
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.062426

ARTICLE

Advanced Machine Learning and Gene Expression Programming Techniques
for Predicting CO2-Induced Alterations in Coal Strength

Zijian Liu1 , Yong Shi2 , Chuanqi Li1 , Xiliang Zhang3,*, Jian Zhou1 and Manoj Khandelwal4,*

1School of Resources and Safety Engineering, Central South University, Changsha, 410083, China
2Changsha Institute of Mining Research Co., Ltd., Changsha, 410012, China
3State Key Laboratory of Safety and Health for Metal Mines, Ma’anshan, 243000, China
4Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia
*Corresponding Authors: Xiliang Zhang. Email: xiliangzhangsmimr@126.com;
Manoj Khandelwal. Email: m.khandelwal@federation.edu.au
Received: 18 December 2024; Accepted: 18 February 2025; Published: 11 April 2025

ABSTRACT: Given the growing concern over global warming and the critical role of carbon dioxide (CO2) in this
phenomenon, the study of CO2-induced alterations in coal strength has garnered significant attention due to its
implications for carbon sequestration. A large number of experiments have proved that CO2 interaction time (T),
saturation pressure (P) and other parameters have significant effects on coal strength. However, accurate evaluation of
CO2-induced alterations in coal strength is still a difficult problem, so it is particularly important to establish accurate
and efficient prediction models. This study explored the application of advanced machine learning (ML) algorithms and
Gene Expression Programming (GEP) techniques to predict CO2-induced alterations in coal strength. Six models were
developed, including three metaheuristic-optimized XGBoost models (GWO-XGBoost, SSA-XGBoost, PO-XGBoost)
and three GEP models (GEP-1, GEP-2, GEP-3). Comprehensive evaluations using multiple metrics revealed that all
models demonstrated high predictive accuracy, with the SSA-XGBoost model achieving the best performance (R2—
Coefficient of determination = 0.99396, RMSE—Root Mean Square Error = 0.62102, MAE—Mean Absolute Error =
0.36164, MAPE—Mean Absolute Percentage Error = 4.8101%, RPD—Residual Predictive Deviation = 13.4741). Model
interpretability analyses using SHAP (Shapley Additive exPlanations), ICE (Individual Conditional Expectation), and
PDP (Partial Dependence Plot) techniques highlighted the dominant role of fixed carbon content (FC) and significant
interactions between FC and CO2 saturation pressure (P). The results demonstrated that the proposed models effectively
address the challenges of CO2-induced strength prediction, providing valuable insights for geological storage safety and
environmental applications.

KEYWORDS: CO2-induced coal strength; meta-heuristic optimization algorithms; XGBoost; gene expression pro-
gramming; model interpretability

1 Introduction
In the late 18th century, the rise of the Industrial Revolution ushered in significant development in

productivity while simultaneously posing severe challenges to the global ecological environment and climate.
Research indicates that global carbon dioxide (CO2) concentrations are rising rapidly due to industrializa-
tion, increasing energy demand, deforestation, agricultural expansion, and accelerated urbanization [1]. The
resulting greenhouse effect is the primary driver of global warming and indirectly contributes to numerous
climate-related disasters that threaten human security. Safely and effectively reducing CO2 concentrations
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is one of the key challenges of international environmental action. In response, many innovative tech-
nologies are thriving, including renewable energy technologies, carbon capture and storage technologies,
and others [2,3]. The CO2 geological storage technology is one of the most promising emission reduction
strategies due to its efficiency, stability, and sustainability [4]. The basic process consists of compression and
transporting the captured CO2 through pipelines into underground rock formations. These can offer storage
capacity for long-term sequestration of CO2, reducing atmospheric CO2 concentrations accordingly. Many
real applications in oil and gas fields have verified the validity of this technology by sequestration [5,6]. Coal
seams have a porous structure and a larger surface area than other geological media. Thus, it is particularly
suitable for the geological storage of CO2. In addition, the researchers found that CO2 adsorption in coal
seams further releases methane. Thus, the CO2-ECBM technology was created, namely CO2-Enhanced
Coalbed Methane Recovery [7]. While contributing to carbon dioxide sequestration, this technology is also
considered an energy recovery method with high economic efficiency and feasibility [8].

However, the geological storage of CO2 in coal seams plays a significant role in coal’s mechanical
properties. This triggers concern about the integrity of reservoirs and the safety of the storage process. Many
researchers have stated that CO2 geological storage in coal seams may cause an essential change in mechanical
properties: for example, the uniaxial compressive strength (UCS), permeability, Young’s modulus, and elastic
modulus of coal seams [9]. The earliest research can be traced back to the 1950s when Ettinger and Lamba
placed coal samples in air and CO2 environments under a pressure of 4 MPa [10]. The results indicated that
coal samples treated with CO2 exhibited a significant reduction of strength, decreasing to 0.75 times that
of samples treated in air. Over the subsequent decades, numerous researchers investigated the changes in
the mechanical properties of coal seams induced by CO2 interactions [11–13]. To some extent, these studies
validated the conclusion that CO2 interactions cause significant mechanical degradation in coal seams.
However, most of these studies were constrained by using fragmented coal or small-sized coal samples,
which do not adequately represent in-situ adsorption processes [14–16]. In the 21st century, researchers have
undertaken more precise and in-depth investigations. Representative findings include the work by Viete
and Ranjith, who utilized standard uniaxial compressive strength (UCS) tests to verify that, under specific
conditions (1.5 MPa pressure, 72 h, and CO2 saturation), the UCS of coal samples decreased by 13%. At the
same time, the Young’s modulus was reduced by 26% [17]. In addition, Ranathunga et al. investigated the
effect of CO2 exposure time on the mechanical properties of coal seams under super-critical CO2 saturation
conditions (10 MPa). From their test data, they reported that CO2 injection decreases the strength and elastic
modulus of coal seams, which is significantly greater for higher-rank coals [18]. Also, Perera et al. conducted
the UCS experiments for bituminous coal samples from the southern Sydney Basin, and present gaseous
CO2 adsorption reduced the UCS of coal by 53% and 36% for Young’s modulus [9]. In addition, the impact
of super-critical CO2 adsorption on the mechanical properties of bituminous coals is higher than in brown
coals. Similarly, the experimental results in Ranathunga et al. [19] showed that when brown coal was subjected
to sub-critical CO2, UCS strength, Young’s modulus and Poisson’s ratio of the coal reduced by 21.25%, 22.52%,
and 30.09%, respectively.

All these studies prove that CO2-coal interaction has resulted in a significant change in the mechanical
properties of coal. And these studies about CO2-coal interaction have been carried out based on conventional
mechanical testing; among those, UCS testing is a widely used method. Although these methods are
effective, the sample preparation and testing procedure involves massive time consumption with substantial
complexity. Thus, it is impossible to investigate all influencing factors in one experiment comprehensively. In
this regard, it is pretty urgent to develop an intelligent approach that can replace traditional labor-intensive
methods for rapidly predicting CO2-induced strength changes in coal seams.
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Currently, researchers have used statistical methods to predict the properties of coal. For example, Roy
et al. [20] have developed a traditional multiple regression analysis model to predict the Young’s modulus
and Poisson’s ratio of coal. For coal strength prediction, Zhang et al. [21] used SPSS software to establish a
stepwise regression prediction equation for the rapid prediction of UCS. However, although statistical models
are feasible methods for predicting CO2-induced changes in strength, the predictive performance is often
unsatisfactory due to the diversity of coal samples and the complexity of the influencing factors [22]. Worse,
most traditional models usually lack enough interpretability to dig out the underlying mechanism and key
influential factors for the prediction. Therefore, future studies should pay more attention to raising prediction
accuracy while enhancing model transparency to support practical applications better.

In contrast, with their efficient learning capability, strong nonlinear fitting ability, and superior general-
ization performance, machine learning (ML) techniques have been widely applied to prediction tasks across
various fields [22–25]. For material strength prediction, Momeni et al. [26] used 66 sets of rock experimental
data and employed particle swarm optimization to optimize an artificial neural network (ANN) for the
accurate prediction of uniaxial compressive strength (UCS) of rock samples. For coal strength prediction,
Yan et al. [27] developed a hybrid artificial intelligence model to predict changes in coal body strength, which
significantly improved the results compared to statistical models. Additionally, Jahed Armaghani et al. [28]
used the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the unconfined compressive strength
(UCS) and Young’s modulus (E) of coal seams, achieving high accuracy. However, most studies rely heavily
on ANNs, which, although offering high accuracy, suffer from drawbacks such as slow processing speed,
complex model structures, and poor interpretability.

Therefore, in addressing the problem of CO2-induced strength prediction, this study constructed three
XGBoost-based intelligent algorithm models optimized using three meta-heuristic optimization algorithms
(GWO, SSA, and PO) for hyperparameter tuning. Additionally, to further improve strength change predic-
tions, three Gene Expression Programming (GEP) models were designed to provide diversified predictive
solutions. The six models were comprehensively evaluated using five performance metrics (R2, RMSE, MAE,
MAPE, and RPD). Experimental results demonstrated that the developed CO2-induced strength prediction
models exhibit high predictive accuracy, excellent generalization ability, and robust performance. Finally,
the best predictive model was thoroughly analyzed using three model interpretation techniques, revealing
the underlying mechanisms and key influencing factors and providing theoretical support and practical
guidance for real-world applications and future research.

2 Methodologies

2.1 XGBoost and Optimization Algorithms
2.1.1 XGBoost

XGBoost (eXtreme Gradient Boosting) is a tree-based ensemble learning method that builds a strong
predictive model by combining multiple weak models (decision trees) [29]. The main features of the XGB
model include, first, the introduction of regularization terms (L1 and L2 regularization) in the loss function to
reduce the risk of overfitting; secondly, parallel computation at the feature level, allowing for fast computation
while building the trees sequentially; and, in addition, its built-in cross-validation strategy ensures the
optimal number of trees, enhancing the model’s generalization ability [30,31]. Therefore, this study selected
the XGB model as the base algorithm model. In this model, the objective function consists of the loss function
and the regularization term, as can be seen in Eq. (1):

L (θ) =
n
∑
i=1

l (yi , ŷi) +
K
∑
k=1

Ω ( fk) , (1)
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where l (yi , ŷi) is the loss function and Ω ( fk) is the regularization term.
The regularization term is typically defined as Eq. (2):

Ω ( f ) = γT + 1
2

λ
T
∑
j=1

ω2
j , (2)

where T is the number of leaf nodes in the tree, ω j is the weight of the j-th leaf node, γ and λ are
hyperparameters controlling the tree complexity.

2.1.2 Meta-Heuristic (MH) Optimization Algorithms
For the selection of optimization algorithms, this study initially selected nine algorithms, includ-

ing both recently developed ones with strong performance in optimization tasks and traditional classic
algorithms. These include GWO (Grey Wolf Optimizer) [32], SSA (Sparrow Search Algorithm) [33], PO
(Parrot Optimizer Algorithm) [34], BFO (Bitterling Fish Optimization Algorithm) [35], HO (Hippopotamus
Optimization Algorithm) [36], MGO (Mountain Gazelle Optimizer) [37], RAO (Rao Algorithms) [38], PSO
(Particle Swarm Optimization) [39], and GA (Genetic Algorithm) [40]. Specific models were constructed
for the unique predictive task in this study, and the optimal optimization algorithm was determined through
experiments. In the experiments, GWO, SSA, and PO demonstrated superior performance in prediction
accuracy, while differences in runtime across all optimization algorithms were negligible. Details of the
experiments have been disclosed at the end of this paper. Therefore, this study identified GWO, SSA, and
PO algorithms to optimize the hyperparameters of the XGBoost model. Detailed descriptions are provided
as follows:

GWO: Grey Wolf Optimizer (GWO) is an optimization algorithm that draws inspiration from grey
wolves’ social hierarchy and hunting behavior [32]. It simulates the cooperative hunting strategy of the alpha,
beta, Delta, and Omega wolves to explore the search space and find the optimal solution. Since the GWO has
been elaborated by scholars before, it will not be expanded here, and the detailed information can be seen
in: [41–43].

SSA: The Sparrow Search Algorithm (SSA) is an optimization technique inspired by the foraging
behavior of sparrows [33]. This nature-inspired algorithm simulates how sparrows interact while searching
for food, with each sparrow taking on one of three roles based on its function within the group: finders,
joiners, and sentinels. Each role plays a distinct part in the search process, contributing in different ways. SSA
has been shown to significantly enhance a model’s global search capability and generalization ability, making
it a powerful tool in optimization tasks. For further details on the SSA’s operation and its role in improving
model performance, more information can be found in [44,45].

PO: The Parrot optimizer algorithm (PO) is an emerging MH optimization algorithm [34]. The PO is
inspired by a particular parrot species (Pyrrhura Molinae). Pyrrhura Molinae has four specific stage behavior
traits: foraging, staying, communicating, and fearing strangers, as shown in Fig. 1.

In the first stage, the Pyrrhura Molinae performs location updates by looking at the location of the food
or taking into account the location of the owner, as Eq. (3):

Xt+1
i = (Xt

i − Xbest) ⋅ Lev y (dim) + rand (0, 1) ⋅ (1 − t
Maxiter

)
2t

Maxi ter ⋅ Xt
mean . (3)



Comput Model Eng Sci. 2025;143(1) 157

Figure 1: Schematic diagram of PO algorithm

In the second stage, Pyrrhura Molinae stays on any part of its owner’s body and remains stationary, a
process that can be expressed as Eq. (4):

Xt+1
i = Xt

i + Xbest ⋅ Lev y (dim) + rand (0, 1) ⋅ ons (1, dim) . (4)

In the third stage, Pyrrhura Molinae communicates closely within the group in two equally probable
ways (flying to the flock and not flying to the flock), a process that can be expressed as Eq. (5):

Xt+1
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.2 ⋅ rand (0, 1) ⋅ (1 − t
Maxiter

) ⋅ (Xt
i − Xt

mean) , P ≤ 0.5

0.2 ⋅ rand (0, 1) ⋅ exp(− t
rand (0, 1) ⋅Maxiter

) , P ≥ 0.5
. (5)

In the fourth stage, Pyrrhura Molinae parrots seek a safe location with their owners out of fear and away
from strangers, with the location updated as Eq. (6):

Xt+1
i = Xt

i + rand (0, 1) ⋅ cos(0.5π ⋅ t
Maxiter

) ⋅ (Xbest − Xt
i)

− cos (rand (0, 1) ⋅ π) ⋅ ( t
Maxiter

)
2

Maxiter ⋅ (Xt
i − Xbest) . (6)
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2.2 Gene Expression Programming (GEP)
GEP is an efficient and advanced evolutionary algorithm designed to generate computational programs

or mathematical expressions automatically [46]. The algorithm performs excellently in various data pro-
cessing tasks, including regression analysis, classification, and time series prediction. In GEP, the program
structure typically adopts a tree representation with two types of nodes: function nodes and terminal
nodes. Function nodes perform basic operations (addition, subtraction, multiplication, and division), while
terminal nodes represent input variables or constant values. The ingenuity of GEP consists of how a genetic
expression encodes a program or a mathematical expression. In this process, gene expression sequences are
typically strings of fixed length, each called a chromosome. GEP selects an individual’s performance using a
fitness function, which measures the degree to which the program or expression solves the target problem.
Genetic operations preferentially select individuals with higher fitness to form offspring so that good-quality
genes can be transmitted. GEP also employs diversified strategies and methods for exploring high-quality
solutions, such as genetic operations of mutation, crossover, and transposition, to improve genetic diversity
in the population and avoid algorithmic premature convergence into local optimality. As iterations proceed,
the gradual evolution of individuals in the population undergoes progressive development and selection of
gene sequences with high expression efficiency until convergence toward the optimal solution is reached.
This evolutionary process continues until a predefined termination condition is met, such as a maximum
number of iterations or satisfactory fitness criteria.

The excellent performance of GEP in solving complex nonlinear problems and its unique coding
mechanism provide it with clear advantages over other evolutionary algorithms in terms of flexibility and
computational efficiency [47,48]. In addition, as an evolutionary algorithm capable of generating symbolic
mathematical expressions, GEP is highly effective in revealing functional relationships between variables.
Therefore, this study introduces GEP technology to offer transparent and interpretable structures, addressing
the interpretability challenges commonly associated with ML techniques.

2.3 Model Interpretation Techniques
SHAP: SHAP (Shapley Additive exPlanations) is a powerful model interpretation technique in machine

learning [49]. The SHAP calculates the contribution of each feature to model predictions by Shapley values
as follows: First, it generates all possible feature subsets for every feature in the model and calculates, with
and without the feature, the change in model predictions that identifies that feature’s marginal contribution.
Subsequently, the overall weighted average among all subsets will ensure that the value of each feature in
the model has a fair contribution. These are then combined into the SHAP values, which show precisely
each feature’s contribution to the prediction’s outcome. The SHAP is mathematically represented as shown
in Eq. (7) [50]:

φi = ∑
S⊆N/{i}

∣S∣! (∣N ∣ − ∣S∣ − 1)!
∣N ∣! ( f (S ∪ {i}) − f (S)) , (7)

where φi represents the SHAP value for feature i, S ⊆ N/ {i} denotes all subsets of features excluding i, ∣S∣ is
the size of subset, ∣N ∣ is the feature number.

PDP: The Partial Dependence Plot (PDP) model interpretation technique is used to illustrate how a
specific feature (or multiple features) influences the model’s prediction output [51]. It works by averaging the
possible values of all other features and plotting the impact of the chosen feature on the model’s output at
different values. The core principle of PDP can be expressed by the following Eq. (8):
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PDP (x j) =
1
N

N
∑
i=1

f (x j , x(i)
− j ) , (8)

where N represents the samples’ number, and f (x j , x(i)
− j ) is the model’s prediction function, which indicates

the predicted value when the feature x j is fixed at a certain value, using the values of the other features x(i)
− j

from sample i.
ICE: Unlike PDP, the ICE (Individual Conditional Expectation) model interpretation technique focuses

on the predicted output for each sample as the feature values change [25]. ICE is useful for displaying
individual variations and is especially effective in examining how individual samples respond to changes in
feature values. Additionally, ICE curves can reveal differences in the sensitivity of various samples to features
and potential nonlinear or interaction effects. The following Eq. (9) can be used to express this:

ICEi (xi) = f (x j , x(i)
− j ) , (9)

where f (x j , x(i)
− j ) represents the model prediction when the feature xi is fixed at a certain value, while the

values of the other features x(i)
− j in sample i remain unchanged.

2.4 Model Evaluation Metrics
Evaluating model performance is crucial for validating its effectiveness in real-world applications. This

process examines the model’s accuracy, stability, and consistency, uncovers potential areas for improvement,
and identifies underlying issues. A thorough analysis of the evaluation results can highlight the model’s
strengths and weaknesses, providing valuable insights for subsequent optimization efforts, thereby ensuring
its adaptability and reliability in practical environments. In this study, we aim to provide a comprehensive
evaluation of the model’s predictive performance, with a particular focus on its goodness of fit, prediction
errors, accuracy, and stability. Therefore, five evaluation metrics were employed to assess the proposed model:
R2 (Coefficient of Determination), RMSE (Root Mean Square Error), MAE (Mean Absolute Error), MAPE
(Mean Absolute Percentage Error), and RPD (Residual Predictive Deviation), as outlined in Table 1. These
metrics, as established and widely used in statistical analysis, are representative and have been applied across
various domains to evaluate model performance [52–54].

Table 1: Evaluation metrics information

Evaluation metrics Definition Mathematical expression Notes
R2

(Coefficient of
determination)

Measures the proportion of
variance in the dependent

variable that is predictable from
the independent variables,

reflecting the model’s goodness
of fit.

R2 =
1 − ∑

m
i=1(Yi−yi)2

∑m
i=1(Mi−yi)2

Yi represents
the predicted

value, yi
represents the
true value, and
Mi represents

the mean of the
true values.

(Continued)
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Table 1 (continued)

Evaluation metrics Definition Mathematical expression Notes
RMSE

(Root Mean
Square Error)

Quantifies prediction accuracy
as the square root of the average

squared differences between
predicted and actual values.

RMSE =√
1
m

m
∑
i=1
(Yi − yi)2

MAE (Mean
Absolute Error)

Measures the average of the
absolute differences between
predicted and actual values.

MAE =
1
m

m
∑
i=1
∣Yi − yi ∣

MAPE (Mean
Absolute

Percentage
Error)

Measures the average of the
absolute percentage differences
between predicted and actual

values.

MAPE =
100%

m

m
∑
i=1
∣Yi−yi

yi
∣

RPD (Residual
Predictive
Deviation)

Measures the ratio of the
standard deviation of actual

values to the root mean square
error of the predictions,

indicating the model’s accuracy
relative to the inherent
variability of the data.

RPD =√
∑n

i=1(yi−Mi)
2

n√
1
n ∑n

i=1(Yi−yi)2

3 Data Acquisition and Verification

3.1 CO2-UCS Database
To ensure the robustness and generalization of models, a comprehensive and scientifically sound

database is needed. Therefore, for predicting CO2-induced strength, this study extensively collected UCS
test results from previous studies and established the CO2-UCS database. A crucial step in this process was
determining the model’s input parameters. According to the studies, CO2 saturation pressure (P) significantly
affects coal seams’ UCS and elastic modulus [17,55,56]. As a result, we have selected CO2 saturation pressure,
P, as one of the input parameters. The interaction time, T, between CO2 and coal seams was also shown to
be essential in altering UCS [57]. Since all the tests mentioned in the literature were conducted on different
coal types, the coal type should be an input parameter. Further, it was shown that even while the same CO2
saturation pressure and interaction time are applied, a significant difference in strength changes may exist
for different coal samples [19]. In such a way, coal type was considered one of the key factors that affect the
CO2-induced strength. Typically, coal classification is based on its degree of coalification, which refers to the
maturation level of coal [58]. As the degree of coalification increases, the carbon content in coal rises, while
the volatile matter decreases. This results in higher calorific value and improved combustion performance.
The carbon content directly affects the coal’s calorific value and energy release efficiency, making it an
important indicator for coal classification. Therefore, different coal types were characterized using fixed
carbon content (FC), a widely recognized method in the field of coal research [22].

Furthermore, research has shown that the unique properties of CO2 (such as adsorption capacity,
diffusivity, viscosity, and phase transitions) can alter the micro-structure of coal seams, leading to changes
in strength [59–62]. However, incorporating these properties as input parameters is not optimal. Measuring
CO2 properties typically requires time-consuming and labor-intensive experimental methods, such as gas
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adsorption experiments, self-diffusion experiments, etc. [63]. This makes such data difficult to obtain and
has led to limited research in this area, preventing the establishment of a large-scale database. Moreover,
these parameters are not essential; the two input parameters (P and T) are sufficient to assess the impact of
CO2 on coal strength. Therefore, this study determines three key input parameters: CO2 interaction time
(T), CO2 saturation pressure (P), and fixed carbon content (FC), with UCS as the target for prediction. It is
noteworthy that, in all experiments, the parameters T and P were independent of each other, meaning the
value of P remained constant and was not influenced by variations in T.

The CO2-UCS database is now complete, containing a total of 113 data entries. Data source information
is provided in Table 2, and statistical details are presented in Table 3. As shown in Table 3, the parameters
in the CO2-UCS database exhibit the following value ranges: T spans from 0 to 365 days, P ranges from 0
to 16 MPa, and FC varies between 45% and 65%. Although the dataset is relatively small in size, it nearly
encompasses all plausible combinations of these parameters under practical conditions. Thus, the database
can be considered sufficiently comprehensive for the purpose of this study, providing a robust foundation
for model development and validation.

Table 2: Coal samples data source

No. Data sources Sampling location Coal type Sample amount
1 [19] Australia Brown coal 17
2 [9] Australia Bituminous coal 14
3 [55] Australia Brown coal 13
4 [22] Australia Brown coal 12
5 [64] Australia Bituminous coal 10
6 [65] Australia Black coal 6
7 [18] Australia Brown coal 6
8 [2] India \ 18
9 [17] Australia Brown coal 17

Table 3: Summary of CO2-UCS database parameters

Type Parameters Unit Range Mean Std.
Input T (CO2 interaction time) days [0, 365] 19.327 46.074
Input P (CO2 saturation pressure) MPa [0, 16] 4.469 4.2538
Input FC (fixed carbon content) % [45, 65] 52.288 6.9443

Output UCS (uniaxial compressive strength) MPa [0.639, 33] 6.0395 7.8759

3.2 Data Verification
Before establishing the model, it is crucial to validate the database thoroughly. We employed a correla-

tion scatter matrix to identify any outliers in the target variable UCS and to examine the relationships between
the input parameters and the target variable, ensuring the data’s validity and reliability. According to the
data distribution (lower triangular matrix) in Fig. 2, no significant outliers were detected in UCS, indicating
high data quality. In addition, in the correlation matrix, the values in the far-right column represent the
correlations between the prediction target, UCS, and the input parameters P, FC, and T, with values of −0.16,
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0.87, and −0.19, respectively. This suggests that parameter FC has a strong positive correlation with UCS,
while parameters P and T show weak negative correlations. These correlations provide initial support for
the selection of these input parameters. Regarding the correlation between input parameters, it helps assess
potential redundancy. In this database, the highest correlation between input parameters is observed between
parameters P and T (0.29), which is a weak correlation, indicating that no significant redundancy exists
among the input parameters. Overall, the data in the CO2-UCS database demonstrates good performance in
terms of correlation and the absence of outliers. Therefore, the CO2-UCS database established in this study
is considered reliable and can be used for subsequent model training and predictive analysis.

Figure 2: Distribution and correlation of parameters

4 Model Construction
The construction of the CO2-induced strength prediction models consists of four stages: data process-

ing, setting intelligent algorithm model parameters, developing intelligent algorithm prediction models, and
establishing the GEP prediction models, as shown in Fig. 3.

First stage: data processing.
The dataset was randomly divided into training and test sets in a 7:3 ratio for model training and

evaluation. During this process, it is critical to ensure that both subsets maintain a consistent distribution.
This consistency enhances the model’s generalization capability, enabling it to robustly handle noise and bias
in the data [66].
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Figure 3: CO2-induced strength prediction models’ construction

Fig. 4a–d displays the distributions of parameters P, FC, T, and UCS across training set (80) and test set
(33). For parameter P, the mean values are 4.03 and 5.55 for the training and test sets, respectively, with a
slight increase in the testing set but overall similar distributions. Parameter FC shows mean values of 51.95
for the training set and 53.11 for the test set, indicating consistent distributions. For parameter T, the means
are 18.23 in the training set and 22.00 in the test set, with both distributions remaining reasonable despite
the higher mean in the test set. Lastly, UCS has mean values of 5.88 for the training set and 6.42 for the
test set; while the testing set includes fewer high values, its distribution aligns well with the training sets.
Overall, all features exhibit consistent distributions between the training and test sets, demonstrating the
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high quality of the data split and its suitability for subsequent model training. Additionally, a standard data
preprocessing technique was employed, where all data were normalized to the range of [−1, 1] during the
model training phase. It is worth noting that the normalization process was performed separately, meaning
that normalization was applied only to the training set. For the test set, normalization was conducted using
the maximum and minimum values derived from the training set. This approach prevents potential data
leakage, ensuring that the test set can effectively serve as a validation set, which contributes to improving the
model’s generalization capability.

Figure 4: Training and test sets distribution of CO2-UCS dataset: (a) P; (b) FC; (c) T; (d) UCS
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Second stage: setting intelligent algorithm model parameters.
This study explored the use of three MH algorithms to optimize the hyperparameter space of the

XGBoost model. The hyperparameters optimized in the XGBoost model include num-trees (number of
iterations), max-depth (tree depth), and eta (learning rate). First, the hyperparameter ranges were defined as
[1, 100] for num-trees, [1, 5] for max-depth, and [0.01, 0.5] for eta to avoid unnecessary computational resource
consumption. Second, the population size for the population-based MH algorithms was determined. This
study evaluated four population sizes (25, 50, 75, and 100) to ensure the algorithm possesses strong global
search capabilities while mitigating the risk of local optima. During the entire process, the number of model
iterations was fixed at 200.

Third stage: development of the MH-XGBoost prediction models.
The present work used three MH optimization algorithms to find the best hyperparameter combination:

GWO, SSA, and PO. This is initiated by training the model using the training set. Optimization began
by initializing the individual population, where candidate combinations of hyperparameters are generated
randomly. Then, the fitness value for each of these needs to be calculated to evaluate the model’s performance.
According to the search mechanism of the MH algorithms, each individual position was updated dynamically
to explore the space to search, and the optimal position and global solution were then iteratively refined.
This iterative process continued until the termination condition, defined as the maximum number of
iterations, was reached. Finally, the performance of the established MH-XGBoost model (GWO-XGBoost,
SSA-XGBoost, and PO-XGBoost) was evaluated by using the test set.

Fourth stage: development of the GEP prediction models.
In this study, Gene Expression Programming (GEP) prediction models were developed to complement

and benchmark the proposed MH-XGBoost prediction models. The GEP models were constructed using
the same CO2-UCS database, following a systematic process: First, an initial population of randomly gen-
erated chromosomes was created. These chromosomes were evolved through genetic operations, including
selection, crossover, mutation, and transposition. Subsequently, the performance of each chromosome was
assessed using a fitness function. The iterative optimization process continued until the maximum number
of iterations was achieved, after which the chromosome with the highest fitness was selected as the final
prediction model. Finally, a total of three GEP models were established in this paper.

5 Results and Analysis

5.1 MH-XGBoost Models’ Performance
In the MH-XGBoost models, four population sizes (25, 50, 75, and 100) in MH algorithms were tested.

However, experimental results indicated that a population size of 25 was sufficient to achieve excellent
performance. In this study, increasing the population size only significantly prolonged the computation time
without notably improving model performance. Therefore, the population size for all three MH algorithms
(GWO, SSA, and PO) was set to 25. Fig. 5 illustrates the fitness curves of the GWO-XGBoost, SSA-XGBoost,
and PO-XGBoost models. As depicted, all models converged to their lowest fitness values within the first 50
iterations, demonstrating that the hyperparameter configurations quickly approached their optimal settings.
The specific hyperparameter combinations for each MH-XGBoost model are comprehensively detailed
in Table 4.
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Figure 5: Fitness of MH-XGBoost prediction models

Table 4: MH-XGBoost models’ hyperparameter combinations

Model Num-trees Max-depth Eta
GWO-XGBoost 80.4 5 0.3859
SSA-XGBoost 35.0 5 0.2902
PO-XGBoost 100.0 5 0.2094

With the optimal hyperparameter configurations, an initial evaluation of the model’s performance was
conducted to validate its predictive accuracy for CO2-induced strength. The scatter plot regression analysis
in Fig. 6 visually compares the actual and predicted values for the training and test sets. In the figure, each
model point’s position is determined by the predicted values on the y-axis and the measured values on the
x-axis. The red region represents the fitted range of all model points, while the black dashed line denotes
the ideal fit (i.e., the 1:1 line between actual and predicted values). Additionally, the marginal histograms
illustrate the distribution of data points, providing insights into the concentration trends and deviations
across different value ranges.

Fig. 6a illustrates the GWO-XGBoost model’s predictive accuracy on training and test datasets, with
scatter points primarily within the red fit region and closely aligned with the black dashed 1:1 ideal fit line.
The training data set has a minor prediction error and a narrow range of fits, while the test data set retains
a strong generalization ability despite slightly higher errors. In addition, the edge histogram confirmed a
high degree of agreement between the predicted and actual values, confirming the reliability of the model for
the prediction of CO2-induced strength. Furthermore, Fig. 6b depicts the performance of the SSA-XGBoost
model, where the scatter points are tightly clustered near the 1:1 ideal fit line between the two data sets,
indicating high prediction accuracy. The error recorded in the test set was slightly higher than in the training
dataset, but the model showed strong generalization ability. The marginal histograms underscore the model’s
aptitude in capturing the distributions effectively, particularly in lower value ranges. Fig. 6c reveals that the
PO-XGBoost model achieves outstanding predictive accuracy, with a performance alignment suggesting a
high degree of model effectiveness across different datasets.
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Figure 6: (Continued)
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Figure 6: Performance evaluation of MH-XGBoost models: (a) GWO-XGBoost model; (b) SSA-XGBoost model; (c)
PO-XGBoost model

The predictive performance of these models was further evaluated using five metrics, as shown
in Table 5. All models demonstrated very high goodness of fit on the training and test sets, with R2 values
approaching 1, indicating that the models effectively captured the data’s variance. In terms of RMSE, the SSA-
XGBoost model performed best on the test set (RMSE = 0.62102), slightly outperforming the GWO-XGBoost
model (RMSE = 0.62474). The PO-XGBoost model exhibited a higher RMSE, suggesting a slightly weaker
performance on the test set. For MAE, SSA-XGBoost achieved the lowest values on both the training set
(MAE = 0.14783) and the test set (MAE = 0.36164), indicating minimal absolute error. Regarding MAPE, the
GWO-XGBoost model performed slightly better on both datasets, with the lowest test set MAPE (4.7802%),
demonstrating the minor relative prediction error. For RPD, all models achieved values significantly greater
than 10, reflecting strong predictive capabilities. Among them, GWO-XGBoost exhibited an RPD of 13.3642
on the test set, slightly lower than that of SSA and PO. In conclusion, all three MH-XGBoost models
demonstrated remarkable performance across all evaluation metrics.

Table 5: Performance evaluation of MH-XGBoost models

Model R2 RMSE MAE MAPE RPD
GWO-XGBoost Training set 0.99877 0.27258 0.14812 5.1297% 28.5178

Test set 0.99389 0.62474 0.36302 4.7802% 13.3642
SSA-XGBoost Training set 0.99877 0.27270 0.14783 5.1566% 28.5053

Test set 0.99396 0.62102 0.36164 4.8101% 13.4741
PO-XGBoost Training set 0.99877 0.27292 0.14865 5.2435% 28.4829

Test set 0.99398 0.71223 0.36170 4.9471% 13.5105
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5.2 GEP Models’ Performance
In constructing the GEP prediction models, the same training set was used to generate the CO2-induced

strength prediction formula, while the test set was employed to evaluate the robustness of the formula. A total
of three GEP models were developed, as shown in Table 6. Fig. 7a illustrates the fitness curves of the three
GEP models over 1500 iterations. These curves reveal that after approximately 300 iterations, the fitness values
stabilized and remained constant, indicating that the models had converged at this stage. Further iterations
did not significantly enhance the models’ performance, suggesting that the optimization process had reached
its optimal solution. The corresponding gene expression trees, which provide an intuitive visualization of the
models’ predictive mechanisms, are presented in Fig. 7b–d.

Table 6: GEP models for CO2-induced strength prediction

No. Mathematical expression

GEP-1 exp ( sin(tan(A1))−((A0+(−0.165))⋅cos(A0))
sin(tan(0.330))⋅cos(0.094−A0) )

GEP-2 exp (exp ((A1 − A0) − A0
A1 ) + (sin (A1 + A2) + tan (A0) ⋅ (A1 − A2)))

GEP-3 (A0 + A0 + A1 + A1 +
√

A1 + (A0 + A1) + e(A1−A0)

ln(
√

A0)
) + exp (exp (A1 − A0) + ln (A1 + A1))

Note: A0 represents parameter P (CO2 saturation pressure), A1 represents parameter FC (fixed carbon
content), and A2 represents parameter T (CO2 interaction time).

Figure 7: Fitness curves and corresponding gene expression trees for the GEP models: (a) fitness curves; (b) GEP-1
model; (c) GEP-2 model; (d) GEP-3 model
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The scatter plot regression analysis in Fig. 8 preliminarily demonstrates that all three GEP models exhibit
high goodness of fit on the training and test sets. A further evaluation of the model’s performance using five
metrics is summarized in Table 7. Among them, the GEP-1 model achieved the best performance on both
the training and test sets, with R2, RMSE, MAE, MAPE, and RPD values of (0.9818, 0.9767), (1.0479, 1.2189),
(0.7416, 0.9039), (31.79%, 33.03%), and (7.4183, 6.5549), respectively.

Figure 8: (Continued)
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Figure 8: Performance evaluation of GEP models: (a) GEP-1 model; (b) GEP-2 model; (c) GEP-3 model

Table 7: Prediction performance of GEP Models

Model R2 RMSE MAE MAPE RPD
GEP-1 Training set 0.9818 1.0479 0.7416 31.79% 7.4183

Test set 0.9767 1.2189 0.9039 33.03% 6.5549
GEP-2 Training set 0.9658 1.4382 1.0189 38.05% 5.4051

Test set 0.9619 1.5599 1.1029 36.46% 5.1218
GEP-3 Training set 0.9659 1.4364 1.0261 40.59% 5.4119

Test set 0.9597 1.6037 1.2009 40.40% 4.9819

5.3 Model Performance Comparison
As outlined earlier, this study first developed three XGBoost-based predictive models (GWO-XGBoost,

SSA-XGBoost, and PO-XGBoost) and subsequently constructed three GEP predictive models (GEP-1,
GEP-2, and GEP-3). All six models demonstrated excellent predictive performance: on the training set, R2

> 0.96, RMSE < 1.44, MAE < 1.03, MAPE < 40.60%, and RPD > 5.12; on the test set, R2 > 0.95, RMSE < 1.61,
MAE < 1.21, MAPE < 40.40%, and RPD > 4.98. Despite these impressive results, a comprehensive comparison
is necessary to identify the best predictive model. This step is crucial not only for enhancing predictive
accuracy but also for improving interpretability and supporting decision-making in practical applications,
particularly in optimizing model structures and parameter selection.

Firstly, the error analysis of all models on the test set is carried out. As shown in Fig. 9, the line chart
shows the true value of the predicted target (UCS) compared to the predicted value, and the bar chart
represents the size of the error. In MH-XGBoost models, not only the true value and the predicted value have
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a very high degree of fit, but also the maximum error is only about 2.0. In contrast, the GEP model has a
maximum error of about 4.5. Error analysis results show that MH-XGBoost models have higher prediction
accuracy and smaller prediction error than GEP models, which are the superior models.

Figure 9: Error analysis on test set: (a) GWO-XGBoost model; (b) SSA-XGBoost model; (c) PO-XGBoost model; (d)
GEP-1 model; (e) GEP-2 model; (f) GEP-3 model
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Secondly, this study first employed non-parametric statistical testing to compare the statistical
differences among models. Additionally, a dynamic global performance indicator was introduced to
comprehensively assess the performance of each model, ultimately identifying the optimal predictive model.

In this study, the Friedman test for multiple comparisons has been used to test the differences among
the models. The obtained Critical Difference (CD) value is utilized to decide whether the differences among
the groups are statistically significant [67–70]. That is, if the difference between the two models is higher
than the value of CD, the performance will be significantly different. In this study, with a significance level
of 0.05, the number of models k = 6, and the number of evaluation metrics N = 5, the calculated CD value
was 2.65. Thus, for the two models, if the rank difference is greater than 2.65, it is said that their performance
differs significantly. As indicated in Fig. 10, both GWO-XGBoost and SSA-XGBoost outperform the GEP-2
and GEP-3 models significantly, while the PO-XGBoost performs significantly better than the GEP-3 model.
There is no significant difference between the GWO-XGBoost, SSA-XGBoost, PO-XGBoost, and GEP-1
models, which shows that these models can be considered preliminary optimal models.

Figure 10: Critical Difference comparison of proposed CO2-induced strength prediction models: (a) training set; (b)
test set

To further assess the performance differences among the models, an improved dynamic global per-
formance indicator (D-GPI) was introduced for detailed comparison. The D-GPI enhances the traditional
GPI by dynamically assigning weights based on variance, ensuring a more comprehensive and accurate
evaluation. The improved formula is presented in Eq. (10):

D −GPIi =
6
∑
j=1
(φ j ⋅ ω j (med (NorInd ex j) − NorInd exi j)) , (10)

where φ j is the sign for the j-th metric, equal to 1 for metrics like MAE, MAPE, and RMSE, and −1 for
metrics like R2 and RPD. ω j is the weight for the j-th metric, dynamically assigned based on the variance
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of that metric, with the weight proportional to the variance. NorInd ex j is the normalized value of the j-th
metric. NorInd exi j is the normalized value of the j-th metric for model i. med (NorInd ex j) is the median of
the normalized values of the j-th metric.

Weights corresponding to each evaluation criterion in D-GPI are adjusted dynamically by variances to
ensure the generality of the overall assessment. The system gives higher weight to criteria whose variance
is higher (which means high variability), giving full significance to such metrics in determining the overall
score. This weighting mechanism allows D-GPI to mirror the relative importance between different metrics
better. A higher overall score indicates better model performance. As shown in Fig. 11, the ranking of the
models based on D-GPI is as follows: SSA-XGBoost (0.3501) > GWO-XGBoost (0.3460) > PO-XGBoost
(0.3328) > GEP-1 (−0.3282) > GEP-2 (−0.5792) > GEP-3 (−0.6487).

Figure 11: Comparative evaluation of models based on D-GPI

5.4 Model Application Development
This study successfully developed the MH-XGBoost and GEP models, which enable precise and efficient

predictions of CO2-induced alterations in coal strength. However, code-based models are often tedious and
complex for practitioners to implement in engineering applications. To enhance the practical applicability
of the models, a MATLAB-based application (APP) was developed. This application seamlessly integrates
input data and provides real-time predictions of changes in coal strength. As shown in Fig. 12, the application
features a user-friendly interface and interactive functions, allowing users to visualize and adjust parameters
and simulate various operational scenarios. The tool aims to support decision-making in research and
industrial applications, facilitating the safe and efficient management of activities such as CO2 sequestration
and coalbed methane extraction.

6 Model Interpretation Analysis
Due to the impossibility of directly understanding either the decision-making process or the degree

to which the different features of the input have contributed to the predictions, ML models are often
referred to as “black boxes” [71]. Hence, their post-hoc explanations using model interpreters become
critically important. Such explanations make the model more transparent and provide useful information for
optimization and debugging. By interpreting the internal mechanism, we can know the feature relationships
to ensure the model is reliable and fair for complex decision-making scenarios [72]. As previously discussed,
the interpretation techniques (SHAP, ICE, and PDP) were introduced to explain the optimal CO2-induced
strength prediction model developed in this study: the SSA-XGBoost model.
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Figure 12: MATLAB-based application (APP) for predictions of CO2-induced alterations in coal strength

Fig. 13a illustrates the overall importance of parameters based on the mean absolute SHAP values.
Among these, the parameter FC has the highest mean SHAP value, indicating its dominant influence on
model predictions, followed by P and T. In addition, Fig. 13b presents a waterfall chart that decomposes a
specific instance’s prediction into contributions from individual SHAP values. In the chart, the horizontal
axis represents the cumulative effect of SHAP values, with f(x) denoting the prediction (−0.907) and E[f(x)]
representing the model’s baseline value (−0.674). Starting from the baseline, FC contributes −0.327, lowering
the prediction, while P contributes +0.102, slightly increasing the value. This visualization highlights the role
of specific features in driving the prediction outcome for an individual instance. Moreover, Fig. 13c depicts
the relationship between SHAP values and parameter values for each sample. Each point represents a sample,
with color indicating the parameter value (yellow for higher values and darker shades for lower values). SHAP
values indicate the magnitude and direction of a feature’s contribution to the model prediction. Positive
SHAP values signify a positive contribution to the model output, while negative values indicate a negative
contribution. The detailed analysis is as follows:

FC: When the FC value is low, the SHAP value is negative, indicating a negative contribution to the
prediction results. As the FC value increases, the SHAP value also increases and becomes positive, suggesting
a positive contribution to the prediction results.

P: In contrast to FC, high values of P (indicated by yellow) generally exhibit a negative contribution to
the prediction results, while low values (indicated by dark purple) often show a positive contribution.
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Figure 13: SHAP-based interpretation of the SSA-XGBoost model: (a) importance of parameters; (b) specific instance’s
prediction; (c) relationship between SHAP values and parameter values

T: The SHAP values for T are generally small and concentrated near zero, suggesting its relatively minor
impact on the model output.

In conclusion, FC emerges as the most impactful parameter with a clear positive correlation to the
predictions, while P plays a secondary but significant role with an inverse effect. T has a negligible influence
on the predictions.
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Fig. 14 presents the feature dependence plots generated using the SHAP interpreter. Fig. 14a illustrates
the relationship between parameter FC and its SHAP values, with the color representing the values of
parameter P. The plot shows an increasing trend in SHAP values as FC increases, indicating that higher
FC values contribute more positively to the model output. In contrast, lower FC values are associated with
SHAP values that are either negative or close to zero, suggesting that FC has little to no positive impact
on the model output when its value is low. This observation aligns with the previous analysis. Next, the
interaction effects between FC and P are examined. The color gradient, ranging from purple to yellow,
represents the values of P, from low to high. When FC values are high, the color of the points shifts from yellow
to purple, indicating that lower P values amplify the positive influence of FC on SHAP values, resulting in a
stronger positive contribution to the model output. Conversely, when FC values are low, decreasing P values
correspond to lower SHAP values, which are predominantly negative, indicating a negative contribution to
the model output.

Figure 14: SHAP dependence plots for the SSA-XGBoost model: (a) FC & P; (b) T & P; (c) P & FC

Fig. 14b illustrates the relationship between parameter T and its SHAP values, with the color represent-
ing the values of parameter P. The plot reveals that most SHAP values are close to zero, indicating that T has
a minimal influence on the model output. Additionally, the color gradient, ranging from purple (low values)
to yellow (high values), represents the values of P. The distribution of colors appears uniform, suggesting that
P does not significantly modulate the SHAP values of T. This indicates no notable interaction between P and
T in the model.

Fig. 14c illustrates the relationship between parameter P and its SHAP values, with color indicating
the values of parameter FC. Firstly, the plot reveals a negative correlation between P and SHAP values.
Additionally, the color gradient, representing FC values, provides further insights. When the P value is low,
the increase in the FC value leads to a more pronounced increase in the SHAP value, thereby exerting a
stronger positive influence on the model output.

In conclusion, we can draw the following conclusions by SHAP: (1) Parameter FC has a significant
positive effect on model output. At the same time, there is a significant interaction effect between P and FC.
When FC is high or low, and P is low, the predicted output of the model will be significantly pushed up or
down. (2) Parameter T has little influence on model output, is not an important driver of model prediction,
and has no significant interaction with parameter P. (3) The value of parameter P has a negative effect on
model output. When a lower P value is combined with a larger FC value, the SHAP value will be significantly
increased, indicating that they have an interactive influence on the model within a specific value range.
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The SSA-XGBoost model was explained using PDP and ICE interpretation techniques, implemented via
the VIVID model interpretation package in R [73]. The results are presented in Fig. 15. First, Fig. 15a provides
an overall parameter interpretation, including the importance ranking of individual parameters (Vimp) and
the importance ranking of parameter combinations (Vint). The color gradient, ranging from light to dark,
indicates the level of importance from low to high. The rank of individual importance of the input parameter
is FC, P, and T, while the combination importance ranking is FC & P, FC & T, and P & T. We then move on to
the heterogeneous effects that the three parameters, FC, P, and T, exert on the target variable. The ICE curves
in the diagonals of Fig. 15b express how different parameters influence the prediction for any given instance;
the diversity of their effects across instances may be captured there. In contrast, the top triangular section of
the figure shows PDPs capturing the average impact of every parameter on the overall predictions.

Figure 15: PDP and ICE-based interpretation of the SSA-XGBoost model: (a) importance ranking of Vimp and Vint;
(b) PDPs and ICE curves

For the ICE curve of the parameter P, the resulting curves are smooth and quite similar across samples;
this points to a strong and well-defined dependence of the model with respect to P. This would, therefore,
indicate that the model effectively captures the relationship of P to the target variable. The ICE curve of
FC is relatively very nonlinear, particularly for values of FC close to 0. Individual variation of these curves
shows that FC has a different effect across samples; this could be because of feature interactions or local
effects. This evidences the fact that the model can learn complex nonlinear relationships. For parameter T, the
corresponding ICE is almost flat, reflecting that it has a very limited influence on the model’s predictions on
this dataset. In general, the produced ICE curves have shown an excellent level of smoothness and coherence
among the main parameters, such as P, underlying the fact that the proposed SSA-XGBoost model provides
stable and reliable responses to critical features. At the same time, the model demonstrates flexibility in
capturing nonlinear relationships in more complex features like FC, making it well-suited to handling diverse
data distributions.
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The PDP analysis provides additional insights into feature interactions. The PDP plot for P and FC shows
strong color gradients, particularly when FC approaches 1, where predictions turn distinctly red, indicating
a substantial increase. This reflects a significant interaction effect, where high FC values amplify the impact
of P on predictions. The interaction between FC and T is weaker, as evidenced by a moderate color gradient,
suggesting that FC’s influence is only slightly modulated by T, which aligns with the conclusion that T is
not a critical variable. For P and T, the nearly flat color gradient indicates their combination has a negligible
effect on predictions, further supporting T’s minimal importance and the lack of a significant dependency
between P and T. Overall, the model demonstrates high sensitivity to the interaction between P and FC,
moderate sensitivity to FC and T interactions, and low sensitivity to variations in T, consistent with prior
ICE curve analysis.

7 Conclusions
This study successfully integrated advanced ML algorithms and GEP techniques to predict CO2-induced

alterations in coal strength accurately. A total of six models were developed, including the GWO-XGBoost,
SSA-XGBoost, and PO-XGBoost models, as well as the GEP-1, GEP-2, and GEP-3 models. A MATLAB-
based application (APP) was developed to enhance the practical applicability of the model in engineering
applications. In addition, by incorporating three model interpretability techniques, the study provided a
comprehensive explanation of the best-performing model (SSA-XGBoost model), uncovering the unique
contributions of each parameter to coal strength. The key conclusions are as follows:

(1) The MH-XGBoost models and GEP models demonstrated remarkable predictive performance.
(2) Non-parametric test results showed that the GWO-XGBoost, SSA-XGBoost, and PO-XGBoost

models, along with the GEP-1 model, significantly outperformed the GEP-2 and GEP-3 models.
(3) The innovative indicator (D-GPI) identified the SSA-XGBoost model as the best-performing model,

achieving exceptional predictive accuracy and reliability with an R2 of 0.99396, RMSE of 0.62102, MAE of
0.36164, MAPE of 4.8101%, and RPD of 13.4741.

(4) A MATLAB-based application was developed to provide real-time predictions of coal strength
changes, featuring a user-friendly interface to support research and industrial decision-making.

(5) SHAP-based interpretability analysis revealed that parameter FC had a significant positive effect on
model output, while parameter P exerted a negative effect. A strong interaction effect was observed between
P and FC, whereas parameter T had minimal influence on model output.

(6) ICE-based analysis demonstrated that the SSA-XGBoost model provided stable and reliable
responses to critical features. Additionally, the model showed flexibility in capturing nonlinear relationships
in complex features like FC, making it suitable for handling diverse data distributions.

(7) PDP-based analysis indicated that the model exhibited high sensitivity to the interaction between P
and FC, moderate sensitivity to interactions between FC and T, and low sensitivity to variations in T.

Overall, the proposed models effectively address the task of CO2-induced strength prediction. The
outstanding results of this study also confirm the application potential of the MH-XGBoost model, or more
broadly, ML techniques, and GEP technology in strength prediction. Furthermore, the MH-XGBoost models
we adopted demonstrates significant flexibility. Future studies may explore adapting these models to other
materials or environmental conditions, thus expanding their application beyond coal strength prediction.
For example, the models could be expanded by incorporating the properties of other materials, such as
moisture content, porosity, and mineral composition, and their relationship to strength, to extend to other
types of rocks, cement, or synthetic materials. This study’s primary limitation lies in the dataset’s scope,
which may affect the model’s generalization ability. Therefore, future research should focus on expanding
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the applicability of these models to various coal types and geological conditions with further experiments.
This includes incorporating additional influencing parameters and increasing dataset size to enhance model
robustness and generalizability.
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