constraint to each core block Dc . Including the bias inputs, the
number of BLOCK parameters in this case is calculated as:

Num. of parameters f or BLOCK_with_Rank
= size o f Wv + size o f Wq + C × R × (size o f Ac

r + size o f Bc
r) + size o f Wz

= (m + 1) × Ckv + (n + 1) × Ckq + C × R × [(kq + 1) × kz + (kv + 1) × kz] + (Ckz + 1) × l
(22)

So, there are 9,152,002 learnable parameters present in the fusion module in our Arabic-VQA system
using the BLOCK technique while a �xed rank constraint is enforced on the core blocks.
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Figure 12: Graphical representation for BLOCK fusion (a) without and (b) with enforcing a �xed rank constraint on
the core matrices

4.3.8 MLPB
As described in Section 3, the MLPB technique is composed of two phases, which are the question-

kernel-based pooling phase and the image-kernel-based pooling phase. In the question-kernel-based pooling
phase, the question kernel should slide over the image embedding with a pre-de�ned stride s, where Tq is
the total number of sliding steps needed for passing the question kernel over the entire image embedding,
and vice versa for the image-kernel-based pooling phase. In our system, we have assumed a non-overlapped
window to slide the question kernel over the image embedding in the question-kernel-based pooling phase,
and vice versa for the image-kernel-based pooling phase. �is is for reducing the model complexity. Hence,
we set the dimensions of both image and question kernels and their stride values as p = s = 128. �us, in the
question-kernel-based pooling phase, the image embedding is divided into Tq = 16 non-overlapped clips.
Similarly, in the image-kernel-based pooling phase, the question embedding is divided into Tv = 16 non-
overlapped clips. �e output feature space dimensionality for each sliding step (t) is set as o = 100.

Fig. 13a shows a graphical representation of the question-kernel-based pooling phase of MLPB,
while Fig. 13b illustrates a block diagram for the entireMLPB fusion technique, including all hyper-parameter
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values, all generated feature vectors step by step with their dimension values, and all weight matrices needed
during fusion. Including the bias inputs, the number of learnable parameters for the question-kernel-based
pooling phase of MLPB is calculated as:

Num. of parameters o f qk phase of MLPB (unshared_parameters) = size o f Wq + Tq × (size o f W t
xq)

= (n + 1) × p + Tq × [(p × p + 1) × o]
(23)

To minimize the number of phase parameters, the authors in [9] have suggested sharing the learning
parameters for all steps (i.e., all the product results x t

q of all steps pass through the same fully connected
layer). So, all the weight matricesW 1

xq , . . . ,W
t
xq , . . . ,W

Tq
xq are replaced by just one weight matrixWxq . �us,

the number of parameters for the question-kernel-based pooling phase is recalculated as:

Num. of parameters o f qk phase of MLPB (shared_parameters) = size o f Wq + size o f Wxq
= (n + 1) × p + (p × p + 1) × o (24)

It is worth noting that the number of the image-kernel-based pooling phase parameters is also calculated
in the same way as in Eq. (23) for the case of not sharing learning parameters, and as in Eq. (24) for the case
of sharing learning parameters for all steps.�e total number of parameters forMLPB including both phases
is calculated as:

Num.of parameters of MLPB
= Num.of parameters o f qk phase +Num.of parameters o f vk phase + size ofWz
= Num. of parameters o f qk phase +Num.of parameters o f vk phase + (o × Tq + o
×Tv + 1) × l

(25)

For the MLPB con�guration, there are two options, either to adopt the sharing learning parameters
concept or adopt the concept of non-sharing the learning parameters. In our system, we have adopted only
the sharing parameters concept, in both phases of MLPB technique. �is is because the total number of
parameters for the fusion module is 3,807,946 parameters, in the case of sharing the learning parameters.
In contrast, the total number of parameters for the fusion module is 52,962,946 parameters, in the case of
non-sharing the learning parameters. �is in�ates the model’s size dramatically. Further, the authors in [9]
have found that the MLPB without sharing the parameters has a slightly worse performance than the MLPB
with sharing the parameters, other than increasing the model complexity.
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Figure 13: (a) graphical representation for the question-kernel-based pooling phase of MLPB, (b) block diagram for
the entire MLPB fusion technique

4.4 Answer Prediction
�is module is represented as a binary classi�cation task over a closed set of two candidate answers

“Ñª
	
K” and “B”. By getting the joint embedding vector y ∈ R l from the feature fusion module, where l = 2 is

the number of classes in the VQAmodel, the appropriate answer is simply predicted by applying the so�max
function to calculate the probability distribution over the two answers. �e predicted answer is determined
as the class with the highest so�max probability, which is de�ned as follows:

ans = argmax(so f tmax(y)) (26)
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5 Experimental Results and Discussion

Experiments have been performed onGoogle Colaboratory [65], where free access is enabled to a virtual
machine of a Nvidia T4s GPU with 12 GB RAM. All VQA models and bilinear pooling algorithms included
in our experiments are implemented using the Python programming language along with PyTorch libraries.

Allmodels are trained using theNegative Log Likelihood loss function, where parameters of the ResNet-
152, and the SG word embedding model fromAravec 2.0 are kept frozen during training. Models are learned
using the Adam optimizer for 40 epochs, with a batch size of 32. �e learning rate is initially set to 1 × 10−3

and scheduled to be decreased by a multiplicative factor of 0.1 every 10 epochs.
All our Arabic-VQA models are developed on the VAQA dataset [25]. It is the �rst VQA dataset in

Arabic, that is dedicated to yes/no questions about real-world images. �e dataset is fully automatically
generated, containing 5000 images taken from the MS-COCO dataset and 2712 Arabic questions, resulting
in 137,888 Image-Question-Answer (IQA) triplets. �e dataset is divided into 60%∶ 20%∶ 20% for training,
testing, and validation, respectively. Each of the three splits contains a distinct set of images and a distinct
set of questions. Questions in this dataset have three di�erent tasks: COCO object existence veri�cation,
COCO super-category existence veri�cation, and image scene recognition. Fig. 14 shows some samples of
IQA triplets from the VAQA dataset. For non-Arabic native readers, the English translation of the input
question and the output answer are provided within the same �gure.

Our experiments on the Arabic-VQA system are performed using eight bilinear pooling fusion
techniques, as discussed in Section 4. Further, MUTAN and BLOCK techniques have been utilized
with and without enforcing a �xed-rank constraint on the core matrices. �e two versions of MUTAN
and BLOCK techniques are abbreviated as MUTAN_w_rank, MUTAN_wo_rank, BLOCK_w_rank, and
BLOCK_wo_rank, respectively. �is results in ten Arabic-VQA models, each developed using a di�erent
fusion technique. Whereas, approaches used in the remaining modules of question pre-processing, question
feature extraction, image feature extraction, and answer prediction are retained the same for all the developed
Arabic-VQA models. �e accuracy, F1-score, precision, and recall evaluation metrics are utilized to assess
the performance of our developed Arabic-VQA models. Table 4 exhibits a comparison between the ten
Arabic-VQA models, where the comparison is performed in �ve aspects:

1. �e dimensionality of the generated bilinear vector z from each fusion technique. �is bilinear vector
is the key factor, that all these bilinear pooling fusion techniques try to minimize its dimensionality to
ultimately reduce the model complexity.

2. �e model complexity is represented by the number of parameters for the feature fusion module. �is
is because the only di�erence between all these Arabic-VQAmodels is in the fusion technique utilized.

3. �e performance of each Arabic-VQA model is represented by their scores achieved for the accuracy
and F1-score evaluation metrics in Table 4. �e precision and recall records for all these Arabic-VQA
models are presented in Fig. 15.

4. �e model size in memory.
5. �e average inference time required for each input image-question pair.
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Figure 14: Samples of image-question-answer triplets from the VAQA dataset

Table 4: Comparison between all the developed Arabic-VQA models, in terms of the dimensionality of the generated
bilinear vector from each fusion technique, the model complexity and its size, their performance on the VAQA dataset,
and the average inference time for each model

Image
features
extrac-
tion

Question
features
extrac-
tion

Feature
fusion

Dimensionality
of the
bilinear
vector z

Num. of
parameters
for fusion
module

Model
size
(MB)

Accuracy
%

F1-
Score

Average
infer-
ence
time
(s)

ResNet-152 1-layer GRU

FBP 4,194,304 8,388,610 261.2 87.606 0.876 0.0066
MCB 16,000 32,002 165.7 89.048 0.886 0.0064
MLB 1200 4,920,002 221.6 89.051 0.888 0.0063
MFB 1000 20,492,002 399.8 89.055 0.889 0.0065
MFH 2000 40,984,002 634.4 89.259 0.891 0.0068

MUTAN_wo_rank 160 4,752,162 216.9 88.540 0.884 0.0063
MUTAN_w_rank 360 4,075,202 211.9 87.781 0.877 0.0065
BLOCK_wo_rank 1600 16,801,602 357.6 88.500 0.883 0.0066
BLOCK_w_rank 1600 9,152,002 270.1 88.174 0.880 0.0065

MLPB 3200 3,807,946 208.8 89.167 0.892 0.0064
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Figure 15: A chart-based performance comparison between all the Arabic-VQA models, each developed using a
di�erent bilinear pooling fusion technique

From Table 4, we can observe that all these bilinear pooling fusion techniques have improved the VQA
model performance from 87.6% until reaching 89.25%, compared to the FBP technique as a reference. More
precisely, theMCB,MLB,MFB,MFH, andMLPB techniques outperform all the other bilinear pooling fusion
techniques, exceeding 89%. Fig. 15 exhibits a chart-based performance comparison between all these Arabic-
VQA models, in terms of their scores achieved for the accuracy, F1-score, precision, and recall evaluation
metrics where the accuracy is scaled in the range [0, 1] to be represented with the other three metrics. It
can be noticed that the MFH has achieved the highest accuracy, while the MLB has achieved the highest
precision.�eMLPB has achieved the second-highest accuracy a�er theMFHwhile achieving the highest F1
score and recall values. In terms of inference time, all these techniques take approximately the same amount
of time. �is is because these ten Arabic-VQA models utilize the same approaches in their modules, except
in the fusion module which slightly a�ected the average inference time.

Regarding the number of learnable parameters, the inapplicability of the fully parameterized bilinear
pooling technique can’t be considered a general case for all VQA systems. It can be applied to VQA systems
designed to answer yes/no questions, where there are two candidate answers l = 2.�is is because the number
of parameters is just 8 million, not billions as in the VQA systems with thousands of answers. It requires
fewer parameters than some other bilinear pooling fusion techniques, as demonstrated in Table 4.

Although the Arabic-VQA model that utilized the MFH fusion technique has achieved the highest
accuracy of 89.25%, it also has the largest number of learnable parameters.�eMFH technique has increased
the number of parameters to 40.9 million parameters, indicating the highest model complexity among all
bilinear pooling fusion techniques. Compared to the FBP technique as a reference, MFB has increased the
number of parameters to 20.4 million parameters. Similarly, the two versions of BLOCK have increased the
number of parameters to reach 9 and 16.8million parameters. Hence, the BLOCK (with both versions),MFB,
and MFH techniques are not recommended for VQA systems intended to answer yes/no questions. �is is



Comput Model Eng Sci. 2025;143(1) 401

because these techniques can’t accomplish their main objective of reducing the model complexity for this
case of VQA systems. Instead, they have signi�cantly increased the number of learnable parameters.

On the other hand, MCB, MLB, MLPB, and MUTAN (with both versions) have e�ciently reduced
the number of learnable parameters, compared to the FBP technique as a reference. Instead of 8 million
parameters in the FBP, the MLB has 4.9 million parameters, the MLPB has 3.8 million parameters, the MCB
has just 32 thousand parameters, and the two versions of MUTAN have 4 and 4.7 million parameters. �us,
we can say that their main goal of reducing the model complexity is accomplished whether the developed
VQAmodel has a small number of answers (as proven in this work) or a large number of answers (as proven
in their published articles).

All these bilinear pooling fusion techniques have considered that the dimensionality of the bilinear
vector z in the FBP is themain reason that causes its huge parameter space issue, as the dimensionality of this
bilinear vector a�er the outer product operation is usually in millions. �is leads to several billion learnable
parameters just in the feature fusion module, as all these techniques have been examined only on VQA
systemswith thousands of answers.�erefore, these techniques tend to addmultiple projection layers during
the fusion process, to project the input embeddings into much lower dimensional spaces before generating
this bilinear vector z.�is is in hopes of reducing the dimensionality of the resultant bilinear vector z asmuch
as possible and hence reducing the size of the last weight matrix before generating the appropriate answer.

In contrast, the dimensionality of the bilinear vector z is not the only reason for the parameter space
issue for the VQA systems specialized in yes/no questions, as the size of this bilinear vector will be multiplied
by a small number of classes (i.e., l = 2). �us, the di�erent attempts of these techniques to reduce the
dimensionality of this bilinear vector by adding multiple and large-sized projection layers during the fusion
process will be the main reason for the massive parameter space issue. �is is because adding all these fully
connected layers could lead to more parameters than in the case of producing a high-dimensional bilinear
vector z. �at is whyMFB, MFH, and BLOCK have increased the number of model parameters. It is also the
reason whyMCB has the least number of learnable parameters among all bilinear pooling fusion techniques,
although it produces the second largest bilinear vector z of dimensionality d = 16,000.

On the other hand, some related studies have considered that MCB can’t su�ciently solve the huge
parameter space issue of bilinear pooling, as they examined it only for VQA systems with thousands of
answers. For example, suppose a VQA model sets d = 16,000 and has a set of answers of size l = 3000.
�e number of learnable parameters for the fusion module will exceed 48 million parameters. Hence, the
number of answers in theVQA systems is a critical factor that a�ects themodel complexity, which also a�ects
the ability of all these bilinear pooling fusion techniques to reduce this complexity. �erefore, we can give
recommendations for all these fusion techniques according to the number of answers in the developed VQA
systems, as shown in Table 5.

Table 5: Recommendations for multimodal bilinear pooling fusion techniques, according to the number of answers in
the VQA systems

Number of answers
in VQA systems

FBP MCB MLB MFB MFH MUTAN BLOCK MLPB

A large number of
answers

7 3 3 3 3 3 3 3

A small number of
answers

3 3 3 7 7 3 7 3
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Fig. 16 illuminates a chart-based comparison between all these bilinear pooling fusion techniques, in
terms of the achieved model performance and the number of their learnable parameters for VQA models
dedicated to yes/no questions. It can be noticed that the MLPB, MLB, and MCB have shown good balances
of high models’ performance with low models’ complexity. Speci�cally, the MLPB technique has proven
the best balance in the trade-o� between the VQA model complexity and the overall model performance,
for Arabic-VQA models designed to answer yes/no questions. �is is because it ranks the second-highest
accuracy a�er MFH and the highest F1 score and recall while ranking the second-lowest complexity a�er
MCB. It has achieved a performance of 89.16%which is very close to the best performance of 89.25% achieved
by MFH, while having just 3.8 million parameters instead of 40.9 million parameters.

Figure 16: Performance vs. complexity chart-based comparison between all multimodal bilinear pooling fusion
techniques, for Arabic-VQA models dedicated to yes/no questions

5.1 Comparison with the State-of-the-Art
Table 6 presents a comparison between our best Arabic-VQA model using the MLPB fusion technique

and the Arabic-VQA model proposed in [25], in terms of the model performance achieved on answering
Arabic yes/no questions. �is Arabic-VQA model [25] has been developed on the same VAQA dataset with
a similar framework. �is comparison is conducted to explore how the di�erent techniques and approaches
utilized in ourArabic-VQAmodel contribute to improving themodel performance from84.936% to 89.167%.
Hence, three additional experiments are performed, where the three di�erent techniques used in our
proposed Arabic-VQAmodel during the image features extraction, question features extraction, and feature
fusionmodules are added one by one to the Arabic-VQAmodel proposed in [25].�is aims to investigate the
e�ect of adding each of these techniques on the overall model performance.�ese experiments are described
as follows:

1. In the �rst experiment, all modules of the Arabic-VQA model in [25] remain the same, except that the
MLPB fusion technique is utilized instead of the element-wise multiplication technique used in [25].
�is is to determine whether the MLPB technique can improve the model performance on its own
or not.
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2. In the second experiment, we examined the contribution of adding ResNet-152 along with the MLPB
fusion technique to themodel performance, while the question feature extractionmodule has remained
the same as in [25].

3. In the third experiment, the GRU is added along with theMLPB fusion technique to explore their e�ect
on themodel performance, while the image feature extractionmodule has remained the same as in [25].

4. In the fourth experiment, we investigated how ResNet-152 and GRU contribute to the model perfor-
mance on their own without using the MLPB fusion technique. Hence, the ResNet-152 and GRU are
used along with the element-wise multiplication technique that has been used in [25].

Table 6: Comparison between our proposed Arabic-VQA system and the state-of-the-art on the VAQA dataset

VQAmodel Image rep-
resentation

Question rep-
resentation

Feature fusion Accuracy % F1 score

Kamel et al. [25] VGG-16 1-layer
Uni-LSTM

Element-wise
multiplication

84.936 Not
speci�ed

Proposed
experiment 1

VGG-16 1-layer
Uni-LSTM

MLPB 87.928 0.878

Proposed
experiment 2

ResNet-152 1-layer
Uni-LSTM

MLPB 88.807 0.889

Proposed
experiment 3

VGG-16 1-layer
Uni-GRU

MLPB 88.590 0.884

Proposed
experiment 4

ResNet-152 1-layer
Uni-GRU

Element-wise
multiplication

87.257 0.871

Our proposed
system

ResNet-152 1-layer
Uni-GRU

MLPB 89.167 0.892

From Table 6, it can be noticed that replacing the element-wise multiplication with the MLPB fusion
technique in the �rst experiment improved the model performance from 84.93% to 87.92%. Moreover, the
addition of ResNet-152 with MLPB in the second experiment has further improved the model performance
to 88.8%. Similarly, the addition of GRU with MLPB in the third experiment has further improved the
model performance to 88.59%. On the other hand, in the fourth experiment, the use of ResNet-152 with
GRU improved performance from 84.93% to 87.25%, compared to the model in [25] where element-wise
multiplication was used as well. Hence, the usage of both ResNet-152 and GRU with MLPB in the proposed
Arabic-VQA model has upgraded the model performance to achieve 89.167%.

Table 7 illustrates a comparison between the performance of our Arabic-VQA system developed on the
VAQAdataset with related VQA systems, considering only their performance on yes/no questions according
to the scope of our work. Although these related VQA systems were constructed using other VQA datasets
with other natural languages, they have utilized deep learning approaches for both image and question
representation modules and used the category of multimodal bilinear pooling fusion techniques, as in our
proposed Arabic-VQA system.

In Table 7, it can be noticed that both VQAmodels in [6,12] have utilized the same ResNet-152 andGRU
techniques along with one of the multimodal bilinear pooling fusion techniques, similar to our proposed
Arabic-VQA system. In Table 4, it is proven that theMLPB outperforms bothMLB andMUTAN techniques,
for VQA models that are developed on the same VAQA dataset. Similarly, in Table 7, our Arabic-VQA
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system using the MLPB technique outperforms both VQAmodels in [6,12] that used the MLB andMUTAN
techniques, respectively. We can say that the achieved performance of our proposed Arabic-VQA system is
good and very comparable to the performance of relatedVQAmodels for the same type of questions. Further,
both “Ñª

	
K” and “B” answers in the utilized VAQA dataset have balanced distributions [25]. �is enforces

the developed VQA models to learn properly by preventing cheating, where models can rely on priors and
most frequent answers in biased datasets to predict a potential answer without reasoning [66–68]. Hence,
this supports the model generalization.

Table 7: Comparison between our proposed Arabic-VQA system and related works that utilized approaches from
similar categories through their pipelines, in terms of their performance only for yes/no questions

VQA research ref. Image rep-
resentation

Question rep-
resentation

Feature
fusion

VQA
dataset

Language Accuracy
%

Kim et al. [6] ResNet-152 GRU MLB VQA1.0 [21] English 84.61
Ben-younes
et al. [12]

ResNet-152 GRU MUTAN VQA1.0 [21] English 85.14

Fukui et al. [11] ResNet-152 LSTM MCB VQA1.0 [21] English 83.4
Yu et al. [7] ResNet-152 LSTM MFB VQA1.0 [21] English 85.6
Yu et al. [8] ResNet-152 LSTM MFH VQA1.0 [21] English 86.2
Lao et al. [9] ResNet LSTM MLPB VQA2.0 [66] English 80.57
Ben-younes
et al. [13]

Faster
R-CNN

GRU BLOCK VQA2.0 [66] English 82.86

Su et al. [35] ResNet-152 LSTM MLB VQA1.0 [21] English 84.1
VQA2.0 [66] English 83.70

Osman et al. [34] Faster R-CNN LSTM MCB VQA1.0 [21] English 84.92
VQA2.0 [66] English 82.85

Shuang et al. [45] Faster
R-CNN

GRU MUTAN VQA2.0 [66] English 90.36

Miao et al. [50] Faster
R-CNN

GRU BLOCK VQA2.0 [66] English 84.23

Mohamud
et al. [51]

Faster
R-CNN

GRU BLOCK VQA2.0 [66] English 83.98

Our proposed
system

ResNet-152 GRU MLPB VAQA [25] Arabic 89.167

Table 8 presents another comparison between the performance of our Arabic-VQA system developed
on the VAQAdataset with related transformer-based VQA systems.�ese VQAmodels have been developed
on other VQA datasets in di�erent domains, such as medical-VQA, remote sensing VQA, and the general
VQA task as well. Performance on yes/no questions only is considered according to our scope of work.

Although Table 8 provides a subjective comparison with VQA models that used di�erent techniques
and developed on di�erent datasets, it has shown that the performance of our proposed Arabic-VQA system
is comparable to the performance of these transformer-based VQA models for the same type of questions.
However, the use of vision and language transformers could bene�t the robustness of Arabic-VQA systems,
which could be investigated in the future.
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Table 8: Comparison between our proposedArabic-VQA system and related transformer-basedVQA systems, in terms
of their performance only for yes/no questions

VQA research ref. Utilized techniques VQA dataset Language Accuracy %
Yan et al. [31] Faster-RCNN + Bert +

BAN + EWM
VQA2.0 [66] English 87.81

Xia et al. [69] Faster-RCNN + LSTM +
Shrinkage transformer

VQA2.0 [66] English 87.33

Hackel et al. [32] XCiT_Nano +
BERT_TINY + EWM

RSVQAxBEN [70] English 89.72

Khare et al. [55] ResNet-152 +MMBERT VQA-Med 2019 [71] English 87.5
Silva et al. [56] E�cientNetV2 +

Real-Former
Transformer

RSVQAxBEN [70] English 87.57

Siebert et al. [58] ResNet-152 +
VisualBERT

RSVQAxBEN [70] English 86.56

Our proposed system ResNet-152 + GRU +
MLPB

VAQA [25] Arabic 89.167

Most VQA studies and datasets have focused on the English language, where the VQA1.0 [21] and
VQA2.0 [66] are the benchmark datasets formost studies. Recently, some studies have proposedmultilingual
VQA systems and datasets, as in [72–76]. �ese studies have adopted translation-based approaches for
multilingual-VQA dataset generation. However, none of these studies have considered the Arabic language.
Furthermore, none of these VQA systems explicitly investigated for yes/no questions.

6 Conclusion and Future Work

In this paper, we have proposed a VQA system for answering yes/no questions about real-world
images, in Arabic. �e proposed Arabic-VQA system consists of �ve modules, all of which are developed on
deep learning approaches. �ese modules are image features extraction, question pre-processing, question
features extraction, feature fusion, and answer prediction. A ResNet-152 model has been employed for
image representation. A one-layer unidirectional GRU has been adopted for semantically representing the
input question. For feature fusion, eight multimodal bilinear pooling fusion techniques have been utilized,
including FBP, MCB, MLB, MFB, MFH, MUTAN, BLOCK, and MLPB. Lastly, answers have been predicted
using a so�max-based classi�er.

All multimodal bilinear pooling fusion techniques were originally designed to reduce the model
complexity as much as possible while preserving the model performance. In literature, there is a severe
lack of validating the e�ciency of these fusion techniques for VQA systems dedicated to yes/no questions
where there are two candidate answers. �erefore, this study targets this case of VQA systems, to spotlight
the high impact of the number of answers in VQA systems on the e�ectiveness of these fusion techniques
in achieving their main objective of reducing the model complexity. In this work, we have answered three
research questions about applying these multimodal bilinear pooling fusion techniques for this case of VQA
systems, which are: (a) Will the FBP technique remain inapplicable due to the number of its learnable
parameters? (b)Will all these bilinear pooling fusion techniques accomplish theirmain objective of reducing
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the model complexity? (c) Will using these bilinear pooling fusion techniques improve the overall model
performance?

A�er conducting experiments, we found that all these multimodal bilinear pooling fusion techniques
have improved the VQAmodel performance from 87.6% to reach the best performance of 89.25%, compared
to the FBP technique as a reference. More precisely, MFH, MFB, MLPB, MLB, and MCB outperform all the
other bilinear pooling fusion techniques, exceeding 89%.

Regarding the model complexity, the inapplicability of the FBP technique can’t be considered a general
case for all VQA systems.�is could be true for the VQA systems with a large number of answers, but not for
VQA systems intended to answer yes/no questions. �e MCB, MLB, MLPB, and MUTAN techniques have
e�ciently reduced the number of model parameters from 8.3 million parameters until reaching 32 thousand
parameters, compared to the FBP technique as a reference. In contrast, MFB, MFH, and BLOCK techniques
are not recommended for VQA systems dedicated to yes/no questions, as they can’t accomplish their main
objective of decreasing the model complexity. Instead, they have signi�cantly increased the number of
model parameters from 8.3 million parameters until reaching 40.9 million parameters, compared to the FBP
technique as a reference.

Concerning the performance vs. complexity trade-o�, the MLPB, MLB, and MCB have shown good
balances of high models’ performance with low models’ complexity. Speci�cally, the MLPB technique has
proven the best balance for VQA systems designed to answer yes/no questions. It has ranked the second-
highest accuracy a�er MFH and the highest F1 score and recall while ranking the second-lowest complexity
a�er MCB.

�e dimensionality of the resultant bilinear vector was the only focus of all these multimodal bilinear
pooling fusion techniques, aiming tominimize it asmuch as possible to tackle the huge parameter space issue
of bilinear pooling fusion techniques. However, we can say that the number of answers in the VQA systems
is another critical factor that a�ects the model complexity and the ability of all these bilinear pooling fusion
techniques to reduce this complexity. Hence, in this work, several recommendations of these multimodal
bilinear pooling fusion techniques have been proposed for future VQA systems according to their number
of answers.

In the future, we will investigate other question types and more answers for the VQA task in Arabic.
Further, we aim to study the impact of utilizing vision and language transformers with multi-head attention
mechanisms on the robustness of Arabic-VQA systems.
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