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ABSTRACT: Accurate daily suspended sediment load (SSL) prediction is essential for sustainable water resource
management, sediment control, and environmental planning. However, SSL prediction is highly complex due to
its nonlinear and dynamic nature, making traditional empirical models inadequate. This study proposes a novel
hybrid approach, integrating the Adaptive Neuro-Fuzzy Inference System (ANFIS) with the Gradient-Based Optimizer
(GBO), to enhance SSL forecasting accuracy. The research compares the performance of ANFIS-GBO with three
alternative models: standard ANFIS, ANFIS with Particle Swarm Optimization (ANFIS-PSO), and ANFIS with Grey
Wolf Optimization (ANFIS-GWO). Historical SSL and streamflow data from the Bailong River Basin, China, are used
to train and validate the models. The input selection process is optimized using the Multivariate Adaptive Regression
Splines (MARS) method. Model performance is evaluated using statistical metrics such as Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Nash Sutcliffe Efficiency (NSE), and
Determination Coefficient (R2). Additionally, visual assessments, including scatter plots, Taylor diagrams, and violin
plots, provide further insights into model reliability. The results indicate that including historical SSL data improves
predictive accuracy, with ANFIS-GBO outperforming the other models. ANFIS-GBO achieves the lowest RMSE and
MAE and the highest NSE and R2, demonstrating its superior learning ability and adaptability. The findings highlight
the effectiveness of nature-inspired optimization algorithms in enhancing sediment load forecasting and contribute
to the advancement of AI-based hydrological modeling. Future research should explore the integration of additional
environmental and climatic variables to enhance predictive capabilities further.
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1 Introduction

1.1 Background, Importance, and Knowledge Gaps
Accurate suspended sediment load (SSL) prediction is crucial for hydrological modeling, water resource

management, and flood control. Sediment transport affects the design and operation of dams, reservoirs,
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and irrigation systems, and plays a key role in river channel formation and aquatic ecosystems [1,2].
However, SSL is highly nonlinear and dynamic, making it challenging to model using traditional empirical
approaches [3,4]. Recent advances in machine learning (ML) and hybrid intelligence models have signifi-
cantly improved the accuracy of sediment modeling and SSL prediction [5–9]. However, existing models still
face limitations, particularly in feature selection, hyperparameter tuning, and generalization ability when
applied to complex river systems with extreme sediment fluctuations [10–13].

China’s Bailong River Basin (BRB) presents a highly complex hydrological system with extreme seasonal
variations, steep topography, and high sediment transport fluctuations [14,15]. The basin experiences intense
monsoonal rainfall, leading to sudden and irregular sediment peaks, which makes it difficult for conventional
models to accurately predict SSL [16,17]. Given these challenges, robust and adaptive modeling approaches
are required to capture the intricate non-stationary and nonlinear behavior of sediment transport in the
BRB. Traditional models such as sediment rating curves (SRC) and autoregressive models struggle to handle
such high variability [18]. Additionally, existing ML-based models often fail to generalize across different
hydrological conditions due to their reliance on pre-defined feature sets [19].

1.2 Literature Review
Although various machine learning models—such as artificial neural networks (ANN), support vector

machines (SVM), and genetic programming (GP)—have been applied for SSL prediction, they suffer
from several critical limitations [20–23]. Many ML models fail to generalize well when trained on highly
variable SSL datasets [24]. Traditional ML models do not explicitly represent the underlying sediment
transport mechanisms [25]. Selecting the most relevant inputs remains a challenge, affecting the predictive
performance of standalone ML models [26]. To address these shortcomings, the Adaptive Neuro-Fuzzy
Inference System (ANFIS) has been widely used for SSL modeling due to its ability to integrate fuzzy
logic and neural networks [27]. However, standard ANFIS models suffer from slow convergence rates,
suboptimal hyperparameter tuning, and sensitivity to local minima [28]. To overcome these issues in recent
years in literature, metaheuristic algorithms—such as genetic algorithm (GA), sine–cosine algorithm (SCA),
particle swarm optimization (PSO), firefly algorithm (FFA), and bat algorithm (BA) are utilized to optimize
the ANFIS model and to predict sediment variable and provided better results than standalone ANFIS
models [29–31]. However, these algorithms have more control parameters and need more effort to have the
optimal structure of the ANFIS model with a newer more robust algorithm with fewer control parameters.
Therefore, a newly developed algorithm in recent years with fewer parameters is adopted in this study, i.e.,
Gradient-Based Optimizer (GBO), to achieve the goal of more accurate prediction results [32]. Moreover, this
study is the first to compare the performances of the novel hybrid machine learning method (ANFIS-GBO)
with adaptive neuro-fuzzy inference system (ANFIS), ANFIS with particle swarm optimization (ANFIS-
PSO) and ANFIS with grey wolf optimizer (ANFIS-GWO) in modeling discharge-sediment relationship.

1.3 Methodology, Research Significance, and Main Contributions
This study proposes a novel hybrid model, ANFIS-GBO, which integrates ANFIS with GBO to enhance

SSL prediction accuracy. Compared to ANFIS-PSO and ANFIS-GWO, the ANFIS-GBO model provides
better convergence speed, reduces computational cost and achieves higher predictive accuracy by balancing
exploration and exploitation [33]. By integrating GBO’s adaptive learning capabilities, the proposed model
can dynamically optimize ANFIS parameters, improving generalization performance in highly variable
hydrological conditions.

The main contributions of this study are as follows:
(i) Introduction of ANFIS-GBO for SSL prediction, demonstrating its superiority over existing models.
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(ii) Comprehensive performance comparison between ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-
GBO using real-world data from the BRB.

(iii) Evaluation of input selection strategies to optimize feature combinations for improved predictive per-
formance.

(iv) Providing an updated benchmark for applying hybrid AI models in hydrological modeling.

2 Materials and Methods

2.1 Case Study
Bailong River Basin (BRB) located in north central China, is selected for the current study. BRB is one

of the biggest and key tributaries of the Jialing River Basin. BRB catchment is situated with coordinates of
32○36′–34○24′ N longitude and 103○00′–105○30′ E latitude (see Fig. 1). River length span of BRB catchment
is 452 km Basin with a drainage area of 17,845 km2. BRB catchment adopted a varied elevation, i.e., varying
from 520 to 4358 m, with higher elevation in the northwest and lower elevation in the southeast. Due to
the key contribution from the BRB basin into the Jialing River, it is necessary to accurately estimate the
suspended sediment load of the BRB catchment. Therefore, the Wudu station was chosen to evaluate the
prediction performance of the selected machine learning models in estimating the sediment load of the BRB
basin. This station is located at a coordinates of 33○23′ N longitude and 104○55′ E latitude. Daily streamflow
and sediment data are obtained from the yearly hydrological books.

Figure 1: Bailong river catchment
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Fig. 2 illustrates the time series variations of streamflow (Q) and sediment load (S) in the Bailong River
Basin at Wudu Station. Both streamflow (Q) and sediment load (S) exhibit strong seasonal fluctuations,
with high peaks occurring annually. Higher values of Q and S are observed during specific periods, which
likely correspond to the monsoon season, where rainfall-induced runoff increases both river discharge
and sediment transport. The sediment load (S) follows a similar trend to streamflow (Q), with sharp
peaks in sediment concentration occurring concurrently with high streamflow events. This suggests that
high-discharge events, likely driven by heavy precipitation, increase erosion and sediment transport. The
brief statistical characteristics of the data are provided in Table 1. The sediment load is highly skewed
(skewness> 7), the dataset has extremely high-sediment transport events. The standard deviation of sediment
load in the test dataset (705.1 kg/s) is significantly higher than in the training dataset (481.9 kg/s), suggesting
that the test period contains more variable sediment transport patterns.

Figure 2: Time series of streamflow (Q) and sediment load (S) at Wudu station

Table 1: The statistical parameters of the applied data

Statistics Whole data Training Test
Streamflow, m3/s

Mean 113.1 103.8 133.2
Min 33.8 33.8 36
Max 653 413 653

Median 98.8 93 108

(Continued)
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Table 1 (continued)

Statistics Whole data Training Test
Skewness 1.74 1.14 1.59
Std. dev. 72.01 57.87 92.67

Sediment, kg/s
Mean 189.3 164.1 244.2
Min 0.001 0.001 1.9
Max 8710 8710 8640

Median 41.9 38.4 48.3
Skewness 7.52 7.86 6.586
Std. dev. 563.1 481.9 705.1

2.2 Methods
This section introduces the methods applied in this study to construct and execute computational

tools for modeling the discharge-sediment relationship. The methodology consists of two types of Machine
Learning (ML) usages (see Fig. 3), (i) the Multivariate Adaptive Regression Splines (MARS) model for
determining the optimal input combination to construct the models (feature selection), and (ii) the regular
ANFIS and hybrid (integrative) ANFIS models combined with three meta-heuristic algorithms, namely the
PSO, GWO, and GBO, for the sake of simulating the process. In the following, related explanations to each
method(ology) are given.

Figure 3: Schematic diagram for the methodology applied in this research

2.2.1 Multivariate Adaptive Regression Splines (MARS)
The MARS method is developed based on a local regression technique that employs a succession of local

Basis Functions (BF) to model complicated and nonlinear relationships. The predictor space is divided into
several (overlapping) areas where spline functions are fitted. The weighted total of the local models yields
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the global MARS model based on the following function:

ŷ = a0 +
M
∑
m=1

amBm (x) (1)

In relation (1), ŷ represents the predicted value, a0 and am stand for the coefficients of the constant
bias and mth BF, respectively; and M shows the number of the included BFs in the model. Through a three-
step process, the MARS model is able to find the optimal input combination model to be employed in other
models for modeling the response parameter (here, s(t)).

• Step 1: BFs are introduced and added using a stepwise procedure. Then, combined in a weighted sum to
construct the model;

• Step 2: backward elimination procedure for pruning the constructed model;
• Step 3: Selection of the best (optimized) model.

Detailed information related to the MARS model can be found in Friedman [34], Sekulic et al. [35] and
Put et al. [36].

2.2.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)
Among the fuzzy neural network (FNN) models, ANFIS is known as the most frequently used one

due to its transparent Fuzzy Inference System (FIS), robustness in outcomes, and moderate computational
time [37–39]. ANFIS combines the concepts of a five-layer feedforward artificial neural network with the
rules of FIS to reach an adaptive model for adjusting the parameters in its nodes. In order to describe complex
nonlinear systems, the ANFIS model divides the input space into many local regions and uses Membership
Functions (MFs) to split the input dimension. The splitting process makes the ANFIS model activate several
local regions simultaneously for a single input variable. After the initial establishment of the network, a
combined two-step learning algorithm is used until it reaches the convergence/termination epoch based on
the two forward and backward passes as below:

(a) Least Squares Estimate (LSE) via a forward pass to adjust the consequent parameters.
(b) Gradient Descent (GD) method via a backward pass to propagate the errors of the premise parameters.

It is worth mentioning that the premise parameters are referred to as the MFs, and the russification
process is executed in layer one. In most cases, bell-shaped functions are used to form the MFs. The
consequent parameters are related to the adjustable parameters of the adaptive nodes of linear equations in
the Takagi-Sugeno model. More information regarding the ANFIS model and its training process is given
in [27].

2.2.3 Particle Swarm Optimization (PSO)
Multiple PSO is a population-based search technique inspired by the collective intelligence of animal

movements in groups (e.g., flocks of birds or schools of fish) in which each potential solution, known
as a swarm, represents a population particle [40–42]. The particle’s position is changed constantly in a
multidimensional search space until the optimal response and/or computational constraints are reached.
This algorithm begins by randomly generating an initial population (a group of particles). In reality, each
particle demonstrates a potential response. Each particle moves and searches in the problem space for the best
possible location. This particle is fitted by its objective function and directed in the most suitable direction
at each step to determine the most accurate and precise response. Each particle moves forward using its
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knowledge and neighbors in the problem search space. Other particles move toward the best-positioned
particle and correct their paths.

As a result, the movement of particles in the solution search space is determined by three features: the
particle’s current position (Xk

i ), the best location that a particle has encountered (Pbest), and the best location
that all of the particles have encountered (Gbest). The prevalent equations for calculating these features are
as follows:
⎧⎪⎪⎨⎪⎪⎩

V (k+1)
i = wV k

i + c1r1 . (Pbesti − Xk
i ) + c2r2. (Gbest − Xk

i )

X(k)
i = X(k−1)

i + V k
i

(2)

where i = 1, 2, . . . , N , (N stands for the population size or the number of particles), k represents the iterations
number, V is the velocity vector, and X is the particle’s position. c1 , c2 are two positive values and r1 , r2 are
random numbers between null and unity.

In other words, Pbest is a particle’s best prior position. Gbest also symbolizes the best particle among
all particles in the swarm. Every particle can record its own personal best position (Pbest) and determine
the most suitable positions identified by all particles in the swarm (Gbest). All particles flying over the D-
dimensional solution space are exposed to updated rules for new positions until the global optimum position
is reached. The accompanying stochastic and deterministic update rules show how a particle’s velocity and
location are [43].

2.2.4 Grey Wolf Optimization Method (GWO)
GWO is a nature-inspired advanced meta-heuristic algorithm that can be employed for efficient

optimization [44–46]. This algorithm was created by mimicking the foraging behavior of grey wolves, which
hunt in groups of five to twelve individuals at the summit of the food chain. Based on the natural behavior
of wolf packs, four distinct types of wolves can be distinguished. (i) Alphas (α) who are the leaders that
make decisions while hunting, migrating, resting, etc. (ii) Betas (β), assist the alphas in leading the pack.
Nonetheless, they must obey the alphas; (iii) the next rank is known as deltas (δ), and they serve the pack as
scouts and hunters, assisting α and β wolves in hunting ; (iv) The final stage are the weakest wolves known
as omegas (ω) who might participate in some of the pack’s activities. The hunting behavior of wolves is
mathematically modeled in three key phases: (i) encircling prey, (ii) hunting, and (iii) attacking prey. These
steps are examined in detail in the following:
(i) Encircling Prey

The position of wolves during the encircling phase is updated based on the position of the prey. This is
mathematically expressed as:
→

D = ∣
→

C .
→

X pre y (t) −
→

X (t)∣
→

X (t + 1) =
→

X pre y (t) −
→

A.
→

D
(3)

where
→

X pre y is the position of the prey, and
→

X (t) is the position of the current solution at time t. The
→

A,
→

C

vectors can be calculated as:
→

A = 2.→a .→r 1 −
→
a ,

→

C = 2.→r 2. Here, →r 1 ,
→
r 2 are random numbers between 0 and 1.

Also,
→
a is a coefficient vector that decreases linearly from 2 to zero during the iteration process.
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(ii) Hunting Process
The top three wolves lead the hunting phase (α, β, and δ). Their positions guide the movement of the

pack as follows:

→

X (t + 1) =
→

Xα +
→

Xβ +
→

Xδ

3
(4)

where
→

X vector represents the best solution for each agent so far.
(iii) Attacking Prey

As the wolves close in on the prey, the value of →a approaches 0, reducing the exploration factor and
increasing exploitation. This allows the wolves to fine-tune their positions around the optimal solution.

It should be noted that the parameters α, β, and δ are hierarchical ranks representing the best, second-
best, and third-best solutions. α Represents the most optimal solution (leader of the pack), β stands for
the second-best solution, which assists α in decision-making, and δ presents the third-best solution, which
assists both α and β. More explanations regarding the application of GWO can be found in [46].

2.2.5 Gradient-Based Optimizer (GBO)
The GBO combines two distinct optimization algorithms, gradient-based and population-based, to

solve complicated optimization problems [47,48]. The Newton’s method (viz., a modification of this method)
is used in the GBO for formulating the algorithm to search the solving space using vectors and two types of
operators, including the gradient search agents and the local escaping ones [32]. The optimization process can
be divided into three main steps: (i) initialization, (ii) gradient search rule, and (iii) local escaping operator
to update the best solution xm

best at the mth iteration, as follows:
i. The initialization step

The GBO, like most meta-heuristic population-based algorithms, begins the optimization process with
an independent population created from a uniform random distribution. Each population agent is referred
to as a “vector,” and the population contains N vector agents in a D-dimensional search field. The setup
procedure is then carried out as follows:

Xn = Xmin + rand (0, 1) × (Xmax − Xmin) (5)

In the above equation, X denotes the decision variable, and rand (0, 1) function produces a random
number between zero and one.
ii. The gradient search rule step (GSR)

After setting the initial random populations, the movement of vectors is controlled by the gradient
search rule (GSR) to achieve a better searching procedure in the feasible domain and obtain improved
positions. ρ1, as a substantial factor in balancing the exploration and exploitation processes, is used for this
purpose, is calculated as below:

ρ1 = 2 × rand × α − α
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

α = ∣β × sin(3π
2
+ sin(β × 3π

2
))∣

β = βmin + (βmax − βmin) × (1 − (m
M
)

3
)

2

, βmin = 0.2, βmax = 0.8

(6)
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where m denotes the iteration number and M is the total number of iteration, and α is a factor for adjusting
the transition from the exploration to exploitation.

At this stage, the GSR can be determined as:

GSR = randn × ρ1 ×
2Δx × xn

(ypn − yqn + ε) (7)

In Eq. (7), ypn , yqn are positions created based on the Gradient Estimation algorithm. Combining
the exploration and exploitation phases, the current position of the searching agent (Xm

n ) can be updated
according to the following relation:

xm+1
n = ra × (rb × X1m

n + (1 − rb) × X2m
n ) + (1 − ra) × X3m

n

X3m
n = Xm

n − ρ1 × (X2m
n − X1m

n )
(8)

where ra and ra are random numbers between zero and one.
iii. The local escaping operator (LEO)

To improve the performance of an optimization algorithm for solving complex problems, the Local
Escaping Operator (LEO) is developed. The LEO can efficiently update the solution’s position. As a result,
it helps an algorithm get out of local optima spots and accelerates convergence. The LEO employs targets
to create a novel solution that outperforms the competition as the xm

LEO . Combining the three main steps,
the pseudo code for the GBO algorithm as shown below (Algorithm 1). The pseudo code of ANFIS-GBO is
reported here.

Algorithm 1: Pseudo code of the GBO algorithm
Step 1. Initialization process
// assigning predetermined values (pr , ε, M)
// generating the initial population X0 = [x0,1 , x0,2 , ..., x0,D]
// evaluating the objective function value f (X0) , n = 1, 2, . . . , N
// specifying the best and worst solutions xbest , xworst
Step 2. Main loop (GSR)

While (m <M)
For n = 1 to N

For i = 1 to D
select random parameters
calculate the position of xm+1

n , i
Endfor
Local Escaping Operator stage (LEO)
If rand < pr (probability)

Calculate the xm
LEO

xm+1
n = xm

LEO
Endif

Update the xm
best , xm

worst positions
Endfor
m = m + 1

End
Step 3. Return
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2.2.6 Hybrid ANFIS Models: Fundamentals and Comparison
The standard ANFIS model combines the strengths of fuzzy logic and neural networks to model complex

nonlinear relationships. However, its performance is often limited by parameter tuning and convergence
behavior challenges. To overcome these limitations, our study incorporates three optimization techniques,
namely (i) ANFIS-PSO, (ii) ANFIS-GWO, and (3) ANFIS-GBO. The ANFIS-PSO model integrates PSO into
the ANFIS framework. PSO optimizes the ANFIS parameters by updating a swarm of candidate solutions
through velocity and position adjustments based on individual best (Pbest) and global best (Gbest) positions.
This iterative search process enhances the model’s ability to efficiently explore the parameter space and
converge to an optimal solution. In the ANFIS-GWO model, the GWO algorithm is employed. GWO
simulates the social hierarchy and hunting mechanism of grey wolves, where the top three solutions (alpha,
beta, and delta) guide the search process. This approach effectively balances exploration and exploitation,
enabling the model to navigate complex solution landscapes and avoid local optima. The ANFIS-GBO
model incorporates the GBO, a novel algorithm that merges gradient-based search with population-based
strategies. GBO utilizes a gradient search rule to accelerate convergence and a local escaping operator to
prevent premature convergence to suboptimal solutions. This dual mechanism ensures a robust and efficient
tuning of the ANFIS parameters.

This section also provides a comparative analysis of the principles, advantages, and limitations of
the applied methods. Table 2 summarizes the strengths and weaknesses of different ANFIS-based models
combined with optimization algorithms.

Table 2: Advantages and disadvantages of the applied methods

Model Advantages Disadvantages
ANFIS Strong predictive capability, captures

complex relationships
Risk of overfitting, long training time

ANFIS-PSO Fast optimization, closer to the global
optimum

Hyperparameter tuning is difficult

ANFIS-GWO Good balance mechanism, heuristic-based Less effective for small datasets
ANFIS-GBO Best predictive accuracy, fast convergence Risk of getting trapped in local minima

2.3 Accuracy Assessment
The viability of three hybrid ANFIS methods, ANFIS-PSO, ANFIS-GWO and ANFIS-GBO, was

evaluated in predicting daily suspended sediment load (SSL). The models were assessed using data from
the Bailong River Basin and three commonly employed statistical indices. The methods were also visually
assessed using scatterplots, Taylor and violin charts. The statistical indices can be expressed as:

RMSE =

�
��� 1

N

N
∑
i=1
[(SSL0)i − (SSLC)i]

2 (9)

MAE = 1
N

N
∑
i=1
∣(SSL0)i − (SSLC)i ∣ (10)

R2 =
⎡⎢⎢⎢⎢⎣

∑N
i=1 ((SSL0)i − (SSL0)i) ((SSLC)i − (SSLC)i)

∑N
i=1 ((SSL0)i − (SSL0)i)

2 ((SSLC)i − (SSLC)i)
2

⎤⎥⎥⎥⎥⎦

2

(11)
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where SSL0, SSLC , SSL0, N are observed, computed, mean of the observed daily SSL and data quantity,
respectively. Various input combinations of streamflow (Q) and SSL data were considered inputs to the
ANFIS-based models.

To statistically assess the efficiency of the proposed models, we performed a paired t-test to compare
the mean prediction errors of different ANFIS-based models. The t-test examines whether the differences
between models are statistically significant, using a confidence level of 95% (α = 0.05). A model with
a t-statistic greater than the critical value and p-value below 0.05 indicates a significant performance
improvement over the baseline (ANFIS).

3 Results
This section reports the results of all utilized models for predicting suspended sediment load

daily. Table 3 lists the input combinations and names of the corresponding models. In the table, Qt−1
and SSLt−1 refer to the streamflow and SSL values of one previous day and vice versa. In the first four
combinations, only streamflow data were considered inputs and then the lagged SSL data were added to
the Q-based inputs obtained from the first four. Data covering the period from 01 January 2007 to 30 June
2011 (75% of the whole data) were used for the training stage, and data from 01 July 2011 to 31 December
2012 (25% of the whole data) were used for the testing stage. One hundred iterations were applied for all
ANFIS-based models. Before applying ANFIS-based methods, MARS method was applied to the input
combinations provided in Table 3 to decide the best input scenario. The rationale behind selecting these
different input combinations was to systematically assess the impact of lagged streamflow and SSL data on
model performance. We progressively added lagged values to capture temporal dependencies and identify the
optimal balance between model complexity and predictive accuracy. This step was crucial in understanding
how past observations influence SSL predictions and determining whether increasing the number of inputs
would improve model performance or lead to redundancy and overfitting.

Table 3: Different input combinations used for the prediction of sediment loads

Input combination Models

ANFIS ANFIS-PSO ANFIS-GWO ANFIS-GBO
1 Qt ANFIS-1 ANFIS-PSO-1 ANFIS-GWO-1 ANFIS-GBO-1
2 Qt−1 and Qt ANFIS-2 ANFIS-PSO-2 ANFIS-GWO-2 ANFIS-GBO-2
3 Qt−2, Qt−1 and Qt ANFIS-3 ANFIS-PSO-3 ANFIS-GWO-3 ANFIS-GBO-3
4 Qt−3, Qt−2, Qt−1 and Qt ANFIS-4 ANFIS-PSO-4 ANFIS-GWO-4 ANFIS-GBO-4
5 Best Q and SSLt−1 ANFIS-5 ANFIS-PSO-5 ANFIS-GWO-5 ANFIS-GBO-5
6 Best Q, SSLt−1 and SSLt−2 ANFIS-6 ANFIS-PSO-6 ANFIS-GWO-6 ANFIS-GBO-6
7 Best Q, SSLt−1, SSLt−2 and SSLt−3 ANFIS-7 ANFIS-PSO-7 ANFIS-GWO-7 ANFIS-GBO-7

The MARS method has a simpler structure and is much easier to apply compared to ANFIS-based
methods. Therefore, we evaluated whether the MARS method could effectively determine the best input
combination for daily SSL prediction before applying more complex models. Table 4 summarizes the training
and test outcomes of the MARS models for seven different input scenarios. The results indicate a clear trend:
the MARS model’s accuracy improves in both the training and test stages as the number of input variables
increases from Scenario 1 to Scenario 7, except for Scenario 4, which exhibits slightly worse performance
than Scenario 3. This decline in accuracy could be attributed to the redundancy or noise introduced by
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additional input variables that do not contribute significantly to the model’s predictive capability. This
phenomenon, often called the “curse of dimensionality,” suggests that including too many variables without
proper feature selection can negatively impact model performance by increasing variance without substantial
gains in accuracy.

Table 4: The results of the MARS in predicting suspended sediment load

Input Training Test

RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2 RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2

MARS-1 531.7 221.2 119.6 0.518 0.520 358.1 114.1 68.16 0.461 0.467
MARS-2 475.6 198.0 113.5 0.631 0.635 315.1 108.7 66.35 0.624 0.628
MARS-3 449.3 191.2 109.4 0.666 0.671 313.5 104.7 61.34 0.628 0.633
MARS-4 454.1 194.7 111.2 0.662 0.669 315.1 106.3 62.76 0.634 0.637
MARS-5 425.8 137.7 88.34 0.709 0.713 287.0 89.14 54.63 0.699 0.704
MARS-6 421.7 135.3 86.28 0.712 0.716 285.0 88.75 51.87 0.703 0.707
MARS-7 387.6 121.9 82.69 0.756 0.761 280.6 85.99 50.62 0.744 0.746

The best predictive accuracy was obtained from the MARS model using the full set of input variables,
achieving the lowest RMSE (387.6 kg/s), MAE (121.9 kg/s), and MAPE (82.69), along with the highest NSE
(0.756) and R2 (0.746) in the test stage. These results highlight the potential of MARS as a preliminary feature
selection tool capable of identifying optimal input combinations before applying more sophisticated machine
learning models. However, since MARS is a piecewise regression-based approach, it may not fully capture
the nonlinear and dynamic relationships inherent in suspended sediment transport processes. Therefore,
to further enhance predictive performance, we proceed with applying standard ANFIS and three hybrid
ANFIS-based methods (ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO) to the same input combinations,
ensuring a more comprehensive evaluation of model effectiveness in daily SSL prediction.

Training and testing outcomes of the standard ANFIS models are given in Table 5 for SSL prediction. As
observed from the table, increasing input number improves the prediction accuracy of the method; RMSE,
MAE, MAPE, NSE and R2 range from 388.1 kg/s, 134.1 kg/s, 76.36, 0.466 and 0.467 to 305.6 kg/s, 104 kg/s,
61.86, 0.709 and 0.711, respectively. The last input combination offered the best accuracy in predicting SSL
for the training and testing stages. Considering previous SSL data as inputs improves the RMSE, MAPE,
MAE, NSE and R2 by 8%, 17.7%, 15.4, 8.7% and 8.7% in the test stage, respectively (compare the input cases
4 and 7). These improvements highlight the importance of capturing temporal dependencies in sediment
load prediction. The historical SSL data likely contribute crucial contextual information about sediment
behavior, particularly during peak events and extreme conditions.

Tables 6–8 illustrate the training and testing results of the hybrid ANFIS method, including ANFIS-
PSO, ANFIS-GWO and ANFIS-GBO in predicting daily SSL. It is apparent from the tables that the accuracy
of the models is improved by importing more inputs in all models and for both the training and testing stages.
The RMSE, MAE, MAPE, NSE and R2 range from 376.3 kg/s, 124.7 kg/s, 71.43, 0.502 and 0.505 to 270.2 kg/s,
71.4 kg/s, 47.31, 0.743 and 0.747 for ANFIS-PSO while the corresponding ranges are 366.6–228.3 kg/s, 115.8–
63.8 kg/s, 67.21–43.72, 0.531–0.766 and 0.537–0.769 for ANFIS-GWO and 355.6–207.2 kg/s, 111.8–47.5 kg/s,
64.25–36.65, 0.549–0.816 and 0.554–0.822 for ANFIS-GBO in the test stage, respectively.
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Table 5: The results of the ANFIS in predicting suspended sediment load

Input Training Test

RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2 RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2

ANFIS-1 551.7 241.2 129.36 0.496 0.499 388.1 134.1 76.36 0.466 0.467
ANFIS-2 495.6 218.0 118.24 0.583 0.585 335.1 128.7 74.28 0.554 0.558
ANFIS-3 469.3 211.2 115.32 0.652 0.657 333.5 126.6 73.32 0.628 0.633
ANFIS-4 464.1 208.7 111.94 0.685 0.687 332.1 126.3 73.16 0.652 0.654
ANFIS-5 445.8 157.7 86.37 0.709 0.713 314.0 114.1 67.49 0.657 0.660
ANFIS-6 436.8 151.7 82.58 0.723 0.728 307.0 109.1 65.89 0.683 0.687
ANFIS-7 409.6 141.9 75.42 0.734 0.736 305.6 104.0 61.86 0.709 0.711

Table 6: The results of the ANFIS-PSO in predicting suspended sediment load

Input Training Test

RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2 RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2

ANFIS-PSO-1 542.2 233.2 125.1 0.508 0.511 376.3 124.7 71.43 0.502 0.505
ANFIS-PSO-2 478.5 202.2 108.3 0.625 0.629 311.6 98.80 63.36 0.618 0.620
ANFIS-PSO-3 474.0 180.8 96.73 0.649 0.654 294.1 96.13 58.48 0.632 0.637
ANFIS-PSO-4 463.4 176.8 94.57 0.686 0.688 288.4 92.90 57.06 0.663 0.665
ANFIS-PSO-5 456.2 174.8 93.49 0.707 0.710 278.9 88.44 53.25 0.669 0.673
ANFIS-PSO-6 429.5 143.7 76.68 0.729 0.734 273.5 74.23 48.57 0.725 0.728
ANFIS-PSO-7 398.6 130.3 69.43 0.754 0.758 270.2 71.40 47.31 0.743 0.747

Table 7: The results of the ANFIS-GWO in predicting suspended sediment load

Input Training Test

RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2 RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2

ANFIS-GWO-1 538.5 227 121.04 0.547 0.549 366.6 115.8 67.21 0.531 0.537
ANFIS-GWO-2 467.6 187.4 99.75 0.639 0.646 307.8 93.5 57.16 0.633 0.635
ANFIS-GWO-3 462.3 178 94.72 0.694 0.695 285.3 89.2 55.38 0.651 0.658
ANFIS-GWO-4 445.5 169 89.86 0.708 0.713 267.1 87.7 53.56 0.697 0.701
ANFIS-GWO-5 438.5 167.2 88.73 0.732 0.735 259.2 72.4 48.69 0.709 0.712
ANFIS-GWO-6 422.7 138.6 73.52 0.758 0.764 235.8 66.6 45.03 0.749 0.754
ANFIS-GWO-7 391.6 124.3 65.84 0.769 0.772 228.3 63.8 43.72 0.766 0.769

It is understood from the ranges that the hybrid methods considerably improve the prediction accuracy
of the standard ANFIS; the RMSE and MAE of the best ANFIS are improved by 11.6% and 31.3%, 25.3% and
38.7%, 32.2% and 54.3% applying ANFIS-PSO, ANFIS-GWO and ANFIS-GBO in the test stage, respectively.
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Among the hybrid approaches, the ANFIS-GBO acted as the best model with the lowest RMSE (207.2 kg/s),
MAE (47.5 kg/s), MAPE (36.65) and the highest NSE (0.816) and R2 (0.822) in daily SSL prediction.

Table 8: The results of the ANFIS-GBO in predicting suspended sediment load

Input Training Test

RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2 RMSE
(kg/s)

MAE
(kg/s)

MAPE NSE R2

ANFIS-GBO-1 514.5 218 114.5 0.562 0.566 355.6 111.8 64.25 0.549 0.554
ANFIS-GBO-2 458.3 180.5 94.38 0.646 0.650 301.5 91.7 55.21 0.638 0.642
ANFIS-GBO-3 451.6 175 91.64 0.699 0.706 278.5 87.0 53.10 0.678 0.680
ANFIS-GBO-4 439.3 162.2 85.73 0.748 0.756 259.4 82.1 51.92 0.733 0.737
ANFIS-GBO-5 434.0 160.0 83.62 0.759 0.763 254.5 65.4 43.39 0.722 0.728
ANFIS-GBO-6 409.1 125.5 66.44 0.798 0.803 212.8 55.4 39.84 0.783 0.787
ANFIS-GBO-7 385.1 116.1 60.08 0.828 0.832 207.2 47.5 36.65 0.816 0.822

Notably, the consistent improvement across all hybrid models highlights the effectiveness of metaheuris-
tic optimization in refining ANFIS parameters and enhancing model learning. The significant reduction
in RMSE and MAE further confirms that these optimization techniques effectively mitigate the limitations
of standard ANFIS, such as slow convergence and sensitivity to local minima. It should be noted that the
model’s performance is improved by taking into account the previous SSL data as inputs; improvements
in testing RMSE are 6.3%, 14.5% and 20.1% for ANFIS-PSO, ANFIS-GWO and ANFIS-GBO (compare
the inputs scenarios 4 and 7), respectively. This result suggests that incorporating historical SSL values
allows the models to better capture temporal dependencies and sediment transport patterns, particularly in
high-fluctuation conditions.

A statistical comparison of the models reveals that while ANFIS provides a robust baseline, including
metaheuristic optimization, it significantly enhances its predictive capabilities. Among the hybrid meth-
ods, ANFIS-GBO demonstrated superior performance, likely due to its efficient gradient-based search
mechanism, which optimally tunes ANFIS parameters while avoiding local minima. The improvement in
RMSE and MAE of ANFIS-GBO over standard ANFIS was 32.2% and 54.3%, respectively, highlighting
the effectiveness of the optimization approach. These findings emphasize the potential of ANFIS-GBO as
a reliable tool for SSL prediction, particularly in complex hydrological systems where conventional models
struggle to generalize. Future research should explore additional input features and optimization techniques
to refine model accuracy.

Table 9 compares the hybrid ANFIS methods for catching peak sediment loads during the testing stage.
The threshold value is 2000 kg/s and there are 18 peaks in the data. The total absolute relative errors clearly
show that the ANFIS-GBO offered the best accuracy by providing the lowest error (1010.6).

Furthermore, the results confirm that metaheuristic optimization significantly enhances the ability of
ANFIS to predict extreme sediment transport events, which are often challenging due to their irregularity
and high variability. The improvements in peak estimation accuracy are notable, with reductions in error of
36.5%, 24.4%, and 22.7% when applying GBO, GWO, and PSO, respectively. This suggests that ANFIS-GBO
effectively balances exploration and exploitation in its search space, leading to improved parameter tuning
and better adaptation to peak sediment fluctuations.
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Table 9: The results of the ANFIS-GBO in predicting suspended sediment load

Peaks
>2000 kg/s

ANFIS-
GBO

ANFIS-
GWO

ANFIS-
PSO

ANFIS Relative error

ANFIS-
GBO%

ANFIS-
GWO%

ANFIS-
PSO%

ANFIS%

2190 4453 6323 6363 6429 103.3 188.7 190.5 193.6
2680 4860 5064 1114 1038 81.3 88.9 −58.4 −61.3
2930 5399 1667 1744 1460 84.3 −43.1 −40.5 −50.2
2300 1558 3121 2515 5429 −32.2 35.7 9.4 136.0
2910 5768 6003 1023 6987 98.2 106.3 −64.8 140.1
2320 1435 2940 3155 5826 −38.1 26.7 36.0 151.1
5480 7695 7876 7952 8031 40.4 43.7 45.1 46.5
8640 5688 5285 5163 5074 −34.2 −38.8 −40.2 −41.3
3320 5274 5739 5820 6036 58.9 72.9 75.3 81.8
3880 2447 2102 2014 1914 −36.9 −45.8 −48.1 −50.7
6260 7982 8210 8293 8465 27.5 31.1 32.5 35.2
2250 3999 4274 4706 4782 77.7 90.0 109.2 112.5
2870 5583 6512 6681 6775 94.5 126.9 132.8 136.1
3120 1751 1140 1133 1033 −43.9 −63.5 −63.7 −66.9
4730 6782 7853 7912 7928 43.4 66.0 67.3 67.6
5040 3800 7711 7807 7875 −24.6 53.0 54.9 56.2
5880 7556 7668 7698 7799 28.5 30.4 30.9 32.6
3350 5446 1664 7696 7734 62.6 −50.3 129.7 130.9

Total (Absolute) = 1010.6 1202.0 1229.3 1590.7

Capturing peak sediment loads is crucial in hydrological modeling, as extreme sediment transport
events can significantly impact river morphology, reservoir sedimentation, and flood risk management. The
superior performance of ANFIS-GBO in this aspect highlights its potential as a robust tool for predicting
high-impact sediment transport events with improved reliability. Future studies should investigate its
applicability to different river basins and extreme hydrological conditions.

The bar plot in Fig. 4 presents the average RMSE, MAE, and MAPE for different ANFIS-based models
in predicting suspended sediment load (SSL) during the test period. ANFIS-GBO outperforms all other
models, showing the lowest RMSE, MAE, and MAPE among the four models. ANFIS, the standard model,
has the highest errors, indicating that optimization significantly improves prediction performance. Hybrid
models (ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO) reduce errors, but ANFIS-GBO provides the most
significant improvement. Error metrics follow a decreasing trend as optimization algorithms are applied. The
findings emphasize the importance of metaheuristic algorithms in improving hydrological predictions.
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Figure 4: Average RMSE, MAE and MAPE of the applied models in predicting SSL using different ANFIS based models
during the test period

Fig. 5 illustrates the scatterplots depicting the comparison between the observed and predicted sus-
pended sediment loads during the test period. The scatter graphs indicate that the ANFIS-GBO model
exhibits less scattered predictions compared to the other models. To assess the ANFIS-based models com-
prehensively, Fig. 6 presents a Taylor Diagram, which provides a statistical comparison of the applied models
(ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO) for suspended sediment load (SSL) prediction. The
diagram evaluates model performance using three key statistical metrics: standard deviation, correlation
coefficient (r), and Root Mean Square Error (RMSE). The standard deviation, represented along both axes,
indicates the spread of predictions compared to the observed dataset (red dot). The curved green lines
represent RMSE values, where models positioned closer to the observed point exhibit lower prediction
errors. The blue radial lines indicate the correlation coefficient, showing the strength of agreement between
the model predictions and actual observations. A model with a higher correlation, lower RMSE, and a
standard deviation similar to the observed data is considered more accurate. As illustrated in Fig. 5, the
ANFIS-GBO model (green point) demonstrates a higher correlation and lower RMSE compared to other
models, indicating its superior performance in SSL prediction. Conversely, the ANFIS model (yellow point)
exhibits relatively lower accuracy, highlighting the effectiveness of optimization techniques in improving
predictive performance.

Fig. 7 presents a violin plot comparing the distribution of measured and predicted suspended sediment
load (SSL) values across different models, including ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO.
The x-axis represents the different models and the observed (measured) values, while the y-axis indicates the
SSL values in kg/s. The shape of each violin plot illustrates the probability density of SSL predictions, where
wider sections indicate a higher frequency of values, and narrower sections indicate a lower frequency. The
red boxplots within each violin highlight the interquartile range (IQR) and median values of SSL predictions.
The measured data (first violin) provides a reference distribution, against which the models’ predictive
accuracy is assessed. Among the predictive models, ANFIS-GBO exhibits a more consistent and concentrated
distribution around the measured SSL values, suggesting improved prediction stability and reduced variance.
The baseline ANFIS model shows a broader spread, indicating greater prediction variability. These results
reinforce the effectiveness of metaheuristic optimization techniques in refining ANFIS-based models for SSL
prediction, with ANFIS-GBO achieving the most reliable predictive performance.
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Figure 5: Scatterplots of the observed and predicted SSL by different ANFIS based models during the test period using
the best input combination (input combination 7)
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Figure 6: Taylor Diagram comparing the performance of the ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO
models for SSL prediction. The red dot represents the observed data, while the model predictions are color-coded.
Models closer to the observed point, with higher correlation coefficients and lower RMSE, demonstrate better predictive
performance



Comput Model Eng Sci. 2025;143(1) 1267

Figure 7: Violin plot showing the distribution of measured and predicted SSL values for different models having the
best input combination. The red boxplots indicate the interquartile range (IQR), while the width of each violin plot
represents the probability density of SSL predictions. A narrower distribution closer to the measured data suggests
higher predictive accuracy

4 Discussion
The feasibility of a new hybrid ANFIS-GBO was investigated and compared with standard ANFIS and

two hybrid ANFIS methods (ANFIS-PSO and ANFIS-GWO) in predicting daily SSL. The results showed
that incorporating more input variables generally improved the prediction accuracy of all models. Adding
SSL data from previous days as inputs had a particularly positive impact on the models’ performance.
This indicates that historical SSL data contains valuable information for predicting future SSL values. The
improvement in prediction accuracy, as measured by RMSE, MAE, and R2, highlighted the importance
of considering temporal dependencies in the SSL prediction task. On the other hand, adding streamflow
data to the MARS model inputs resulted in a degradation of prediction accuracy, as evident from Table 4.
This observation aligns with previous studies conducted by researchers such as Adnan et al. [49], Sharafati
et al. [50] and Rahgoshay et al. [51]. These studies have consistently reported that an increase in the number of
inputs does not necessarily lead to improved prediction accuracy and can have a negative impact on variance.
Consequently, this may result in more complex models with poorer prediction performance. For instance,
Adnan et al. [49] compared machine learning methods for predicting river flow. They found that including
precipitation data as an input did not enhance the accuracy of the models.

Adding SSL data from previous days as inputs had a particularly positive impact on the models’
performance. This indicates that historical SSL data contains valuable information for predicting future SSL
values. The improvement in prediction accuracy, as measured by RMSE, MAE, and R2, highlighted the
importance of considering temporal dependencies in the SSL prediction task. On the other hand, it was found
from the models’ outcomes that only streamflow-based input scenarios also provided acceptable accuracy in
SSL prediction. As Tao et al. [52] discussed, a crucial concern in modeling SSL is the common reliance on
previous SSL values as model inputs. However, this approach poses practical challenges due to the difficulty
in accurately measuring SSL data, particularly during extreme events. Alternatively, emphasizing water level
data alone, rather than streamflow, holds greater significance in SSL modeling. This is especially pertinent for
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developing countries where essential variables may be unavailable or lacking at many monitoring stations. By
prioritizing water level data, the limitations associated with SSL measurements can be mitigated, facilitating
more feasible and effective SSL modeling approaches.

Comparing the different modeling approaches, the hybrid ANFIS methods (ANFIS-PSO, ANFIS-GWO,
and ANFIS-GBO) consistently outperformed the standard ANFIS model in terms of prediction accuracy.
Among the hybrid methods, ANFIS-GBO emerged as the best-performing model, achieving the lowest
RMSE, MAE, MAPE, NSE and the highest R2 in daily SSL prediction. This indicates that the combination
of ANFIS with the GBO optimization algorithm led to superior performance in capturing the complex
relationships between input variables and SSL. The considerable improvements in prediction accuracy
obtained by the hybrid ANFIS methods highlighted the effectiveness of using nature-inspired optimization
algorithms (PSO, GWO, and GBO) to enhance the learning and adaptation capabilities of the ANFIS model.
These algorithms enabled the models to search the solution space more effectively and find better parameter
configurations, leading to improved predictions.

While the evaluation metrics (RMSE, MAE, MAPE, NSE and R2) demonstrate the improved per-
formance of ANFIS-GBO compared to other models, statistical validation is necessary to confirm the
significance of these improvements. Table 10 presents the results of the paired t-test, comparing the per-
formance of each model against ANFIS. The results indicate that all optimization-based ANFIS models
significantly outperform standard ANFIS (p < 0.05). ANFIS-GWO exhibited the highest statistical signif-
icance (t = −7.120, p = 2.584E−12), confirming its superior predictive ability. The negative t-values suggest
that the optimized models have lower mean prediction errors than the baseline ANFIS model. These results
validate the effectiveness of using metaheuristic optimization techniques in SSL modeling, with ANFIS-GBO
providing the most stable and accurate predictions.

Table 10: t-test of the models applied for SSL prediction

ANFIS ANFIS-PSO ANFIS-GA ANFIS-GWO
t-stat −4.758 −5.550 −5.774 −7.120

p-value 2.349*/E−06 3.978E−08 1.141E−08 2.584E−12
t-critical 1.973 1.963 1.963 1.963

Overall, the study demonstrated the effectiveness of ANFIS-based models, especially the hybrid
approaches, in predicting daily suspended sediment load in the Bailong River Basin. Incorporating historical
SSL data and utilizing nature-inspired optimization algorithms significantly improved the models’ perfor-
mance. As shown in Table 8, ANFIS-GBO achieved the highest accuracy with the lowest RMSE and MAE
due to its efficient optimization process and reduced computational cost. Compared to other models, ANFIS-
GBO required fewer control parameters while maintaining a robust prediction capability. These findings have
implications for water resource management and environmental planning, as accurate prediction of SSL can
aid in assessing and mitigating the impacts of sediment transport on river systems and associated ecosystems.

5 Conclusions
This study evaluated the effectiveness of hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS)

models integrated with different optimization techniques—Particle Swarm Optimization (PSO), Grey Wolf
Optimization (GWO), and the Gradient-Based Optimizer (GBO)—for predicting daily suspended sediment
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load (SSL). The findings demonstrated that hybrid models significantly improved predictive accuracy
compared to the standard ANFIS model. The key conclusions of this study are summarized as follows:

– Among the tested models, the ANFIS-GBO method achieved the highest prediction accuracy, with the
lowest RMSE (207.2 kg/s), MAE (47.5 kg/s), and MAPE (36.65) and the highest NSE (0.816) and R2

(0.822), confirming its capability to effectively model the nonlinear and dynamic behavior of SSL.
– Including lagged SSL values as inputs significantly enhanced model performance, highlighting the

importance of considering temporal dependencies in SSL forecasting. Models incorporating past SSL
values consistently outperformed those using only streamflow data.

– The integration of metaheuristic optimization algorithms (PSO, GWO, and GBO) improved the
performance of ANFIS by optimizing parameter selection and preventing local minima trapping.
Among these, GBO exhibited the best balance between exploration and exploitation, resulting in faster
convergence and more accurate predictions.

– The Multivariate Adaptive Regression Splines (MARS) method effectively identified the best input
combinations, reducing computational complexity while maintaining high accuracy.

– ANFIS-GBO provided the most reliable predictions for extreme sediment transport events, reducing
total absolute relative error by 36.5% compared to the standard ANFIS model.

– The study underscores the potential of hybrid AI-based approaches in hydrology, demonstrating that
nature-inspired optimization can significantly enhance model adaptability to complex environmen-
tal conditions.

However, despite the promising results, this study has some limitations. The reliance on historical SSL
data may pose practical challenges due to the difficulty in measuring SSL accurately, particularly during
extreme weather events. Additionally, the study was conducted on a single river basin, and further validation
is required to assess the generalizability of the proposed approach to different hydrological conditions.

To further improve SSL prediction accuracy, future studies should:

– Incorporate additional environmental and climatic variables such as rainfall, temperature, and land-
use characteristics.

– Investigate the generalizability of the ANFIS-GBO model across different river basins and hydrologi-
cal conditions.

– Explore the integration of explainable AI techniques (e.g., SHAP analysis) to enhance model inter-
pretability.

– Compare ANFIS-GBO with deep learning approaches, such as LSTM (Long Short-Term Memory or
transformers, to evaluate potential performance gains.

Overall, this study contributes to advancing AI-driven hydrological modeling and provides a strong
foundation for further research in sediment transport prediction.
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