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ABSTRACT: The Internet of Things (IoT) is emerging as an innovative phenomenon concerned with the development
of numerous vital applications. With the development of IoT devices, huge amounts of information, including users’
private data, are generated. IoT systems face major security and data privacy challenges owing to their integral
features such as scalability, resource constraints, and heterogeneity. These challenges are intensified by the fact that
IoT technology frequently gathers and conveys complex data, creating an attractive opportunity for cyberattacks. To
address these challenges, artificial intelligence (AI) techniques, such as machine learning (ML) and deep learning (DL),
are utilized to build an intrusion detection system (IDS) that helps to secure IoT systems. Federated learning (FL) is a
decentralized technique that can help to improve information privacy and performance by training the IDS on discrete
linked devices. FL delivers an effectual tool to defend user confidentiality, mainly in the field of IoT, where IoT devices
often obtain privacy-sensitive personal data. This study develops a Privacy-Enhanced Federated Learning for Intrusion
Detection using the Chameleon Swarm Algorithm and Artificial Intelligence (PEFLID-CSAAI) technique. The main
aim of the PEFLID-CSAAI method is to recognize the existence of attack behavior in IoT networks. First, the PEFLID-
CSAAI technique involves data preprocessing using Z-score normalization to transform the input data into a beneficial
format. Then, the PEFLID-CSAAI method uses the Osprey Optimization Algorithm (OOA) for the feature selection
(FS) model. For the classification of intrusion detection attacks, the Self-Attentive Variational Autoencoder (SA-VAE)
technique can be exploited. Finally, the Chameleon Swarm Algorithm (CSA) is applied for the hyperparameter fine-
tuning process that is involved in the SA-VAE model. A wide range of experiments were conducted to validate the
execution of the PEFLID-CSAAI model. The simulated outcomes demonstrated that the PEFLID-CSAAI technique
outperformed other recent models, highlighting its potential as a valuable tool for future applications in healthcare
devices and small engineering systems.

KEYWORDS: Federated learning; internet of things; artificial intelligence; chameleon swarm algorithm; intrusion
detection system; healthcare IoT devices

1 Introduction
The rapid development and growth of the Internet of Things (IoT) has led to significant improvements

in data created on the edge of the network [1]. This development and growth have created novel challenges to
the traditional cloud-based centralized techniques for the study of data in two main ways. Firstly, centralized
techniques are not suitable for the 5G/6G period owing to the very high transmission and storage costs
involved in combining data from millions or even billions of IoT devices [2]. Secondly, data gathering is
increasingly regarded as a threat to user privacy. With cloud-based centralized techniques, user data can
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be distributed or sold to numerous corporations, negatively affecting data security and breaching privacy
rights, additionally fueling public suspicion of data-focused applications [3]. Thus, a distributed privacy-
maintaining technique for inference-based applications and data-driven learning is required for efficacy and
to mitigate privacy concerns.

The exposure of data in the IoT environment creates opportunities for several adverse activities, such
as malware exploits, Denial of Service (DoS) attacks, phishing schemes, IoT botnet intrusions, routing
operations, and challenges associated with the security of the cloud [4]. In a zero-trust security method,
intrinsic IoT vulnerabilities are recognized and trust can be frequently retained. Authentication is needed for
every attempt to access network sources and widespread security is introduced against the various threats
initiated either internally or externally in the IoT system [5]. The defense of IoT systems against cyber-attacks
has become a vital study field recently. Artificial intelligence (AI)-based techniques, mainly deep learning
(DL) and machine learning (ML), are used in the IoT security context, as they can identify, alleviate, and
predict abnormalities and unusual traffic behaviors [6]. However, many current IDSs cannot perform as
effectively with the fast development of IoT-associated devices, and they enforce a tremendous burden on
systems. Hence, current DL/ML-based IDSs are not appropriate for 6G-aided IoT, and intrusion detection
can become less precise with these rapid changes [7]. To address this difficulty, Federated learning (FL) has
emerged as a cooperative model, which improves edge intelligence while preserving confidentiality.

FL has gathered extensive attention as a security solution owing to its consistency and ability to preserve
privacy [8]. FL allows users to study the method cooperatively by sharing local parameters without exposing
private data. Instinctively, it is more secure than centralized training; however, recent experiments have
revealed that it also leads to many security concerns. For instance, with distributed parameters, a malicious
attacker could initiate attacks to retrieve images from a device that uses face detection [9]. Additionally,
adversaries can effortlessly intercept the medical data of patients who wear gadgets. This not only invades
individuals’ privacy, but, more importantly, could lead to personal or economic damage. These security
threats in FL are a significant feature impeding the advancement and further improvement of IAI-based
applications [10]. Fig. 1 presents the structure of FL.

Existing federated learning (FL)-based intrusion detection systems (IDSs) for IoT environments face
challenges in terms of feature selection, hyperparameter tuning, and anomaly detection, limiting their
accuracy, privacy preservation, and scalability. Current frameworks struggle to adapt to dynamic cyber
threats while ensuring efficient intrusion detection in resource-constrained IoT networks.

Research Question: Can the integration of Self-Attentive Variational Autoencoder (SA-VAE),
Chameleon Swarm Algorithm (CSA), and Osprey Optimization Algorithm (OOA) in a federated learning-
based IDS enhance intrusion detection accuracy, privacy preservation, and scalability in IoT networks?

This study involves the development of a Privacy-Enhanced FL for Intrusion Detection using the
Chameleon Swarm Algorithm and Artificial Intelligence (PEFLID-CSAAI) technique. The PEFLID-CSAAI
technique involves data preprocessing using Z-score normalization to transform the input data into a
beneficial format. Additionally, the PEFLID-CSAAI method uses an Osprey Optimization Algorithm (OOA)
for the FS model. For the classification of IDS attacks, the Self-Attentive Variational Autoencoder (SA-VAE)
technique can be exploited. Then, the Chameleon Swarm Algorithm (CSA) is applied for the hyperparameter
fine-tuning process that is involved in the SA-VAE model. An extensive variety of experiments were
conducted to verify the execution of the PEFLID-CSAAI model.
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Figure 1: Federated learning architecture

2 Review of the Literature
Hamdi [11] presents a federated-based IDS. To study the implementation of the technique, the author

studied the client-side assessment whereby users send local data to the server, which then combines them
using an upgraded global method. Users estimate the global method locally and transfer the outcomes
back to the server to be combined utilizing metric aggregating functions. Li et al. [12] introduce a new and
collaborative technique for intrusion detection in the IoT that can help to solve specific security problems.
The proposed technique selects the most significant features, which are superior in defining transmission
among entities, by utilizing a Black Hole Optimizer (BHO). The control of all subnets can be achieved by
using a controller node that utilizes an equivalent association of convolutional neural networks (CNNs) to
identify the occurrence of defense risks in the traffic that travels across its subnet. Angelin et al. [13] present
the execution of a DL-based network IDS (NIDS) intended to classify various kinds of attacks in industrial
IoT (IIoT) contexts. To improve the efficiency of the NIDS, the technique incorporates a CNN with an
autoencoder (AE). The technique enhances the recognition results by decreasing the features of the data
through the use of the AE.

Ullah et al. [14] developed an IDS for improving the security of the IoT, which uses transfer learning
(TL) and multimodal big data representation. Initially, Packet Capture (PCAP) files were dragged to recover
essential bytes and attacks. Next, Spark-based big data optimizer methods were used to manage the massive
amount of data. Then, a TL technique similar to word2vec recovered semantic-based features. Finally, the
method was advanced to change the system bytes into images, and text attributes were obtained by designing
attention-based ResNets. Ghasemi et al. [15] proposed a hybrid IDS based on Grey Wolf Optimizer (GWO)
and Support Vector Machine (SVM), which uses the improvements of these methods. In the presented
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technique, SVM was utilized to differentiate between abnormal records and normal records, and GWO was
utilized to discover the FS, kernel function, and fine-tuned optimum hyperparameters for SVM to enhance
the classification. Hanafi et al. [16] proposed a Long Short-Term Memory (LSTM) system and enhanced
Binary Golden Jackal Optimizer (BGJO) to improve a novel IDS method for IoT systems. Initially, the
GJO is enhanced by opposition-based learning (OBL). BGJO utilizes the OBL approach to enhance the
execution of the GJO and prevents the method from becoming stuck in the local optimum by monitoring
the primary population.

Javeed et al. [17] propose a horizontal FL method that incorporates CNN and BiLSTM for an effectual
IDS. This hybrid model aims to overcome the boundaries of current techniques and improve the efficiency
of IDSs in the FL context for IoT systems. In particular, CNN can be utilized for the extraction of spatial
features, allowing the method to determine the local patterns distinctive of possible attacks, whereas the
BiLSTM module takes the temporal dependency and studies subsequent patterns in the data. The authors
in [18] proposed a novel Chaotic Cuckoo Search Optimizer (CCSO) method with optimum wavelet kernel
ELM (OWKELM) called the CCSO-OWKELM method for IDSs. The CCSO-OWKELM contains a CCSO-
based FS method that combines the notions of chaotic maps with CSO. Moreover, the OWKELM method
can be used for classification and intrusion detection.

2.1 Motivation for the Use of Federated Learning
IDSs often rely on centralized data collection, leading to significant privacy risks, scalability limitations,

and communication bottlenecks [19]. FL addresses these challenges by enabling local model training on
devices, thereby reducing data exposure risks and enhancing privacy preservation [20]. Specifically, the
PEFLID-CSAAI framework employs FL to reduce dependency on a centralized database, ensuring enhanced
privacy-preserving capabilities. Moreover, FL enables improved scalability, as IDS models can be updated
locally without transferring raw data, which is particularly beneficial in large-scale IoT environments.
Additionally, FL enables IDS to adapt to dynamic network threats more efficiently through decentralized
learning, ensuring faster response times against emerging cyber threats [21]. Furthermore, by minimizing
bandwidth usage and computational overhead, FL significantly enhances resource efficiency, making it
suitable for constrained IoT environments [22]. These advantages establish FL as a promising paradigm for
next-generation IDSs, particularly in IoT and edge computing ecosystems.

2.2 Comparison with Existing Techniques
Despite the advancements in FL-based IDSs for IoT contexts, the existing techniques exhibit notable

limitations, as outlined in Table 1.

Table 1: Existing techniques and limitations

Existing
technique

Limitations How PEFLID-CSAAI
overcomes limitations

Source Objective

CNN-LSTM
IDS

High computational cost,
poor adaptability to

evolving attacks

SA-VAE enhances
adaptability by learning
dynamic attack patterns

[23] Improve IDS detection
using CNN and LSTM

hybridization
CNN-LSTM

model
Struggles with long-time

dependencies and uneven
feature distribution

SA-VAE enhances feature
extraction and reduces

computational load

[24] Improve IoT anomaly
detection efficiency and

accuracy
CNN-BiLSTM

IDS
Requires extensive labeled

data for training
FL allows learning without

centralized data sharing
[25] Improve IDS efficiency by

combining CNN and
BiLSTM

(Continued)
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Table 1 (continued)

Existing
technique

Limitations How PEFLID-CSAAI
overcomes limitations

Source Objective

IDS-IoT
(Traditional FL)

Privacy vulnerabilities due
to model poisoning risks

CSA enhances robustness
by optimizing

hyperparameters
dynamically

[26] Apply federated learning
for IDS in IoT systems

LSTM-Attn IDS
for SDNs

Prone to cyberattacks due
to centralized control

PEFLID-CSAAI improves
detection accuracy and

adaptability

[27] Enhance IDS for dynamic
networks

GAN-Based
IDS

Prone to mode collapse and
unstable training

SA-VAE stabilizes training
and ensures diverse attack

detection

[28] Use GANs for
anomaly-based IDS with

adversarial learning
Hybrid

SVM-RF IDS
Requires high

computational resources
for large datasets

OOA reduces feature
dimensions, optimizing

model efficiency

[29] Combine SVM and RF to
improve classification

accuracy
VAE-Based IDS Lacks confidence

estimation in anomaly
detection.

Struggles with reliable
classification of

cyberattacks

SA-VAE improves
confidence metrics using

latent space representations

[30] Enhance IDS reliability and
accuracy in detecting

network anomalies

3 Methodology
In this study, we developed a novel PEFLID-CSAAI technique. The main intention of the PEFLID-

CSAAI methodology is to identify the existence of attack behavior in IoT networks. It contains four distinct
stages: Z-score normalization, feature selection, attack detection using SA-VAE, and CSA-based parameter
optimization. Fig. 2 depicts the workflow of the PEFLID-CSAAI technique.

Figure 2: Workflow of PEFLID-CSAAI technique
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3.1 Stage I: Z-Score Normalization
The PEFLID-CSAAI technique involves data preprocessing using Z-score normalization to convert the

input data into a beneficial format. Z-score normalization, also called standardization, is a method utilized
in IoT intrusion detection to improve the precision of anomaly detection methods [31]. By converting raw
data into a typical format, this technique computes the Z-score for every data point, representing how many
standard deviations it is from the mean. This aids in classifying outliers and uncommon patterns, which
can indicate intrusions. Z-score normalization can be mostly effective while handling variable measures in
IoT data, ensuring that features are subsidized similarly to the method of execution. Finally, it enhances the
reliability and robustness of IDSs in dynamic IoT environments.

3.2 Stage II: OOA-Based Feature Selection
The PEFLID-CSAAI method uses the OOA for the feature selection process. The OOA simulates the

osprey’s hunting behaviors, involving recognizing the location of fish, carrying fish, and hunting fish [32]. In
the OOA, this hunting behavior can be numerically demonstrated as the exploration stage, and the carrying
fish behavior can be expressed as the exploitation stage. This structure allows the OOA to offset exploitation
and exploration and obtain the optimum value of optimizer difficulties. The factors of the OOA are specified
as follows.

In the OOA, along with other metaheuristic methods, the locations of each osprey are created at random
in the search space by utilizing Eq. (1).

Xi , j = rand × (ub j − lb j) + lb j , j = 1, 2, . . . , D (1)

where rand represents the randomly generated value among (0, 1), and lb j and ub j are the lower and upper
limits of the search spaces. D defines the optimizer difficulty size, and Xi , j signifies the created location of
the individual i in dimension j.

Additionally, in the process of iteration, the OOA includes the dual stages of hunting and carrying fish;
these stages are described in more detail below.

Exploration stage
The initial phase of the OOA involves executing a global search and avoiding a decrease in the local

optimum. In this stage, ospreys attack fish and attempt to search the entire search space. The fish locations
are identified by utilizing Eq. (2).

PPi = {Xk ∣k ∈ {1, 2, . . . , N} ∩ Fk < Fi} ∪ {Xbest} (2)

where PPi denotes the chosen location of fish for the osprey i, and Fi signifies the individualfitness i. Xbest
represents the best individual location.

After determining the fish locations, the osprey will attack these targets, which can be numerically
expressed as in Eq. (3).

XP1
i , j = Xi , j + r1 × (SFi , j − Ii , j × Xi , j) , i = 1, 2, . . . , N , j = 1, 2, . . . , D (3)

where r1 is a randomly generated value in [0, 1]. SFi , j denotes the location that can be selected from the
identified fishes. Ii , j is an arbitrary integer in [1, 2]. Following this, the novel location will substitute the
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preceding location if its fitness is superior to the preceding value, as described in Eq. (4).

Xi =
⎧⎪⎪⎨⎪⎪⎩

XP1
i , i f FP1

i < Fi

Xi , otherwise
(4)

where FP1
i denotes recently created location fitness.

Exploitation stage
During the second stage, the ospreys are required to determine an appropriate location after hunting a

fish. In this phase, the OOA executes a local search and determines the optimum performance. The numerical
method is presented in Eq. (5).

XP2
i , j = Xi , j +

lb j + r2 × (ub j − lb j)
t

, t = 1, 2, . . . , T (5)

where ub j and lb j are the upper and lower search space limits. r2 is a random number between zero and one.
T and t are the maximum and present iteration numbers. Similar to the preceding stage, a superior solution
should now be implemented by the novel individual that can be identified by utilizing Eq. (6).

Xi =
⎧⎪⎪⎨⎪⎪⎩

XP2
i , i f FP2

i < Fi

Xi , otherwise
(6)

where FP2
i signifies the recently created location fitness. The pseudocode and flowchart of the OOA are

displayed in Algorithm 1.

Algorithm 1: OOA pseudocode
Input the maximum iterations (T) and population size (N).
Initialize the locations of each and every ospreys by utilizing Eq. (1).
for t = 1 to T do

for i = 1 to N do
Stage 1: Finding the search space and hunting of fish
Identify the location of fish utilizing Eq. (2).
Compute the novel location of osprey utilizing Eq. (3).
Ensure the limit settings and upgrade the i − th osprey utilizing Eq. (4).
Stage 2: Using the search space and carrying the fish
Compute the novel location of osprey utilizing Eq. (5).

Ensure the limit settings and upgrade the i − th osprey utilizing Eq. (6).
end for

end for
Output the optimal solution.

The fitness function (FF) applied in the OOA has been planned to have an equalize among the amount of
chosen features in every solution (minimum) and the classifier precision (maximum) obtained by employing
these selected features. Eq. (7) denotes the FF to assess solutions.

Fitness = αγR (D) + β ∣R∣∣C∣ (7)
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where γR(D) signifies the error classifier rate of the presented classifications, ∣R∣ denotes the chosen subset
cardinality, ∣C∣ means the overall value of the features in the dataset, and α and β are dual parameters
equivalent to the significance of the classifier subset length and quality. ∈ β = 1 − α and [1, 0].

3.3 Stage III: Attack Detection Using SA-VAE
For the classification of intrusion detection attacks, the SA-VAE technique can be exploited. This section

presents a foundational summary of the important structural blocks for the introduced SA-VAE: VAEs and
self-attention mechanisms and presents the SA-VAE architecture [33].

VAE is an effective propagative method that incorporates the AE structure with various interpretation
methods. Moreover, VAEs include a period of regularization, normally depending on Kullback–Leibler (KL)
divergence, to help stimulate the learning of latent versions to pair with a previous distribution, namely,
normal Gaussian distribution. This VAE comprises two important modules: a decoder and an encoder. The
encoder converts input data in latent space, efficiently taking the natural distribution and framework inside
the data. Training the Variational Autoencoder (VAE) involves minimizing the reconstruction loss, which
measures the similarity between the decoder’s output and the input data, along with a regularization term
that aligns the latent space with the prior distribution. Once trained, the VAE employs an encoder-decoder
framework to learn a latent variable (z) from the input data and reconstruct its dimensions. The primary
objective is to minimize the reconstruction error, ensuring that the reconstructed data closely resembles the
original input, ideally approaching zero reconstruction loss. This encoder performs as a feature extractor,
reducing the input data dimensionalities to obtain a lower-dimension demonstration.

This encoder estimates the posterior inference (z∣x), while the decoder estimates the likelihood
probability pφ(x∣z). Here, θ and φ represent the encoding and decoding parameters, respectively.

The loss function plays a critical role in VAE training. The maximal probability learning of parameters
is stated as:

log pφ(x′) = DKL[qθ(z∣x)∥pφ(x)] +L (θ , φ; x) (8)

where DKL[.] signifies the divergence of KL, and L refers to the probability of the parameters of encoding
and decoding θ and φ. The loss function can be expressed as follows:

L(θ , φ) = Ez ∼ qθ(z∣x)[log p(x′∣z)] − DKL(qθ (z∣x) ∥pφ (z)) (9)

The main aim is to build an effective VAE technique that reduces reconstruction loss. These loss terms
enable the decoder to learn the reconstruction of data. Furthermore, the term regularization, which depends
on the divergence of KL, encourages differences between qθ(z∣x), the encoder distribution, and pφ (z), prior
distribution. The optimization process includes upgrading the decoder and encoder parameters over gradient
descent, most importantly to a well-organized hidden space and the capability to make new data models
from ∼ pφ(z).

Assuming that pφ(z) =N(z; 0, I), the distribution of encoder qθ(z∣x) captures the multivariate Gaus-
sian form, considered by a standard deviation, σ , and a mean, μ. The representation of latent space, z, is
attained over a gφ deterministic function using parameter φ, performed using an auxiliary noise variable ε
and the input data x derived from p(ε):

z = gφ (x , ε) = μ + σ ⊙ ε (10)
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where⊙ signifies element-to-element multiplication. Therefore, the error of reconstruction can be stated as:

L (θ , φ, x) = 1
2∑i(1 + log((σi)2) − (μi)2 − (σi)2) + 1

L∑
L
l=1 log (pφ (x∣z(l))) . (11)

The VAE parameters’ iterative optimizer is achieved over a gradient descent model.
This approach enhances attention by minimizing outside information requirements (source to target)

and considering the interior input data correlation. An important feature of self-attention is its flexibility
in terms of use in certain layers that signify a series of data such as a time sequence, which increases the
interior learning of input structures by concentrating on the association between components of similar input
(series). This method creates a novel depiction of the feature space over a certain weight of feature extraction
with just a single data series as input in comparison with the attention mechanism. The self-attention data
handling begins by calculating the weights (named the score) among data points in locations j and i for a
specified input data series X, as follows:

εi j =
(WaXi)T(WaX j)√

d
(12)

Here, Wa denotes the weighted matrix of the self-attention approach calculated during the training, and
d represents a size of (WaXi). The separation by d creates quicker convergence. Weight normalization εi j
is carried out to characterize the weights as a likelihood (the totality of all weight values equivalent to one),
with a transformation of so f tmax:

Ai j = so f tmax (εi j) =
exp (εi j)
∑ j exp (εi j)

(13)

The last self-attention method output is stated as:

Oi =
n
∑
j=1
Ai j (WaXi) (14)

This output efficiently improves the quality of the feature extraction and more precisely defines the
interior connection of the input features. Fig. 3 depicts the structure of the SA-VAE model.

Figure 3: Structure of SA-VAE
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3.4 Stage IV: CSA-Based Parameter Optimizer
In the final stage, the CSA is applied for the hyperparameter fine-tuning process in the SA-VAE model.

The newly introduced meta-heuristic CSA model is based on the foraging behavior of chameleons [34].
This model efficiently searches for optimum solutions using a three-phase process that follows the hunting
behavior of chameleons, including the phases of prey search, target detection, and eye rotation. The CSA
model starts by initializing solutions with a random uniform distribution, as presented in Eq. (15).

X j = lb j + rand × (ub j − lb j) (15)

Here, lb j̇ and ub j̇ represent the lower and upper boundaries of the search area for the jth dimension,
but rand signifies randomly generated numbers that emulate a uniform distribution between zero and one.

Searching for prey
Chameleons utilize an accurately modeled location-upgrading method, defined by Eq. (16), to optimize

their foraging strategy. During the search process. The locations in the search zone can be dynamically
adjusted while searching for the best solutions.

Xt+1
i , j =

⎧⎪⎪⎨⎪⎪⎩

Xt
i , j + p1 × (Pt

i , j −Gt
j) × r2 + p2 × (Gt

j − Xt
i , j) × r1 ri ≥ Pp

Xr
i , j + μ × (lb j + r3 × (ub j − lb j)) × sgn (rand − 0.5) ri < Pp

(16)

The Xt+1
i , j a variable represents the location of the ith chameleon in the jth size for the following iteration;

Xt
i , j signifies the location of the ith individual and jth dimension in the present iteration; positive integers

regulate exploration p2 and p1, including 1.50 and 0.25, respectively. Pt
i j̇

refers to the optimum location for the
ith chameleon, whereas Gt

j stands for the optimum location for each chameleon. r1 , r2, and r3 are randomly
generated numbers that are distributed uniformly between zero and one.

The function sgn(rand−0.5) offers both 1 and −1 to choose the exploration direction. μ is in inverse
proportion to the iteration counts and is defined using Eq. (17).

μ = γe(αt/T)β
(17)

The T and t variables symbolize the maximum and current iterations, while α and β are controller
parameters with values of l.0, 3.0, and 3.5, respectively.

The eye rotation of chameleons
Chameleons have the unexpected ability to identify prey by rotating their eyes, providing them with

a 360○ observation of their searching region. In the algorithm, the eye rotation stage is a typical optical
multiplexer that includes four stages to effectively identify the position of prey:

• Reference Frame Creation: The initial positions of the chameleons are initialized relative to the source,
establishing a standard frame of reference for the search process.

• Calculation of Rotation Matrix: The model computes a rotation matrix to convert the coordinates of prey
to make them parallel with the present spatial orientation of the chameleons.

• Transformation of Position: The locations are updated using the rotation matrix, enabling the explo-
ration of various orientations within the search region.

• Repositioning to Original Coordinates: The converted locations are reverted to their original positions.
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Eq. (18) briefly signifies the mathematical formulation for this updated position method using the eye
rotation approach.

Xt+1
i = XRt

i + XCt
i (18)

The Xt+1
i variable denotes the upgraded locations of the ith chameleon for the subsequent iteration. XRt

i
in Eq. (19) represents the rotated middle locations during the searching space.

XRt
i = m × XT t

i (19)

Here, m characterizes a rotation matrix. For every chameleon, the coordinates of its midpoint are
represented in XT t

i . To regulate the XT t
i and m, Eqs. (20) and (21) are applied, respectively.

XT t
i = Xt

i − XCt
i (20)

where the position of the ith chameleon for the current iteration is denoted by Xr
i , and the midpoint of the

chameleon for the present location is signified by XCt
i .

m = R (θ , z1 , z2) (21)

Here, z1 and z2 are orthogonal vectors with nth dimensions, θ is the rotation angle, and the rotation
matrices with a specific axis are denoted by R. Eqs. (22) and (23) are applied to calculate the values of R andθ,
respectively. The rotation matrices regarding the x and y axes are denoted by Rx and Ry , respectively.

θ = rand × sgn(rand − 0.5) × 180∧○ (22)

Rχ =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎤⎥⎥⎥⎥⎥⎦
, Ry =

⎡⎢⎢⎢⎢⎢⎣

cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ

⎤⎥⎥⎥⎥⎥⎦
(23)

Hunting prey
In this stage, chameleons hunt by spreading their tongues out toward the prey, achieving a distance

of double their own height. This stage represents the exploitation of the search space, and the locations of
chameleons are upgraded based on Eq. (24).

Xt+1
i , j = Xr

i , j +
V r

i , j − V t−1
i , j

2a
(24)

Here, the chameleon value that is transformed for the subsequent iteration is denoted by Xt+1
i , j ; V t

i , j
stands for the ith chameleon velocity within the present iteration for the jth size; and the rate of acceleration
of the projection of the chameleon’s tongue is denoted by a. The processing time reaches a maximum of
2590 ms per second, indicating the system’s peak computational load. The variable value a can be decided
by using Eq. (25).

a = 2590 × (1 − e− log(t)) (25)

The values of velocity for the chameleon within the present iteration are decided using Eq. (26).

V t+1
i , j = ωV r

i , j + c1 × (Gr
j − Xr

i , j) × r1 + c2 × (Pr
i , j − Xr

i , j) × r2 (26)
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where c1 and c2 are positive constants that define the influence of Gt
j and Pt

i , j on the present chameleon; ω
signifies the inertia weight, which reduces linearly for the iteration count upsurges; and parameter ρ controls
the exploitation level, with its value set to a constant of one.

ω = (1 − t/T)(p
√

t
T ) (27)

The CSA model simulates the foraging behavior of chameleons using Eqs. (16), (18), and (24). These
equations help the algorithm to select the best solutions for the optimization problem. The CSA develops an
FF to achieve enhanced classifier execution. It identifies a positive integer to indicate the best executions of
the candidate solutions. In this research, the reduction of the classification error rate can be examined using
the FF, as specified in Eq. (28).

f itness (xi) = Cl assi f ierErrorRate (xi)

= no. o f miscl assi f ied sampl es
Total no. o f sampl es

∗ 100 (28)

4 Experimental Results and Analysis
In this section, the validation of the PEFLID-CSAAI method is shown using the BoT-IoT database [35].

The BoT-IoT Binary database consists of 2056 samples under two class labels, as displayed in Table 2.

Table 2: Details of BoT-IoT Binary database

BoT-IoT Binary database
Class No. of instances

“Attack” 1579
“Normal” 477

Total samples 2056

Fig. 4 shows the classification of the PEFLID-CSAAI algorithm using the BoT-IoT Binary
database. Fig. 4a,b displays the confusion matrices for the precise classification and recognition of two
classes on a 70:30 TRAP/TESP. Fig. 4c shows the study of PR, representing superior execution over two class
labels. Finally, Fig. 4d shows the rate of ROC, signifying effectual values with greater outcomes of ROC for
different classes.

Note: Training Accuracy Percentage (TRAP): The proportion of correctly identified instances during
the training phase, reflecting how well the model is learning from the training dataset.

Testing Accuracy Percentage (TESP): The proportion of correctly identified instances during the
testing phase, indicating the model’s performance and generalisation on unseen data.

In Table 3 and Fig. 5, the attack recognition of the PEFLID-CSAAI technique is validated using the BoT-
IoT Binary database. The findings show that the PEFLID-CSAAI model accurately distinguishes each sample.
At 70% TRAP, the PEFLID-CSAAI algorithm offers an average accuracy (accuy) of 96.74%, precision (precn)
of 98.44%, recall (recal ) of 96.74%, F1 score (F1score ) of 97.56%, and area under the curve score (AUCscore )
of 96.74%. Moreover, at 30% TESP, the PEFLID-CSAAI methodology exhibits an average accuy of 97.38%,
precn of 97.89%, recal of 97.38%, F1score of 97.63%, and AUCscore of 97.38%.
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Figure 4: BoT-IoT Binary database: (a, b) confusion matrices and (c, d) PR and ROC curves

Table 3: Attack detection of PEFLID-CSAAI technique using BoT-IoT Binary database

Class Accuy Precn Recal F1score AUCscore

TRAP (70%)
Attack 99.64 98.12 99.64 98.87 96.74

Normal 93.84 98.77 93.84 96.24 96.74
Average 96.74 98.44 96.74 97.56 96.74

(Continued)
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Table 3 (continued)

Class Accuy Precn Recal F1score AUCscore

TESP (30%)
Attack 99.17 98.76 99.17 98.96 97.38

Normal 95.59 97.01 95.59 96.30 97.38
Average 97.38 97.89 97.38 97.63 97.38

Figure 5: Average of PEFLID-CSAAI technique using BoT-IoT Binary database

In Fig. 6, the training accuy (TRAAC) and validation accuy (VLAAC) of the PEFLID-CSAAI technique
using the BoT-IoT Binary database are exhibited. The rate of accuy is estimated for 0–50 epoch counts.
The figure shows that the TRAAC and VLAAC values demonstrate an increasing trend, indicating that the
PEFLID-CSAAI method is capable of greater execution over various iterations. Moreover, the TRAAC and
VLAAC values remain closer over the epochs, highlighting the lower minimum overfitting and superior
execution of the PEFLID-CSAAI methodology and ensuring the consistent prediction of hidden samples.

Fig. 7 presents the TRA loss (TRALS) and VLA loss (VLALS) graphs of the PEFLID-CSAAI model
when using the BoT-IoT Binary database. The rate of loss is estimated for 0–50 epoch counts. The TRALS
and VLALS values demonstrate a lower trend, indicating the ability of the PEFLID-CSAAI algorithm to
correspond to a trade-off between generalization and data fitting. Further, the constant decrease in the loss
rate suggests the ability of the PEFLID-CSAAI methodology to better execute and fine-tune the prediction
outcomes over time.

An execution study of the PEFLID-CSAAI model was conducted using the BoT-IoT multiclass database.
This database consists of 2056 instances under five class labels, as indicated in Table 4.

Fig. 8 presents the classification study of the PEFLID-CSAAI system using the BoT-IoT multiclass
database. Fig. 8a,b displays the confusion matrices with the precise classification and recognition of five
classes on a 70:30 TRAP/TESP dataset. Fig. 8c shows the PR study, signifying better performance across eight
class labels. Finally, Fig. 8d illustrates the ROC study, exhibiting efficient values with greater ROC values for
separate classes.
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Figure 6: Accuracy curve of PEFLID-CSAAI technique when using BoT-IoT Binary database

Figure 7: Loss curve of PEFLID-CSAAI technique when using BoT-IoT Binary database

Table 4: Details of BoT-IoT Multiclass database

BoT-IoT Multiclass database
Classes No. of instances
“DDoS” 500
“DoS” 500

(Continued)
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Table 4 (continued)

BoT-IoT Multiclass database
“Recon” 500
“Theft” 79

“Normal” 477
Total instances 2056

Figure 8: BoT-IoT Multiclass database: (a, b) confusion matrices and (c, d) PR and ROC curves
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Table 5 and Fig. 9 present the attack recognition values for the PEFLID-CSAAI method when using
the BoT-IoT Multiclass database. The findings show that the PEFLID-CSAAI algorithm appropriately
distinguished eight samples. For 70% TRAP, the PEFLID-CSAAI methodology provides an average accuy of
98.42%, precn of 95.12%, recal of 92.00%, F1score of 93.34%, and AUCscore of 95.48%. Furthermore, for 30%
TESP, the PEFLID-CSAAI approach offers an average accuy of 98.06%, precn of 94.58%, recal of 92.44%,
F1score of 93.40%, and AUCscore of 95.59%.

Table 5: Attack detection of PEFLID-CSAAI technique when using BoT-IoT Multiclass database

Class Accuy Precn Recal F1score AUCscore

TRAP (70%)
DDoS 98.68 95.64 99.15 97.36 98.84
DoS 97.98 93.80 98.31 96.00 98.09

Recon 98.05 96.88 95.26 96.07 97.12
Theft 98.75 90.24 72.55 80.43 86.13

Normal 98.61 99.02 94.70 96.82 97.22
Average 98.42 95.12 92.00 93.34 95.48

TESP (30%)
DDoS 97.89 94.63 96.58 95.59 97.44
DoS 98.38 96.58 96.58 96.58 97.76

Recon 97.73 95.68 94.33 95.00 96.53
Theft 98.70 91.67 78.57 84.62 89.12

Normal 97.57 94.34 96.15 95.24 97.10
Average 98.06 94.58 92.44 93.40 95.59

Figure 9: Average of PEFLID-CSAAI technique when using BoT-IoT Multiclass database

Fig. 10 presents the TRAAC and VLAAC values of the PEFLID-CSAAI technique when using the BoT-
IoT Multiclass database. The rate of accuy is estimated for 0–50 epoch counts. The figure shows that the
TRAAC and VLAAC values exhibit an increasing trend, indicating the superior execution of the PEFLID-
CSAAI algorithm over various iterations. Furthermore, the TRAAC and VLAAC remain closer over the
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epochs, highlighting the lower minimum overfitting and improved performance of the PEFLID-CSAAI
system and its ability to make consistent predictions of hidden samples.

Figure 10: Accuracy curve of PEFLID-CSAAI technique when using BoT-IoT Multiclass database

Fig. 11 presents the TRALS and VLALS loss graph of the PEFLID-CSAAI technique when using the
BoT-IoT Multiclass database. The loss rate is estimated for 0–50 epoch counts. The figure shows that the
TRALS and VLALS values demonstrate a reducing trend, indicating the ability of the PEFLID-CSAAI system
to balance a trade-off between generalization and data fitting. The constant reduction in the rate of loss also
highlights the superior execution of the PEFLID-CSAAI algorithm and its ability to fine-tune the prediction
values over time.

A comparison between the PEFLID-CSAAI methodology and current methods is displayed in Table 6
and Fig. 12 [35,36]. The experimental findings indicated that the PEFLID-CSAAI algorithm outperformed
in terms of superior executions. The PEFLID-CSAAI system has greater accuracy at 98.42% while the Con-
volutional Neural Network-Long Short-Term Memory (CNN-LSTM), Recurrent Neural Network (RNN),
Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM), Deep Neural Net-
work (DNN), upport Vector Machine with Radial Basis Function (SVM-RBF), Intrusion Detection System
for Internet of Things (IDS-IoT), Autoencoder-Multi-Layer Perceptron (AE-MLP), and Non-Federated
Learning Privacy-Enhanced Federated Learning Intrusion Detection using Chameleon Swarm Algorithm
and Artificial Intelligence (Non-FL-PEFLID-CSAAI) models have lower accuracy values at 93.98%, 89.86%,
93.12%, 94.19%, 95.16%, 97.40%, 98.09%, and 97.76%, respectively. In addition, for precision, the PEFLID-
CSAAI methodology achieved 95.12% whereas the CNN-LSTM, RNN, CNN-BiLSTM, DNN, SVM-RBF,
IDS-IoT, AE-MLP, and Non-FL-PEFLID-CSAAI systems had values of 92.26%, 94.05%, 94.17%, 90.21%,
90.80%, 94.91%, and 94.59%, respectively. Lastly, in terms of F1 score, the PEFLID-CSAAI algorithm achieved
93.34%, whereas the CNN-LSTM, RNN, CNN-BiLSTM, DNN, SVM-RBF, IDS-IoT, AE-MLP, and Non-FL-
PEFLID-CSAAI models has lower scores of 85.59%, 87.55%, 91.25%, 86.70%, 92.00%, 94.53%, 94.13%, and
92.72%, respectively.
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Figure 11: Loss curve of PEFLID-CSAAI technique when using BoT-IoT Multiclass database

Table 6: Comparative analysis of PEFLID-CSAAI technique against recent models

Methods Accuy Precn Recal F1S core

CNN-LSTM 93.98 92.26 87.63 85.59
RNN Algorithm 89.86 94.05 89.52 87.55
CNN-BiLSTM 93.12 94.17 89.10 91.25

DNN algorithm 94.19 90.21 89.67 86.70
SVM-RBF classifier 95.16 90.80 90.69 92.00

IDS-IoT 97.40 94.80 90.90 94.53
AE-MLP 98.09 94.91 91.31 94.13

Non-FL-PEFLID-CSAAI 97.76 94.59 91.38 92.72
PEFLID-CSAAI 98.42 95.12 92.00 93.34

Figure 12: Comparative analysis of PEFLID-CSAAI system against recent models
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4.1 Comparative Analysis of PEFLID-CSAAI against Benchmarked Schemes
These results in Table 7 indicate that PEFLID-CSAAI outperforms traditional deep learning and

machine learning models, offering higher detection accuracy, improved generalization, and enhanced
robustness in intrusion detection for IoT environments. The integration of federated learning (FL), Self-
Attentive Variational Autoencoder (SA-VAE), and metaheuristic optimization (CSA and OOA) contributes
to its superior efficiency, making it a promising solution for real-world cybersecurity applications.

Table 7: Comparative analysis of PEFLID-CSAAI against benchmarked schemes

Model Accuracy Precision Recall F1 score
CNN-LSTM 93.98% 92.26% 87.63% 85.59%

RNN 89.86% 94.05% 89.52% 87.55%
CNN-BiLSTM 93.12% 94.17% 89.10% 91.25%

SVM-RBF 95.16% 90.80% 90.69% 92.00%
PEFLID-CSAAI 98.42% 95.12% 92.00% 93.34%

5 Discussion
Significant security and privacy issues are associated with the growing use of Internet of Things (IoT)-

based devices, particularly in healthcare systems where applications such as wearable medical technology,
telemedicine, remote patient monitoring, and smart hospital systems are utilized [29,37]. These systems are
vulnerable to cyberattacks because they gather and send extremely sensitive patient health data. For this
reason, data privacy is crucial in these systems, and laws such as GDPR and HIPAA require stringent data
protection procedures [38].

In utilizing the proposed PEFLID-CSAAI framework for IDSs in healthcare systems, we focused on
detecting potential security breaches across interconnected medical devices and networks. For example,
in healthcare settings, devices such as smart wearables, patient monitoring systems, and linked medical
equipment routinely communicate sensitive data [39], leaving them vulnerable to cyberattacks including
unauthorized access and data manipulation.

Using FL, each medical device or healthcare system node can train an intrusion detection model using
its own network traffic and operational data without revealing sensitive patient or system information [40].
This ensures privacy while providing effective intrusion detection across the network. The OOA can be
used to extract the most important features from network data that indicate intrusion attempts, whilst the
SA-VAE can detect irregular patterns that indicate prospective intrusions. Finally, the CSA may adjust the
hyperparameters to improve the model’s performance across a range of healthcare equipment. By using
this architecture, healthcare systems may proactively detect and respond to security threats, protecting the
integrity and confidentiality of critical medical data while maintaining optimal network security [41].

5.1 Addressing Gaps in the Existing Literature
A major limitation in existing research is the lack of privacy-preserving techniques in intrusion detec-

tion for IoT networks. Traditional machine learning-based intrusion detection systems rely on centralized
data collection, exposing sensitive information to security threats [36]. Federated learning has emerged as
a promising approach to mitigate these privacy concerns by allowing distributed model training without
sharing raw data, yet existing FL-based models fail to efficiently handle dynamic and heterogeneous IoT
environments [42–44]. Several studies have explored privacy-preserving FL-based IDS solutions, such as
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differential privacy-enhanced FL for industrial cyber–physical systems [45] and privacy-preserving FL
for the Internet of Healthcare Things (IoHT) [26]. However, these approaches often lack robust anomaly
detection mechanisms. To address this gap, Self-Attentive Variational Autoencoders (SA-VAEs) have been
introduced to enhance anomaly detection accuracy by capturing complex attack patterns in real time, as
demonstrated in multi-head attention-based VAEs for anomaly detection and dual variational autoencoder-
based anomaly detection frameworks [30]. Additionally, the scalability and adaptability of FL-based IDSs can
be improved using metaheuristic algorithms such as the Chameleon Swarm Algorithm (CSA) and Osprey
Optimization Algorithm (OOA), which optimize feature selection and hyperparameter tuning to improve
detection performance and computational efficiency [46]. The PEFLID-CSAAI framework integrates these
cutting-edge techniques to overcome limitations in existing IDS models, providing a scalable, adaptive, and
privacy-preserving solution for securing IoT environments [47].

5.2 Consideration for Dataset Selection and Generalizability
While the BoT-IoT dataset effectively represents a variety of IoT-based cyberattacks, additional datasets

could further validate the generalization of the proposed model. Future research can explore datasets such
as NSL-KDD and CICIDS2017, which provide broader network intrusion patterns and simulate real-world
cybersecurity threats [48]. The TON_IoT dataset offers valuable insights by containing data from industrial
IoT systems, enabling the assessment of model adaptability across critical infrastructures [49]. Additionally,
the Edge-IIoT dataset serves as a suitable benchmark for evaluating the robustness of intrusion detection
systems in smart industrial environments [50]. The BoT-IoT dataset was selected for this study due to its rich
attack variability, covering a diverse range of cyberattacks, including Denial of Service (DoS), Distributed
DoS (DDoS), reconnaissance attacks, and information theft [51]. Unlike NSL-KDD, which is designed for
traditional network environments, BoT-IoT captures IoT-specific features, making it more suitable for IoT-
oriented intrusion detection models. Furthermore, its diverse network traffic composition, including both
benign and attack scenarios, makes it an ideal choice for FL-based IDS evaluation [52]. To support claims
of generalizability, we propose incorporating a cross-dataset validation section in future research, assessing
the performance of the proposed model across multiple datasets to ensure its effectiveness in detecting cyber
threats across various IoT environments and enhancing its applicability in real-world scenarios [21].

5.3 Contribution of the Paper
This research introduces Privacy-Enhanced Federated Learning for Intrusion Detection (PEFLID-

CSAAI), an innovative framework designed to enhance intrusion detection in decentralized environments
while preserving data privacy. The proposed approach integrates federated learning to enable collaborative
intrusion detection while safeguarding sensitive data, ensuring compliance with security regulations such
as GDPR and HIPAA [36,42]. To improve anomaly detection accuracy, the Self-Attentive Variational
Autoencoder (SA-VAE) is employed, effectively capturing complex attack patterns with greater precision [53].
Additionally, the framework utilizes the Chameleon Swarm Algorithm (CSA) and Osprey Optimization
Algorithm (OOA) for optimized feature selection and hyperparameter tuning, enhancing both efficiency and
adaptability across diverse IoT environments [46,54]. The experimental results demonstrate that PEFLID-
CSAAI outperforms existing IDSs in terms of accuracy, resilience, and scalability, making it a viable solution
for real-world cybersecurity applications [55].

6 Conclusion
This paper presents a novel Privacy-Enhanced Federated Learning Intrusion Detection System

(PEFLID-CSAAI) that addresses the security and privacy challenges faced by IoT devices in the modern
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digital landscape. By leveraging FL, the framework enables distributed training of intrusion detection models
without sharing sensitive data, enhancing privacy preservation in highly distributed IoT environments.
The integration of the Osprey Optimization Algorithm (OOA) for feature selection, the Self-Attentive
Variational Autoencoder (SA-VAE) for anomaly detection, and the Chameleon Swarm Algorithm (CSA)
for hyperparameter tuning further improves the system’s efficiency and accuracy in detecting cyber threats.
Through extensive experiments using the BoT-IoT dataset, the PEFLID-CSAAI model demonstrates supe-
rior performance over recent methods in terms of accuracy, precision, recall, and F1 score for both binary
and multiclass attack detection. The proposed approach provides an effective and scalable solution to IoT
security, ensuring that privacy and computational constraints are respected while maintaining high detection
accuracy. Future work could explore the application of this model in real-world IoT systems, further
enhancing its adaptability and robustness against evolving cyber threats.

However, this study is limited to the BoT-IoT dataset, which may affect its generalizability to other
IoT environments. Additionally, the PEFLID-CSAAI method has not been evaluated in real-time IoT
deployments. Future work should explore cross-dataset validation and real-time implementation to enhance
its robustness and adaptability.
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