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ABSTRACT: This paper presents an allowable-tolerance-based group search optimization (AT-GSO), which combines
the robust GSO (R-GSO) and the external quality design planning of the Taguchi method. AT-GSO algorithm is
used to optimize the heat transfer area of the heat exchanger system. The R-GSO algorithm integrates the GSO
algorithm with the Taguchi method, utilizing the Taguchi method to determine the optimal producer in each iteration
of the GSO algorithm to strengthen the robustness of the search process and the ability to find the global optima.
In conventional parameter design optimization, it is typically assumed that the designed parameters can be applied
accurately and consistently throughout usage. However, for systems that are sensitive to changes in design parameters,
even minor inaccuracies can substantially reduce overall system performance. Therefore, the permissible variations of
the design parameters are considered in the tolerance-optimized design to ensure the robustness of the performance.
The optimized design of the heat exchanger system assumes that the system’s operating temperature parameters are
specific. However, fixing the system operating temperature parameters at a constant value is difficult. This paper assumes
that the system operating temperature parameters have an uncertainty error when optimizing the heat transfer area of
the heat exchanger system. Experimental results show that the AT-GSO algorithm optimizes the heat exchanger system
and finds the optimal operating temperature in the absence of tolerance and under three tolerance conditions.

KEYWORDS: Heat exchanger system; allowable tolerance-based group search optimization; Taguchi method; toler-
ance design

1 Introduction
Using tolerance optimization to design systems susceptible to parameter variations is very important in

parameter design optimization. Traditional parameter design often assumes that parameters can be precisely
realized and remain constant during operation. However, this ignores the fluctuations and uncertainties that
may exist in real-world environments. In this case, even minor deviations can lead to significant degradation
of system performance. Therefore, the purpose of tolerance-optimized design is to consider these variations
and ensure the system remains robust within the permitted range.

Two types of tolerance design methods are commonly used to deal with changes in operating parameters
and parameter specifications: robust parameter design and optimization design methods. Robust parameter
design minimizes external factors’ effects on product quality so that the product remains of high quality
even under less-than-ideal environmental conditions [1]. The Taguchi method is a method to obtain
robust parameters in heat exchanger systems [2–4]. However, this method only considers tolerance design.
Although robust parameter values can be obtained, it may not be possible to ensure that the system’s
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overall performance is optimal. Optimization design methods use optimization algorithms to find the best
parameter values to improve the system performance [5]. However, they usually ignore the robustness of
these parameters to external variations or errors, resulting in a lack of robustness of the best parameters in a
fluctuating environment.

A heat exchanger system is used to transfer heat between fluids of different temperatures. This system
is commonly used in petroleum, chemical, metallurgy, power, light, food, and other industries [6]. The
most common criteria for heat exchanger optimization are minimum initial cost, minimum operating
cost, maximum efficiency, minimum pressure drop, minimum heat transfer area, and minimum weight
or material [7]. Venkatesh et al. used a multi-objective genetic algorithm to solve the complex decision
problem of cost, thermal resistance, and ultimate utility of heat exchanger systems [8]. Bianco et al. used
a multi-objective genetic algorithm to minimize the heat transfer area of heat exchanger systems [9]. Yang
et al. used an improved stochastic ranking evolutionary strategy algorithm to minimize the heat transfer
area of heat exchanger systems [10]. Rani et al. used multi-objective optimization of opposition learning
with beetle swarm algorithm to design a heat exchanger system to reduce five objective functions: total
heat transfer rate, total weight, total mass flow rate, number of entropy generating units, and whole annual
cost [11]. Gawai et al. used a modified, amended differential evolution algorithm to minimize the heat transfer
area of the heat exchanger system [12]. Bakr et al. applied a genetic algorithm to optimize the design of a
shell-and-tube heat exchanger to improve its thermal performance by maximizing heat transfer efficiency
while minimizing pressure drop [13]. Zhang et al. enhanced the performance of a central heating system
by optimizing the distribution of heat transfer area and the mass flow rates of working fluids, aiming to
maximize the temperature of the cold fluid as the optimization objective [14]. Kharaji used constrained
optimization algorithms to minimize heat transfer areas in shell-and-tube heat exchangers [7]. Shafiey Dehaj
et al. applied a genetic algorithm to reduce heat transfer areas and improve the effectiveness of fin and tube
heat exchangers [15]. Wu et al. used a genetic algorithm to design the spiral-wound heat exchanger and
minimize its heat transfer areas [16]. From the survey of existing literature, many scholars have presented
the heat exchanger system for minimizing heat transfer area. However, they assumed no uncertainty in the
system’s operating temperature parameters. Therefore, many scholars have assumed a constant value for the
system’s operating temperature during the optimization process. In industry, it is difficult to fix a system’s
operating temperature at a constant state, and the optimal parameters obtained by assuming a constant
value for the system’s operating temperature parameters are bound to have uncertain errors in practical
applications [17]. Temperature cannot be accurately measured or controlled at every critical design point.
However, this uncontrollable factor can be considered as a disturbance factor and integrated into the overall
system design process. Although group search optimization (GSO) has demonstrated numerous successful
applications, it suffers from poor search performance—its low accuracy and tendency to become trapped
in local optima result in poor robustness. Therefore, Yang et al. used the experimental design approach
to solve this problem and verified its performance [10]. However, it lacks tolerance capabilities. Thus, this
paper focuses on the optimal design of the uncertainty system operating temperature parameters of the heat
exchanger system through an allowable-tolerance-based group search optimization algorithm (AT-GSO) to
achieve the minimum heat transfer area. The method proposed in this paper can consider the existence of
uncertainty in the system operating temperature during the parameter optimization process, so that it can
be applied in practice to reduce the impact caused by the error in the system operating temperature.
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2 Problem Statement and Application Methods

2.1 Problem Statement
The heat exchanger is a kind of energy-saving equipment used to achieve heat transfer between

materials, but also in the development and utilization of secondary energy, heat recovery, and energy
saving of the main equipment. The chemical plant utilizes waste heat from the plant, which uses three heat
exchangers to heat the material temperature from 100○C to 500○C. Conventional design methods focus on
the optimization of individual heat exchangers, ignoring the interaction between heat exchangers in the
heat exchanger network. The superstructure of the heat exchanger system is shown in Fig. 1. This paper
investigates how to optimize the system operating temperatures T1 and T2 to minimize the total heat transfer
area of the heat exchanger system, where there are uncertainties △T1 and △T2 in the system operating
temperature parameters.

First Heat Exchanger Second Heat Exchanger Third Heat Exchanger
Material

100°C

Material

500°C

300°C

T 1 T 2

400°C 600°C

T 3 T 4 T 5

Figure 1: The heat exchanger system structure

Neglecting the change of specific heat of each material with temperature, according to the law of
conservation of heat for the three heat exchangers, can be calculated as follows [18]:

mcp (T1 − 100) = mcp(300 − T3), (1)
mcp (T2 − T1) = mcp(400 − T4), (2)
mcp (500 − T2) = mcp(600 − T5). (3)

Assuming arithmetic mean temperature difference for each heat exchanger yields:

Δtm1 =
(300 − T1) + (T3 − 100)

2
= 300 − T1 , (4)

Δtm2 =
(400 − T2) + (T4 − T1)

2
= 400 − T2, (5)

Δtm3 =
(600 − 500) + (T5 − T2)

2
= 100. (6)

The heat transfer area can be calculated according to the heat equation as follows:

Ai =
Qi

Ki Δtmi
=

mcpΔTi

Ki Δtmi
, (7)

where i is the number of the heat exchanger, A is the heat transfer area of the heat exchanger, Q is the amount
of heat exchanged by the heat exchanger, K is the heat transfer coefficient of the heat exchanger, and△tm is
the average value of temperature difference of the heat exchanger.
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Thus, the single-objective optimization problem of the total heat transfer area of the heat exchanger
system is described as follows [18]:

Minimize A = A1 + A2 + A3 =
100000(T1 − 100)

120(300 − T1)
+

100000(T2 − T1)
80(400 − T2)

+
100000(500 − T2)

40 × 100
, (8)

where 100 ≤T1 ≤ 300 and T1 ≤T2 ≤ 400. The uncertainties△T1 and△T2 in the system operating temperature
parameters is between 0% and 40%.

2.2 Allowable-Tolerance Based GSO Algorithm
The Group Search Optimization (GSO) algorithm relies on random searchers (Rangers) to conduct

exploitation search operations. A single best-fit producer (Producer) is typically selected to perform explo-
ration searches in a conventional GSO algorithm. Other group members are guided to the position with the
highest fitness value through the producer-scrounger (PS) mechanism. However, selecting just one producer
often causes the algorithm to get stuck in local optima, limiting its ability to explore more broadly. This paper
utilizes the robust GSO (R-GSO) [10], which selects a fixed number of multiple producers combined with the
Taguchi method to determine the optimal producer in each iteration to avoid trapping in local optima. The
Taguchi method is a design of experiments approach rooted in statistical theory, which ensures robustness
by organizing the minimal number of experiments across selected factors using an orthogonal array while
accounting for uncontrollable factors in the system’s environment that could affect quality characteristics [1].
The Taguchi method is used to enhance the global search capabilities of the GSO algorithm. This approach
not only enhances the exploration search process but also significantly improves the robustness of solutions,
expanding the search range and enhancing the algorithm’s global optimization capacity. Additionally, for
tolerance design optimization problems, this paper introduces the GSO algorithm with tolerance design
capabilities, named AT-GSO, which merges the Taguchi method for external quality design planning with
R-GSO to consider both robustness and optimal parameter design. Fig. 2 illustrates the flowchart of the
AT-GSO algorithm.
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Figure 2: The flowchart of AT-GSO algorithm
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Here is the process description of the AT-GSO algorithm. A parameter Xp is introduced to denote
the number of producers, with a recommended range of Xp ∈ [1, 10] in the initial setup of the AT-GSO
algorithm. The AT-GSO algorithm selects the individuals with the highest two fitness scores as producers in
each iteration, known as Xp1 and Xp2, respectively. The remaining group members select a third producer, Xp3,
to ensure diversity. The factor levels in the orthogonal experimental design are set by these three producers.
As a result, three crossover types are chosen. Xp1 and Xp2 are assigned as the first and second levels in each
iteration, along with combinations of Xp1, Xp2, and Xp3. An orthogonal table Lm(2m−1) is selected, and three
experiments are conducted for different level combinations of Xp. Where m denotes the number of rows of
the orthogonal experiment; m – 1 denotes the number of columns of configurable decision parameters. Three
new producers are generated after completing the Taguchi Method, Xnp1, Xnp2 and Xnp3, respectively. These
new producers identify the optimal producer Xop for each iteration, enhancing both the robustness of the
search process and the efficiency in locating global optima.

The tolerance design optimization problem is described as follows:

Minimize { f (x) ∣x ∈ [l , u]} , sub ject to the design constraints and the tol erance Δx o f x , (9)

where f (x) is the object function, x = (x1 , x2, . . . , xn) ∈ Rn is a set of vectors with n variables in the nominal
value of the design, Δx is the tolerance of x, l, and u is the solution space of x.

The orthogonal table of three levels Lm(3(m−1)/2) is used to build the external quality design planning to
solve the tolerance design optimization problem, as shown in Table 1.

Table 1: The external quality design planning for the tolerance design optimization problem

Factor

Level x1 x2 x3 . . . xn

1 x1N − Δx1 x2N − Δx2 x3N − Δx3 . . . xnN − Δxn
2 x1N x2N x3N . . . xnN
3 x1N + Δx1 x2N + Δx2 x3N + Δx3 . . . xnN + Δxn

The design nominal and tolerance values should be considered in practical design scenarios. This means
that while achieving the optimal target value, the tolerances resulting from parameter variations can also be
reduced. Thus, Eq. (9) is re-described as follows:

Minimize {μ ( f (x ± Δx)) andσ ( f (x ± Δx))} , sub ject to the design constraints (10)

where μ ( f (x ± Δx)) is the average value of f (x ± Δx) in the tolerance experiment and σ ( f (x ± Δx)) is
the standard deviation of f (x ± Δx) in the tolerance experiment.

The evolutionary algorithms assess and solve the problem based on fitness values rather than objective
function values due to variations in component specifications in the optimization problems. The objective
function method solely accounts for system performance f (x) but neglects the effect of allowable error △x
of the design parameter x on system performance. However, the influence of the allowable error △x in
the design parameter x on system performance can be considered alongside the system’s performance by
applying the fitness function approach. Thus, choosing and designing system parameters using an adaptive
function minimizes the sensitivity of the desired target value to changes in the specifications of specific
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uncontrollable components. For the optimization problem where smaller values are preferred, Eq. (10) can
be expressed using the fitness function as follows:

F = μ ( f (x ± Δx)) +wσ ( f (x ± Δx)) , (11)

where w is the weight factor to balance between μ( f (x ± Δx)) and σ( f (x ± Δx)).
For example, suppose each producer has seven dimensions and two levels. The orthogonal table L8 (27)

is employed, as shown in Tables 2–4. The experiment is repeated three times for each row combination of the
orthogonal experiment. After the orthogonal experiment is completed, three results are obtained for each
row combination. Eq. (12) identifies which level had a more significant influence on each factor and ensures
robustness in the search for the optimal value.

E f j = −10 ⋅ log((J2
i(av g)/J

2
Max ,av g) + (J

2
i(std)/J

2
Max ,std)), j = 1, 2, (12)

where Ji(avg) is the average of the three results; Ji(std) is the standard deviation of the three results; JMax,avg
is the maximum average in the orthogonal experiment; JMax,std is the maximum standard deviation in the
orthogonal experiment.

Table 2: Example of crossover performed using L8(27) orthogonal table for Xp1 and Xp2

Factor

Exp. A B C D E F G
1 Xp1 Xp1 Xp1 Xp1 Xp1 Xp1 Xp1
2 Xp1 Xp1 Xp1 Xp2 Xp2 Xp2 Xp2
3 Xp1 Xp2 Xp2 Xp1 Xp1 Xp2 Xp2
4 Xp1 Xp2 Xp2 Xp2 Xp2 Xp1 Xp1
5 Xp2 Xp1 Xp2 Xp1 Xp2 Xp1 Xp2
6 Xp2 Xp1 Xp2 Xp2 Xp1 Xp2 Xp1
7 Xp2 Xp2 Xp1 Xp1 Xp2 Xp2 Xp1
8 Xp2 Xp2 Xp1 Xp2 Xp1 Xp1 Xp2

Table 3: Example of crossover performed using L8(27) orthogonal table for Xp1 and Xp3

Factor

Exp. A B C D E F G
1 Xp1 Xp1 Xp1 Xp1 Xp1 Xp1 Xp1
2 Xp1 Xp1 Xp1 Xp3 Xp3 Xp3 Xp3
3 Xp1 Xp3 Xp3 Xp1 Xp1 Xp3 Xp3
4 Xp1 Xp3 Xp3 Xp3 Xp3 Xp1 Xp1
5 Xp3 Xp1 Xp3 Xp1 Xp3 Xp1 Xp3
6 Xp3 Xp1 Xp3 Xp3 Xp1 Xp3 Xp1
7 Xp3 Xp3 Xp1 Xp1 Xp3 Xp3 Xp1
8 Xp3 Xp3 Xp1 Xp3 Xp1 Xp1 Xp3
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Table 4: Example of crossover performed using L8(27) orthogonal table for Xp2 and Xp3

Factor

Exp. A B C D E F G
1 Xp2 Xp2 Xp2 Xp2 Xp2 Xp2 Xp2
2 Xp2 Xp2 Xp2 Xp3 Xp3 Xp3 Xp3
3 Xp2 Xp3 Xp3 Xp2 Xp2 Xp3 Xp3
4 Xp2 Xp3 Xp3 Xp3 Xp3 Xp2 Xp2
5 Xp3 Xp2 Xp3 Xp2 Xp3 Xp2 Xp3
6 Xp3 Xp2 Xp3 Xp3 Xp2 Xp3 Xp2
7 Xp3 Xp3 Xp2 Xp2 Xp3 Xp3 Xp2
8 Xp3 Xp3 Xp2 Xp3 Xp2 Xp2 Xp3

After selecting the optimal level for all factors, a new producer vector Xnpi (i = 1, 2, 3) is generated. In
the end, six producer vectors Xp1, Xp2, Xp3, Xnp1, Xnp2 and Xnp3 are acquired, and their fitness values are
calculated with external orthogonal table separately. The producer with the highest fitness is selected as the
optimal producer Xop for the current iteration. Next, the original GSO algorithm update position process
is executed.

2.3 Tolerance Design of Heat Exchanger System
Fixing a system’s operating temperature at a constant state is difficult, and there is bound to be an

uncertainty error in industry applications [17]. It is straightforward to find the optimal parameters without
tolerance in a robust heat exchanger system, but considering tolerance tends to reduce the robustness of the
system. This paper uses three tolerance values: ±10%, ±20% and ±40%. Since the heat exchanger system has
two operator temperature parameters, the L9(32) external orthogonal table simulates the tolerance design
problem. The two parameters of the heat exchanger system are defined as follows:

T = [T1 , T2] . (13)

The two parameters and tolerance levels of the heat exchanger system are shown in Table 5; the external
orthogonal table is shown in Table 6. All two parameters must satisfy the following equation:

T = {100 ≤ T1 ≤ 300 and T1 ≤ T2 ≤ 400}. (14)

Table 5: The control factors and levels of the heat exchanger system

Factor

Level T1 T2

1 T1N − ΔT1 T2N − ΔT2
2 T1N T2N
3 T1N + ΔT1 T2N + ΔT2
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Table 6: The L9(32) external orthogonal table for tolerance design problem of the heat exchanger system

Factor

Exp. T1 T2 A
1 T1N − ΔT1 T2N − ΔT2 A1
2 T1N − ΔT1 T2N A2
3 T1N − ΔT1 T2N + ΔT2 A3
4 T1N T2N − ΔT2 A4
5 T1N T2N A5
6 T1N T2N + ΔT2 A6
7 T1N + ΔT1 T2N − ΔT2 A7
8 T1N + ΔT1 T2N A8
9 T1N + ΔT1 T2N + ΔT2 A9

3 Results and Discussions
This paper uses Eq. (2) to evaluate the performance of the heat exchanger system by the AT-GSO

algorithm. Two types of experiments: heat exchanger system without tolerance and heat exchanger system
with tolerance. Five independent experiments will be conducted on the hyperparameters of the AT-GSO
algorithm. Since the heat exchanger system has two parameters, the dimension of the AT-GSO algorithm
is 2, the search range of each dimension is [100, 400], the population size is 10, and the maximum iteration
is 50. This paper evaluates the proposed algorithm’s performance by comparing it with the fractional-order
particle swarm optimization (FPSO) [19].

3.1 Experimental Results of AT-GSO for Designing of Heat Exchanger System
The AT-GSO hyperparameters are set as follows: the number of producers is 3, the percentage of rangers

is 60%, the maximum search angle (θmax) of producer is π/α2 × 1.8, the maximum turning angle (αmax) of
producer is θmax/4, the longest search distance of producer is 8, and the initial angle is π/2. Five independent
experiments without tolerance will be conducted using this combination of AT-GSO hyperparameters and
the results are shown in Table 7. The average A-value (the total heat transfer area) is 7049.2502; the standard
deviation A-value is 1.71 × 10−3. The results of the five FPSO independent experiments without tolerance are
presented in Table 8. Fig. 3 shows the mean fitness value curves for the AT-GSO and FPSO algorithms, each
averaged over five experiments. Both the AT-GSO and FPSO algorithms can find the optimal value without
tolerance. However, as shown in Fig. 3, FPSO exhibits significant instability during the search process.
Furthermore, Tables 7 and 8 demonstrate that AT-GSO outperforms FPSO and exhibits greater robustness.

Table 7: Five experimental results of heat exchanger system designed by AT-GSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 182.0114 295.5994 7049.2492

7049.2502 1.71 × 10−3
2 181.864 295.4758 7049.2532
3 182.0202 295.604 7049.2492
4 182.019 295.6055 7049.2492
5 181.9781 295.5414 7049.2500
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Table 8: Five experimental results of heat exchanger system designed by FPSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 181.7823 295.5998 7049.2548

7049.3113 1.03 × 10−1
2 182.3430 295.8873 7049.2690
3 182.5836 296.1037 7049.3099
4 183.2305 295.1937 7049.4961
5 182.0058 295.7262 7049.2532

Figure 3: The fitness curve of five experiments of heat exchanger system without tolerance designed by AT-GSO

3.2 Experimental Results of AT-GSO for Tolerance Design of Heat Exchanger System
This paper uses three tolerance values: ±10%, ±20% and ±40%. The AT-GSO hyperparameters with

±10% tolerance are set as follows: the number of producers is 3, the percentage of rangers is 60%, the
maximum search angle (θmax) of producer is π/α2 × 1.8, the maximum turning angle (αmax) of producer is
θmax/4, the longest search distance of producer is 8, and the initial angle is π/2. Five independent experiments
with ±10% tolerance will be conducted using this combination of AT-GSO hyperparameters and the results
are shown in Table 9. The average A-value (the total heat transfer area) is 7049.2502; the standard deviation
A-value is 1.71 × 10−3. The results of the five FPSO independent experiments are presented in Table 10. Fig. 4
shows the mean fitness value curves for the AT-GSO and FPSO algorithms, each averaged over five
experiments. Both the AT-GSO and FPSO algorithms can find the optimal value with ±10% tolerance.
However, as shown in Fig. 4, FPSO exhibits instability during the search process. Furthermore, Tables 9
and 10 demonstrate that AT-GSO outperforms FPSO and exhibits greater robustness.
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Table 9: Five experimental results of heat exchanger system with ±10% tolerance designed by AT-GSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 175.2682 285.1128 7195.1064

7195.1085 2.54 × 10−3
2 175.0003 285.0609 7195.1121
3 175.2554 285.113 7195.1064
4 175.1989 284.9998 7195.1094
5 175.2429 285.1157 7195.1064

Table 10: Five experimental results of heat exchanger system with ±10% tolerance designed by FPSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 179.4212 286.3664 7195.1508

7195.2222 1.13 × 10−1
2 174.7302 284.9428 7195.1312
3 174.7168 285.5181 7195.2027
4 175.1358 284.6135 7195.1666
5 177.0154 286.0285 7195.4592

Figure 4: The fitness curve of five experiments of heat exchanger system with ±10% tolerance designed by AT-GSO

The AT-GSO hyperparameters with ±20% tolerance are set as follows: the number of producers is 10,
the percentage of rangers is 90%, the maximum search angle (θmax) of producer is π/α2 × 1.6, the maximum
turning angle (αmax) of producer is θmax/6, the longest search distance of producer is 2, and the initial
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angle is π/3. Five independent experiments with ±20% tolerance will be conducted using this combination
of AT-GSO hyperparameters and the results are shown in Table 11. From Table 11, it is learnt that AT-
GSO did not search for the best parameter in one out of five experiments. The average A-value (the total
heat transfer area) is 7380.1461; the standard deviation A-value is 7.69 × 10−1. The results of the five FPSO
independent experiments are presented in Table 12. Fig. 5 shows the mean fitness value curves for the AT-
GSO and FPSO algorithms, each averaged over five experiments. Table 12 shows that the FPSO algorithms
fail to find the optimal value with ±20% tolerance, falling into a local optimum solution. As shown in Fig. 4,
FPSO exhibits instability during the search process. Furthermore, Tables 11 and 12 demonstrate that AT-GSO
outperforms FPSO.

Table 11: Five experimental results of heat exchanger system with ±20% tolerance designed by AT-GSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 161.3939 264.3195 7517.614

7380.1461 7.69 × 10−1
2 221.4265 364.7216 7347.1441
3 221.7663 365.1105 7345.2903
4 222.0226 364.6672 7345.3919
5 221.7659 365.1276 7345.2897

Table 12: Five experimental results of heat exchanger system with ±20% tolerance designed by FPSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 161.7287 264.7395 7517.6765

7517.9037 5.1 × 10−1
2 157.5516 263.7430 7518.8142
3 160.4889 263.6374 7517.6896
4 160.3982 263.7787 7517.7220
5 161.2059 264.2711 7517.6158

The AT-GSO hyperparameters with ±40% tolerance are set as follows: the number of producers is 3,
the percentage of rangers is 60%, the maximum search angle (θmax) of producer is π/α2 × 1.8, the maximum
turning angle (αmax) of producer is θmax/4, the longest search distance of producer is 8, and the initial
angle is π/2. Five independent experiments with ±40% tolerance will be conducted using this combination
of AT-GSO hyperparameters and the results are shown in Table 13. The average A-value (the total heat
transfer area) is 7049.2502; the standard deviation A-value is 1.71 × 10−3. The results of the five FPSO
independent experiments with ±40% tolerance are presented in Table 14. Fig. 3 shows the mean fitness value
curves for the AT-GSO and FPSO algorithms, each averaged over five experiments. Both the AT-GSO and
FPSO algorithms can find the optimal value without tolerance. However, as shown in Fig. 6, FPSO exhibits
significant instability during the search process. Furthermore, Tables 13 and 14 demonstrate that AT-GSO
outperforms FPSO and exhibits greater robustness.
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Figure 5: The fitness curve of five experiments of heat exchanger system with ±20% tolerance designed by AT-GSO

Table 13: Five experimental results of heat exchanger system with ±40% tolerance designed by AT-GSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 183.4763 337.4131 6627.3791

6627.3971 4.77 × 10−2
2 183.468 337.4117 6627.3942
3 183.4252 337.3241 6627.4797
4 183.484 337.3731 6627.3663
5 183.4948 337.2556 6627.3659

Table 14: Five experimental results of heat exchanger system with ±40% tolerance designed by FPSO

No. Parameters of heat exchanger system A Average A Standard deviation A

T1 T2

1 183.1962 336.5194 6628.0124

6627.7023 2.01 × 10−1
2 183.5304 336.7452 6627.6544
3 183.2722 337.3388 6627.7744
4 183.6906 337.4513 6627.4987
5 183.3865 337.5855 6627.5716
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Figure 6: The fitness curve of five experiments of heat exchanger system with ±40% tolerance designed by AT-GSO

4 Conclusions
This paper proposed the AT-GSO algorithm, which combines the R-GSO algorithm and external quality

design planning of the Taguchi method to optimize the heat exchanger system to minimize the total heat
transfer area. The AT-GSO algorithm has a tolerance design capability. In the industry, keeping the operating
temperature of a heat exchanger system in a constant state is not easy. This paper allows three tolerance
values for operating temperature: ±10%, ±20% and ±40%. Experimental outcomes indicate that the AT-GSO
algorithm proficiently optimizes the heat exchanger system and finds the optimum operating temperature
without and with all three tolerances. The method proposed in this paper can take into account the existence
of uncertainties in the parameters during the parameter optimization process so that it can reduce the impact
caused by the errors in the parameters in practical applications. In future work, the method proposed in this
paper can be applied to different algorithms and different applications. While tolerances were introduced for
operating temperatures, other potential uncertainties (e.g., flow rate variations, fluid properties, or fouling
factors) were not considered. In addition, this paper currently minimizes only the total heat transfer area,
while other objectives are not included in the optimization process.
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