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ABSTRACT: Wind power generation is subjected to complex and variable meteorological conditions, resulting in
intermittent and volatile power generation. Accurate wind power prediction plays a crucial role in enabling the power
grid dispatching departments to rationally plan power transmission and energy storage operations. This enhances the
efficiency of wind power integration into the grid. It allows grid operators to anticipate and mitigate the impact of wind
power fluctuations, significantly improving the resilience of wind farms and the overall power grid. Furthermore, it
assists wind farm operators in optimizing the management of power generation facilities and reducing maintenance
costs. Despite these benefits, accurate wind power prediction especially in extreme scenarios remains a significant
challenge. To address this issue, a novel wind power prediction model based on learning approach is proposed by
integrating wavelet transform and Transformer. First, a conditional generative adversarial network (CGAN) generates
dynamic extreme scenarios guided by physical constraints and expert rules to ensure realism and capture critical
features of wind power fluctuations under extreme conditions. Next, the wavelet transform convolutional layer is applied
to enhance sensitivity to frequency domain characteristics, enabling effective feature extraction from extreme scenarios
for a deeper understanding of input data. The model then leverages the Transformer’s self-attention mechanism to
capture global dependencies between features, strengthening its sequence modelling capabilities. Case analyses verify
the model’s superior performance in extreme scenario prediction by effectively capturing local fluctuation features while
maintaining a grasp of global trends. Compared to other models, it achieves R-squared (R2) as high as 0.95, and the
mean absolute error (MAE) and root mean square error (RMSE) are also significantly lower than those of other models,
proving its high accuracy and effectiveness in managing complex wind power generation conditions.

KEYWORDS: Extreme scenarios; conditional generative adversarial network; wavelet transform; Transformer; wind
power prediction

1 Introduction

1.1 Background
In alignment with the carbon peaking and carbon neutrality goals, China is advancing toward a

power system primarily powered by renewable energy sources. Wind power is a central contributor to this
transformation [1,2]. As one of the most abundant and clean renewable energy sources, wind power has
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become a crucial component of global energy transition strategies. Its widespread deployment not only
reduces dependence on fossil fuels but also significantly mitigates greenhouse gas emissions, contributing to
sustainable energy development.

Despite its advantages, wind power generation is inherently intermittent and highly dependent on
meteorological conditions, leading to significant fluctuations in power output. Variations in wind speed,
atmospheric pressure, temperature, and other environmental factors introduce considerable uncertainty into
wind power forecasting [3]. These uncertainties pose challenges for power grid operation, requiring robust
prediction models to ensure accurate forecasting and the efficient integration of wind energy into the grid.

Moreover, extreme weather events, such as typhoons, cold waves, and thunderstorms, further compli-
cate wind power prediction. These extreme conditions can cause sudden and drastic fluctuations in wind
power output, increasing the risk of grid instability and energy imbalances [4]. Therefore, improving the
accuracy and reliability of wind power prediction under extreme scenarios is crucial for ensuring the safe
and stable operation of power systems.

Given these challenges, advanced forecasting methodologies that incorporate meteorological dynamics,
deep learning techniques, and hybrid modeling approaches have gained significant attention. Enhancing
wind power prediction under extreme conditions not only supports grid stability but also facilitates better
resource allocation, dispatch optimization, and overall efficiency in renewable energy utilization.

1.2 Literature Review
Extreme scenarios, while critical for grid operations and decision-making, account for only a minor

fraction of historical data. This scarcity significantly limits the effectiveness of traditional modeling
approaches in managing extreme conditions [5,6]. This highlights the need for methods to generate synthetic
extreme scenario data to expand available data samples for analysis. Methods for scenario generation can
be broadly classified into model-driven and data-driven approaches. Model-driven approaches employ
probabilistic models, such as Markov chains [7], copula function [8], and extreme value theory [9]. These
methods excel in theoretical formulations and statistical modeling. However, they often fail to capture feature
interdependencies and complex, nonlinear dynamics, thereby limiting their application in realistic, multi-
dimensional scenarios. Data-driven approaches [10], on the other hand, rely on advanced machine learning
models like generative adversarial networks (GANs) [11], variational autoencoder (VAE) [12], and diffusion
model [13], facilitating the integration of diverse data characteristics and enabling realistic simulations that
align with practical requirements. Recent studies have explored various data-driven methods for scenario
generation. For instance, in [14], a clustering-based method was proposed to generate time-series scenarios,
enhancing the quality of generated scenarios.

Meanwhile, in [15], an improved VAE model for renewable energy scenario generation that combines
graph neural networks with time-series convolutions was proposed to capture correlations and introduce
tagged values. Besides, in [16], an approach combining Informer and a time-series GAN generated prediction
error sequences was proposed to create accurate day-ahead wind power scenarios. While these methods
achieve impressive results in typical scenario generation, they are less effective in addressing unexpected
events or extreme conditions. They frequently struggle to capture long-term dependencies and fail to ensure
sufficient diversity under such scenarios. To overcome these limitations, further exploration into extreme
scenario generation is essential for enhancing model adaptability and accuracy under extreme conditions.

To address the scarcity of extreme scenario data, recent studies have focused on transfer learning [17]
and small-sample simulation methods [18]. For example, in [19], a distribution transfer method was applied
to increase the proportion of extreme scenarios within the training set, generating diverse types of extreme
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scenarios to mitigate the limitations posed by small sample sizes. However, this approach struggles to
adapt to complex, nonlinear, multidimensional scenarios and has limited capability in capturing long-term
dependencies. In [20], a weighted adversarial bidirectional long short-term memory (BiLSTM) model was
applied to analyze temporal correlations between photovoltaic (PV) power and meteorological data. It
achieved accurate prediction under limited data conditions. However, the reliance on established models
constrained its ability to generate novel extreme scenarios, resulting in limited diversity in generated results.
Given these challenges, this study proposes a conditional generative adversarial network (CGAN) approach
tailored for extreme scenario generation. This approach generates diverse and controllable scenarios by
incorporating physical constraints and expert rules. Unlike traditional transfer learning or small-sample
simulation methods, incorporating physical constraints ensures that generated extreme scenarios remain
within realistic boundaries, thereby avoiding unrealistic wind power outputs. Expert rules enable the model
to accurately reflect wind power fluctuations during extreme events, enhancing the robustness of the
generated scenarios. The proposed method effectively handles complex, nonlinear, and multidimensional
data while addressing long-term dependencies, a challenge for many existing approaches.

Wind power is highly volatile and unpredictable, where sudden shifts threaten grid stability. Accurate
wind power prediction enables power system operators to proactively formulate response strategies, ensuring
grid stability during adverse conditions. This approach mitigates the impact of wind power integration
on grid stability and reduces economic losses. Wind power prediction methods span from statistical and
machine learning approaches to deep learning models. In [21], a prediction model that combined VAE and
self-attention mechanism was proposed, which obtained better prediction performance. In [22], an ensemble
learning method combined multiple models was proposed, which obtained better prediction results than
independent models. In [23], convolutional neural networks (CNN) were proposed for probabilistic wind
power prediction. To overcome the scalability constraints and vanishing gradient phenomena in multilayer
perceptron (MLP), the Kolmogorov-Arnold network (KAN) as an innovative architectural alternative was
proposed in [24]. In [25], a CGAN-based model was proposed, in which CNN was used as internal
structure. Although the above methods have achieved good prediction performance, there is a lack of
research on the wind power in extreme scenarios. In recent years, extreme weather such as cold wave and
typhoon have caused serious losses to the power system. Therefore, the research on accurate and reliable
wind power prediction in extreme scenarios has gradually become a hot topic [26]. Recent advancements
in deep learning, particularly with models like long short-term memory (LSTM) networks, CNN, and
Transformer [27], have made substantial progress in extreme scenario prediction. In [28], a lightweight
gradient lifting model optimized with Bayesian techniques was developed to assess the time-series data
from wind turbines under ice-covering conditions, enhancing prediction accuracy in imbalanced scenarios.
Although the prediction accuracy of the model was improved under the condition of ice cover. However,
the sample diversity was insufficient and the interpretability was lacking. For wind power abrupt change
in extreme scenarios, long-term low output and high power, no relevant prediction accuracy improvement
methods were given. The wavelet transform and Transformer integration can capture both frequency domain
features and time dependencies, enhancing the model’s adaptability to nonstationary and complex wind
power data. In [29], wavelet transform was shown to extend the sensory field and improve low-frequency
information capture, bolstering network robustness. With powerful time-frequency analysis capabilities,
wavelet transform excels in handling non-smooth signals and extracting multi-scale data features. While
Transformer’s robust sequence modelling enhances time-series prediction.
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1.3 Contributions of This Paper
Based on the above-mentioned studies, this paper proposes a novel wavelet transform convolution-

Transformer (WTC-Transformer) based learning approach for wind power prediction in extreme scenarios.
By leveraging CGAN to generate adjustable extreme scenarios, this approach integrates physical constraints
and expert rules to enhance scenario generation. The wavelet transform is applied to process scenario
features, which are then fed into the Transformer model, enhancing the accuracy of extreme scenario
prediction. The model is trained on diverse scenarios to improve predictive performance across extreme
conditions. The main contributions of this paper are summarized as follows:

(1) A CGAN-based method is proposed to simulate wind power distribution under extreme mete-
orological conditions. It provides controllable multi-scenario data for wind power prediction in
extreme scenarios.

(2) A novel wind power prediction model is proposed which integrates wavelet transform with the self-
attention mechanism. It effectively captures multi-scale features in wind power time series, improving
prediction accuracy.

(3) By incorporating CGAN-generated extreme scenarios, the WTC-Transformer model improves its
ability to capture complex wind power time-series pattern. This approach enhances its adaptability to
a variety of extreme scenarios, advancing its overall robustness and precision.

The overall structure of this paper is as follows: Section 2 introduces the proposed approach, including
the model architecture and the key techniques adopted. In Section 3, the overall steps and framework of the
model are described. In Section 4, the experiments and data sets used are described, followed by results and
performance evaluations. Finally, Section 5 summarizes the research results of this paper and the direction
of future work.

2 Theoretical Backgrounds

2.1 CGAN for Extreme Scenario Generation
Given the scarcity of extreme samples in wind power scenarios, generating additional samples is

essential. Generative adversarial networks are well-suited for this task as they comprise two networks: a
generator and a discriminator. The generator creates data based on random noise, and the discriminator
distinguishes generated samples from real data. Through iterative competition, the generator learns to
produce realistic samples.

However, traditional GANs struggle to capture specific, essential features in the data, particularly under
complex conditions such as extreme wind power scenarios. To address this, the Conditional generative
adversarial network extends the traditional GANs by incorporating physical condition information as an
input condition [30]. This modification allows the CGAN to learn better and generate samples that align
with real-world extreme conditions. CGAN addresses data scarcity by expanding training sets and increasing
diversity. Its flexibility allows the generation of diverse, controllable extreme scenarios, enhancing predictive
model testing. Moreover, CGAN’s ability to learn complex, nonlinear patterns through condition vectors
results in clearer, more realistic samples for grid stability analysis.

In a CGAN, the generator receives a random noise vector z and a condition vector c as input, producing
an output vector G (z ∣c ) with the same dimensions as the actual data x. The discriminator, which classifies
samples as real or generated, takes either actual or generated samples along with the condition vector c as
inputs, outputting a scalar probability score that indicates the likelihood of the sample being real. This process
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is mathematically represented as:

{Preal = D (x ∣c )
Pf ake = D (G (z ∣c )) , (1)

where Preal is the discriminator’s probability of discriminating the real sample. Pf ake is the discriminator’s
probability of discriminating the generated sample.

In CGAN, the objective functions of the generator and discriminator are shown as:

LG = −Ez∼P(z) [log (1 − D (G (z ∣c )))] , (2)
LD = −Ex∼P(x) [log D (x ∣c )] − Ez∼P(z) [log (1 − D (G (z ∣c )))] , (3)

where Ez∼P(z) is the expected value of the generated data distribution. Ex∼P(x) is the expected value of the
actual data distribution.

Eventually, the generator and the discriminator go through several iterations and play the game, very
small values to reach the Nash equilibrium, which is shown as:

min
G

max
D

V (G , D) = Ex∼P(x) [log D (x ∣c )] + Ez∼P(z) [log (1 − D (G (z ∣c )))] . (4)

The structure of CGAN is shown in Fig. 1.
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Figure 1: Structure of CGAN proposed in this paper

2.2 Wavelet Transform Convolution Module
Wavelet transform convolution (WTC) combines wavelet transforms with convolutional neural net-

works. It leverages wavelets’ ability to perform multi-scale analysis by scaling and shifting wavelet functions.
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This setup enables WTC to effectively capture details across different scales and extract complex features.
The wavelet transform formula is shown as:

Wψ f (a, b) = 1√
∣a∣ ∫

∞

−∞
f (t)ψ ( t − b

a
)dt, (5)

where Wψ f (a, b) is the wavelet coefficient of the input signal f (t) at scale a and position b. ψ (t) is the
wavelet function. a and b are the scale and position parameters, respectively.

In the WTC setup, a one-dimensional convolutional layer is formed by combining wavelet transforms
and CNN to leverage both wavelet’s multi-resolution analysis and CNN’s feature extraction capabilities [27].

The wavelet transform decomposes the signal layer-by-layer into low-frequency and high-frequency
components, and each layer’s output undergoes convolution operations with amplitude adjustments for each
scale. After decomposing, the inverse wavelet transform reconstructs the signal from the high- and low-
frequency components, from the last layer to the first. The final output signal is obtained by summing the
original input with the reconstructed signal, passing through a base convolution layer and scaling module.
This WTC approach enables the model to perform multi-resolution analysis, capturing the frequency
characteristics of signals across different time scales, effectively handling global trends and local variations
within the data.

2.3 Transformer Module
The Transformer architecture uses the self-attention mechanism that effectively models dependencies

within sequential data. It consists of encoder and decoder. The ender encodes input sequences into hidden
vectors, and then the decoder transforms these vectors into output sequences.

2.3.1 Self-Attention Mechanism
The self-attention mechanism empowers the model to focus on the most significant parts of the input

sequence when processing data. This enhances its ability to understand and process information. In wind
power prediction, each time point includes multiple features, and the correlations between these features
may vary over time. The self-attention mechanism enables the model to learn these dynamic changes and
assign different attention weights to each feature at each time point.

For each time point, the model generates a query vector Q, representing its attention to historical data at
that moment. The critical vector K contains information about the historical features, while the value vector
V holds the actual features associated with the wind turbine output. The attention score is calculated by
measuring the similarity between the query vector and the key vector:

A(Q , K , V) = so f tmax (QKT
√

dk
)V , (6)

where A(⋅) is the attention score calculation function.
√

dk is the scaling factor, and the value of dk is the
dimension of the key vector. The so f tmax function is used to convert the similarity score into weights. The
product of Q and KT is computed to obtain a score matrix, where each element represents the association
score between each element in Q and K. Each element in the score matrix is then scaled by dividing it by

√
dk .

The so f tmax function is applied to the scaled matrix to generate an attention weight matrix. Finally, the
attention weight matrix is multiplied by V to produce the weighted output, which is the result of the attention
mechanism. The model then weights and sums the value vectors to produce the final predict. This mechanism
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allows the model to identify the most important historical points in time and their characteristics for current
wind power prediction.

Wind power prediction entails complex patterns, such as seasonal fluctuations and short-term weather
changes. The multi-head self-attention mechanism can capture multiple features in these complex patterns
by computing attention independently across several subspaces. Each attention head focuses on a specific
temporal feature or influencing factor of wind power, enabling a comprehensive understanding of the
intricate relationships involved in wind power prediction.

Moreover, extreme weather events like storms or abnormal wind speeds can lead to significant fluctua-
tions in wind power output. Although these extreme scenarios occur infrequently, they are crucial for predict
accuracy. The self-attention mechanism improves predict precision by dynamically adjusting the model’s
attention allocation during these critical events, focusing on relevant data.

2.3.2 Input Sequence
Positional encoding is integrated into the input to retain positional information within the sequence.

Positional encoding enables the model to differentiate between various positions in the sequence by
introducing a unique encoding for each position. It typically comprises sine and cosine functions defined as
follows:

PE(pos ,2i) = sin
⎛
⎜⎜⎜
⎝

pos

10000 2i
dmod e l

⎞
⎟⎟⎟
⎠

, (7)

PE(pos ,2i+1) = cos
⎛
⎜⎜⎜
⎝

pos

10000 2i
dmod e l

⎞
⎟⎟⎟
⎠

, (8)

where pos is the position in the sequence. i is the dimension index. dmod e l is the model dimension. By adding
the position code to the input sequence X, the model can use the position information for more accurate
sequence modelling.

2.3.3 Encoder Model
The encoder consists of multiple identical layers stacked on top of each other, each comprising two

primary components: the self-attention mechanism and a feed-forward neural network with a GELU
activation function.

The multi-head self-attention mechanism is responsible for calculating the attention scores between the
positions in the input sequence, splicing the outputs of multiple attention heads together, and performing a
linear transformation to generate the final attention output:

ao = Concat (head1 , head2, . . . , headi)W O , (9)

where ao is the output of the multi-head self-attention. headi is the output of the ith attention head. W O is
the linear transformation matrix.

The attention output ao is then processed by a feed-forward neural network, which consists of two fully
connected layers. First, ao passes through the first layer, employing the GELU activation function to yield
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the intermediate output:

io = GELU (W1ao + b1) . (10)

Subsequently, the output of the feedforward neural network (FNN) is obtained by passing through the
second fully connected layer:

do =W2 io + b2. (11)

To enhance training stability and effectiveness, residual connections and layer normalization are
implemented within the encoder layer. The input sequence X is added to the attention output ao through a
residual connection, followed by the first layer normalization to obtain the intermediate output:

out1 = LayerNorm (X + ao) . (12)

Then, the output of the feed-forward network is combined with the normalized output via a residual
connection, followed by a second layer normalization to generate the final encoder layer output:

out2 = LayerNorm (out1 + do) . (13)

The decoder structure mirrors the encoder’s but incorporates an encoder-decoder attention mecha-
nism [31]. This mechanism utilizes a multi-head attention layer to compute the relationships between the
decoder’s attention scores at the current time step and the encoder output. The decoder’s self-attention output
and the encoder-decoder attention output undergo residual connections and layer normalization.

The overall structure of the Transformer model is illustrated in Fig. 2.
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3 Proposed Wind Power Prediction Model for Extreme Scenarios Based on WTC-Transformer
The WTC-Transformer prediction process is outlined as follows:
Step 1: Define various conditions, such as low output, high output, steep rise, and plunge, and assign

corresponding labels.
Step 2: Train the CGAN to iteratively generate data under defined conditions by having the generator

produce samples that the discriminator cannot distinguish from real data.
Step 3: Specify training parameters, including learning rate, batch size, embedding dimension, hidden

neurons, and attention heads.
Step 4: Apply a 1D wavelet transform, decompose it into low- and high-frequency components, and

perform an inverse wavelet transform for signal reconstruction.
Step 5: Feed WTC-processed features into the Transformer’s encoder to extract and model key

temporal patterns.
Step 6: Pass the encoder output to the decoder, using multi-head attention to evaluate interactions with

the encoder’s output.
Step 7: Calculate loss and back-propagate to finalize the wind power prediction under extreme condi-

tions.
This approach combines CGAN-based extreme scenario generation with the WTC-Transformer model,

enabling robust wind power prediction in extreme scenarios and enhancing the model’s ability to capture
complex temporal dependencies. The flow chart of the proposed prediction model is illustrated in Fig. 3.
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Figure 3: Flow chart of wind power prediction based on WTC-Transformer in extreme scenarios

Fig. 4 illustrates the overall process of this study. The input historical data undergoes preprocessing,
including correlation analysis, normalization, and noise handling. The preprocessed data then moves on to
extreme scenario generation and wind power prediction. Finally, the data goes through anti-normalization,
producing the output prediction result.
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Figure 4: Overall flow chart of this paper

4 Case Studies

4.1 Introduction of Case Configuration
This study employs historical wind power generation data from the global energy forecasting competi-

tion 2014 (GEFCom2014), comprising records from ten Australian wind farms between 1 January 2012, and
1 December 2023. This dataset includes hourly wind speed measurements at both 10 and 100 m, alongside
zonal and meridional wind components. It collects a total of 168,000 samples for modelling wind power
prediction. The dataset consists of pre-normalized values, and all visualizations in this study are based on the
available normalized data. All models are implemented in Pytorch 3.8 with CUDA 10.0 GPU acceleration.

Wind speed, wind direction, temperature and other meteorological factors directly affect the output
power of the fan, which is very important for the analysis of wind farm power. Therefore, the correlation
analysis of meteorological data and power data of wind farms can help to deeply understand the influence
of meteorological factors on power output. In order to quantify this relationship, Pearson correlation
coefficient is used to analyze the main meteorological variables and power data of wind farms. The calculation
results based on Pearson correlation coefficient are shown in Table 1, where S is the wind speed. D is the
wind direction.

Table 1: Analysis of meteorological data and power correlation at different heights

S: 10 m S: 100 m D: 10 m D: 100 m
Person 0.7538 0.7919 0.0590 0.0887

As can be seen from Table 1, Pearson correlation coefficient shows a positive correlation between
meteorological data and wind power at the height of 10 and 100 m. In these data, the correlation between
wind direction and power is weak, indicating that wind direction has little effect on power generation. The
correlation between wind speed and power is strong. Among them, the wind speed at the height of 100 m has
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the strongest correlation with power, up to 0.79. Therefore, the study in this paper is based on wind speed at
a height of 100 m.

To ensure the quality and consistency of the input data, the following preprocessing steps are applied.
(1) Data normalization
The wind power data and supplementary meteorological features are normalized to a [0, 1] range using

Min-Max Normalization. This step standardizes feature scales, ensuring uniform contribution during model
training and improving convergence. The normalization formula is as follows:

xnorm =
x − xmin

xmax − xmin
, (14)

where x is the original feature value. xnorm is the normalized value. xmin are xmax the minimum and
maximum values of the feature, respectively.

After the prediction is complete, the original data output is restored from the normalized values. Reverse
normalization is performed using the following formula:

x = xnorm × (xmax − xmin) + xmin. (15)

This process ensures that the model’s output corresponds to the original scale of the data.
(2) Noise handling
During the operation of wind farms, the collected meteorological and power data may be subject

to various factors that lead to the presence of outliers and noise. These anomalous data points can
significantly impact the monitoring of wind farm operations, as well as the accuracy of power prediction and
subsequent data analysis. To effectively identify and handle these outliers, this study employs density-based
spatial clustering of applications with noise (DBSCAN). DBSCAN automatically identifies noise points and
distinguishes them from the normal data. The results are shown in Fig. 5, where blue points represent normal
data, and red points indicate the noise points identified as outliers. By addressing these noise points, the data
quality can be improved, thereby providing more accurate data support for subsequent power prediction
and optimization.

Figure 5: Profile of noise
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(3) Parameter setting
In Transformer, the number of multi-head attention mechanisms and the number of layers of encoder

and decoder are key indicators that affect the prediction accuracy. Parameter optimization is carried out
through grid search, and the initial value is set to 1, and the maximum value is set to 8, increasing successively.
When the number of multi-head attention mechanism is 4 and the number of encoder and decoder layers is
3, the best prediction accuracy is obtained. The optimization results are shown in Table 2.

Table 2: Parameters optimization of Transformer model

Parameters Search space Optimal result
Attention span 1,2,3,4,5,6,7,8 4

Encoder/Decoder layers 1,2,3,4,5,6,7,8 3

Add an early stop mechanism during training. To prevent overfitting of the model, set the maximum
number of iterations to 50. If the loss rises four consecutive times, the training is stopped early. The primary
model parameters are outlined in Table 3.

Table 3: Model structure and corresponding parameter settings

Model structure Parameter name Parameter value
CGAN Optimizer Adam

Batch size 32
Learning rate 0.0002

WTC-Transformer Attention span 4
Hidden neurons 128

Encoder/Decoder layers 3
Wavelet type Daubechies
Input steps 10

Learning rate 0.0001

4.2 Extreme Scenarios Generation
The CGAN model generates extreme wind power scenarios. It uses a discriminator composed of

multiple fully connected layers with ReLU activation to distinguish real from synthetic data. The generator
utilizes fully connected layers with ReLU activation to convert input noise and conditioning factors into
simulated wind power scenarios. Binary cross-entropy loss measures both generator and discriminator
losses. Fig. 6 illustrates four generated scenarios: high output, low output, steep rise, and sharp decline,
representing diverse extreme patterns in wind power. Table 4 is a complement to Fig. 4, clearly giving the
definitions of low output, high force, plunge and steep rise, and the possible causes.
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Figure 6: Diagram of extreme scenarios generation

Table 4: The definition of four extreme scenarios

Term Definition Possible causes
Low output A state in which the wind turbine

generates less power than its nominal
capacity.

Low wind speed, mechanical issues,
poor turbine performance,

maintenance downtime.
High output A state in which the wind turbine

generates power close to or at its
maximum capacity.

Strong and consistent wind, optimal
turbine performance.

Steep rise A rapid increase in power output over
a short time period.

Wind gusts, sudden weather changes.

Plunge A rapid decrease in power output,
typically occurring over a short period.

Wind speed dropping sharply,
mechanical failure, grid instability.

4.3 Comprehensive Evaluation Metrics and Downscaling Analyses
The generated data undergoes a 7:2:1 split for training, validation, and testing. Each feature is normalized

to a [0, 1] range. The WTC-Transformer model then processes the normalized input, leveraging WTC
with self-attention via the Transformer. Results are evaluated using quantitative metrics and visualization,
comparing the WTC-Transformer with LSTM and Transformer model.

(1) Comparison of similarity score and prediction efficiency
Various similarity metrics evaluate the correlation between generated and actual data, including mean

absolute error (MAE), root mean square error (RMSE), and R-squared (R2). They are suggested by various
studies [30,32]. RMSE is a widely used metric that measures the square root of the average squared differences
between predicted and actual values. It reflects the degree to which the predicted value deviates from the
actual value. MAE measures the average magnitude of the errors in a set of prediction, without considering
their direction. R2 represents the proportion of the variance in the dependent variable that is predictable
from the independent variables. Its value ranges from 0 to 1. The closer R2 is to 1, the better the fit between
the predicted results and the actual data. The specific calculation formula is as follows:

MAE = 1
n

n
∑
i=1
∣yi − ŷi ∣ , (16)

RMSE =
�
��� 1

n

n
∑
i=1
(yi − ŷi)2, (17)
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R2 = 1 −

n
∑
i=1
(yi − ŷi)2

n
∑
i=1
(yi − yi)

2
, (18)

where yi is the actual value, ŷi is the predicted value, yi is the mean of the actual value, n is the number of
data points.

The results are summarized in Table 5.

Table 5: Similarity score between generated data and actual data

Categories Region 1 Region 2 Region 3

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

LSTM [32] 0.6497 0.9625 0.9219 0.6134 0.8107 0.9171 0.5178 0.7021 0.9359
TCN [33] 0.6809 1.0592 0.9012 0.6637 1.0371 0.9088 0.7030 1.1235 0.8981

CGAN [25] 0.6366 0.7055 0.9383 0.6219 0.7878 0.9200 0.5898 0.7495 0.9247
Transformer [31] 0.6814 1.0825 0.8887 0.6882 1.1031 0.8896 0.6771 1.0869 0.8990

KAN-Transformer [24] 0.6846 1.0767 0.8904 0.6474 1.0219 0.9043 0.6615 1.0657 0.9039
WTC-Transformer 0.4523 0.7033 0.9529 0.5164 0.7872 0.9377 0.4271 0.6868 0.9531

As can be seen from Table 5, compared to the benchmark model Transformer, WTC-Transformer
increased R2 by 7.22% in region 1. MAE decreased by 36.92% and RMSE decreased by 36.81% in region 3.

The confidence intervals of MAE, RMSE and R2 for region 1 at 95% confidence level are [0.4668, 0.4923],
[0.7273, 0.8018] and [0.9459, 0.9530], respectively. These intervals demonstrate the statistical stability of the
model’s performance in multiple random samples, providing a more reliable assessment.

The Diebold-Mariano test is conducted to compare the predictive performance of the Transformer and
WTC-Transformer models. The test yields a DM value of 1.8843 and a p-value of 0.1326, which is greater
than the conventional significance level of 0.05. The results indicate that the WTC-Transformer aligns more
closely with the original data compared to the standard Transformer model. This highlights its superior
performance and potential for enhanced accuracy in predictive tasks.

As shown in Table 5, compared with Transformer, KAN improves prediction accuracy to some extent.
It excels at capturing complex, nonlinear relationships in time-series data, making it effective for tasks that
involve structured, deterministic patterns, CGAN, with its generative adversarial framework, is better suited
for handling the inherent uncertainty in data. It is particularly adept at modelling extreme conditions and
data with high variability. Compared with KAN, CGAN performs better. However, among various models,
the WTC-Transformer consistently outperforms models like LSTM, TCN, and KAN in predicting wind
power. It excels in reducing MAE and RMSE, highlighting its ability to minimize errors relative to actual
observations. Its high R2 values indicate robust explanatory power, effectively capturing data variability and
providing insight into underlying patterns. The WTC-Transformer demonstrates substantial advantages in
generating accurate data, reducing errors, and effectively capturing data variability. Wind power data have
significant multi-scale characteristics, such as periodic changes and sudden changes in wind speed. Wavelet
transform can effectively decompose signals on multiple frequency scales, so as to better capture complex
wave patterns in wind power data. By incorporating wavelet transform into the Transformer, the model
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achieves high accuracy in capturing both short-term fluctuations and long-term trends. This significantly
enhances the overall prediction performance.

The WTC-Transformer model proposed in this paper is improved on the basis of Transformer. As can be
seen from Table 6, there is little difference in training duration between the two. Because WTC-Transformer
introduces a wavelet transform module in the model architecture, its single iteration time is slightly higher
than Transformer. In addition, WTC-Transformer has a memory footprint of 1.69 GB, which is about 0.5 GB
higher than Transformer. This increase in memory usage is mainly attributed to the additional parameters
introduced by the wavelet transform and the need for computational storage. To sum up, WTC-Transformer
sacrifices a certain amount of computational efficiency in exchange for higher prediction accuracy. This
provides powerful modelling capabilities for wind power prediction.

Table 6: Hardware footprint comparison of Transformer and WTC-Transformer

Statistical name Transformer WTC-Transformer
Time per iteration/s 5 7
Total time spent/s 200 283

Message usage 1.15 GB (14.347%) 1.69 GB (21.12%)

(2) Error analysis
The prediction performance of the WTC-Transformer model compared to the Transformer model

under various extreme wind power scenarios is presented in Fig. 7. The figure is divided into four subplots,
each representing a specific extreme scenario: (a) Low output, (b) High output, (c) Plunge, and (d) Steep
rise. The left panels in each subplot show the predicted values vs. the real wind power values over time,
alongside the prediction errors. The blue solid lines represent the real wind power values, while the red
dashed lines represent the predicted values. The error plots highlight the deviation between the predicted
and real values, offering insight into the model’s accuracy over different time points. The right panels show
boxplots comparing the distribution of predicted values (blue) and real values (red) for both the WTC-
Transformer and Transformer models. These boxplots illustrate the range, interquartile spread, and outliers
in the prediction values, which provides a statistical perspective on the models’ performance. The WTC-
Transformer demonstrates a smaller error magnitude and better alignment with the real values compared
to the Transformer model. It shows less variation and fewer extreme outliers, especially in capturing sudden
changes and extreme values. Fig. 8 presents the boxplot of prediction errors under different wind power
scenarios. The boxplots illustrate the distribution, variability, and potential outliers in the prediction errors
across these scenarios.

The model can capture the actual value’s trend in the low output scenario, with error fluctuations
remaining below 0.04. The interquartile range is narrow, and there are few outliers, indicating stable and
accurate predictions. Compared to the Transformer model, the prediction from this paper is closer to the
central part of the actual data, indicating higher prediction accuracy and stable performance in handling low
fluctuations and smooth outputs.
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Figure 7: Distribution map of extreme scenarios error
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Figure 8: Boxplots of the prediction errors

In high-output scenarios, the predicted values exhibit significant convergence, with results more closely
distributed. However, the prediction error in high-output scenarios is greater than in low-output scenarios.
This difference is attributed to the wavelet transform’s longer time window for analysing low-frequency
signals, effectively capturing smooth changes and long-term trends. For high-frequency signals, the model
more accurately identifies signal mutations, aligning with wind power characteristics, where the low-
frequency component contains primary features and global information. Conversely, the high-frequency
component reveals local transformations and detailed information. In the plunge and steep rise scenarios,
the model successfully identifies overall trends but shows greater deviations at critical transition points. The
largest variability is observed in plunge, with a wide error range and numerous outliers. This is mainly due to
the fact that the prediction model is affected by recent trends. The sudden change in wind power at a critical
turning point is a sharp departure from previous trends. As a result, model lags in adapting to these rapid
changes. In addition, critical turning points represent rare events compared to more frequent incremental
changes in the data set. The model may be trained less on these scenarios, leading to higher prediction errors.

Overall, the model performs well in stable scenarios but exhibits limitations when handling extreme
fluctuations. Enhancing model robustness in volatile scenarios may require incorporating additional
fluctuation-related features or adopting more complex model architectures.

(3) PCA as well as t-SNE downscaling visualization
Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) dimen-

sionality reduction techniques are applied to visually compare the generated and actual data. Those
comparison results are shown in Fig. 9.

Fig. 8 demonstrates that the distribution of data points generated by the WTC-Transformer closely
aligns with that of actual data points in PCA space, indicating that the model effectively preserves the primary
variability of the data during generation. This close resemblance highlights the model’s ability to capture
essential structural and pattern-based characteristics in the reduced space. Furthermore, the similarity
observed between WTC-Transformer-generated data points and actual data points in t-SNE space reveals
that the model maintains local structural features even in nonlinear dimensionality reduction, enabling the
generated data to reflect a high degree of consistency with actual data during high- to low-dimensional
mapping. This alignment further confirms the WTC-Transformer model’s robustness in data generation and
underscores its advantages in producing high-quality synthetic data.
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Figure 9: PCA and t-SNE dimensionality reduction visualization

4.4 Policy Implication
The findings of this research have important implications for renewable energy systems and policies.

Policymakers should use advanced predictive models in energy management. These models optimize renew-
able resource use and ensure grid stability. Governments can invest in them to improve prediction accuracy.
This enables better planning and reduces reliance on fossil fuels. Collaboration among researchers, data sci-
entists, and policymakers is essential. It ensures the prediction is practical and actionable. Researchers should
refine these models by integrating multimodal data. Improving interpretability will support transparent and
informed decisions.

5 Conclusion
A novel wind power prediction model based on learning approach was proposed in this study, which

combined wavelet transform with Transformer to address the challenge of large prediction errors in extreme
scenarios. In the paper the WTC was applied for multi-scale feature extraction and Transformer was
combined to enhance sequence modelling. This model achieved high accuracy of wind power prediction,
particularly in extreme scenarios where prediction deviations are typically substantial. The model’s multi-
scale feature learning capabilities effectively captured both short-term wind speed fluctuations and long-term
climate trends. Furthermore, it extracted global trends and local details, greatly improving existing models.

The findings underscore the model’s effectiveness in wind power prediction under extreme conditions,
offering significant accuracy gains through its unique combination of wavelet transform and self-attention
mechanisms. This multi-scale feature extraction approach has provided the model with an enhanced ability
to learn diverse features across temporal scales, suggesting valuable implications for more reliable wind
power prediction frameworks in high-variability conditions.

Furthermore, deep learning relies heavily on large amounts of training data. When datasets are limited
or lack diversity, the model’s generalization ability weakens. This highlights the need to improve robustness
in small-sample scenarios. Future efforts could focus on transfer learning, advanced data augmentation,
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or hybrid methods. Integrating domain-specific knowledge can also enhance performance under data-
scarce conditions.
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Nomenclature
GANs Generative Adversarial Networks
CGAN Conditional Generative Adversarial Network
WTC Wavelet Transform Convolution
LSTM Long Short-Term Memory
VAE Variational Autoencoder
CNN Convolutional Neural Network
BiLSTM Bidirectional Long Short-Term Memory
PV Photovoltaic
MLP Multilayer Perceptron
KAN Kolmogorov-Arnold Network
FNN Feedforward Neural Network
DBSCAN Density-Based Spatial Clustering of Applications with Noise
MAE Mean Absolute Error
RMSE Root Mean Square Error
R2 R-squared
TCN Temporal Convolutional Network
PCA Principal Component Analysis
t-SNE t-Distributed Stochastic Neighbor Embedding
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