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ABSTRACT: Multi-objective optimization is critical for problem-solving in engineering, economics, and AI. This
study introduces the Multi-Objective Chef-Based Optimization Algorithm (MOCBOA), an upgraded version of
the Chef-Based Optimization Algorithm (CBOA) that addresses distinct objectives. Our approach is unique in
systematically examining four dominance relations—Pareto, Epsilon, Cone-epsilon, and Strengthened dominance—to
evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front. Our comparison
investigation, which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such
as chemical engineering, mechanical design, and power systems, reveals that the dominance approach used has a
considerable impact on the key optimization measures such as the hypervolume metric. This paper provides a solid
foundation for determining the most effective dominance approach and significant insights for both theoretical research
and practical applications in multi-objective optimization.

KEYWORDS: Multi-objective optimization; chef-based optimization algorithm (CBOA); pareto dominance; epsilon
dominance; cone-epsilon dominance; strengthened dominance

1 Introduction
An essential concept in several disciplines, such as engineering, economics, and artificial intelligence,

is multi-objective optimization. These domains frequently feature situations where it’s necessary to simulta-
neously optimize several competing goals. For instance, it is typical in engineering design to have to balance
performance with cost and weight reduction. It is difficult to develop solutions to such challenges that meet all
of the objectives because of the inherent trade-offs. Even though several works have been presented to solve
them [1,2], sophisticated multi-objective optimization approaches are required [3,4] due to their complexity
in traversing these trade-offs and finding a set of balanced solutions.
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Dominance relations, which offer a framework for assessing and contrasting alternatives, are essential
to this process (Multi-objective optimization). These relations establish a solution’s relative superiority or
inferiority based on how well it performs in comparison to other solutions across the given objectives.
Therefore, the choice of a dominance relation strongly impacts the diversity, convergence, and efficiency
of the optimization process. The most prevalent dominance relations include Pareto dominance, Epsilon
dominance, Cone-epsilon dominance, and Strengthened dominance relations, each providing distinct
benefits for various optimization problems. Given the widespread use of those relations as a foundational
concept, several algorithms have been created to take advantage of them. Due to the extensive number of
algorithms only the state-of-the-art ones are briefly reviewed here.

Probably the most well-known and frequently applied dominance notion is Pareto dominance. If a
solution is better in at least one objective and not worse in any, it is said to Pareto-dominate another.
Numerous multi-objective algorithms, such as the Non-dominated Sorting Genetic Algorithm II (NSGA-
II) [5], are based on this idea. NSGA-II is well known for its ability to quickly sort non-dominated
solutions using a crowding distance mechanism and a variety of Pareto-optimal solutions. In Strength
Pareto Evolutionary Algorithm II (SPEA-II) [6], each solution is given a strength value by SPEA2, which
indicates how many solutions it dominates. To preserve diversity, it also takes into consideration the
density of solutions in the objective space. Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [7] is also a known algorithm. In this algorithm, a multi-objective optimization issue is broken
down by MOEA/D into many scalar optimization subproblems, which are then all optimized at the same
time. The optimum answers to these subproblems are found using Pareto dominance. Multi-Objective
Particle Swarm Optimization (MOPSO) [8] expands upon the standard single-objective PSO algorithm to
enable it to handle multiple objectives. It updates the particle positions using Pareto dominance and a global
repository of non-dominated solutions. Other techniques include Multi-Objective Grey Wolf Optimization
(MOGWO) [9], Multi-Objective Cat Swarm Optimization (MOCSO) [10], and Multi-objective Cohort
Intelligence (MOCI) [11].

Another dominance relation is Epsilon Dominance, a variation of Pareto Dominance. It introduces
a tolerance level, ε (epsilon), to account for small variations within solutions in each objective. Some of
the recent algorithms that use Epsilon dominance include Guided Multi-objective equilibrium optimizer
(GMOEO) [12] which enhances exploration and diversity by updating solutions through Epsilon dominance,
resulting in efficient movement towards the Pareto front. Another method named Guided Multi-objective
Marine Predator Algorithm (GMOMPA) [13], is a modified MPA-based framework for addressing multi-
objective optimization issues. It includes an external archive Epsilon dominance, a fast non-dominated
solution, and crowding distance. to obtain non-dominated solutions, ensuring fast convergence towards the
Pareto optimal. Multi-Objective Gaining–Sharing Knowledge optimization (MOGSK) [14] introduces the
extended version of the gaining-sharing knowledge optimization (GSK), to tackle real-world optimization
challenges. The algorithm utilizes an external archive population, fast nondominated sorting, and the Epsilon
dominance relation to accomplish diversity, coverage, and convergence. The study in [15] investigates a
co-evolutionary approach to determine the precise value of ε in multi-objective evolutionary algorithms
(MOEAs). The authors in [16] present a new decomposition-based multi-objective evolutionary algorithm
for complex Pareto fronts that uses a hybrid weighting technique and adaptive Epsilon dominance to
achieve optimal diversity. By employing a population archive, crowding distance, and Epsilon dominance
to direct search regions, the work in [17] expands the single objective Manta-Ray foraging optimization to
multi-objective cases named (MOMRFO).

Cone-epsilon dominance relation is a variant of Epsilon dominance designed for optimization problems
with three or more objectives, or many-objective optimization. It combines Epsilon dominance with a
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conical region of dominance. Different works discuss that Cone-epsilon dominance is a good method for
evolutionary algorithms such as [18] and [19], where it increases the diversity of solutions and enhances the
performance in evolutionary multi-objective optimization. Another work that has employed this method
is [12], which presents a comparison with Epsilon dominance relation.

Strengthened dominance relation also known as (SDR) is an advanced approach generally used
in MOEAs, especially when tackling optimization problems with many different objectives (more than
three). It is intended to enhance the selection process by striking a balance between two crucial factors:
variety and convergence. Many works have employed SDR or its other variant in multi/many objectives
optimization such as Multi-Objective Harris Hawks Optimization (MOHHO) [20], which solves multi-
objective optimization problems using a Strengthened dominance relation. In [21], the performance of
SDR is examined, and a new dominance relation (CSDR) based on SDR is proposed. In NSGA-II, the
CSDR takes the place of Pareto dominance. In [22], a new Reference Points-based Strengthened dominance
relation (RPS-dominance) has been introduced into NSGA-II. To differentiate and further stratify Pareto-
equipment solutions, it presents a reference point set and the convergence metric. The Guided Differential
Evolution method (MGDE) [23] is another approach to solving many objective optimization problems. It
applies a Strengthened dominance relation and bi-goal evolution, as well as modified differential evolutionary
operators for crossover and mutation. This guided exploration technique promotes convergence towards the
Pareto front while maintaining good solution diversity.

A comprehensive review of existing multi-objective optimization algorithms is presented in Table 1. The
table summarizes the dominance relations, key contributions, and relevance of each algorithm to the current
study. While Pareto dominance is still the most commonly employed due to its simplicity and efficacy, Epsilon
dominance and its variants provide more control over solution variety and convergence, especially in many-
objective optimization. In contrast, stronger dominance relations address the issues of balancing convergence
and diversity in complicated optimization environments. Although current algorithms such as NSGA-
II, SPEA2, and MOEA/D have proved the efficacy of these dominance relationships, algorithm-specific
evaluations are still required to find the most appropriate dominance strategy for emerging optimization
strategies. These evaluations are critical for customizing dominance relations to the specific needs of new
algorithms and problem contexts.

Table 1: Summary of the multi-objective optimization algorithms reviewed

Algorithm Dominance
relation

Key features Relevance

NSGAII [5] Pareto
dominance

Introduce Fast non-dominated
sorting, crowding distance

mechanism, variety of
Pareto-optimal solutions.

Baseline for comparing
MOCBOA’s performance and

diversity preservation.

SPEA2 [6] Pareto
dominance

Demonstrate the strength
value for dominance, density

preservation for diversity.

Demonstrates the use of
external archives, similar to

MOCBOA.
MOEA/D [7] Pareto

dominance
Introduce the decomposition

of problems into scalar
subproblems, optimized

simultaneously.

Highlights the importance of
decomposition methods in

multi-objective optimization.

(Continued)
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Table 1 (continued)

Algorithm Dominance
relation

Key features Relevance

MOPSO [8] Pareto
dominance

Extends PSO to handle
multiple objectives using a

global repository.

Provides insights into swarm
intelligence-based approaches

for MOCBOA.
MOGWO [9] Pareto

dominance
Adapts grey wolf optimization
for multi-objective problems.

Demonstrates the use of
metaheuristics in

multi-objective optimization.
MOCSO [10] Pareto

dominance
Extends cat swarm

optimization for
multi-objective problems.

Highlights the use of
bio-inspired algorithms in

optimization.
MOCI [11] Pareto

dominance
Cohort Intelligence with

coevolutionary design
principles

Demonstrates the use of
coevolutionary principles.

ε-MOEA [24] Epsilon
dominance

Introduces ε-dominance for
balancing convergence and

diversity.

Provides a benchmark for
MOCBOA’s use of Epsilon

dominance.
GMOEO [12] Epsilon

dominance
Extends Equilibrium
optimization. Uses

ε-dominance and guided
exploration for improved

convergence.

Highlights the effectiveness of
guided exploration, relevant to

MOCBOA’s design.

GMOMPA [13] Epsilon
dominance

Extends Marine predator
optimization. Uses

ε-dominance and crowding
distance.

Demonstrates the use of
Epsilon dominance in marine
predator-inspired algorithms.

MOGSK [14] Epsilon
dominance

Extends GSK for
multi-objective problems

using ε-dominance.

Highlights the use of
knowledge-sharing

mechanisms, relevant to
MOCBOA’s design (human

based).
MOMRFO [17] Epsilon

dominance
Expands manta ray foraging

optimization using
ε-dominance.

Demonstrates the use of
Epsilon dominance in

bio-inspired algorithms.
Cone-ε-

MOEA [19]
Cone-epsilon-

dominance
Introduces cone-ε-dominance
for many-objective problems.

Provides insights into
Cone-epsilon dominance,

relevant to MOCBOA’s
comparison.

MOHHO [20] Strengthened
dominance

Uses Strengthened dominance
for balancing convergence and

diversity.

Demonstrates the effectiveness
of Strengthened dominance,

relevant to MOCBOA’s design.

(Continued)
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Table 1 (continued)

Algorithm Dominance
relation

Key features Relevance

NSGAII
(CSDR) [21]

Strengthened
dominance

Replaces Pareto dominance
with CSDR for improved

performance.

Highlights the use of
Strengthened dominance in

NSGA-II.
NSGAII

(RPS) [22]
Strengthened
dominance

Introduces RPS-dominance
for better stratification of

solutions.

Demonstrates the use of
reference points in dominance

relations.
MGDE [5,23] Strengthened

dominance
Uses Strengthened dominance

and bi-goal evolution for
many-objective problems.

Highlights the use of
Strengthened dominance in

differential evolution.

Building on these insights, in this work we present an extension of the Chef-Based Optimization
Algorithm (CBOA) [25] called the Multi-objective Chef-Based Optimization Algorithm (MOCBOA) to
tackle multi-objective optimization problems. MOCBOA incorporates mechanisms such as an external
archive, fast non-dominated sorting (FNS), and crowding distance (CD) to ensure a robust performance. A
key contribution of this work is the systematic comparison of four dominance relations, Pareto dominance,
Epsilon dominance, Cone-epsilon dominance, and Strengthened dominance to determine the most effective
strategy for updating archive solutions in MOCBOA. This comprehensive evaluation addresses a gap in the
literature, by conducting a systematic comparison of all four dominance relations.

This work’s specific contributions include the following:

• Extension of CBOA to Multi-Objective Optimization: We propose MOCBOA, the first multi-objective
extension of the Chef-Based Optimization Algorithm. MOCBOA uses an external archive to store the
non-dominated solutions and lead the total solutions to the best Pareto front.

• Diversity and Convergence: To maintain diversity, assure solutions convergence, and guarantee an
effective solution distribution, MOCBOA uses the FNS and crowding distance.

• Systematic Comparison of Dominance Relations: The performance of the four dominance relations
Pareto dominance, Epsilon dominance, Cone-epsilon dominance, and Strengthened dominance in the
context of MOCBOA is compared through an experimental study while used to update the archive
solutions. In order to assist in selecting the best approach for a particular optimization problem, this
study offers insights into each dominance relation.

• Validation on Real-World Problems Benchmark: We validate the effectiveness of MOCBOA on a wide
range of Real-World constrained MOPs (RWMOPs) including mechanical design, chemical engineering,
process, design, and synthesis, power electronics, and power systems.

• Impact: By providing a robust and versatile tool for solving complex MOPs, MOCBOA addresses
real-world challenges in engineering and other domains. The algorithm’s ability to adapt to different
dominance relations and problem contexts makes it a valuable contribution to the field of multi-objective
optimization. Our results underscore that the choice of a dominance relation significantly shapes the
optimization outcomes, influencing both solution diversity and convergence toward the Pareto front.

As shown in Fig. 1, the rest of the paper is structured as follows: Section 2 covers the mathematical
background of MOPs, Pareto dominance, Epsilon dominance, Cone-epsilon dominance, and Strengthened
dominance. Section 3 presents the single-objective version of the CBOA algorithm. Section 4 introduces the
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proposed MOCBOA algorithm. Section 5 presents the findings and discussion. Finally, some conclusions
are conveyed in Section 6.

Figure 1: Paper structure

2 Mathematical Background
This section contains definitions for concepts such as information on MOPs and Pareto dominance,

Epsilon dominance, Cone-epsilon dominance, and Strengthened dominance relations.

2.1 Multi-Objective Optimization Problems
Simultaneously gathering and optimizing opposing objective functions is a systematic procedure

known as multi-objective optimization. Depending on the problem’s nature, optimization may include
maximization or minimization of an objective. Such a minimization problem can be formulated as follows:

Minimize∶ fm (x) ; m = (1, 2, . . . , M) , (1)

subject to:

{g j (x)} = 0; j = (1, 2, 3, . . . , J) , (2)
hk (x) ≤ 0; k = (1, 2, 3, . . . , K) , (3)
loi ≤ xi ≤ upi , i = (1, 2, 3, . . . , L) , (4)

where the solution for the L decision variables is denoted by x = (x1 , x2, . . . , xL), while meeting the equality
constraints K for hk (x) and the inequality constraints J for g j (x). The value M denotes the number of
objective functions. Furthermore, loi and upi stand for lower and upper bounds, respectively.

2.2 Pareto Dominance
Using the relational arithmetic operators to compare the produced solutions in a MOP proved to be

challenging. Consequently, the idea of Pareto optimal dominance offered a straightforward method for
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contrasting options in the multi-objective search space. Moreover, the search space had a collection of Pareto
optimal solutions instead of a single optimum solution with a Pareto front image. The key concepts of the
Pareto dominance relation are as follows:

Definition 1. Pareto dominance: Consider two solutions u and u′. u is considered to dominate u′ (noted
as: u ≻ u′) if:

∀i ∈ {1, 2, 3, . . . , M} ∶ fi (u) ≤ fi (u′) and ∃ j ∈ {1, 2, 3, . . . , M} ∶ f j (u) < fi (u′) . (5)

Definition 2. Non-dominated set: Non-dominated solutions are those that are not dominated by any
other solution. Let B be a set of solutions including non-dominated solutions as members. B′ ⊆ B, denotes
the set of solutions that are not dominated by any other solution from the set B.

Definition 3. Pareto optimal set: The Pareto optimal set represents a collection of all non-dominated
solutions in the search space.

2.3 Epsilon Dominance
Laumanns et al. [24] presented the Epsilon dominance (ε-dominance) technique, which uses a two-level

selection process to keep a representative and diverse group of solutions for multi-objective optimization.
Using this method, the objective space is divided into hyper-boxes, each of which has a single solution vector.
The box-level dominance relation guarantees the preservation of a set of non-dominated boxes. The objective
space is first divided into hyper-boxes, and a vector B identifies each box. Every solution in the reference set
R(t) is represented by this vector. Simultaneously, another set of solutions, N(t), is taken into consideration,
wherein B = (B1 , B2, . . . , BM) denotes the identification vector linked to the M objectives and is expressed
as follows:

Bi ( f ) = ⌊ log( fi)
log(ε +1)⌋ , (6)

where ε stands for the permitted error, fi indicates the objective cost of the i-th solution, and ⌊.⌋ indicates
the absolute value.

Let R(t) be updated according to Epsilon dominance using a new set of solutions denoted as N(t),
following the computation of the identification vectors for the new set of solutions, the ε-dominance relation
is used to compare each new solution with the solutions from the reference set that already exist. Whether
a new solution belongs to the reference set or not is decided by this comparison. To be more precise, the
new solution n is admitted into the reference set, and the associated reference solution Ri is eliminated if the
new solution’s identification vector Bn dominates any identification vector BRi of a solution in the reference
set. In contrast, the new solution gets rejected if any of the BRi dominates Bn . A supplementary process
is used if neither of these scenarios is valid (that is, if Bn and BRi are incomparable): if the new solution
n dominates the reference solution Ri in regular dominance, then n is accepted. If no answer dominates
another one, the option that is closest to B is selected. Algorithm 1 presents the update process using the
Epsilon dominance relation.
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Algorithm 1: Reference set update using Epsilon dominance
Input: Reference set R(t), t is the iteration, n a candidate from the new set of solutions N(t)
Calculate vector Bn, calculate vector BR for all Reference set solutions R(t),

If ∃ x ∈ R (t) ∣Bx ≽ Bn then
n is not accepted

End if
If ∃ x ∈ R (t) ∣Bn ≽ Bx then

n replaces x in R(t)
End if
If neither of the preceding cases occurs then

If ∃ x ∈ R (t) ∣Bn ∼ Bx then
If n∼ x then

Keep the solution with the shortest distance to the identifier vector B
Else

Choose the solution that dominates another one
End if

Else
Add the solution n to the Reference set R(t)

End If
End If

2.4 Cone-Epsilon Dominance
Cone-epsilon dominance, a more flexible form of Pareto dominance that falls under the larger category

of relaxed dominance, was first proposed by Batista et al. [19]. Ikeda et al. [26] first proposed relaxed
dominance to deal with situations in which a solution has a relatively low value in one objective, making it
challenging to dominate. This was further refined by Ikeda et al. by adaptation of the α-dominance technique,
which defines upper and lower bounds between two primary objectives using linear trade-off functions.
This method enables a more flexible selection of non-dominated solutions, allowing a solution that would
normally be rejected by standard Pareto dominance to dominate another one if it is significantly better in
one objective but slightly inferior in another one.

Cone-epsilon dominance, which is based on relaxed dominance, is a hybrid form of both α- and
ε-dominance. It makes use of cones to manage the dominance zone while attempting to maintain the
convergence property of ε-dominance.

Definition 4. Cone: A set S is said to be a cone if λx∈S for any x ∈ S ∀ λ ≥ 0.
Definition 5. Generated cone for the vectors: u1 and u2: the generated cone is the set:

S = {z∶ z = λ1u1 + λ2u2,∀λ1 , λ2 ≥ 0} , (7)

With respect to dimension m, and considering ui (i ∈ {1, 2, . . . , m}), it can be rewritten as follows:

S = {z∶ z = λ1u1 + . . . + λmum + . . . + λiui ,∀λi ≥ 0} . (8)
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Furthermore, in relation to the origins of the box u1 = [ε1kε2]T and u2 = [kε1ε2]T , the cone can be
written as follows:

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

z∶

z
�
[z1

z2
] =

ψ
�������������������
[ε1kε2

kε1ε2
]

λ
�
[λ1

λ2
] ,∀λ1 , λ2 ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

, (9)

where ψ represents the cone dominance matrix, and k ∈ [0, 1) is a parameter that controls the cone opening.
Let the set R(t) be updated according to Cone-epsilon dominance using a new set of solutions denoted

as N(t), Cone-epsilon dominance creates hyper-boxes in the objective space, much like ε-dominance does.
Additionally, it adjusts to two types of dominance: regular Pareto dominance and box-level dominance. With
upper and lower bounds similar to the property adapted in α-dominance, the box contains a single unique
identification vector, b. Each solution derived from R(t) and N(t) is now allocated a box, and b is determined
as follows:

bi (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εi ⌊
xi

εi
⌋ , i ∈ {1, 2, . . . , m} f or minimizing fi

εi ⌈
xi

εi
⌉ , i ∈ {1, 2, . . . , m} f or maximizing fi

, (10)

where ⌈.⌉ returns the closest upper integer to their argument and ⌊.⌋ returns the closest lower integer.
Dominance at the box level is now necessary to add a solution to the reference set. Consider two

identification vectors of the N(t) solutions and the R (t) solutions, respectively, be bn and br . The bn is said
to cone-ε-dominate br only and only if bn Pareto dominates br or the solution to the linear system is ψλ = z,
with z = br − [bn − ε], εi > 0, gives λi ≥ 0,∀i ∈ {1, . . . , m} . Similarly, we say bn ≺coneε br if and only if:

(bn ≺ br) ∨ (ψλ = z∣λi ≥ 0, i ∈ {1, . . . , m}) (11)

A regular Pareto dominance is used when the identification vectors have the same box; the reference set
solution is substituted only if the new set solution also exhibits Pareto dominance. If not, the closest point to
the box’s origin is selected. The process for updating the reference set utilizing Cone-epsilon dominance is
displayed in Algorithm 2.

Algorithm 2: Reference set update using Cone-epsilon dominance
Input: Reference set R, Candidate solution n from a new set
Calculate vector bn, calculate vector b for all reference set solutions R,

If n is cone-ε-dominated by any r ∈ R then
Reject n

Else If n share the same box as reference set solution r then
If n dominates r or is closer to the origin of the box than r, then

Delete all archive members cone-ε-dominated and
Replace r by n

Else
Reject n

End If
(Continued)
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Algorithm 2 (continued)
Else If n cone-ε-dominates any r ∈ R, then

Delete all of the cone-ε-dominated reference set members
Insert n in the reference set.

Else
Insert n in the reference set.

End If

2.5 Strengthened Dominance Relation (SDR)
As proposed by Tian et al. [27], the Strengthened dominance relation employs a customized niching

strategy to achieve an optimal balance between the non-dominated solution set’s diversity and convergence.
A potential solution a is considered to be more dominant than another potential solution b by SDR
(represented as a ≺SDR b) if and only if:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Con (a) < Con (b) , θab ≤ θ

Con (a) . (θab

θ
) < Con (b) , θab > θ

, (12)

where Con (a) determines the degree of convergence of a, and it is expressed as Eq. (13). Furthermore, the
acute angle between the two candidate solutions’ objective values is denoted by θab according to Eq. (14).

Con (a) = ∑M
i=1 fi(a), (13)

θab = arccos ( f (a) , f (b)) , (14)

where θ indicates the niche size that each potential solution falls within. As per the first formula of Eq. (12),
a is considered to dominate b when a has a lower degree of convergence than b and the angle between a
and any candidate solution b is less than θ. According to the second formula of Eq. (12), the likelihood that
a will dominate b is negatively correlated with the angle θab , however, if two candidate solutions, a and b,
do not belong to the same niche, a can dominate b if a has a lower degree of convergence than b. As a result,
the SDR relation does not penalize solution a for choosing the solution with good convergence if the two
candidate solutions, a and b, are in the same niche. If they are not, the SDR relation penalizes solution a by
a factor of θab/θ to preserve diversity within the set of selected solutions. This dominance relation thereby
facilitates improvements in both the convergence and diversity of the solutions.

3 Chef-Based Optimization Algorithm (CBOA)
Before introducing the extended proposed version (MOCBOA), we first introduce the original single-

objective version. The CBOA [25] is a recently presented metaheuristic algorithm, inspired by the culinary
school learning process. CBOA’s innovative approach is inspired by culinary training. Training programs
offered by culinary schools are intended to improve students’ abilities and help them become skilled
cooks. This iterative refinement of viable solutions to arrive at an ideal result is akin to the process of
continuous improvement in metaheuristic algorithms. The conversion of student cooks into professional
chefs is embodied by the CBOA framework, which includes various crucial components:

• Chef Teachers: Each chef teacher at a cooking school is in charge of leading a class.
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• Class Selection: Students get to pick whatever classes they want to take, and their chef instructors will
teach them a variety of cooking techniques.

• Skill Refinement: With one-on-one instruction and supervision from a master chef instructor, chef
instructors continuously enhance their abilities.

• Students Learning: Students who study cooking strive to imitate and refine the methods that their chef
instructors teach them, honing their skills via experience.

• Graduation: After completing the program, culinary students are skilled cooks who have honed their
craft through instruction.

Mathematical Model
The CBOA is a population-based algorithm that is divided into two groups: chefs and cooking students.

Every component of the CBOA encapsulates details about the problem variables and suggests a potential
solution. Each member of the CBOA is represented mathematically as a vector and can be modeled in a
matrix. First, the population is initialized randomly, followed by the computation of the objective function
for each member of the population. Then, the selection process of the different groups of chefs/students is
done according to the objective function values, where the best results obtained will be selected as chefs
while the remaining are selected as students. The population members of COBA must be updated with each
iteration because the process is iterative. The update procedure varies depending on the group (chef/student)
according to the following two phases:

• Phase One: The competitive aspect of culinary expertise is shown by chefs striving to create quality rat-
ings.

• Phase Two: Students compete based on how well they can cook to get their quality ratings.

In phase one, the chefs adapt two strategies for an update: strategy one entails modeling themselves
after the best chef teacher to learn their techniques, improves the algorithm by not depending only on the
highest-ranking member of the population to train students, but also allowing the best chefs to hone their
skills before instructing pupils. Additionally, through the prevention of the algorithm becoming stuck in local
optima, this method allows the search space to be scanned more precisely and effectively. Eq. (15) determines
each culinary teacher’s new position for i = 1, 2, . . . , NC with NC be the number of chefs and j = 1, 2, . . . , m.

xsC/S1
i , j = xsi , j + r. (BC j − I.xsi , j) , (15)

where xsC/S1
i , j is the j-th coordinate of the newly calculated position based on the first strategy (C/S1) of

updating the chef instructor for the i-th sorted member of the algorithm, BC j is the j-th coordinate of
the best chef instructor, r is a random number from the interval [0, 1], and I is a number that is selected
randomly during the execution from the set {1, 2}. This new position is acceptable if it improves the value
of the objective function according to:

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSC/S1
i , j , FSC/S1

i , j < Fi

XSi , el se
(16)

where FSC/S1
i , j is the objective function value associated with xsC/S1

i , j .
In the second phase, through individualized exercises and activities, the chef instructor aims to enhance

his cooking abilities. attempts to find better solutions close to its location, regardless of the positions of
other members of the population. It is possible that local search and exploitation, with slight adjustments
to population members’ positions in the search space, can yield superior results. This idea states generating
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a random position around each instructor in the search space. This random position is appropriate for
updating if it improves the objective function value.

xsC/S2
i , j = xsi , j + lbl ocal

j r + (ubl ocal
j − lbl ocal

j ) , i = 1, 2, . . . , NC , j = 1, 2, . . . , m, (17)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSC/S2
i , j , FSC/S2

i , j < Fi

XSi , el se
, (18)

where ubl ocal
j = ub j

t is an upper bound, lbl ocal
j = l b j

t is a lower bound, t is the iteration count, XSC/S2
i , j is the

new position, C/S2 is the chef updating according to the second strategies and FSC/S2
i , j is the corresponding

objective function value.
In the second phase, students adapt three tactics for updating: The first one is that each cooking student

selects a class taught by a chef at random, and this chef instructor then teaches him cooking techniques. This
results in students learning from the best and moving in the search space according to Eq. (20) and moving
the students’ positions if the new objective function value is better:

XSS/S1
i , j = xsi , j + r.(CIki , j − I.xsi , j), (19)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S1
i , j , FSS/S1

i , j < Fi

XSi , el se
, (20)

where CI j is the selected chef, S/S1 is the students’ first updating strategy, and ki is randomly selected from
the set {1, 2, . . . , NC}.

The second tactic adapts a “skill” based update, where a random chef is selected and one of his variables
is taken to replace one of the student’s variables. This variable is regarded as a skill.

XSS/S2
i , j =

⎧⎪⎪⎨⎪⎪⎩

CIki , j , j = l ;
xsi , j , el se

, (21)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S2
i , j , FSS/S2

i , j < Fi

XSi , el se
. (22)

The third updating tactic focuses on local search, where students try to improve all of their variables.
Using a randomly generated position close to the student, similar to chef ’s second strategy (Eqs. (17) and (18))
a new position is generated as follows:

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S3
i , j , FSS/S3

i , j < Fi ,
XSi , el se

(23)

where FSS/S3
i , j is the objective function value for the new position XSS/S3

i , j , and S/S3 is the students’ third
updating strategy.

The above-mentioned whole process is repeated until the stopping criterion is met.

4 Multi-Objective Chef-Based Optimization Algorithm (MOCBOA)
This section provides a detailed outline of the proposed MOCBOA algorithm. The core of MOCBOA

is a mechanism for identifying non-dominated solutions by storing them in an external archive. The Pareto
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dominance relation plays a fundamental role in distinguishing non-dominated solutions, while the crowding
distance metric enhances diversity among the solutions, promoting a well-distributed set along the Pareto
front. Additionally, the FNS is incorporated to facilitate the generation of multiple Pareto fronts. To ensure
that the archive remains up-to-date with the most relevant solutions, MOCBOA uses a combination of
dominance relations to compare and refine the entries. In addition to the Pareto dominance, we employ
Epsilon dominance to allow a degree of tolerance in solution comparisons, Cone-epsilon dominance to focus
on solutions within a specific performance range, and Strengthened dominance to prioritize certain solution
characteristics. Together, these strategies enable a robust approach to maintaining an archive that reflects
a balanced and high-quality solution set throughout the optimization process. In summary, the employed
approach covers multiple key points:

• an external repository that can direct the candidates towards an optimal set and hold the best non-
dominated solutions.

• The update process of the archive’s solutions uses dominance relations, Epsilon dominance relations,
Cone-epsilon dominance, and Strengthened dominance relations, and a comparison between them
is established.

• Crowding distance and FNS are considered to ensure a well-diversified set of solutions and an effective
convergence towards the Pareto optimal.

The archive plays a crucial role in guiding solutions and preserving diversity in multi-objective
optimization algorithms, helping to produce an adequate set of solutions and to maintain an appropriate
balance amid exploration and exploitation. The quality and variance of the archive are vital to the algorithm’s
performance as it contains and updates the best solutions discovered during the optimization process. It is
crucial to experiment with various dominance relations since the selection of a relation might have a big
influence on the optimization process. Though Pareto dominance is the simplest and the most used one,
Epsilon dominance introduces a tolerance margin, which increases flexibility and diversity. Cone-epsilon
dominance is helpful when certain objectives are prioritized since it expands on this by concentrating on
particular areas of the objective space. By boosting solutions in less crowded regions and limiting premature
convergence, the Strengthened dominance promotes diversity and convergence. Thus, a comparison of dif-
ferent dominance relations is required to identify the most efficient one, since the optimal dominance relation
for the archive population can greatly increase the algorithm’s efficiency by guaranteeing well-distributed
and high-quality solutions. On the other side, the crowding distance and FNS are essential elements of multi-
objective optimization algorithms. FNS effectively groups solutions into distinct Pareto fronts, facilitating
the algorithm’s rapid identification and prioritization of non-dominated solutions. Conversely, the crowding
distance promotes diversity by giving priority to solutions in less crowded places and quantifying the density
of solutions near a particular point in the objective space. By properly balancing exploration and exploitation,
these strategies guarantee that the algorithm not only converges towards the Pareto-optimal front but also
preserves a diversified variety of solutions.

The proposed MOCBOA operates by going through a set of defined steps that are intended to evaluate
candidates, systematically explore the solution space, and iteratively refine the population toward optimal
solutions. Following establishing the initial population and its evaluation against the M objectives. we began
by applying the FNS to the initial population, followed by the crowding distance calculation to identify the
most optimal solutions. These top-performing solutions then formed the core of our Selected/Candidate
population. After that, we made use of an external archive known as the archive population, which initially
contained the first selected population’s non-dominated solution. During every step of the optimization
process, this archive kept the best result or the non-dominated set. To achieve Pareto set solutions in every
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iteration, the algorithm has to carry out the subsequent actions: update the selected population, update the
archive population, and then update the population position.

4.1 Selected Population Updating
This population is important since it has a direct impact on the upcoming archive update phase. Its

efficacy influences the diversity and quality of the solutions that are kept, which influences the optimization
process as a whole. The algorithm iterates through a combined pool of previous, current, and archived
populations, selecting the top solutions and systematically evaluating and classifying them to retain the best
candidates for further analysis.

• Create a pool of potential candidates: This pool is created based on combining the previous, current
and archive population in order to preserve diversity, maintain a well distributed set of solutions and
prevent premature convergence.

• Sorting the pool: once the pool is created, the FNS and crowding distance are implemented to sort the
solutions accurately according to ranks, after comparing the solutions individually and identifying the
non-dominated solutions by checking the two parameters ni the number of solutions that dominate
the solution i and Si the set of solution it dominates. Therefore, if ni = 0, then those solutions are excluded
in a separate front named F1, after that the whole process is repeated to find the next front solutions.

Algorithm 3 describes the steps adapted by FNS. Once the FNS finishes and to maintain the diversity, the
crowding distance is used by calculating for each solution the mean distance to its two surrounding solutions
of its cuboid, and ranking them according to this distance. The formulation of the crowding distance is as
follows:

CDi
f j =

f i+1
j + f i−1

j

f MAX
j + f MIN

j
(24)

where CDi
f j is the crowding distance of the i-th solution, f j is the j-th objective function value for the

neighboring solutions i + 1 and i − 1 of solution i . The max and min values for the j-th objective function
are represented by f MAX

j and f MIN
j , respectively, as shown in Fig. 2.

Figure 2: Crowding distance

After calculating the crowding distance of each solution and for each objective function, the solutions
are sorted by their crowding distance values that were found in ascending order.
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Algorithm 3: Fast non-dominated sort (FNS)
Input: X
For each x ∈ Xdo

For each y ∈ Xdo
If x dominates ythen

Add y to Sx
Else

If x is dominated by y, then
Increase the count nx

If no solution dominated x , then
x belongs to the first front F
While Fi ≠ 0 do

For each individual pinFi do
For modify each member from the set Sx do: Decrease the count ny by one

If ny = 0, for the member y in H, then
Current front is formed by the members of the H

End

4.2 Archive Updating
The archive population is essential to maintaining the best solutions discovered during the process

of optimization. It helps direct the search by influencing subsequent decisions and stores non-dominated
solutions to make sure they are not lost. Additionally, the archive preserves diversity by preserving a
range of solutions and progresses over time by demonstrating how the quality of solutions increases. It
also makes it possible to compare several dominance strategies, including Strengthened dominance, Cone-
epsilon dominance, Epsilon dominance, and Pareto dominance. The most optimal and varied set of solutions
can be obtained by utilizing one dominant method at a time and examining the archive. Since a clearly
defined dominance relation improves convergence, making sure that the optimization process proceeds
gradually in the direction of better solutions while maintaining population variety and the search space can
be thoroughly explored.

In the update process of the archive, the previously mentioned dominance strategies were used, one at
a time. Once the selected population is obtained, it participates in this process by comparing one solution
of the archive against the whole selected population. If the archive solution dominates, then it stays in the
archive, if not it is replaced by the solution from the selected population. To control the size of the archive
and ensure a smooth optimization process, the archive size is limited to the first N solutions.

4.3 Population Updating
Updating the population position to move on with the optimization process is the same as the one

employed in the version with only one objective. However, to direct the population towards the Pareto
optimal set, the archive population is used in the process. The archive population has been incorporated
according to each strategy.

4.3.1 Chef Instructors Update Process
Strategy 1: Modelling themselves after the best chef teacher: This strategy adapts the same equation as

the single-objective version using a randomly selected solution of the archive population in the process as
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follows:

xsC/S1
i , j = xsi , j + r.(Asol − I.xsi , j), (25)

where this new position is acceptable to the MOCBOA if it dominates as follows:

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSC/S1
i , j , FSC/S1

i , j ≻ Fi

XSi , el se
. (26)

Strategy 2: Through individualized exercises and activities: The single-objective version uses a local
search and exploitation, with slight adjustments to population members’ positions in the search space, which
can yield superior results. This idea states generating a random position around each instructor in the search
space. However, since the archive holds the best solutions discovered so far. it is used to help guide the
solution towards the optimal results. In the MOCBOA algorithm, instead of generating a local random
solution, a random solution Asol is chosen from the archive and used as follows:

xsC/S2
i , j = xsi , j + Asol , i = 1, 2, . . . , NC , j = 1, 2, . . . , m, (27)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSC/S2
i , j , FSC/S2

i , j ≻ Fi

XSi , el se
. (28)

4.3.2 Students Update Process
Strategy 1: Selecting a random chef and learning a skill: In this strategy, each cooking student selects

a class taught by a chef at random, and this chef instructor then teaches cooking techniques. It results in
students learning from the best and moving in the search space. In the MOCBOA algorithm, instead of
selecting a chef, a solution is selected from the archive as Asol as follows:

XSS/S1
i , j = xsi , j + r.(Asol − I.xsi , j). (29)

Accordingly, the student’s position is moved, if the new objective function value dominates:

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S1
i , j , FSS/S1

i , j ≻ Fi

XSi , el se
. (30)

Strategy 2: Chef selection: One of the variables within the chef is taken to replace by one of the student’s
variables. Here, a random variable within a solution from the archive Asol ,ki is used as:

XSS/S2
i , j =

⎧⎪⎪⎨⎪⎪⎩

Asol ,ki , j , j = l ;
xsi , j , el se

, (31)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S2
i , j , FSS/S2

i , j ≻ Fi

XSi , el se
. (32)

Strategy 3: Focus on a local search, where students try to improve all of their variables: Using a randomly
generated position close by the student, similar to the chef ’s second strategy, a new position is generated. As
for the MOCBOA algorithm, instead of a random local solution, an archive solution Asol is used as follows:
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xsS/S3
i , j =

⎧⎪⎪⎨⎪⎪⎩

xsi , j + Asol , J = q;
xsi , j , J ≠ q

, (33)

XSi =
⎧⎪⎪⎨⎪⎪⎩

XSS/S3
i , j , FSS/S3

i , j ≻ Fi

XSi , el se
, (34)

where q is a random number from {1, 2, . . . , m}, i = NC + 1, NC + 2, . . . , N , & j = 1, 2, . . . , m.
This process is repeated until the stopping criterion is met. Fig. 3 shows the overall flowchart of the

proposed MOCBOA algorithm, and Algorithm 4 describes its pseudo-code.

Figure 3: Flowchart of the proposed MOCBOA algorithm
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The computational complexity of the MOCBOA algorithm was analyzed by defining N as the population
size and M as the number of objectives. The main loop of the algorithm shares the same complexity as the
CBOA algorithm [25], which operates in polynomial time of O(tdN + tcN), where t represents the number
of iterations, c is the cost function, and d is the problem dimension. The first operation, fast non-dominated
sorting (FNS), has a complexity of O(MN2). The second operation, crowding distance calculation, has a
complexity of O(2Nlog(2N)). Updating the archive involves several dominance relations depending on the
selected one:

• Pareto dominance, the most commonly used relation, has a complexity of O(MN2) due to pairwise
comparisons of solutions.

• Epsilon dominance (ε-dominance), also has a complexity of O(MN2).
• Cone-ε-dominance, an extension of ε-dominance, incurs a complexity of O(M2N).
• Strengthened dominance relation, which enhances the selection process by balancing convergence and

diversity, typically has a complexity of O(MN2).

As a result, the overall processing time of GMOEO is determined by the maximum of these complexi-
ties: max [O (tdN + tcN) , O (MN2) , O (2Nlog (2N)) , O (MN2) , O (M2N) , O (MN2)] . However, the
dominant complexity of MOCBOA is O(MN2), which is consistent with the complexities of MOPSO [8]
and MOGWO [9].

Algorithm 4: Multi-objective chef-based optimization algorithm (MOCBOA)
Initialize the search agent N, max iteration T
Generate a random population X
Fort = 1 to T

For i = 1 to N
Evaluate the fitness function for X

End
If t = 1 then

Sort X by FNS
Generate the values of crowding distance
Set the Archive with the non-dominated solutions of X

Else
Selected population = Xt−1 ∪ Xt ∪ Archivet−1

Sort Selected population using FNS
Generate the values of crowding distance
Select the first N solutions for selected population
Update Archive using Pareto or Epsilon or Cone-epsilon or Strengthened dominance

If Archive size > N
Select the first N solution of the Archive

End
End
Phase 1: Chef instructors update process
For i = 1 to NC

Update X based on the 1st strategy of chef instructors using Archive Asol : Eqs. (25) and (26)
Update X based on the 2nd strategy of chef instructors using Archive Asol : Eqs. (27)
and (28)

(Continued)
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Algorithm 4 (continued)
End
End Phase 1
Phase 2: Student update process
For i = +1 to N

Update X based on the 1st strategy of student using Archive Asol : Eqs. (29) and (30)
Update X based on the 2nd strategy of student using Archive Asol : Eqs. (31) and (32)
Update X based on the 3rd strategy of student using Archive Asol : Eqs. (33) and (34)

End
End Phase 2

End
Return Archive

5 Results and Discussion
In this section, we validate the proposed algorithm through experiments on real-world engineering

problems, known as RWMOPs. These benchmark problems span a variety of engineering and scientific
domains, compiled from diverse fields [12]. The test suite includes mechanical design problems (R1–R21),
chemical engineering problems (R22–R24), process design and synthesis problems (R25–R29), power
electronics problems (R30–R35), and power system problems (R36–R50), in total 50 test cases, as detailed
in Table 2.

The main metric used to quantify the performance of the proposed algorithm is the hypervolume
indicator (HV) [28] which measures both the convergence and diversity of the solutions, a high HV indicates
a better performance. HV evaluates the results of an optimization process by concurrently considering the
proximity of points to the Pareto front, as well as diversity and spread. HV also referred to as the S measure,
represents the volume in the objective space that is dominated by the Pareto front concerning the reference
point r ∈ Rm as a constraint, for all z ∈ S such that z ≺ r. The HV metric is identified as Eq. (35), with λm as
the m-dimensional Lebesgue measure.

HV (S , r) = λm (⋃
z∈S
[z; r]) , (35)

We assess the effectiveness of four distinct dominance strategies on the performance of the MOCBOA
algorithm: Pareto, Epsilon, Cone-epsilon, and Strengthened dominance. For each test problem, we conduct a
comprehensive analysis, presenting the best, worst, average, and median outcomes and comparing standard
deviations to evaluate the consistency of the solutions. Finally, we examine overall patterns observed across
the test problems, comparing the performance of each dominance approach against the others, with a focus
on identifying which technique yields the best outcomes in terms of the hypervolume (HV) metric. The
experimental settings are standardized to 50 search agents, 10 independent runs, and a maximum of 30,000
function evaluations (i.e., 600 iterations).

Table 2: Real-world problems

Problem Description Problem Description
R1 Design of pressure vessels [29] R2 Design of vibrating platform [30]

(Continued)
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Table 2 (continued)

Problem Description Problem Description
R3 Design of two bar truss [31] R4 Design of welded beam [32]
R5 Disc brake design [33] R6 Speed reducer design [34]
R7 Gear train design [35] R8 Car side impact design [36]
R9 Four bar plane truss [37] R10 Two bar plane truss
R11 Water resources management R12 Simply supported I-beam

design [38]
R13 Gear box design R14 Multiple disk clutch brake

design [39]
R15 Spring design [29] R16 Cantilever beam design [40]
R17 Bulk carrier design [41] R18 Front rail design [42]
R19 Multi-product batch plant [43] R20 Hydrostatic trust baring

design [44]
R21 High-speed train crash energy

management [45]
R22 Haverly’s pooling test [46]

R23 Reactor network design [47] R24 Heat exchanger network
design [48]

R25 Process synthesis problem [49] R26 Process synthesis and design [50]
R27 Process flow sheeting problem [51] R28 Two reactor problem [49]
R29 Process synthesis problem [49] R30 Synchronous optimal pulse-width

modulation in 3-level inverters [52]
R31 Synchronous optimal pulse-width

modulation in 5-level inverters [53]
R32 Synchronous optimal pulse-width

modulation of 7-leval inverters [54]
R33 Synchronous optimal pulse-width

modulation of 9-leval inverters [55]
R34 Synchronous optimal pulse-width

modulation of 11-level
inverters [56]

R35 Synchronous optimal pulse-width
modulation of 13-level

inverters [56]

R36 Optimal sizing of single-phase DG
with Reactive power support to
decrease active power loss [57]

R37 Optimal sizing of single-phase DG
with reactive power support to

decrease reactive power loss [57]

R38 Optimal sizing of single-phase DG
with reactive power support to

decrease active and reactive power
loss [57]

R39 Optimal sizing of single-phase DG
with reactive power support to

decrease active and reactive power
loss [57]

R40 Optimal power flow to decrease
active and reactive power loss [58]

R41 Optimal power flow for reducing
voltage deviation, active and

reactive power loss [59]

R42 Optimal power flow to decrease
voltage deviation, and active power

loss [60]

(Continued)
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Table 2 (continued)

Problem Description Problem Description
R43 Optimal power flow to decrease

fuel cost, and active power loss [61]
R44 Optimal power flow to decrease

fuel cost, and active and reactive
power loss [62]

R45 Optimal power flow to decrease
fuel cost, voltage deviation and

active power loss [58]

R46 Optimal power flow to decrease
fuel cost, voltage deviation, active

and reactive power loss [58]
R47 The problem of optimal droop

setting to decrease active and
reactive power loss [63]

R48 Optimal droop setting to decrease
voltage deviation and active power

loss [64]
R49 Optimal droop setting to decrease

voltage deviation, active, and
reactive power loss [65]

R50 Power distribution system
planning [66]

5.1 Mechanical Design Problems
Table 3 summarizes the results of MOCBOA across the four dominance techniques to gain a clearer

picture of their relative performance on mechanical design problems. Furthermore, Figs. 4 and 5 visually
illustrate the performance trends of each dominance technique across the benchmark problems, providing
a comparative view of both consistency and variability in results.

Table 3: Results for the mechanical design problems R1–R21

R1 R2 R3 R4 R5 R6 R7

MOCBOA
Pareto

dominance

Worst 9.52E − 01 1.00E + 00 0.00E + 00 7.71E − 01 5.89E − 01 3.04E − 01 3.84E − 01
Best 8.11E − 01 1.35E − 01 0.00E + 00 6.58E − 01 4.43E − 01 2.53E − 01 0.00E + 00

Average 8.63E − 01 7.13E − 01 0.00E + 00 7.23E − 01 5.60E − 01 2.86E − 01 2.06E − 01
Median 8.46E − 01 8.16E − 01 0.00E + 00 7.26E − 01 5.77E − 01 2.86E − 01 2.41E − 01

Std 4.70E − 02 3.07E − 01 0.00E + 00 3.36E − 02 4.39E − 02 1.59E − 02 1.37E − 01

MOCBOA
Epsilon

dominance

Worst 1.00E + 00 1.00E + 00 0.00E + 00 7.86E − 01 5.94E − 01 3.05E − 01 3.79E − 01
Best 9.92E − 01 7.40E − 01 0.00E + 00 6.24E − 01 4.89E − 01 2.78E − 01 0.00E + 00

Average 9.98E − 01 9.04E − 01 0.00E + 00 7.31E − 01 5.71E − 01 2.97E − 01 1.37E − 01
Median 9.98E − 01 9.41E − 01 0.00E + 00 7.41E − 01 5.87E − 01 3.00E − 01 9.24E − 02

Std 2.16E − 03 9.19E − 02 0.00E + 00 5.51E − 02 3.51E − 02 8.32E − 03 1.30E − 01

MOCBOA
Cone-
epsilon

dominance

Worst 9.81E − 01 8.65E − 01 0.00E + 00 7.61E − 01 5.51E − 01 2.89E − 01 2.10E − 01
Best 8.00E − 01 1.08E − 02 0.00E + 00 5.92E − 01 4.19E − 01 2.51E − 01 0.00E + 00

Average 8.80E − 01 4.23E − 01 0.00E + 00 6.64E − 01 4.76E − 01 2.67E − 01 6.63E − 02
Median 8.93E − 01 3.80E − 01 0.00E + 00 6.64E − 01 4.83E − 01 2.65E − 01 5.64E − 02

Std 6.67E − 02 2.33E − 01 0.00E + 00 5.39E − 02 4.02E − 02 1.15E − 02 6.31E − 02

MOCBOA
Strengthened
dominance

Worst 9.19E − 01 1.00E + 00 0.00E + 00 7.40E − 01 5.89E − 01 3.04E − 01 3.90E − 01
Best 0.00E + 00 1.16E − 01 0.00E + 00 5.46E − 01 5.05E − 01 2.74E − 01 6.77E − 02

Average 3.38E − 01 7.90E − 01 0.00E + 00 6.96E − 01 5.63E − 01 2.93E − 01 2.76E − 01
Median 2.04E − 01 1.00E + 00 0.00E + 00 7.04E − 01 5.81E − 01 2.95E − 01 3.04E − 01

Std 3.31E − 01 3.47E − 01 0.00E + 00 5.65E − 02 3.37E − 02 1.01E − 02 1.07E − 01

(Continued)
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Table 3 (continued)

MOCBOA
Pareto

dominance

R8 R9 R10 R11 R12 R13 R14
Worst 1.92E − 02 3.40E − 01 8.35E − 01 7.17E − 02 4.81E − 01 8.61E − 02 6.05E − 01
Best 1.59E − 02 2.90E − 01 7.70E − 01 4.65E − 02 3.74E − 01 6.54E − 02 3.60E − 01

Average 1.69E − 02 3.17E − 01 8.08E − 01 6.11E − 02 4.26E − 01 8.02E − 02 5.25E − 01
Median 1.65E − 02 3.15E − 01 8.09E − 01 6.13E − 02 4.21E − 01 8.28E − 02 5.46E − 01

Std 9.64E − 04 1.56E − 02 1.95E − 02 6.76E − 03 2.86E − 02 6.74E − 03 8.11E − 02

MOCBOA
Epsilon

dominance

Worst 1.80E − 02 3.40E − 01 8.31E − 01 7.29E − 02 4.62E − 01 8.90E − 02 5.89E − 01
Best 1.57E − 02 2.96E − 01 7.59E − 01 6.61E − 02 3.92E − 01 7.78E − 02 4.03E − 01

Average 1.68E − 02 3.19E − 01 8.12E − 01 6.92E − 02 4.22E − 01 8.42E − 02 5.10E − 01
Median 1.65E − 02 3.21E − 01 8.20E − 01 6.94E − 02 4.20E − 01 8.45E − 02 5.34E − 01

Std 9.79E − 04 1.66E − 02 2.13E − 02 1.98E − 03 2.62E − 02 3.83E − 03 7.38E − 02

MOCBOA
Cone-
epsilon

dominance

Worst 1.87E − 02 3.26E − 01 8.37E − 01 6.91E − 02 4.39E − 01 8.65E − 02 4.57E − 01
Best 1.57E − 02 2.86E − 01 7.67E − 01 5.26E − 02 3.34E − 01 7.05E − 02 2.72E − 01

Average 1.71E − 02 3.09E − 01 8.09E − 01 6.24E − 02 3.98E − 01 8.07E − 02 3.69E − 01
Median 1.70E − 02 3.10E − 01 8.12E − 01 6.39E − 02 3.99E − 01 8.25E − 02 3.60E − 01

Std 1.01E − 03 1.35E − 02 2.47E − 02 5.79E − 03 3.10E − 02 5.66E − 03 5.72E − 02

MOCBOA
Strengthened
dominance

Worst 1.95E − 02 3.35E − 01 8.26E − 01 6.75E − 02 4.59E − 01 8.64E − 02 5.78E − 01
Best 1.55E − 02 2.98E − 01 7.53E − 01 5.09E − 02 3.48E − 01 7.07E − 02 3.57E − 01

Average 1.73E − 02 3.22E − 01 7.86E − 01 6.00E − 02 4.07E − 01 8.04E − 02 5.04E − 01
Median 1.73E − 02 3.26E − 01 7.83E − 01 6.01E − 02 4.14E − 01 8.10E − 02 5.47E − 01

Std 1.09E − 03 1.24E − 02 2.39E − 02 4.58E − 03 3.33E − 02 4.39E − 03 8.27E − 02

MOCBOA
Pareto

dominance

R15 R16 R17 R18 R19 R20 R21
Worst 7.03E − 01 6.45E − 01 2.89E − 01 3.56E − 02 6.58E − 01 2.13E − 01 2.69E − 02
Best 1.85E − 01 1.26E − 01 3.39E − 02 3.15E − 02 6.26E − 01 1.73E − 01 2.43E − 02

Average 5.45E − 01 4.97E − 01 1.48E − 01 3.38E − 02 6.42E − 01 1.86E − 01 2.55E − 02
Median 6.05E − 01 5.37E − 01 1.47E − 01 3.41E − 02 6.40E − 01 1.74E − 01 2.54E − 02

Std 1.63E − 01 1.57E − 01 8.20E − 02 1.34E − 03 9.52E − 03 1.74E − 02 7.69E − 04

MOCBOA
Epsilon

dominance

Worst 7.36E − 01 6.98E − 01 2.56E − 01 3.80E − 02 6.46E − 01 6.29E − 01 2.76E − 02
Best 1.81E − 01 5.06E − 01 4.26E − 02 3.09E − 02 5.63E − 01 1.71E − 01 2.47E − 02

Average 5.30E − 01 6.11E − 01 1.40E − 01 3.60E − 02 6.13E − 01 2.32E − 01 2.59E − 02
Median 5.81E − 01 6.20E − 01 1.69E − 01 3.66E − 02 6.14E − 01 1.74E − 01 2.59E − 02

Std 1.98E − 01 6.67E − 02 6.88E − 02 2.29E − 03 2.52E − 02 1.42E − 01 8.49E − 04

MOCBOA
Cone-
epsilon

dominance

Worst 7.39E − 01 6.35E − 01 2.60E − 01 3.40E − 02 5.74E − 01 2.32E − 01 2.70E − 02
Best 3.06E − 01 3.29E − 01 2.68E − 02 2.72E − 02 4.69E − 01 1.71E − 01 2.51E − 02

Average 5.18E − 01 5.38E − 01 1.04E − 01 3.16E − 02 5.13E − 01 1.89E − 01 2.61E − 02
Median 4.84E − 01 5.48E − 01 9.74E − 02 3.20E − 02 5.16E − 01 1.75E − 01 2.62E − 02

Std 1.41E − 01 8.37E − 02 7.62E − 02 2.34E − 03 3.86E − 02 2.20E − 02 6.54E − 04

MOCBOA
Strengthened
dominance

Worst 7.65E − 01 6.56E − 01 4.41E − 01 3.63E − 02 6.59E − 01 1.00E + 00 2.89E − 02
Best 2.21E − 01 4.34E − 01 2.85E − 02 2.77E − 02 6.30E − 01 1.74E − 01 2.51E − 02

Average 4.76E − 01 5.58E − 01 2.12E − 01 3.31E − 02 6.42E − 01 7.58E − 01 2.67E − 02
Median 4.96E − 01 5.85E − 01 2.00E − 01 3.35E − 02 6.42E − 01 1.00E + 00 2.68E − 02

Std 1.87E − 01 8.02E − 02 1.50E − 01 2.57E − 03 9.31E − 03 3.90E − 01 1.19E − 03

Starting with Pareto dominance, we observe that it consistently achieves respectable median values
across the benchmarks, suggesting steady performance. However, it struggles with variability, as indicated
by relatively high standard deviations in certain cases, such as in R2 and R7. This variability hints at potential
inconsistencies when tackling more intricate problem landscapes. Overall, Pareto dominance demonstrates
a solid performance, yet it might be less dependable under more complex conditions. Epsilon dominance,
on the other hand, shows stability, particularly with narrow standard deviations in many of the results.
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For example, its performance on R8 and R16 remains within a tight range, illustrating its ability to handle
complex benchmarks consistently. However, its “worst” performance values are generally slightly higher than
those observed with Pareto dominance, suggesting that while it maintains reliability, it may sometimes miss
achieving the most optimal solutions, possibly due to its tolerance parameter, which affects precision. Moving
to Cone-epsilon dominance, this technique seems adept at balancing solution precision and consistency,
particularly on benchmarks R9 and R13. It often yields lower best values across several benchmarks,
indicating its ability to reach closer-to-optimal solutions in these cases. However, a slight trade-off is
apparent, as its median values do not consistently outperform the other techniques. This pattern suggests that
while Cone-epsilon is effective at handling specific instances with precision, it may be outperformed in terms
of general robustness across varying problem types. Lastly, Strengthened dominance showcases impressive
performance on some challenging benchmarks, such as R17 and R18. This technique is especially notable
for occasionally achieving exceptionally low “best” values. However, it exhibits considerable variability with
broader ranges between best and worst results on some benchmarks. This variability implies that while
Strengthened dominance can excel under the right conditions, it may not be as reliable in consistently
producing optimal solutions across the board.

The results show that each dominance technique demonstrates unique strengths and weaknesses in
addressing the benchmarks. Pareto dominance is solid but somewhat variable, Epsilon dominance is stable
yet less precise in finding optimal solutions, Cone-epsilon dominance achieves good precision but has limited
general consistency, and Strengthened dominance excels with low best values yet faces variability challenges.
These observations underline the importance of selecting the appropriate dominance technique based on
specific optimization goals and problem characteristics.

Figure 4: HV analysis across mechanical design problems (R1–R11)
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Figure 5: HV analysis across mechanical design problems (R12–R21)

5.2 Chemical Engineering Problems
The results from the MOCBOA algorithm in Table 4 demonstrate clear distinctions in the perfor-

mance of different dominance approaches across the chemical engineering problems R22–R24. The Epsilon
dominance approach consistently delivers stable and high-quality outcomes, showcasing its effectiveness
in multi-objective optimization tasks. Its performance is characterized by minimal variability, making it
a reliable method for solving complex problems. As shown in Fig. 6, this dominance method performs
exceptionally well across all test cases, maintaining consistency even in more challenging scenarios. This
consistency underscores the Epsilon dominance approach as a dependable choice when stability is a key
requirement in multi-objective optimization.

Table 4: Results for the chemical engineering problems R22–R24

R22 R23 R24

MOCBOA Pareto dominance

Worst 1.00E + 00 8.68E − 01 1.00E + 00
Best 9.37E − 01 5.67E − 01 0.00E + 00

Average 9.90E − 01 7.56E − 01 1.36E − 01
Median 1.00E + 00 7.76E − 01 0.00E + 00

Std 2.00E − 02 9.20E − 02 3.24E − 01

(Continued)
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Table 4 (continued)

R22 R23 R24

MOCBOA Epsilon dominance

Worst 1.00E + 00 9.72E − 01 1.00E + 00
Best 9.82E − 01 5.22E − 01 0.00E + 00

Average 9.95E − 01 6.95E − 01 8.00E − 01
Median 9.98E − 01 6.75E − 01 1.00E + 00

Std 6.39E − 03 1.41E − 01 4.22E − 01

MOCBOA Cone-epsilon dominance

Worst 8.66E − 01 6.23E − 01 0.00E + 00
Best 7.19E − 01 3.12E − 01 0.00E + 00

Average 8.12E − 01 4.28E − 01 0.00E + 00
Median 8.13E − 01 4.20E − 01 0.00E + 00

Std 4.38E − 02 9.34E − 02 0.00E + 00

MOCBOA Strengthened dominance

Worst 1.00E + 00 9.99E − 01 2.02E + 04
Best 6.92E − 01 5.53E − 01 0.00E + 00

Average 9.49E − 01 7.80E − 01 2.02E + 03
Median 9.99E − 01 7.77E − 01 0.00E + 00

Std 9.72E − 02 1.27E − 01 6.39E + 03

Figure 6: HV analysis across chemical engineering problems (R22–R24)
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In contrast, the Dominance approach performs reasonably well in simpler problems but struggles
significantly when applied to more complex situations. The results reveal noticeable inconsistencies and
variability, particularly in more intricate problems, which make this approach less stable and reliable.
These issues suggest that while the Dominance approach may work effectively for straightforward cases, its
performance degrades when faced with the added complexity of real-world multi-objective challenges. The
variability seen in the results further emphasizes the need for a more robust approach when dealing with
difficult problems, making the Dominance approach less suitable for such tasks.

The Cone-epsilon dominance method presents a more nuanced performance. While it shows promising
results in certain cases, it also experiences significant variability in others, indicating a high sensitivity to
the nature of the problem. This inconsistent behavior suggests that while Cone-epsilon dominance can
be effective for some problem types, its performance may not be dependable across the full spectrum of
multi-objective optimization problems. Similarly, the Strengthened dominance method demonstrates both
strengths and weaknesses. It performs well in some instances but exhibits considerable variability in others,
particularly when tackling more challenging problems. According to the obtained results, this approach
struggles with stability, particularly in cases where the problem complexity is higher, further emphasizing its
unreliability in more difficult scenarios. These findings suggest that the Epsilon dominance approach remains
the most stable and reliable choice, while the others may require further refinement or may only be suitable
for less complex tasks.

5.3 Process, Design and Synthesis Problems
The results of the MOCBOA algorithm for the process design and synthesis problems (R25–R29)

are summarized in Table 5. For the Pareto dominance approach, the results exhibit good consistency in
most cases, especially for problems R25, R26, and R29, where the worst, best, and average performance
measures show relatively tight ranges. This suggests that Pareto dominance can provide solid solutions
in these problems, though there is some variability, particularly with problem R27, which demonstrates a
high degree of difficulty as evidenced by the very large worst-case value. This indicates that while Pareto
dominance can perform reliably in simpler scenarios, it struggles significantly with more complex problem
sets, highlighting its limitations in handling the entire spectrum of multi-objective optimization problems.

Table 5: Results for the process, design and synthesis problems R25–R29

R25 R26 R27 R28 R29

MOCBOA Pareto
dominance

Worst 1.76E − 01 6.62E − 02 1.40E + 04 1.00E + 00 1.00E + 00
Best 1.38E − 01 5.15E − 02 1.00E + 00 1.00E + 00 9.55E − 01

Average 1.54E − 01 5.98E − 02 2.73E + 03 1.00E + 00 9.92E − 01
Median 1.53E − 01 6.09E − 02 2.18E + 01 1.00E + 00 9.99E − 01

Std 1.10E − 02 5.16E − 03 5.55E + 03 0.00E + 00 1.53E − 02

MOCBOA
Epsilon

dominance

Worst 1.00E + 00 8.75E − 01 2.06E + 00 1.00E + 00 1.00E + 00
Best 8.64E − 01 7.33E − 01 1.65E + 00 1.00E + 00 0.00E + 00

Average 9.68E − 01 8.08E − 01 1.86E + 00 1.00E + 00 8.65E − 01
Median 9.74E − 01 8.18E − 01 1.82E + 00 1.00E + 00 9.93E − 01

Std 3.86E − 02 4.64E − 02 1.17E − 01 0.00E + 00 3.14E − 01

(Continued)
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Table 5 (continued)

R25 R26 R27 R28 R29

MOCBOA
Cone-epsilon

dominance

Worst 1.87E − 01 6.99E − 02 1.02E + 01 4.88E − 01 0.00E + 00
Best 1.38E − 01 4.38E − 02 1.00E + 00 6.44E − 02 0.00E + 00

Average 1.54E − 01 5.75E − 02 3.09E + 00 2.31E − 01 0.00E + 00
Median 1.49E − 01 5.78E − 02 1.86E + 00 2.58E − 01 0.00E + 00

Std 1.59E − 02 7.61E − 03 3.08E + 00 1.27E − 01 0.00E + 00

MOCBOA
Strengthened

dominance

Worst 4.76E + 00 7.10E − 02 1.34E + 00 1.00E + 00 1.00E + 00
Best 0.00E + 00 0.00E + 00 1.00E + 00 1.00E + 00 9.65E − 01

Average 9.70E − 01 5.60E − 02 1.04E + 00 1.00E + 00 9.94E − 01
Median 4.76E − 02 6.24E − 02 1.00E + 00 1.00E + 00 9.98E − 01

Std 1.95E + 00 2.06E − 02 1.07E − 01 0.00E + 00 1.06E − 02

The Epsilon dominance approach, on the other hand, shows strong performance in most problems,
with notably high average and median values for R25, R26, and R28. The approach excels particularly in its
ability to handle the worst-case scenarios, providing a good balance of consistency and quality. However,
problems like R27 and R29, especially with the latter having lower performance on average, demonstrate that
Epsilon dominance can sometimes struggle with certain problem complexities, leading to a higher standard
deviation. This points to a method that is highly effective in many cases but still sensitive to the specific nature
of the problem, requiring further refinement or adjustments to handle outliers effectively.

The Cone-epsilon dominance approach exhibits a mixed performance across the problem set, with
some issues like R27 and R29 showing significant variability and poor results. The worst-case values for
R27 in particular are quite high, signaling that this approach may not be the best choice for all types of
optimization problems. The results reveal that while Cone-epsilon dominance can be effective in simpler
cases like R25 and R26, it struggles significantly in more complicated scenarios, as seen in R27. Similarly,
the Strengthened dominance approach presents a contrasting performance, with some very large worst-case
values for problems like R25 and R27, but it also provides some strong results, particularly for R28 and R29.
This shows that the Strengthened dominance method can excel in some areas but has considerable instability,
especially for more complex problems. As illustrated in Fig. 7, these variations in the performance across
different dominance methods reinforce the need for a careful selection of the right approach depending on
the problem’s characteristics and complexity.
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Figure 7: HV analysis across process, design and synthesis problems (R25–R29)

5.4 Power Electronics Problems
The results of the MOCBOA algorithm applied to power electronics problems (R30–R35) in Table 6

reveal interesting patterns across the various dominance approaches. The obtained results in this section can
be discussed as follows:

Table 6: Results for the power electronics problems R30–R35

R30 R31 R32 R33 R34 R35

MOCBOA Pareto
dominance

Worst 9.09E − 02 6.60E − 01 4.85E − 01 1.68E − 01 5.36E − 01 9.94E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 4.68E − 01

Average 9.09E − 03 3.74E − 01 1.67E − 01 3.96E − 02 1.87E − 01 7.36E − 01
Median 0.00E + 00 4.05E − 01 1.68E − 01 0.00E + 00 1.51E − 01 7.49E − 01

Std 2.87E − 02 2.21E − 01 1.64E − 01 6.64E − 02 2.04E − 01 1.99E − 01

MOCBOA Epsilon
dominance

Worst 2.68E − 01 7.09E − 01 4.89E − 01 5.00E − 01 4.49E − 01 8.05E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.89E − 01

Average 4.42E − 02 3.70E − 01 1.09E − 01 8.80E − 02 1.04E − 01 6.17E − 01
Median 0.00E + 00 3.93E − 01 0.00E + 00 0.00E + 00 0.00E + 00 6.01E − 01

Std 9.58E − 02 2.56E − 01 1.72E − 01 1.66E − 01 1.81E − 01 1.61E − 01

MOCBOA
Cone-epsilon

dominance

Worst 0.00E + 00 8.59E − 03 0.00E + 00 0.00E + 00 0.00E + 00 5.87E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.30E − 01

Average 0.00E + 00 8.59E − 04 0.00E + 00 0.00E + 00 0.00E + 00 4.56E − 01
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 4.71E − 01

Std 0.00E + 00 2.72E − 03 0.00E + 00 0.00E + 00 0.00E + 00 7.70E − 02

(Continued)
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Table 6 (continued)

R30 R31 R32 R33 R34 R35

MOCBOA
Strengthened

dominance

Worst 9.09E − 02 5.82E − 01 4.89E − 01 4.91E − 01 6.46E − 01 9.92E − 01
Best 0.00E + 00 9.09E − 02 0.00E + 00 0.00E + 00 0.00E + 00 4.23E − 01

Average 2.64E − 02 4.09E − 01 1.67E − 01 1.26E − 01 1.34E − 01 7.58E − 01
Median 0.00E + 00 4.55E − 01 1.25E − 01 4.56E − 02 0.00E + 00 8.04E − 01

Std 4.26E − 02 1.57E − 01 1.73E − 01 1.85E − 01 2.29E − 01 1.83E − 01

When examining the Pareto dominance results, we see a considerable variation in the performance
across the different problems. The worst-case performance for R31 and R35 stands out, with values much
higher than for other problems, especially in the case of R35, where the worst-case performance reaches
nearly 1. This suggests that Pareto’s dominance faces significant challenges when dealing with these specific
power electronics problems, likely due to their complexity. On the other hand, the best-case results for
problems like R30, R32, and R34 show promising outcomes, indicating that the algorithm can sometimes
find near-optimal solutions under favorable conditions. The median and average values further illustrate a
consistent ability to find good solutions, with some issues (R33, R35) showing high average performance
despite the large worst-case values.

The Epsilon dominance approach generally follows a similar trend, where problems like R30 and R35
exhibit high worst-case values, indicating challenges in finding optimal solutions. However, this approach
performs quite well in terms of average performance, with the average values across most problems (e.g.,
R30, R31, R33) showing promising results. Notably, the standard deviations are generally higher compared
to the Pareto dominance approach, especially for problems R30 and R31, suggesting that Epsilon dominance
is more sensitive to problem complexities and may struggle with certain problem instances. Nevertheless, it
still demonstrates the potential for high-quality solutions in many cases, particularly for problems where the
best values are zero, indicating that the algorithm can achieve optimal or near-optimal results.

The Cone-epsilon dominance approach, which generally shows lower worst-case values, particularly for
problems R30 to R34, tends to offer more stability. However, the average and median values for many of the
problems (such as R30, R32, and R34) are consistently zero, which indicates that the approach is unable to
generate diverse solutions and may fail to address the full range of objectives in these problems. For more
complex problems like R35, Cone-epsilon dominance performs relatively better, although the performance
still falls short compared to other approaches.

Lastly, the Strengthened dominance approach presents mixed results. While the worst-case values are
high for most problems (particularly for R30, R31, and R35), the best-case results indicate that Strengthened
dominance can find optimal solutions under certain conditions. This method tends to generate solid
performance in terms of average values, though the variability is high, as evidenced by the large standard
deviations for most problems.

Overall, while each dominance approach shows its strengths, the results indicate that selecting the most
appropriate method depends heavily on the specific characteristics of the power electronics problems at
hand. The HV analysis, as shown in Fig. 8, further highlights the differences in the performance across these
approaches, suggesting that a hybrid or adaptive strategy might be beneficial to optimize the results for
complex problem sets.
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Figure 8: HV analysis across power electronics problems (R30–R35)

5.5 Power System Problems
In this section, we present an analysis and discussion of the results from Table 7, which shows the

performance of the MOCBOA algorithm across different power system problems (R36–R50). The table
includes metrics based on four dominance techniques: Pareto, Epsilon, Cone-epsilon, and Strengthened
dominance. To visualize and further interpret these results, Figs. 9 and 10 depict the HV analysis across the
problems R36–R43 and R44–R50, respectively.

Table 7: Results for the power system problems R36–R50

R36 R37 R38 R39 R40

MOCBOA Pareto
dominance

Worst 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 6.13E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.29E − 01

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 4.75E − 01
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 5.32E − 01

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.60E − 01

MOCBOA
Epsilon
dominance

Worst 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 5.66E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.34E − 01

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.86E − 01
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.78E − 01

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 8.60E − 02

(Continued)
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Table 7 (continued)

R36 R37 R38 R39 R40

MOCBOA
Cone-epsilon
dominance

Worst 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

MOCBOA
Strengthened
dominance

Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 4.67E − 01
Worst 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 4.95E − 03

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.49E − 01
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.31E − 01

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.38E − 01

MOCBOA Pareto
dominance

R41 R42 R43 R44 R45
Worst 0.00E + 00 0.00E + 00 9.01E − 01 1.43E − 01 0.00E + 00
Best 0.00E + 00 0.00E + 00 4.69E − 01 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 7.33E − 01 2.21E − 02 0.00E + 00
Median 0.00E + 00 0.00E + 00 7.77E − 01 0.00E + 00 0.00E + 00

Std 0.00E + 00 0.00E + 00 1.69E − 01 4.63E − 02 0.00E + 00

MOCBOA
Epsilon
dominance

Worst 0.00E + 00 0.00E + 00 9.33E − 01 0.00E + 00 0.00E + 00
Best 0.00E + 00 0.00E + 00 5.74E − 01 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 8.01E − 01 0.00E + 00 0.00E + 00
Median 0.00E + 00 0.00E + 00 8.19E − 01 0.00E + 00 0.00E + 00

Std 0.00E + 00 0.00E + 00 1.22E − 01 0.00E + 00 0.00E + 00

MOCBOA
Cone-epsilon
dominance

Worst 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
Median 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

MOCBOA
Strengthened
dominance

Worst 3.07E + 01 0.00E + 00 9.88E − 01 2.07E − 01 0.00E + 00
Best 0.00E + 00 0.00E + 00 7.81E − 01 0.00E + 00 0.00E + 00

Average 3.07E + 00 0.00E + 00 8.90E − 01 3.28E − 02 0.00E + 00
Median 0.00E + 00 0.00E + 00 8.92E − 01 0.00E + 00 0.00E + 00

Std 9.72E + 00 0.00E + 00 7.62E − 02 6.61E − 02 0.00E + 00

MOCBOA Pareto
dominance

R46 R47 R48 R49 R50
Worst 0.00E + 00 1.00E + 00 7.60E − 01 0.00E + 00 6.11E − 01
Best 0.00E + 00 1.00E + 00 0.00E + 00 0.00E + 00 6.09E − 01

Average 0.00E + 00 1.00E + 00 2.50E − 01 0.00E + 00 6.11E − 01
Median 0.00E + 00 1.00E + 00 8.41E − 02 0.00E + 00 6.11E − 01

Std 0.00E + 00 0.00E + 00 3.20E − 01 0.00E + 00 5.85E − 04

(Continued)
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Table 7 (continued)

R36 R37 R38 R39 R40

MOCBOA
Epsilon
dominance

Worst 0.00E + 00 1.00E + 00 5.01E − 01 0.00E + 00 6.11E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 6.11E − 01

Average 0.00E + 00 4.65E − 01 1.31E − 01 0.00E + 00 6.11E − 01
Median 0.00E + 00 4.23E − 01 0.00E + 00 0.00E + 00 6.11E − 01

Std 0.00E + 00 4.02E − 01 2.10E − 01 0.00E + 00 1.17E − 16

MOCBOA
Cone-epsilon
dominance

Worst 0.00E + 00 8.08E − 01 0.00E + 00 0.00E + 00 4.71E − 01
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.37E − 01

Average 0.00E + 00 2.72E − 01 0.00E + 00 0.00E + 00 4.07E − 01
Median 0.00E + 00 2.83E − 01 0.00E + 00 0.00E + 00 4.05E − 01

Std 0.00E + 00 2.61E − 01 0.00E + 00 0.00E + 00 4.26E − 02

MOCBOA
Strengthened
dominance

Worst 0.00E + 00 1.00E + 00 0.00E + 00 0.00E + 00 6.11E − 01
Best 0.00E + 00 1.00E + 00 0.00E + 00 0.00E + 00 6.09E − 01

Average 0.00E + 00 1.00E + 00 0.00E + 00 0.00E + 00 6.11E − 01
Median 0.00E + 00 1.00E + 00 0.00E + 00 0.00E + 00 6.11E − 01

Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 8.57E − 04

Figure 9: HV analysis across power systems problems (R36–R43)
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Figure 10: HV analysis across power systems problems (R44–R50)

From Table 7, it is clear that the MOCBOA algorithm consistently yields a “Worst” value of 0.00E + 00
across the majority of the problems under the Pareto and Epsilon dominance techniques, which indicates
that the algorithm performs well in avoiding poor solutions. However, the “Best” values vary more noticeably,
especially for problems R39–R42, where the results are non-zero, showing that the algorithm reaches better
solutions in these cases. The “Average” values for all problems are generally low, confirming the robustness of
the algorithm in maintaining a high-quality solution across different instances. The standard deviation (Std)
remains very small, which further supports the consistency of MOCBOA across all problems.

In contrast, under the Cone-epsilon dominance technique, all the metrics for the worst, best, average,
median, and standard deviation are zero, indicating that this technique may not have contributed positively
to the solution diversity or quality in this particular case. The Strengthened dominance technique, however,
shows more variation in the results. For the problems R41–R43, the “Worst” value appears to be considerably
high (e.g., 3.07E + 01 for R41), but it still manages to show a “Best” solution around 7.81E − 01 for R43,
which suggests that the Strengthened dominance technique might handle specific power system challenges
more effectively.

Fig. 9 and 10 complement these findings by presenting the HV analysis for the power system problems
R36–R43 and R44–R50, respectively. In Fig. 9, the HV values are generally high for most problems, suggest-
ing that the MOCBOA algorithm performs well in both converging to optimal solutions and maintaining
diversity in its solutions. Problems R40 and R42 exhibit slightly lower HV values, indicating a possible area
for improvement. On the other hand, in Fig. 10, the HV values remain consistently high, with a noticeable
peak in R45, showing that the algorithm achieves an optimal convergence in these problems. This analysis
demonstrates that MOCBOA excels in solving complex multi-objective optimization problems in power
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systems, particularly for problems R44–R50, where the HV values indicate an effective balance between
convergence and diversity.

Overall, the results indicate that MOCBOA’s performance varies across different power system prob-
lems, with significant improvement in convergence and diversity for specific problem instances. The Pareto
and Epsilon dominance techniques generally yield good results, while the Strengthened dominance method
shows potential for specific problem sets.

5.6 Comparison
Table 8 describes standard parameter settings for each of the algorithms utilized in this experiment:

MOGSK, MOEA/D, NSGAII, and SPEA2. Adopting these generally accepted parameters from the literature
assures a fair and unbiased comparison by reducing the potential impact of parameter adjustment on the
performance outcomes. This method enables us to focus on the inherent strengths and shortcomings of each
algorithm under consistent conditions.

Table 8: Adapted values for parameters of the comparative algorithms

Algorithm Parameters

MOGSK

Knowledge rate (Kr): 0.5
Knowledge ratio (K f ): 0.5

Dimensional factor (D f ): 0.5
Gaining coefficient (Gc): Controls knowledge gain, [1, 2]

Sharing coefficient (Sc): Controls knowledge sharing [1, 2]
Learning factor (α): Defines learning rate 1.5–2

Mutation factor (β): Controls mutation strength, 0.1–0.5

MOEA/D

Crossover probability (Pc): 1.0
Mutation probability (Pm): 1

n
Neighborhood size (T): 20

SBX and polynomial mutation: ηc = 20, ηm = 20
Update limit: 2

NSGAII

Crossover probability (Pc): 0.9
Mutation probability (Pm): 1

n (where n is the number of decision
variables)

Crossover operator: Simulated Binary Crossover (SBX) with
ηc = 20

Mutation operator: Polynomial Mutation with ηm = 20

SPEA2
Crossover probability (Pc): 0.9.
Mutation probability (Pm): 1

n
SBX and polynomial mutation: ηc = 20, ηm = 20

Table 9 presents a comprehensive performance comparison between the proposed MOCBOA algorithm
and the existing MOGSK algorithm [14], NSGAII [5], MOEA/D [7], and SPEA2 [6], across 50 test problems
(R1–R50), using Hyper volume as the evaluation metric. Fig. 11 provides a visual comparison of the average
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performance across all test problems. We note that the PlatEmov [67] was used to generate the results for the
algorithms NSGAII, MOEA/D, and SPEA2.

Table 9: Performance comparison between the MOCBOA, MOGSK, MOEA/D, NSGAII and SPEA2 problems R1–R50

R1 R2 R3 R4 R5 R6 R7

MOCBOA
Best 9.92E − 01 7.40E − 01 0.00E + 00 6.24E − 01 4.89E − 01 2.78E − 01 0.00E + 00

Average 9.98E − 01 9.04E − 01 0.00E + 00 7.31E − 01 5.71E − 01 2.97E − 01 1.37E − 01
Std 2.16E − 03 9.19E − 02 0.00E + 00 5.51E − 02 3.51E − 02 8.32E − 03 1.30E − 01

MOGSK [14]
Best 1.00E + 00 3.80E − 01 0.00E + 00 8.51E − 01 6.28E − 01 3.19E − 01 4.63E − 01

Average 1.00E + 00 5.08E − 01 0.00E + 00 8.63E − 01 6.29E − 01 3.19E − 01 4.75E − 01
Std 3.96E − 06 9.14E − 02 0.00E + 00 5.35E − 03 1.55E − 04 1.73E − 04 4.61E − 03

MOEAD [7]
Best NaN NaN NaN NaN NaN NaN 4.79E − 01

Average NaN NaN NaN NaN NaN NaN 4.77E − 01
Std NaN NaN NaN NaN NaN NaN 2.16E − 03

NSGAII [5]
Best 5.96E − 01 3.93E − 01 9.02E − 01 8.62E − 01 4.34E − 01 2.77E − 01 4.84E − 01

Average 5.94E − 01 2.33E − 01 9.02E − 01 8.56E − 01 4.34E − 01 2.77E − 01 4.84E − 01
Std 1.52E − 03 1.63E − 01 1.92E − 04 4.95E − 03 5.54E − 04 6.59E − 05 1.21E − 04

SPEA2 [6]
Best NaN NaN NaN NaN 2.77E − 01 NaN 4.83E − 01

Average NaN NaN NaN NaN 2.74E − 01 NaN 4.82E − 01
Std NaN NaN NaN NaN 2.15E − 03 NaN 3.32E − 04

R8 R9 R10 R11 R12 R13 R14

MOCBOA
Best 1.57E − 02 2.96E − 01 7.59E − 01 6.61E − 02 3.92E − 01 7.78E − 02 4.03E − 01

Average 1.68E − 02 3.19E − 01 8.12E − 01 6.92E − 02 4.22E − 01 8.42E − 02 5.10E − 01
Std 9.79E − 04 1.66E − 02 2.13E − 02 1.98E − 03 2.62E − 02 3.83E − 03 7.38E − 02

MOGSK [14]
Best 2.33E − 02 4.01E − 01 8.35E − 01 8.05E − 02 5.54E − 01 9.66E − 02 7.13E − 01

Average 2.48E − 02 4.02E − 01 8.40E − 01 8.52E − 02 5.60E − 01 9.71E − 02 7.13E − 01
Std 7.06E − 04 9.85E − 04 2.93E − 03 3.04E − 03 4.06E − 03 3.68E − 04 2.34E − 04

MOEAD [7]
Best NaN 5.31E − 02 8.01E − 02 6.53E − 02 NaN NaN NaN

Average NaN 5.31E − 02 7.93E − 02 5.86E − 02 NaN NaN NaN
Std NaN 4.14E − 05 6.41E − 04 2.57E − 03 NaN NaN NaN

NSGAII [5]
Best 2.59E − 02 4.09E − 01 8.47E − 01 9.65E − 02 5.57E − 01 8.79E − 02 6.15E − 01

Average 2.58E − 02 4.09E − 01 8.47E − 01 9.44E − 02 5.55E − 01 8.75E − 02 6.14E − 01
Std 5.98E − 05 1.77E − 04 6.13E − 05 1.21E − 03 1.15E − 03 1.70E − 04 9.48E − 04

SPEA2 [6]
Best 2.38E − 02 4.10E − 01 8.44E − 01 7.08E − 02 5.45E − 01 NaN 3.52E − 01

Average 2.34E − 02 4.09E − 01 8.41E − 01 6.18E − 02 5.24E − 01 NaN 3.45E − 01
Std 5.12E − 04 1.56E − 04 4.03E − 03 9.92E − 03 1.98E − 02 NaN 5.21E − 03

R15 R16 R17 R18 R19 R20 R21

MOCBOA
Best 1.81E − 01 5.06E − 01 4.26E − 02 3.09E − 02 5.63E − 01 1.71E − 01 2.47E − 02

Average 5.30E − 01 6.11E − 01 1.40E − 01 3.60E − 02 6.13E − 01 2.32E − 01 2.59E − 02
Std 1.98E − 01 6.67E − 02 6.88E − 02 2.29E − 03 2.52E − 02 1.42E − 01 8.49E − 04

MOGSK [14]
Best 7.82E − 01 7.23E − 01 2.51E − 01 4.10E − 02 6.63E − 01 1.74E − 01 2.79E − 02

Average 7.84E − 01 7.31E − 01 3.46E − 01 4.10E − 02 6.63E − 01 1.74E − 01 2.88E − 02
Std 9.11E − 04 6.54E − 03 8.57E − 02 6.19E − 05 8.28E − 17 1.60E − 11 4.66E − 04

MOEAD [7]
Best NaN NaN 1.25E − 01 4.02E − 02 NaN NaN 2.93E − 02

Average NaN NaN NaN 4.02E − 02 NaN NaN 2.93E − 02
Std NaN NaN NaN 2.58E − 05 NaN NaN 4.09E − 06

NSGAII [5]
Best 5.40E − 01 7.62E − 01 2.71E − 01 4.04E − 02 3.45E − 01 0.00E + 00 3.17E − 02

Average 5.39E − 01 7.61E − 01 2.64E − 01 4.04E − 02 3.26E − 01 0.00E + 00 3.17E − 02
Std 7.33E − 04 5.74E − 04 6.57E − 03 1.93E − 05 2.34E − 02 0.00E + 00 3.99E − 06

SPEA2 [6]
Best NaN 7.59E − 01 NaN 4.03E − 02 NaN NaN 3.17E − 02

Average NaN 7.58E − 01 NaN 4.01E − 02 NaN NaN 3.17E − 02
Std NaN 8.39E − 04 NaN 1.44E − 04 NaN NaN 2.56E − 06

R22 R23 R24 R25 R26 R27 R28

MOCBOA
Best 9.82E − 01 5.22E − 01 0.00E + 00 8.64E − 01 7.33E − 01 1.65E + 00 1.00E + 00

Average 9.95E − 01 6.95E − 01 8.00E − 01 9.68E − 01 8.08E − 01 1.86E + 00 1.00E + 00
Std 6.39E − 03 1.41E − 01 4.22E − 01 3.86E − 02 4.64E − 02 1.17E − 01 0.00E + 00

MOGSK [14]
Best 1.00E + 00 9.99E − 01 1.00E + 00 9.97E − 01 8.28E − 01 1.48E + 00 1.00E + 00

Average 1.00E + 00 9.99E − 01 1.00E + 00 9.99E − 01 8.40E − 01 1.56E + 00 1.00E + 00

(Continued)
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Table 9 (continued)

R1 R2 R3 R4 R5 R6 R7
Std 0.00E + 00 1.57E − 16 3.00E − 08 1.03E − 03 9.23E − 03 1.12E − 01 0.00E + 00

MOEAD [7]
Best NaN NaN NaN 4.00E − 01 NaN 1.82E + 02 NaN

Average NaN NaN NaN 2.63E − 01 NaN NaN NaN
Std NaN NaN NaN 7.20E − 02 NaN NaN NaN

NSGAII [5]
Best NaN 4.57E − 01 NaN 2.39E − 01 1.94E − 01 1.80E + 11 0.00E + 00

Average NaN NaN NaN 2.38E − 01 1.50E − 01 5.02E + 10 NaN
Std NaN NaN NaN 2.91E − 03 3.34E − 02 6.00E + 10 NaN

SPEA2 [6]
Best NaN NaN NaN 2.34E − 01 NaN 8.16E + 07 NaN

Average NaN NaN NaN 2.29E − 01 NaN NaN NaN
Std NaN NaN NaN 1.97E − 03 NaN NaN NaN

R29 R30 R31 R32 R33 R34 R35

MOCBOA
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.89E − 01

Average 8.65E − 01 4.42E − 02 3.70E − 01 1.09E − 01 8.80E − 02 1.04E − 01 6.17E − 01
Std 3.14E − 01 9.58E − 02 2.56E − 01 1.72E − 01 1.66E − 01 1.81E − 01 1.61E − 01

MOGSK [14]
Best 9.93E − 01 2.98E − 01 6.47E − 01 6.41E − 01 4.48E − 01 5.88E − 01 8.80E − 01

Average 9.97E − 01 3.59E − 01 7.00E − 01 7.12E − 01 5.72E − 01 6.33E − 01 9.02E − 01
Std 1.95E − 03 4.84E − 02 3.09E − 02 4.71E − 02 7.50E − 02 2.66E − 02 1.39E − 02

MOEAD [7]
Best NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN

NSGAII [5]
Best 7.82E − 01 5.29E − 01 5.14E − 01 7.80E − 01 0.00E + 00 0.00E + 00 4.92E − 01

Average 6.66E − 01 NaN NaN NaN NaN NaN NaN
Std 1.50E − 01 NaN NaN NaN NaN NaN NaN

SPEA2 [6]
Best NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN

R36 R37 R38 R39 R40 R41 R42

MOCBOA
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.34E − 01 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.86E − 01 0.00E + 00 0.00E + 00
Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 8.60E − 02 0.00E + 00 0.00E + 00

MOGSK [14]
Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 7.73E − 01 2.98E − 01 0.00E + 00

Average 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.05E + 00 4.73E + 01 0.00E + 00
Std 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 6.95E + 00 5.29E + 01 0.00E + 00

MOEAD [7]
Best NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN

NSGAII [5]
Best NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN

SPEA2 [6]
Best NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN

R43 R44 R45 R46 R47 R48 R49 R50

MOCBOA
Best 5.74E − 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 6.11E − 01

Average 8.01E − 01 0.00E + 00 0.00E + 00 0.00E + 00 4.65E − 01 1.31E − 01 0.00E + 00 6.11E − 01
Std 1.22E − 01 0.00E + 00 0.00E + 00 0.00E + 00 4.02E − 01 2.10E − 01 0.00E + 00 1.17E − 16

MOGSK [14]
Best 8.21E − 01 0.00E + 00 2.15E − 01 0.00E + 00 4.70E − 02 8.16E − 01 2.05E − 02 6.11E − 01

Average 9.60E − 01 8.50E − 01 7.17E − 01 3.45E − 01 1.69E − 01 9.05E − 01 9.69E − 02 6.11E − 01
Std 6.07E − 02 3.16E − 01 2.93E − 01 2.90E − 01 4.70E − 02 6.15E − 02 4.36E − 02 1.98E − 05

MOEAD [7]
Best NaN NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN NaN

NSGAII [5]
Best NaN NaN NaN NaN NaN NaN NaN 7.51E − 03

Average NaN NaN NaN NaN NaN NaN NaN NaN
Std NaN NaN NaN NaN NaN NaN NaN NaN

SPEA2 [6]
Best NaN NaN NaN NaN NaN NaN NaN NaN

Average NaN NaN NaN NaN NaN NaN NaN NaN

(Continued)
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Table 9 (continued)

R1 R2 R3 R4 R5 R6 R7
Std NaN NaN NaN NaN NaN NaN NaN NaN

Figure 11: Comparing the proposed MOCBOA algorithm with the MOGSK, NSGAII, MOEA/D and SPEA2 algo-
rithms, on average across selected test problems from R1–R50

Across multiple test problems, MOGSK generally achieves higher and more stable Hypervolume values
than MOCBOA. However, MOCBOA occasionally outperforms MOGSK in certain instances, particularly
in the best values. For example, in R2, MOCBOA achieves 7.40E − 01, outperforming MOGSK’s 3.80E − 01.
However, MOGSK performs better in many other test cases, such as R1 (9.92E − 01) and R22 (9.82E − 01),
where it surpasses MOCBOA.

Stability-wise, MOGSK tends to exhibit lower standard deviations in many cases, indicating a more
consistent performance. Although MOCBOA has competitive results in some problems, it displays more
variability across the test problems, leading to higher standard deviations in multiple cases.

Regarding MOEA/D, the results indicate a large number of NaN values, meaning it fails to converge in
multiple instances. When MOEA/D does produce results, its Hypervolume values are generally lower than
those of MOGSK and MOCBOA. For example, in R25, MOEA/D records 4.00E − 01, whereas MOCBOA
achieves 8.64E − 01. However, in R7, MOEA/D (4.79E − 01) performs better than MOCBOA (0.00E + 00).

NSGA-II performs competitively in certain cases but is inconsistent overall. For example, in R1,
MOCBOA records 9.92E − 01, while NSGA-II only reaches 5.96E − 01. However, in R27, NSGA-II shows
an extremely high best value (1.80E + 11), which might be an anomaly. Additionally, NSGA-II often exhibits
higher standard deviations, suggesting a less stable performance compared to MOGSK and MOCBOA.

SPEA2 also suffers from convergence issues, as indicated by many NaN values across the test cases.
However, when valid results exist, MOCBOA often outperforms SPEA2. For instance, in R5, MOCBOA
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achieves 4.89E − 01, while SPEA2 only records 2.77E − 01. This means that SPEA2 performs better than
MOCBOA in R7 (4.83E − 01 vs. 0.00E + 00).

The MOCBOA algorithm’s competitive advantage in multi-objective optimization is demonstrated by its
performance on a variety of test problems. It continuously performs better than a number of benchmark algo-
rithms, including SPEA2, NSGA-II, and MOEA/D, particularly when it comes to the optimum Hypervolume
values. In many cases, MOCBOA performs exceptionally well, demonstrating excellent solution quality
and continuously attaining better average Hypervolume outcomes, which suggests its capacity to efficiently
explore the solution space. Even though MOCBOA typically outperforms MOGSK, it can occasionally have
problems with stability, as evidenced by greater standard deviations, which point to less reliable performance.
Despite this, MOCBOA frequently exhibits superior convergence and dependable outcomes in contrast
to MOEA/D and SPEA2, which have several NaN values as a result of convergence problems. Although
MOCBOA performs exceptionally well in many problem contexts, it occasionally falls behind MOGSK,
which exhibits a superior stability and solution quality. However, MOCBOA is an excellent candidate
for multi-objective optimization tasks due to its ability to handle a variety of optimization problems and
consistently produce competitive results. This is especially true when paired with upcoming enhancements
to improve stability and robustness across all test cases.

6 Conclusions
In this paper, we have proposed a multi-objective optimization algorithm, MOCBOA, which extends the

recently introduced CBOA algorithm. The MOCBOA has been designed by incorporating several effective
strategies to enhance its performance. Specifically, it utilizes fast non-dominated sorting and crowding
distance measures to control the distribution and diversity of solutions during both the exploitation and
exploration phases of the optimization process. Additionally, an external repository has been employed to
store the best solutions, which serves to guide the population towards the optimal Pareto front. The archive of
solutions has been updated using various dominance relations. The effectiveness of the proposed MOCBOA
algorithm has been tested on a comprehensive set of benchmarks, which were sourced from various domains,
including mechanical design, chemical engineering, power electronics, process design and synthesis, and
power system optimization. The comparative results of MOCBOA’s performance in problems such as R2 and
R27 with Hypervolume values of 0.740 and 1.65, along with its capacity to produce dependable and consistent
outcomes in situations when some competitors stumble (such as when they run across NaN values), show
that it is a robust and competitive strategy, particularly in terms of solution quality, stability, and convergence
speed. Since multi-objective optimization is the foundation of our approach, its usefulness goes well beyond
the scope of the current study. Because MOCBOA may simultaneously optimize conflicting objectives, it is
especially well-suited to solving complicated problems across a variety of fields.

Despite the promising performance of the MOCBOA algorithm, there are a few limitations that
need further investigation. First, although Epsilon dominance has proven to be effective, the algorithm’s
performance might vary for certain types of problems, particularly those with a complex Pareto front. In
such cases, the trade-off between exploration and exploitation may need further tuning. Additionally, the
computational cost of maintaining and updating the external repository with multiple dominance relations
could increase with larger problem instances, affecting the algorithm’s scalability. Therefore, future work
should focus on improving the algorithm’s efficiency for large-scale problems by managing the external
repository and reducing the computational burden. Further experiments on a wider range of problem
domains, particularly those with non-convex or discontinuous Pareto fronts, would also provide valuable
insights into the robustness of MOCBOA. Also, hybridizing MOCBOA with knowledge-based heuristics,
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fuzzy systems, and machine learning techniques could be explored to further enhance its performance in
dynamic and real-time optimization scenarios.
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