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ABSTRACT: Intrusion attempts against Internet of Things (IoT) devices have significantly increased in the last few
years. These devices are now easy targets for hackers because of their built-in security flaws. Combining a Self-
Organizing Map (SOM) hybrid anomaly detection system for dimensionality reduction with the inherited nature
of clustering and Extreme Gradient Boosting (XGBoost) for multi-class classification can improve network traffic
intrusion detection. The proposed model is evaluated on the NSL-KDD dataset. The hybrid approach outperforms
the baseline line models, Multilayer perceptron model, and SOM-KNN (k-nearest neighbors) model in precision,
recall, and F1-score, highlighting the proposed approach’s scalability, potential, adaptability, and real-world applicability.
Therefore, this paper proposes a highly efficient deployment strategy for resource-constrained network edges. The
results reveal that Precision, Recall, and F1-scores rise 10%–30% for the benign, probing, and Denial of Service
(DoS) classes. In particular, the DoS, probe, and benign classes improved their F1-scores by 7.91%, 32.62%, and
12.45%, respectively.
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1 Introduction
With the rise of networked technologies like the Internet of Things, mobile devices, and cloud-based

services, the Internet has become the most crucial security service available today. A network’s attack surface
increases with complexity, which makes it simpler for cybercriminals to take advantage of weaknesses
using advanced tactics like malware, zero-day threats, root-to-local assaults, Distributed Denial of Service
(DDoS) attacks, probing, and user-to-remote attacks [1]. To effectively address new and changing threats,
security measures must use cutting-edge deep learning and data mining techniques [2]. A proactive alerting
method for spotting irregularities in network traffic is anomaly detection [3]. Significant cyberattacks can go
undetected without suitable intrusion detection systems, compromising network availability, confidentiality,
and integrity.

A critical area of study for cybersecurity experts is intrusion detection. It entails identifying and
reacting to hazardous or unauthorized activity within a system or network. Usually, anomaly-based and
signature-based approaches are used to identify unusual trends in system behavior or network traffic [4].
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Signature-based intrusion detection systems (SIDS) identify anomalous activity using a predetermined set of
signatures. This approach continues to work until more sophisticated threats appear. An excellent illustration
of how attackers might get around security is zero-day assaults [5], which use out-of-date signatures.
Furthermore, polymorphic and encrypted malware [6] can readily avoid detection by changing its payload.

The noteworthy disadvantages underscore the necessity of a detection strategy capable of tackling zero-
day assaults and more intricate vulnerabilities. Anomaly detection methods are better suited for dynamic
contexts because they can swiftly adjust to constantly changing threats [7]. Furthermore, identifying risks
from internal traffic also increases efficacy [8]. Several deep learning and machine learning techniques are
used in anomaly detection to quickly and accurately identify anomalous traffic characteristics that depart
from accepted norms. Attacks are post-identified when anomalies or outliers reveal unusual activity.

Many infiltration cases happened in the past when system security was not fully implemented, costing
the attacked companies millions of dollars in losses [9]. As a result, there is now more pressure to counter
sophisticated attack techniques. Anomaly-based Detection (AIDS) and Signature-based Detection (SIDS)
are the two main types of Intrusion Detection Systems (IDS) that are incorporated into modern computer
security systems. Using pre-established algorithms, SIDS detects attacks by comparing studied traffic with
known data patterns. It works well, where threats are identified but not enough to handle unforeseen and
future risks [10]. Consequently, it can be argued that this method is overly passive and defensive, suggesting
frequent system changes are unavoidable. Since it only works against recognized threats, it is even harder to
identify new kinds of cyberattacks. Conversely, Intrusion Detection Systems create a reasonable baseline of
behavior using statistical and machine learning methods, and they consider departures from this baseline
to be possible signs of a security event. This method works well for identifying sophisticated or hitherto
undiscovered attacks. Its drawback is that its reliance on behavioral patterns frequently produces more false
positives, requiring the impacted user to alter their usage habits [11].

Fig. 1 depicts intrusion detection systems classified into five classes: network IDS, Hybrid IDS, Host-
Based IDS, Misuse, and Anomaly. Network IDS monitors network traffic for any unusual activity and
then looks closely at abnormal bandwidth usage or suspicious packets. Host-based IDS monitors activities
on a single system or host and provides host-specific analysis. Hybrid-based IDS integrates host-based
and network-based intrusion IDS features, balancing its components’ strengths, improving accuracy, and
reducing false positives. Modern-day threats like zero-day attacks require more robust systems that detect
these unknown and novel attacks, and anomaly-based intrusion detection systems do this. Anomaly-based
IDS, due to its ability to capture unknown vulnerabilities as early as possible, has trained many machine
learning and deep learning models in the system to attain more efficacy. When it comes to detecting
vulnerabilities and intrusion by matching or comparing to known attack patterns, Misuse-based IDS is used.
The system can attain very low positive rates if the signature database is comprehensive and up to date.

The main topic of this study is the application of machine learning methods for intrusion detection,
including Extreme Gradient Boosting (XGBoost) and Self-Organizing Map (SOM). The goal of this project is
to create a reliable intrusion detection system. Deployment of network edges and comprehensive evaluation
metrics will help academics evaluate and contrast our method with current systems. The method of deploy-
ment incorporates a three-tier framework for resource-limited network edges: 1) SOM-based dimensionality
reduction at the edge to minimize transmission overhead, 2) XGBoost-based real-time intrusion detection
or classification, and finally, dynamic updates via federated learning or Growing Self-Organization Map
(GSOM) without relying on cloud resources. Enhancement will be obtained by enhancements of energy-
efficient hyperparameter optimization, maintaining low latency, energy consumption, and bandwidth
efficiency. The effectiveness of the suggested intrusion detection system will be assessed using the confusion
matrix. Our SOM-based XGBoost model’s output will help develop a fresh method for intrusion detection.



Comput Model Eng Sci. 2025;143(1) 641

Figure 1: Intrusion detection system types

2 Contribution and Novelty
This paper’s main contributions are as follows:

• This study is intriguing because it integrates a Self-Organizing Map (SOM) with XGBoost for intrusion
detection, combining dimensionality reduction and gradient-boosted classification in a novel manner.

• This novel method outperforms well-known approaches like Multilayer Perceptron (MLP) and SOM-
KNN (k-nearest neighbors) by reducing high-dimensional network traffic data and lowering complexity,
SOM makes anomaly detection easier before classification. XGBoost significantly reduces false positives
while effectively handling unbalanced data.

• This hybridization approach that leverages unsupervised learning for dimensionality reduction and
supervised learning for classification efficiently classifies multiple network attack types rather than
binary detection, leading to its real-world applicability.

3 Paper Organization
The paper’s structure is intended to aid readers in comprehending the suggested research. The difficulties

with current intrusion detection systems are covered in Section 4, which also examines related work.
The preprocessing, grouping, and classification stages of the suggested model’s technique are described
in Section 5. An overview of the NSL-KDD dataset is given in Section 6. The performance indicators are
shown in Section 7. Section 8 describes the multiple machine learning models developed in this paper and
their visuals. Experimental data and a thorough comparison of the models employed in this study are
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presented in Section 9. A final discussion of the study’s what, why, and how is given in Section 10. The
relevance of the findings is summed up in Section 11.

4 Background and Related Work
The Internet of Things (IoT) industry’s explosive expansion has sparked serious privacy and security

issues. The authors [12] present a novel intrusion detection system integrating t-distributed Stochastic
Neighbor Embedding a nonlinear dimension reduction technique with a Support Vector Machine. The
authors focus on addressing the issue of low detection accuracy in rare types of classes User to Root (U2R) and
Remote to Local (R2L) through significantly transcending data representation just a step before classification.
Implementing t-distributed Stochastic Neighbor Embedding (t-SNE) with Support Vector Machine (SVM)
results in 96.51% and 86.60% of detection accuracy for R2L and U2R classes. Reference [13] that uses fine-
tuned hyperparameter tweaks to improve performance with minimal computing expense to solve the botnet
attack prediction problem. The model uses dropout layers to reduce underfitting and overfitting. Deep Neural
Network-Based Botnet Prediction Model (DBoTPM), one of the most precise and effective botnet prediction
algorithms, attains 100% detection accuracy in real-world data evaluations.

Using the UNSW-NB15 dataset, deep learning models such as Artificial Neural Network (ANN), Deep
Neural Networks (DNN), and Recurrent Neural Network (RNN) have shown exemplary performance
in multi-class and binary classifications of IoT network infections [14]. The International Geomagnetic
Reference Field Recursive Feature Elimination (IGRFRFE) fusion strategy, which combines Information
Gain (IG) and Random Forest (RF) Importance with MLP and ensemble feature selection, was introduced
to improve feature selection and detection within UNSW-NB15. When used on the UNSW-NB15 dataset in
2021, a CNN-based method [15] detected network intrusions with 93.5% accuracy. With a 98.89% accuracy
rate, the UNSW-NB15 model outperformed the KDD99 dataset regarding precision.

Machine learning models such as SVM, K-NN, deep learning, and neural network models were con-
trasted for verified forensic analysis. The CTU-13 and Torii Botnet dataset botnet patterns were categorized.
With accuracy rates of 61.4%, 93.3%, and 99.99%, respectively, the neural network model surpassed SVM
and K-NN, according to the authors’ [16] results table. Nevertheless, the neural network similarity model’s
(NNSM) capacity to generalize across heterogeneous data is constrained by overfitting.

Model performance is frequently constrained by computational and resource constraints, which results
in inaccurate detection, misclassification, and less-than-ideal system outcomes. Bharatiya [17] explores
intrusion detection using Principal Component Analysis and SVM using the KDD’99 dataset. The author
established that reducing the dimension of given data (input) causes a decline in classification execution
time and misclassification rates. Preserving the features through Principal Component Analysis (PCA) helps
remove noise and redundancy, control computational overhead, and enhance predictive accuracy.

Lu et al. employ a unique research approach by optimizing Kernal PCA, a dimensionality reduction
method through the Bald Eagle Search (BES) tuner. The proposition of CS-RF: cost-sensitive random
forest [18] prompts to attain superior performance for detecting the accuracy of intrusion to achieve 98.70%
detection accuracy, and reducing 11.32 s of training time. This approach outperforms traditional approaches
like PCA, ISOMAP, and Locally Linear Embedding (LLE). Minority class intrusion was also detected
promisingly, showing enhanced real-time intrusion detection.

Kim et al. uses cross-device method [19] uses a single autoencoder model on the N-BaIoT datasets and
shows strong recall (0.9994–0.9997) and precision (0.9999–1.0000). Authors call it ‘Lightweight’ because
it just uses one simple model, this approach achieves scalability, efficiency, and computational simplicity.
Using a variety of machine learning techniques, such as Decision Tree, Naïve Bayes, Logistic Regression,
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Random Forest, K-NN, and deep learning algorithms including CNN, RNN, and Long short-term memory
(LSTM), a robust ensemble framework that included data preparation, training, and detection was tested.
With F1-scores above 0.99, the results show that CNN performed better than alternative deep learning models
for most attack types. Furthermore, with F1-scores near 1.0, the Random Forest and Decision Tree models
showed the best detection accuracy [20].

In this high-tech age, industrial IoT needs a strong botnet prevention plan. A deep learning strategy
for Industrial IoT is put forth by AttackNet [21] to thwart complex botnet attacks. On the N-BaIoT dataset,
an adaptive hybrid approach that combines convolutional neural networks with gated recurrent units is
used achieving 99.75% accuracy, precision, and recall. AttackNet performs noticeably better than existing
techniques, with accuracy gains ranging from 3.2% to 16.07%. This hybrid strategy provides excellent
accuracy, effective processing, and resistance to botnet attacks.

IoT systems may be impacted by security breaches that jeopardize data integrity and service availability,
according to Abusitta et al. The authors suggest a denoising autoencoder to enhance feature extraction from
IoT data, which is often noisy and inherently heterogeneous [22]. Two layers comprise the model: a decision
layer that gathers pertinent characteristics for anomaly identification and a neutral layer that eliminates
unnecessary features. The suggested approach performs more accurately when detecting malicious data than
existing IoT-based anomaly detection techniques. It outperforms systems based on Restricted Boltzmann
Machines (RBM), Stack Autoencoders (SAE), and Stack Denoising Autoencoders (SDAE) with classification
accuracy of 91.4% at layer 1, 93.7% at layer 2, and 96.4% at the last layer.

Abusitta et al. talk about how IoT systems might be impacted by security threats that jeopardize data
integrity and service availability. The authors suggest a denoising autoencoder [22] to improve feature
extraction from IoT data, which is inherently heterogeneous and frequently noisy. A neutral layer eliminates
unnecessary features from the model, while a decision layer collects pertinent features for anomaly detection.
The accuracy of the suggested approach in detecting malicious data is higher than that of existing IoT-
based anomaly detection techniques. The classification accuracy surpasses the performance of systems based
on Restricted Boltzmann Machines (RBM), Stack Autoencoders (SAE), and Stack Denoising Autoencoders
(SDAE) at layer 1, layer 2, and layer 3, reaching 91.4%, 93.7%, and 96.4%, respectively.

To efficiently detect abnormalities in IoT sensor networks, Khan et al. [23] provides a novel method
that combines a Self-Organizing Map with k-nearest neighbors (KNN). The IoT botnet and NSL-KDD
were two unique datasets that assessed the hierarchical self-organizing map (HSOM) model’s performance,
demonstrating notable gains. The F1-score was significantly improved by 41.87% compared to the benchmark
MLP model. The macro averages of precision, recall, and F1-score increased by 27%, while the training time
was reduced by 95% by shrinking the number of nodes in the SOM. This study’s excellent detection accuracy
and lightweight construction are only two noteworthy advantages. It is also scalable, which makes it perfect
for resource-constrained IoT applications. A condensed summary of all the literature is given in Table 1.

Table 1: Summary and comparative overview of the related work

Study Techniques Description Pre-processing Dataset Strength Weakness
[12] t-Distributed

Stochastic
Neighbor

Embedding
(t-SNE), SVM

Detection and
improvement of

detection accuracy for
various attack types

Min-Max
Normalization,

Smote

Skewed
Heteroge-

neous
Data

Addressing low
accuracy in rare

U2R and R2L
classes

Lesser adaptability
in real-world
applications

(Continued)
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Table 1 (continued)

Study Techniques Description Pre-processing Dataset Strength Weakness
[13] LSTM, Dropout

layers, Principal
Component

Analysis (PCA)

Prediction of botnet
attacks

Min-Max
Normalization

BoT-IoT Achieving higher
computational

efficiency, making
it feasible for

real-time
applications

Prediction
accuracy shaken

due to some
disruptive IPs

[14] LR, DT, XGBoost Detection and
classification of botnet

attacks in IoT
Environment

Smote, EDA UNSW-
NB15

KDD99

Classification
achieves higher

accuracy

Homogeneous
dataset training,

limiting
generalizability

[15] SVM, KNN,
NNSM

Comparing ML and DL
techniques for the

detection of IoT botnet
attacks

Z-Score
Normalization

CTU-13
Torii

Botnet

NNSM
exceptionally

attains a higher
accuracy rate

Lowering
effectiveness to

unseen data

[16] CNN, GRU Detection of IoT botnet
merging GRU and

CNN

Data
Augmentation

UNSW-
2018

Highly efficient
along with a
cost-effective

nature

Lesser validation
across diverse IoT

environments

[17] Principal
Component

Analysis (PCA),
SVM

Implementing
supervised and
unsupervised

techniques for anomaly
detection

Feature Selection,
Feature

Extraction

KD’99 Significant decrease
in execution time
for classification

PCA follows data
linearity, limiting
its efficacy in the

complex
relationship

[18] Kernel Principal
Component

Analysis
(KPCA), BES,

ERF, DT

A semi-supervised
deep learning method
using autoencoders for

lightweight and
cross-device IoT botnet

detection

One-Hot
Encoding,
Min-Max

Normalization

UNSW-
NB15

Lesser Training
time by 11 s and

enhanced
classification

accuracy

Sensitive parameter
tuning

[19] CNN, RNN,
LSTM, SVM, RF

Ensemble models for
intelligent detection in

IoT botnets

Data
Normalization
Feature Scaling

N-Balot Validation across
multiple IoT

environments,
enhancing
reliability

Higher
computational
requirements,

complex behavior

[20] ANN, CNN,
RNN, LSTM

Hybrid mechanism for
detection of botnets

Data
Normalization
Feature Scaling

BoT-IoT Effective even in a
wide range of
botnet attacks

Hybrid nature
increases

computational
requirements

[21] GRU, CNN A hybrid approach,
named AttackNet for
the classification and

detection of IIoT
botnet

Data
Normalization

N-Balot Efficient
processing,

robustness with
higher accuracy

Overfitting High
Complexity

[22] Denoising/
stacked

Autoencoder,
SVM

Detection of malicious
IoT data by enhancing

robustness and
accuracy

Data
Augmentation

Mailmg Effectively isolates
neural features and

extracts robust
features

Degradation of
accuracy in the

presence of noisy
and corrupted data

requires further
validation

(Continued)
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Table 1 (continued)

Study Techniques Description Pre-processing Dataset Strength Weakness
[23] MLP, KNN, Self

Organizing Map
(SOM)

Hybrid self-organizing
maps for detecting IoT

botnet and network
intrusion attacks

Normalization,
Label Encode

NSL-KDD
N-Balot

Significant
Reduction in
training time,

Increasing anomaly
detection

A trade-off
between model
complexity and

detection accuracy

Abbreviations: t-SNE t-distributed stochastic neighbor embedding, PCA Principal component analysis, KPCA Kernel
principal component analysis, SOM Self organizing map.

5 Methodology
This research employed a methodology comprising three stages: preprocessing, training, and testing.

The preprocessing phase has significantly revised the dataset before further training and testing phases. This
consists of a series of activities aimed at cleaning, transforming, and arranging the data in such a way that
it is used for analysis. Effective preprocessing also resolves problems with, among others, missing values,
outliers, and non-uniformity in the data structures, thus improving the quality of the training and testing of
the models. This core phase of the project, where raw data are shaped into the expected form, reinforces the
core scope of the project of developing and testing the machine learning model.

5.1 Data Preprocessing
During the pre-processing phase, the dataset is refined, values that are missing or imputed, and a couple

of unnecessary features are discarded. Features named ‘outcome’ and ‘extra_feature’ in the original dataset
have been removed because the ‘outcome’ feature works as a dependent variable, and it should not be present
in both data frames of training and learning. The feature ‘extra_feature’ does not contribute to prediction
and may cause noise in the data frame while dealing with categorical features, as values are numeric, and the
dataset is normalized. Our model uses two separate datasets for training and testing purposes (KDDTrain+
& KDDTest+). The test dataset file is entirely individual, as the model needs to be assessed based on data it
has not seen before.

5.2 Model Training
The training begins with using the SOM algorithm, employed for dimensionality reduction of the

preprocessed input due to its ability to project and reduce the dimensionality of data, thereby providing
valuable insights about the intrinsic data structure. This is followed by training the XGBoost model,
whose parameters are designed to optimize performance in boosting, as indicated by its name. Thereafter,
hyperparameter tuning is carried out to enhance accuracy based on the errors from the previous iteration.
MLP model is also trained and tested. The primary goal of the proposed methodology is to facilitate a
comparison between benchmark models of Artificial Neural Networks and the SOM-KNN model. In this
context, another model, following SOM-KNN, is trained and tested to evaluate our model’s performance and
determine its relative position.

5.3 Model Evaluation
This final stage of the methodology assesses the already acquired model on the evaluation set, measuring

accuracy and its effectiveness by employing performance indicators of recall, F1-score, and precision. The
confusion matrix, in addition, assists in examining the prediction’s distribution and where the model is
performing better or is slacking. The integration of SOM in data analysis and XGBoost in classification
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guarantees satisfactory performance of the model where it proves to be a comprehensive approach in
addressing classification issues by applying high-end computing approaches.

In addition to performance metrics, evaluating the model’s time complexity and memory usage is
crucial in understanding scalability and computational efficiency. The iterative grid-based weight updating
SOM’s training process is computationally expensive. It grows in complexity with an increase in size in
the input space as well as the dimension of the grid. Likewise, although helpful in classifying, XGBoost’s
tree-based gradient boosting method demands even greater memory space and takes longer under large
feature spaces and complex datasets. Still, we can also hook up with this issue with specific configurations.
We will discuss the impact of these factors in our proposed model. Fig. 2 summarizes all the methodology
in a nutshell, how raw data is preprocessed through methods like one-hot encoding, feature scaling, data
cleaning, etc. Afterward, the data passes through the training phase using a couple of techniques and is then
tested on performance indicators like F1-score, precision, and recall. This illustration helps readers in better
understanding quickly.

Figure 2: Proposed methodology for multi-class classification in NSL-KDD dataset

5.4 Configuration and Tools
Our proposed framework utilizes key libraries such as numpy, panda, sci-kit-learn, and XGBoost for

data preprocessing, modeling, and performance assessment. The primary usage of Pandas is to clean the
data, while their numerical computations are practically achieved through numpy facilitation. The Scikit-
learn presents its development needs by offering methods of execution of cross-validation of the data set
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and scaling features of the set, as well as evaluations such as recall, F-measure, and precision. XGBoost is the
main library for training a classification model based on gradient boosting, and another library—Matplotlib
and Seaborn—is responsible for plotting. Python coding and data analysis were performed using Jupyter
Notebook, managed through Anaconda Navigator [24]. Models are also saved and loaded when necessary
for effective storage utilization and used with specific libraries such as ‘Joblib’. SOM is implemented through
the Minisom library, while XGBoost is implemented through the ‘xgboost’ module import.

6 Data Assessment
The training set in this paper represents the dataset leveraged for model training. The training dataset

incorporates the NSL-KDD dataset. KDD-99 Cup’s enhanced version is NSL-KDD [25], which lacks
redundancy in its records. NSL-KDD is used as a training dataset for intrusion detection. The division
or distribution of attack and benign traffic is nearly even. Table 2 illustrates the aggregation count of
observations in the KDDTrain+ dataset. One major weakness of the NSL-KDD is that it doesn’t incorporate
the systems or hosts that are at risk. The total number of records in dataset KDDTrain+ is 125,973 [26],
in which benign traffic records are 67,332 (53.45%) and attack traffic records are 58,640 (46.55%). The
KDDTest+ dataset comprises 18,794 observations, in which benign records are 9711 (51.67%) and attack
records are 9083 (48.33%).

Table 2: Percentile ratio of NSL-KDD subclasses

Type Sub-class Percentile ratio
Normal benign 53.458%

phf 0.003%
multihoop 0.006%
ftp_write 0.006%

loadmodule 0.007%
rootkit 0.008%
imap 0.009%
land 0.014%

warezmaster 0.016%
buffer_overflow 0.024%
guess_passwd 0.042%

Attack pod 0.160%
warezclient 0.707%

teardrop 0.708%
back 0.759%
nmap 1.185%
smurf 2.100%

portsweep 2.327%
ipsweep 2.857%

Satan 2.884%
neptune 32.717%
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7 Indicators of Performance
Accuracy: Quantification for which the forecasts made by our models are accurately represented as a

percentage [27]. The accuracy score is calculated after training. The model is trained on the training set,
generating predictions for the specific test set. Accuracy during multiclass classification is determined by
calculating the accuracy of each class individually

Accurac y = Ture Positive + True negative
Ture positive + False postive + True Negative

+False negative

Recall: Refers to the ratio of actual positives to the predicted positives classified as true positives, also known
as the True Positive Rate (TPR)

Recal l = Ture Positive
True positive + False negative

Precision: Refers to the model’s accuracy in predicting a targeted class, measured as the proportion of true
positives to the total predicted positives after training

Precision = Ture Positive
True positive + False positive

F1-score: To better understand how well the model performed, the F1-score is calculated as the harmonic
mean of recall and precision. It provides a single metric of recall and precision. Mathematically, it can be
expressed as

F1 = 2 Recal l × Precision
Recal l + Precision

8 Machine Learning Models
Enhancement in technologies opens gateways of heaven for researchers. Machine learning, over time,

has advanced in a way that has become a significant necessity for all security systems. Complex and large
datasets can now be trained and tested with higher success rates. Traditional approaches often find it arduous
when dealing with huge or changing environments. In contrast, machine learning techniques, including
supervised and unsupervised learning models, tend to be more capable of adaptively recognizing unknown
and evolving threats. Specifically, algorithms like Self-Organizing Maps and XGBoost are designed to be
good intrusion detection models for isolating anomalies, helping improve cybersecurity, fraud detection,
network monitoring, and intrusion detection.

8.1 Self-Organizing Map
A self-organizing map is the advanced unsupervised ANN technique employed for dimensionality

reduction. It also visualizes high-dimensional data commonly divided into two dimensions. This helps to
create a topology with lesser dimensions, as discussed above. Conventional neural networks contain hidden
layers to solve complex problems. SOM doesn’t employ this type of processing; instead, input nodes are
dimensions of the training set. A key attribute of this algorithm is that its output node (each) always possesses
coordinates corresponding to the input node. As the SOM algorithm is of a mapping nature, it maps when,
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according to Euclidean distance [27], the closest distance between the input node and the output node.
Moreover, SOM is widely used for dimensionality reduction as well

d =
�
���

n
∑

i
(xi −w1i)2 (1)

wi = Output Nodes Weight
xi = Input Nodes

Firstly, the SOM algorithm takes the difference between output and input nodes, sums it up, squares
them up, and then takes the square root to calculate the distance as depicted in Eq. (1). The best matching
unit (BMU) is determined by the shortest distance of output nodes to input nodes. Updating the weights
of output nodes to move closer to nodes containing input values. This method uses neighbor functions that
affect nodes adjacent to the best matching unit so that they are forced to converge, this mechanism clusters
similar nodes in the two-dimensional map. Fig. 3 gives a visual presentation of SOM architecture in the
simplest way.

Figure 3: Architecture of self-organizing map

Since the self-organizing map focuses on the visual representation of nodes and their relationships
to their neighbor nodes, it is easy to understand. Thus, it presents the algorithm more intuitive than
any other machine learning algorithm. The self-organizing map is a robust algorithm for solving modern
challenges, such as dimension reduction, pattern recognition, image processing, and other similar fields.
In the subsequent subsections, we will see how SOM makes clusters and visualizes our subjective dataset
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NSL-KDD. This research deals with three cases in which dimensionality gain is achieved to serve our
purpose. Fig. 4 shows the implementation of SOM with a 5 × 5 node shape.

Figure 4: SOM visualization of NSL-KDD with 5 × 5 nodes shape

Fig. 4 represents a 2D projection of high-dimensional data into lower-dimensional space. Each corre-
sponding node contains data points that are mapped to it. Color-coded dots (data points) are clustered based
on their similarities. For better understanding, benign attack clusters (blue) are mapped in several locations
all over the grid, representing class types, and are accordingly clustered across the grid (based on similar
features). The NSL-KDD dataset is visualized (clustered via SOM) in Figs. 4–6. Figs. 5 and 6 show a similar
clustering nature with adding more nodes, i.e., 10 × 10 and 15 × 15 nodes shape.

Changing the grid size is tested to evaluate its impact on the clustering quality, model performance, and
computational efficiency. A 5 × 5 grid or node shape employs a faster, simpler, and less resource-intensive
configuration, whereas 10 × 10 and 15 × 15 offer more granularity and additional computation costs. This
helps us understand the practical aspects of intrusion detection systems.

Unlike other linear methods such as Factor Analysis, Principal Component Analysis (PCA), linear
discriminant analysis (LDA), Independent Component Analysis (ICA), and Canonical Correlation Analysis
(CCA), Self-Organizing Maps feature nonlinear mapping that is proficient in visualization and projection
of higher-dimensional data onto lower dimensions. This nonlinear mapping behavior helps preserve the
neighborhood properties and spatial relationships of the given (original) data in the projected dimension.
Linear methods imply linear relationships, which lose the data’s topological relationship, neglecting the local
proximity relationship between data points. Uniform Manifold Approximation and Projection (UMAP) or
t-SNE might excel in visualization but lack clustering capabilities; also, they are deemed for continuous data
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and, therefore, battle with categorical and mixed datasets. At the same time, SOM, along with dimensionality
reduction ability, also transcends the clustering capabilities, making it the perfect choice for problems like
intrusion detection. Methods like ICA are sensitive to noise and may struggle with outliers while SOM is
more robust to noise and irregular data due to its iterative adjustment process. Autoencoders are a widely
used dimensionality reduction technique, but they require extensive training and tuning, which can be
computationally expensive for real-time applications in a resource-constrained network environment. SOM
achieves a harmonious balance among efficacy, computing efficiency, and interpretability in tasks related to
anomaly detection.

Figure 5: SOM visualization of NSL-KDD with 10 × 10 nodes shape
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Figure 6: SOM visualization of NSL-KDD with 15 × 15 nodes shape

8.2 XGBoost
XGBoost is a high-performance, supervised machine learning algorithm operating on the gradient

boosting framework, directly building an ensemble of decision trees by focusing correction through finding
residuals or differences between actual and predicted values. The algorithm iteratively minimizes some loss
functions, mean squared error for regression, and log loss for classification in terms of the weights of the trees.
The objective here is to achieve an optimized model with regularization so that it does not overfit and can also
work with missing data. The latter prediction is a weighted aggregate of all the outputs from trees. Leveraging
the speed achieved through parallel computation and tree pruning, XGBoost has become highly popular for
processing large datasets. The algorithm has proven to be particularly efficient for intrusion detection due to
the ability to detect complex patterns in data. Mathematically, this relationship can be articulated as

ŷ =
n
∑
k=1

fk(x)

ŷ = Predicted final result
fk(x) = kth tree output where k = 1,2. . . N
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As a gradient-boosting framework, XGBoost leverages computational efficiency and scalability.
XGBoost has parallel tree boosting and optimized memory features to make it suitable for large-scale
datasets commonly used in anomaly detection of IoT networks. XGBoost outperforms many conventional
classifiers such as K-NN, Random Forest, SVM, and MLP. It implies regularization techniques that help tackle
overfitting and manage linear and nonlinear feature relationships. The inherent interpretability of XGBoost,
attributed to its feature importance scores and decision tree architecture, enhances its utilization in essential
intrusion detection applications. Classifiers mentioned in the text are computationally expensive, making
them unsuitable for real-time applications, prone to overfitting, and require rich computational resources.

8.3 Baseline Methods for Comparison
To evaluate the efficacy of the proposed SOM-XGBoost method, we compare its performance with

established Machine Learning (ML) approaches employed in anomaly detection. We employed k-Nearest
Neighbors and Multilayer Perceptron models as baseline reference techniques, frequently utilized for
classification and intrusion detection purposes. Given the imbalanced nature of the dataset, these models
work as a baseline to ensure the wellness of our proposed hybrid model, whether it’s about accuracy,
robustness, or computational efficiency.

8.3.1 Multilayer Perceptron (MLP)
MLP is a feedforward subset of an artificial neural network comprising an input, output, and hidden

layer. The neural network acquires knowledge via synapses, which are weights modified through activation
functions and backpropagation. Based on the weights, the neural network determines which signals to
transmit to enhance accuracy in classification tasks. It is commonly used for classification tasks because of
its ability to learn complex features. MLP is widely used for intrusion detection, but its hypermeter tuning
sensitivity requires prominent computational resources. Fig. 7 shows the basic architecture of MLP.

Figure 7: Perceptron model
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8.3.2 k-Nearest Neighbors
The K-NN algorithm is a simple yet strong instance-based learning technique that performs classifica-

tion on a given data point based on the majority vote of its closest neighbors in a given feature space. It uses
different types of distances: Euclidean, Manhattan, and cosine similarity. Its non-parametric nature makes
it ideal for classification purposes and does not require any extensive training time. In highly dimensional
spaces the Euclidean distance metric may lose its efficacy and may lose classification accuracy. Furthermore,
class imbalances and outliers affect K-NN abruptly as the decision of boundary making is not up to the mark.

Algorithm 1: Hybrid-SOM (proposed SOM-XGBoost) algorithm
\\Input

Dtest , Dtest , Xtrain ∈ Rrx c , Ytrain ∈ {0.1} , Ytest ∈ Rrx c , Ytrain ∈ {0, 1}

\\Preprocessing
\\imputing missing values

∀Xi ∈ Xtrain ∪ Xtest , i f Xi = NaN than Xi ← mean (x)

\\Normalization

Xtrain ←
Xtrain − μtrain

σtrain

Xtest ←
Xtest − μtrain

σtrain

\\Self-Organizing map

Wi , j ∈ Rc ∶ i ∈ [1, N] , j ∈ [1, M]

\\Training

iteration t = 1 . . . . . . T , xi ∈ Xtrain

BMU = argmini , j ∣ ∣xi −wi , j∣ ∣
wi , j (t + 1) = wi , j (t) + α (t) .HBMU , i j (t) .wi , j (t) . (xi −wi , j (t))

\\XGBoost

Paramters ← l earningrate = ω, max _depth = a, n_estimator = NE

XGBMod e l ← XGBoost (XSOM
test , Ytrain , paramters)

paramterso ptimal ← argmax (cross − val idation accurac y)
ŷtest ← XGBmod e l .product (XSOM

test )

\\Prediction

ŷtest ← model .prediction (Xtest)

(Continued)
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Algorithm 1 (continued)
\\Results

ypred , ytrue ← M11 , M12 , M21 , M22 ∈ [TP, FP, FN , TN]

end

Algorithm 1 shows how SOM is integrated with XGBoost for efficient intrusion detection. It starts with
data preprocessing, using the mean, inputting missing values, and using Z-score transformation, features are
normalized. SOM is employed afterward for dimensionality reduction, preserving the topological relation-
ships. The XGBoost classifier is now trained in the output provided by SOM, employing hyperparameters
via cross-validation to enhance classification accuracy. The rained model then predicts intrusion labels for
test data, and performance is measured using metrics like Accuracy, F1-score, Precision, and Recall. The
above-mentioned pseudo algorithm sketches how the proposed approach works.

9 Experimentation
As discussed earlier, our dataset is imbalanced and unlabeled. So, while performing preprocessing, the

data frame is label encoded, i.e., the last class in the dataset “outcome” is 0,1,2,3,4. The representation of
Benign, probe, dos, r2l, and u2r classes is labeled as 0,1,2,3,4. This helps us do multiclass classification using
MLP, a specific type of Artificial neural network. Conversion of categorical variables to dummy variables is
essential so the model performance proves effective. Table 3 and Fig. 8 show the classification results.

Table 3: Classification report line chart

Class precision Precision F1-score Recall F1-score
benign 0.645796 0.938935 0.765254
probe 0.483523 0.769439 0.593859

r2l 0.873786 0.040928 0.078193
dos 0.857186 0.978575 0.913867
u2r 0.500000 0.108108 0.177778

Accuracy % 72.7209 83.4362 71.9018
Macro avg 0.560049 0.472664 0.421492

Weighted avg 0.606244 0.695573 0.599416

As mentioned in the algorithmic procedure, hyper-parameters are parameters predefined within a par-
ticular machine learning algorithm while developing a model where no training has been done on the model.
This contrasts the parameters learned from the data (like weights of neural networks). Hyperparameters need
to be set by hand or found using some optimization approaches (grid search, random search, etc.). They
relate to the model’s learning process and may affect its results.

While experimenting with the MLP model on the selected dataset, certain parameters are adjusted, as
shown in Fig. 9 and the size of hidden layers is set to 50. Exploring the architecture of hidden layers shows one
hidden layer with 50 neurons. For training the network, the number of epochs is 1000. Epochs determine how
many times the model will run while training the dataset. The seed number is set to 42, which helps us ensure
the model gives the same result every time the code is executed. The MLP classifier uses the ‘Adam’ optimizer
for weight optimization. Table 3 and Fig. 8 show that r2l and u2r have inferior results other than that of traffic.
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This is due to fewer observations of these attack types in the dataset. MLP often shows inadequate results on
marginalized classes because of biases towards major or larger classes.

Figure 8: Performance metrics of MLP on NSL-KDD

Figure 9: MLP parameters

The Hybrid SOM model is a sophisticated model with a self-organizing map algorithm as a dimension-
ality reduction with inherited capabilities of clustering tool and XGBoost as a classifier. The critical point
for this model is the output or result of self-organizing mapping that becomes the input to the XGBoost
algorithm. SOM grid is managed by the shape parameter, which employs the number of rows x and columns
y. In the first case, 5× 5 node shapes are tuned. As shown in Fig. 10, the Self-Organizing Map (SOM) is trained
on the preprocessed data to incorporate clustering attributes for each data point.

Figure 10: SOM parameters
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The XGBoost classifier is trained to employ features derived from the original dataset and the SOM
clusters. The smallest distance decides BMU between input nodes and weighted nodes. Table 4 and Fig. 11
shows the proposed hybrid SOM model results for 5 × 5 node configuration.

The second case portrays a 10 × 10 node shape. In this case, all parameters are the same, just the SOM
nodes are increased. The learning rate is 0.5, the sigma has a value of 1.0, and the seed value implies 42. We
can observe that, with increasing numbers of nodes, light decremental behavior appears. If this behavior
persists, it can lead to a significant loss in intrusion detection. The hybrid SOM results are shown in Table 5.

Table 4: Classification report—5 × 5 nodes, hybrid SOM

Class precision Precision F1-score Recall F1-score
benign 0.818088 0.975286 0.889797
probe 0.852080 1.000000 0.920133

r2l 0.992908 0.063665 0.119658
dos 0.990298 0.995645 0.992964
u2r 0.666667 0.108108 0.186047

Accuracy % 87.4588 62.8541 62.1720
Macro avg 0.864008 0.628541 0.621720

Weighted avg 0.892850 0.874588 0.831601

Figure 11: Performance metrics of hybrid SOM, 5 × 5 node shape on NSL-KDD
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Table 5: Classification report—10 × 10 nodes, hybrid SOM

Class precision Precision F1-score Recall F1-score
benign 0.817272 0.975492 0.889400
probe 0.851310 0.999096 0.919301

r2l 0.985714 0.062756 0.117999
dos 0.990620 0.993381 0.991999
u2r 0.500000 0.108108 0.177778

Accuracy % 87.3843 62.7766 61.9295
Macro avg 0.828983 0.627766 0.619295

Weighted avg 0.891312 0.873843 0.830841

We can see that the results in Table 4 are considerably better than those in Table 3. Across all areas,
the Hybrid SOM model is outclassing the MLP Model. It is observable that for benign, probe, and dos
class, precision, recall, and F1-scores increase by 10%–30%. Derivatively, the F1-score of dos, probes, and
benign classes improved by 7.91%, 32.62%, and 12.45%, respectively. A good margin improves the hybrid
SOM model’s overall performance as accuracy increased by 14.74% compared to the MLP model. Taking
about the macro average, it is evident that precision increased by 30.40%, while recall and F1-score jumped
up by 15.58% and 20.02%. Due to the imbalanced nature of the dataset, the weighted average should also be
considered. Under the banner of the weighted average evaluation metric, it shows better results than the MLP
Model. Improvement in the F1-score in weighted average symbolizes that the Hybrid SOM model maintains
a better balance between recall and precision regarding the number of observations per class.

The recall result of the U2R class established that it is a difficult challenge for both models due to their
almost identical values. The point is that Hybrid SOM performs better than the Benchmark MLP Model.
However, every technique comes with some hurdles that need to be improved in the future by adjusting and
altering the approach. Tables 4 and 5 decrypt the result of the Hybrid SOM model with input-output nodes
of 5 × 5 and 10 × 10. Fig. 12 illustrates Table 5 for user convenience that how changing the grid size effects
the evaluations. Keeping in mind that increasing the number of node shapes increases complexity. When
the number of input-output nodes increases over the desired threshold, it starts capturing minor details and
noise that are not desired in training. In intrusion detection architectures, where it is necessary to capture
intrusion and atypical traffic patterns, granularity elevation leads to failure. Data mapping to the ideal BMU
becomes more complex with an increasing number of SOM nodes. This may cause poor clustering, degrading
the model’s overall performance. K-NN provides the results (configuration of 5 × 5 node shape) mentioned
in Table 6.
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Figure 12: Performance metrics of hybrid SOM, 10 × 10 node shape on NSL-KDD

Table 6: Classification report—15 × 15 nodes, hybrid SOM

Class precision Precision F1-score Recall F1-score
benign 0.815092 0.975492 0.888108
probe 0.853282 0.999096 0.920450

r2l 0.981308 0.047749 0.091067
dos 0.990632 0.994600 0.992612
u2r 0500000 0.081081 0.139535

Accuracy % 87.2406 61.9604 60.6354
Macro avg 0.828063 0.619604 0.606354

Weighted avg 0.889789 0.872406 0.827202
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Fig. 13 shows performance metrice for hybrid SOM. The increasing number of SOM nodes shows
an observable difference between precision, recall, and F1-score. Hence, implementations with 10 × 10
nodes degrade performance. Precision downgrades by 2.66%, recall downgrades by 0.08%, and F1-score
downgrades by 0.22%. Implementing a 5 × 5 node shape in Hybrid SOM and XGBoost is the appropriate way
to detect intrusion in network traffic. We have continued to increase the number of nodes to 15. Shifting the
nodes to a higher number causes a change in performance. There is a significant loss in rare classes of u2r and
r2l. Although we don’t focus much on these classes, the point is to be established here that dimensionality
gain causes degradation of performance in our case by 44.34%. The precision of the classes is not high, but it
makes a significant difference. Dimensionality gain, in a sense, is just generating more overhead and is more
time-consuming.

Figure 13: Performance metrics of hybrid SOM, 15 × 15 node shape on NSL-KDD

The K-nearest neighbor algorithm is one of the most prominent algorithms for classification purposes.
It is also considered for intrusion detection when evaluating an MLP model. Following the same parame-
ters. Figs. 14–16 correspond to the visualization of parameter shifting of SOM (increasing number of nodes)
effects on the evaluation metrics when it is integrated with the k-nearest neighbor technique. Table 7 indicates
the precision, recall and F1-score with different classes.

While comparing the performance of SOM-KNN and SOM-XGBoost models, we notice that the Hybrid
SOM (SOM-XGBoost) performs better. We see significant differences in the results of Tables 4 and 6. SOM-
KNN model performance is degraded by 6.39%, 52.65%, 157.04%, and 3.99% in benign, probe, r2l, and dos
classes, respectively. As we increase the number of nodes to 10× 10, our proposed Hybrid SOM model persists
with better performance. Let’s dive into the comparison by first placing SOM-KNN with 10 × 10 node results.
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Figure 14: Performance metrics of SOM-KNN, 5 × 5 node shape on NSL-KDD

Figure 15: Performance metrics of SOM-KNN, 10 × 10 node shape on NSL-KDD

Figure 16: Performance metrics of SOM-KNN, 15 × 15 node shape on NSL-KDD
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Table 7: Classification report—5 × 5 nodes, SOM-KNN

Class precision Precision F1-score Recall F1-score
benign 0.7868163 0.972196 0.869737
probe 0.743208 0.766727 0.754784

r2l 0.968750 0.014097 0.027790
dos 0.987855 0.963421 0.987855
u2r 0.695652 0.432432 0.533333

Accuracy % 84.4259 62.9875 63.2226
Macro avg 0.836456 0.629775 0.632226

Weighted avg 0.866769 0.844259 0.79610

Table 8 reveals the results with different classes. Table 9 represents the results of the 15 × 15 node shape
in the Som-KNN model, as we already know that we are testing our model with three different node shape
types for a better understanding of the model behavior.

Table 8: Classification report—10 × 10 nodes, SOM-KNN

Class precision Precision F1-score Recall F1-score
benign 0.7868163 0.972196 0.869737
probe 0.743208 0.766727 0.754784

r2l 0.968750 0.014097 0.027790
dos 0.987855 0.963421 0.987855
u2r 0.695652 0.432432 0.533333

Accuracy % 84.4259 62.9875 63.2226
Macro avg 0.836456 0.629775 0.632226

Weighted avg 0.866769 0.844259 0.79610

Table 9: Classification report—15 × 15 nodes, SOM-KNN

Class precision Precision F1-score Recall F1-score
benign 0.782591 0.971167 0.866740
probe 0.732797 0.741410 0.737079

r2l 0.969231 0.969231 0.055654
dos 0.986657 0.953144 0.969611
u2r 0.538462 0.189189 0.280000

Accuracy % 84.0321 57.6712 58.1817
Macro avg 0.801947 0.576712 0.581817

Weighted avg 0.863354 0.840321 0.794477

Digging into Tables 5 and 7 results, we see that SOM-XGBoost performs better than SOM-KNN across
most classes. The hybrid SOM model leads by 3.6% and establishes robust performance. u2r is the class, as
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discussed earlier, that is better with SOM-KNN. We establish that reducing the dimensionality of the self-
organizing maps leads to better results in anomaly detection. To put a mark on this argument, we increase
dimensionality to 15 × 15, and Table 8 decrypts the results.

If we analyze Tables 7 and 8 closely, the 10 × 10 Node shape on NSL-KDD performs better. The 15 × 15
node shape’s accuracy downgrades by 0.37%, whereas other metrics are also degraded.

10 CPU Usage
CPU usage is essential as a performance measure parameter in a multi-tenant environment. As an

indicator of system load, it decrypts how much the process is resource intensive, which leads to an assessment
of under or over-utilization of the system. Performance optimization is also done by monitoring CPU usage,
which helps identify bottlenecks and insufficiencies. Monitoring CPU usage trends can help predict potential
system failures or overloads before they occur. Sudden spikes or sustained high usage can be an early warning
sign of performance degradation, prompting preemptive action to maintain system stability.

Our proposed Hybrid SOM (SOM-XGBoost) model also improves CPU efficiency. Throughout the
building of different cases of nodes, dimensionality reduction leads to the efficient usage of resources.
An increase in the dimensionality of SOM causes the process to become more resource-intensive and
have higher computational complexity. Fig. 13 compares all cases (Nodes shape with 5 × 5, 10 × 10, and
15 × 15). There is a tradeoff scenario in machine learning that larger SOM grids cause the model’s complexity.
The stability in preprocessing and XGBoost processing time shows SOM grid size only affects the SOM
processing stage. Fig. 17 shows that 5 × 5 arrangement of our proposed Hybrid SOM model is the fastest
and CPU-lightest, making it ideal for fast processing. At the same time, the 15 × 15 configuration gives more
comprehensive mapping but uses more resources.

Figure 17: CPU usage and time measurement—hybrid SOM
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Moving toward the K-nearest neighbor classifier, there is a difference in the resultant values. Fig. 18
shows how values vary due to classifier changes. When the SOM grid size goes from 5 × 5 to 15 × 15, overall
processing time slowly increases, mainly owing to SOM processing time. In contrast, KNN processing time
remains nearly constant—the 5 × 5 layout processes fastest at 93.34 s, followed by 10 × 10 at 95.81 and 15 × 15
node shape at 97.14. However, larger SOM grids dramatically reduce CPU use. Peak CPU usage drops from
21.6% in 5 × 5 node shape to 0.4% in 15 × 15, indicating reduced computational intensity with grid size. This
illustrates that a larger grid takes longer to process but uses less CPU, which may help systems with limited
CPU power.

Figure 18: CPU usage and time measurement—SOM-KNN

The Multilayer Perceptron model is used as a benchmark model for intrusion detection. We also calcu-
late CPU usage and time measurements. Fig. 19 shows its CPU usage and time measurement performance
values. Fig. 19 shows how the MLP model behaves regarding processing time and CPU utilization on NSL-
KDD. The Processing Time (blue line) shows that Training takes 46.32 s and Preprocessing 0.40 s, for a
Total Time of 47.51 s. The task’s CPU Usage (orange line) is at a peak and average of 6.0%, indicating a light
computational demand. Training is the most time-consuming activity, yet CPU resources are underutilized,
indicating capacity for additional activities or processing changes.
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Figure 19: CPU usage and time measurement—MLP

11 Discussion
Three distinct models are discussed throughout our paper. Regarding their comparison in terms of

visualization, the solid light golden line represents MLP preprocessing time. SOM-KNN shows increasing
efficiency with larger configurations (node shapes), reducing both total processing time (from 100 to 80 s)
and CPU usage (peak CPU drops from 100% to 10%, average CPU from 40% to 1%). In contrast, MLP on
NSL-KDD shows moderate processing time (50 s) with sustained average CPU usage (30%) concentrated
in training. On the other hand, SOM-XGBoost loses efficiency as configurations increase; its average CPU
consumption increases from 5% to 8%, its peak CPU usage increases from 10% to 12%, and its total processing
time increases from 35 to 45 s, suggesting that it requires more resources with larger configurations.
This implies that SOM-KNN is the best option for scaling efficiency. At the same time, SOM-XGBoost
offers a trade-off between resource consumption and performance, with a rising computational cost as
configurations grow.

A drastic change in computational cost with increasing node shapes in the KNN and XGBoost model
shows how workload distribution works. This scalability in SOM-KNN means that larger setups enable
the algorithm to handle input in optimal chunks or parallel, reducing the amount of time and CPU
burden. On the other hand, SOM-XGBoost exhibits a rise in computational cost with more significant
configurations because the XGBoost component becomes more sophisticated with increasing configuration
size, necessitating more gradient boosting rounds, which increases processing time and CPU consumption.
Because more significant SOM-XGBoost configurations seek to improve model accuracy at the expense
of higher resource consumption, this increase in complexity results in a more significant computational
burden. Fig. 20 decrypts all the above discussion in visual form.
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Figure 20: Combined CPU usage and processing times

As we know, when dealing with a dataset of imbalance type, F1-score plays a crucial role in evaluation.
Upcoming graphs show how F1-scores relate to different models. Fig. 21 shows that SOM-KNN (5× 5, 10× 10,
and 15 × 15) performs better in most classes than the MLP model. The SOM-KNN 5 × 5 model’s superiority
in anomaly identification is demonstrated by its significantly higher F1-scores in crucial categories like DOS
and U2R.

The hybrid-SOM (SOM-XGBoost) model in every assessed class routinely performs better than MLP.
The Hybrid-SOM 5 × 5 design demonstrates the best balance between performance and resource efficiency,
excelling in key areas like DOS and Benign. Fig. 22 visualizes this in an analytical sense.

While comparing the SOM-KNN and Hybrid SOM models, we see that for most classes, hybrid-
SOM models (5 × 5, 10 × 10, and 15 × 15) exhibit better F1-scores than their SOM-KNN counterparts.
Particularly in crucial areas like Probe and DOS, the hybrid-SOM 5× 5 configuration dominates performance
measurements, demonstrating its efficacy for accurate anomaly identification.

F1-score plays a vital and crucial role in evaluating imbalanced datasets and we are dealing with this
kind of imbalanced nature in our respective dataset. So, comparing the F1-scores of the proposed and
benchmarked models is necessary. Fig. 23 illustrates a comparison of the F1-score with two models, SOM-
KNN and Hybrid SOM. A heat map in Fig. 24 illustrates how well Hybrid SOM, SOM-KNN, and MLP
models handle classification problems by summarizing the F1-score of respective classes. The proposed
hybrid SOM model results are better in most categories, especially in Benign, Probe, and DOS classes. As
mentioned earlier, the Hybrid SOM’s F1-score for most classes is above 0.9. However, the F1-score depreciates
regarding classes with significantly fewer instances (r2l, u2r). These results highlight the efficiency of Hybrid
SOM for data analysis when it comes to complex intrusion detection scenarios. The necessity of the hour is
to optimize further to improve accuracy in detecting less frequent attack types.
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Figure 21: MLP vs. SOM-KNN concerning F1-score

Figure 22: MLP vs. Hybrid SOM concerning F1-score
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Figure 23: SOM-KNN vs. Hybrid SOM concerning F1-score

Figure 24: Heatmap of all evaluated models

The experimental results from the evaluated models above show insights into their performance,
efficacy, and discrepancies. To gain a deeper understanding, we will discuss the principal features that cause
evaluation gaps.
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11.1 Performance Trends
The Hybrid-SOM model’s results indicate it consistently outperforms baseline techniques in accuracy

and F1-score. This is due to XGBoost’s gradient-boosting nature, which enhances weak learners and
substantially minimizes variance. Dynamic allocation of feature priority allows it to choose the most relevant
attributes in the NSL-KDD dataset. In contrast, other classifiers exhibit varying performances due to the
struggle in multiclass classification caused by optimal hyperplane separation. It happens more when feature
space is highly nonlinear and tends to be less effective.

11.2 Dataset Characteristic
The imbalanced nature of NSL-KDD causes significant challenges where certain types of classes are

underrepresented. This type of dataset causes models to be biased towards classes of higher instances.
Cost-sensitive learning or oversampling may resolve this issue, but SOM still struggles with accurately
detecting minority classes. Sharing overlapping spaces in some class types with normal traffic complicates
the differentiation for a classifier like K-NN. In contrast, XGBoost, through its boosting mechanism, refines
the decision boundary, helping in significant detection rates.

11.3 Models Innate Nature
Each model evaluated in this research has distinct performance due to innate properties. Multilayer

perceptron struggles with convergence and backpropagation issues because it relies on backpropagation
phenomena. In artificial neural networks, gradient values tend to vanish or explode, causing weights to
become slow or unstable. Also, the non-convex loss function in MLP makes it difficult for an optimal
detection rate. K-NN faces the curse of dimensionality; with an increase in the number of features, the data
points exhibit sparsity, which complicates the ability of KNN to identify significant nearest neighbors. Data
distribution and feature scaling are important in K-NN because improper normalization can cause abrupt
distance calculation of features with larger magnitudes, leading to biased classification. Self-organizing
Map performs the function of dimensionality reduction and visualization. SOM helps overcome issues of
high correlation that normally exist in network traffic datasets. XGBoost whereas iteratively refines weak
learners. It addresses class imbalances by allocating larger weights to challenging and complex instances or
samples. Furthermore, its L1/L2 regularization helps prevent overfitting, promoting more stable and accurate
classification over various network attack types.

12 Conclusion and Future Work
The Hybrid SOM-XGBoost model provides a robust approach to intrusion detection in resource-

restricted networks, enhancing detection accuracy while managing complexity effectively. The model clusters
data using a self-organizing map succeeded by gradient boosting classification provided by the XGBoost
algorithm, ultimately boosting detection rates among different classes of network traffic. Considerable
enhancements in recall and precision, especially concerning large attack classes, indicate the resourcefulness
of the proposed model. Hybrid SOM-XGBoost outclasses the MLP and SOM-KNN benchmark models with
notable anomaly detection enhancements. Compared to MLP model results, the F1-score of dos, probes,
and benign classes improved by 7.91%, 32.62%, and 12.45%, respectively. Despite this, challenges persist in
classifying rare classes such as r2l and u2r because of innate imbalances in the dataset, which are retained
even after preprocessing. Due to extensive hyperparameter tuning, substantial computational resources are
required, which can cause computational overhead. The dependence of XGBoost on labeled data due to
supervised learning may not be ideal in every intrusion detection deployment. SOM lacks incremental
learning, this means that once trained, it doesn’t dynamically update on newly provided data.
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Future work may include refining the model for these rare classes through thorough investigation and
feature engineering methods to improve accuracy. Integrating distributed computing, such as GPU acceler-
ation and parallel processing, can significantly improve scalability. To obtain dynamic adjustments, growing
self-organizing maps can play a vital role in improving adaptability. Exploration of online frameworks like
federated learning and reinforcement learning can help enhance real-world deployment.
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