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ABSTRACT: The nonlinear post-buckling response of functionally graded (FG) copper matrix plates enforced by
graphene origami auxetic metamaterials (GOAMs) is investigated in the current work. The auxetic material properties of
the plate are controlled by graphene content and the degree of origami folding, which are graded across the thickness of
the plate. The material properties of the GOAM plate are evaluated using genetic micro-mechanical models. Governing
nonlinear eigenvalue problems for the post-buckling response of the GOAM composite plate are derived using the
virtual work principle and a four-variable nonlinear shear deformation theory. A novel differential quadrature method
(DQM) algorithm is developed to solve the nonlinear eigenvalue problem. Detailed parametric studies are presented
to explore the effects of graphene content, folding degree, and GO distribution patterns on the post-buckling responses
of GOAM plates. Results show that high tunability in post-buckling characteristics can be achieved by using GOAM.
Functionally Graded Graphene Origami Auxetic Metamaterials (FG-GOAM) plates can be used in aerospace structures
to improve their structural performance and response.
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1 Introduction
Auxetic metamaterials increase in the lateral direction when elongated axially, contract laterally, and

compressed axially, thereby resulting in a negative Poisson’s ratio. Auxetic word is originally from the Greek
word “auxetos” that means “tends to expand”. It was first defined by Evans and colleagues in 1991 [1].
Auxetic metamaterials have lower densities, reduction in material usage, high shear resistance, high energy
absorption capacity, good acoustic behavior, and crashworthiness [2]. These merits make them very favorable
in many applications such as aerospace, biomedical scaffold, and defense areas [3,4].

Wen et al. [5] proved the microstructural hierarchy of pristine chemically modified graphene films
renders remarkable negative Poisson’s ratios ranging from −0.25 to −0.55. Dutta et al. [6] developed single
cell auxetic beams with different geometries using a finite element (FE) approach. Meng et al. [7] investigated
the self-folding of 2D graphene into 3D graphene Miura origami helped by hydrogenation and identified
the origin of their deviation. Zhao et al. [8] conducted bending tests and numerical simulations to study the
static bending behavior of the sandwich auxetic honeycomb beams. Wu et al. [9] presented a review article
for metallic metamaterials focusing on design process, fabrication and property testing and classification.
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Fang et al. [10] presented a comprehensive review of bi/multi-stable phenomenon of composite origami
metamaterial structures. Liu et al. [11] presented yield area, yield criterion, and loading history as design tools
of plasticity in modifying buckling load and sequence in metamaterials. Jiang et al. [12] estimated crushing
response of 3D reentrant circular auxetic metamaterials under quasi-static loads. Lu et al. [13] and Wang
et al. [14] studied the quasi-static bending response and energy absorption of sandwich beam with auxetic
core. Francisco et al. [15] examined the vibration and bending of sandwich auxetic tubes. They noticed that
the vertical length of cell has effects on natural frequencies and buckling loads. Wu et al. [16] exploited the
gradient-free method to get the topology optimization of metamaterial microstructures for negative Poisson’s
ratio under large deformation. Lv et al. [17] explored analytically mechanical and thermal post-buckling of
FG-GOEMA auxetic metamaterials plates. Du et al. [18] developed a new approach for the layout design
of cuts in kirigami metamaterials attain desired deformation patterns under buckling and post-buckling
behaviors. Li et al. [19] studied the nonlinear vibration of the sandwich beam with auxetic honeycomb core
under thermal shock. Vineyard et al. [20] employed the asymptotic homogenization approach to obtain the
effective thermoelastic properties of the multiphase metamaterials.

Response of a structure regarding its load bearing capacity may fall into two general categories: stable
or unstable. Buckling and post-buckling are unstable responses of thin structures those must be understood
comprehensively by researchers. The long history of buckling theory for structures begins with the studies
by Euler in 1744 of the stability of flexible compressed beams [21]. In 1993, Wang et al. [22] studied the
buckling response of rectangular Mindlin plates with internal line supports. Shariyat et al. [23] investigated
uniaxial and biaxial postbuckling behaviors of the longitudinally graded plates by using the exact 3D elasticity
theory. Wehmeyer et al. [24] presented reduced-order numerical solutions to describe nonlinear buckling
of elastic struts inclined relative to the loading direction. Eltaher et al. [25] illustrated the influence of
periodic/nonperiodic imperfections modes on buckling and postbuckling of beam with nonlinear elastic
foundations. Mao et al. [26] examined buckling and postbuckling of FG piezoelectric plate under the effect
of electrical and mechanical loads. Mehrabi et al. [27] examined post buckling of the composite eccentric
annular sector auxetic metamaterial plate under a thermal load. Derveni et al. [28] explored buckling
response of plate-lattice architectures under uniaxial compression. Moradi-Dastjerdi et al. [29] examined the
biaxial buckling of an active sandwich plate. Liu et al. [30] studied nonlinear vibration response of auxetic
honeycomb plates via Galerkin and multiple scale methods. Abbaspour et al. [31] predicted the thermal
buckling of sandwich microshell with piezoelectric layers. Long et al. [32] studied the nonlinear stability of
porous FG spherical caps and circular plates. Yan et al. [33] presented a comprehensive overview of recent
articles related to snapping metamaterials and their design strategies.

Based on refined plate theory, Ezzati et al. [34] investigated free vibration GOAM plate rested on
Winkler–Pasternak elastic substrate analytically. Mahinzare et al. [35] proposed DQM to examine the
nonlinear vibration of GOAM sandwich pates numerically. Mohamed et al. [36] developed a novel math-
ematical model for nonlinear buckling, postbuckling, and snap-through of bidirectional FG porous plates
rested on elastic foundation. He et al. [37] investigated buckling and postbuckling of anisogrid lattice-core
sandwich plates with nanocomposite skins. Milazzo et al. [38] exploited Ritz method to study buckling and
postbuckling responses of variable stiffness plates with cutouts. Vaghefi [39] used meshless approach to
analyze the elastoplastic postbuckling of porous FG plates with elastic foundations. Dai et al. [40] exploited
the Floquet exponent method to study dynamic stability characteristics of rotating truncated conical shells
under periodic axial loads. Nasri et al. [41] studied nonlinear bending and buckling stability of curved
metamaterial beam and optimized the results by using the response surface methodology.

Post-buckling behavior of metamaterial structures has received limited attention from researchers.
Shen et al. [42] illustrated the effect of in-plane negative Poisson’s ratio on the post-buckling response of
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graphene-reinforced metal matrix composite plates. An et al. [43] studied bending and buckling response
of FG-GOAMs irregular plates using generalized finite difference method. Murari et al. [44,45] investigated
nonlinear vibration and post-buckling responses of GOAMs tapered beams in fluid by using physics-
embedded machine learning model. Ghasemi et al. [46] presented the small/large amplitude vibration of
the pre/post-buckled geometrically imperfect re-entrant auxetic tube modeled by von-Kármán nonlinear
strain and Timoshenko beam theory. Based on the first order shear deformation and the two-step pertur-
bation method, Lv et al. [17] examined the mechanical and thermal post-buckling of FG-GOAMs. Sengar
et al. [47] presented stability of FG skew sandwich plates having temperature-dependent properties and a re-
entrant auxetic core. Ghasemi et al. [48] investigated analytically nonlinear postbuckling and static bending
behaviors of 3D auxetic tubes.

To our knowledge, this study presents the first application of the numerical differential quadrature
method (DQM) to investigate the nonlinear post-buckling behavior of FG auxetic metamaterial higher-order
plates. The primary objective is to determine the optimal combination of graphene content, folding degree,
and distribution patterns to enhance the postbuckling performance of FG-GOAM plates. In the following
sections, the problem formulation will be presented by including the high shear deformation theory, von
Karman nonlinear strain, and micromechanical models used to evaluate material properties of the FG-
GOAM. DQM, linearization and novel iterative approaches used in the solution of developed models are
discussed through Section 3. Model validation with previous respectable works is proved through Section 4.
Numerical parametric studies to present the effects of graphene content, folding degree and GO distribution
patterns on the postbuckling responses of GOAM plates are discussed in Section 5. Observations and
concluding remarks are summarized in Section 6.

2 Problem Formulation

2.1 Mechanical Properties of Metamaterials
The considered GOAM plate consists of an even number of layersN arranged symmetrically about its

mid surface. Each layer is composed of cupper (Cu)matrix enforced by graphene origami (GO) material. The
GO content is constant within each layer but it changes in different layers according to a specified distribution
of GO weight fraction (WGr).

Three GO distribution patterns are considered [44,45]:

U − type∶ VGO (l) = V GO
X − type∶ VGO (l) = 2V GO ∣2l − NL − 1∣ /NL
O − type∶ VGO (l) = 2V GO (1 − ∣2l − NL − 1∣ /NL)

(1)

U-type where the same GO content in all layers, X-type where higher GO content at the top and bottom
layers and O-type where higher GO content near the mid surface. Where V GO is the average GO volume
fraction in the l th layer that is related to the weight fraction WGO by [44]:

V GO = WGo

WGo + (ρGr/ρCu) (1 − WGo)
(2)

meanwhile ρGr and ρCu are the densities of graphene and cupper, respectively.
These types are schematically represented in Fig. 1 where the darker color stands for a higher GO

content. The plate has length a, width b and thickness h. The plate is described in a rectangular coordinate
system in which the x- and y-axes lie in the mid-plane (z = 0) while the z-axis is perpendicular to the
mid-plane.
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Figure 1: Schematic of considered three GO distribution types of GOAM plates

The composite Young’s modulus Ec and Poisson’s ration νc of GOAM at temperature T are evaluated by
genetic micromechanical model [49] as:

Ec = 1 + ξηVGO

1 − ηVGO
ECu (1.11 − 1.22VGO − 0.134 T

T0
+ 0.559VGO

T
T0

− 5.5HGO VGO + 38HGO V 2
GO

−20.6H2
GO V 2

GO)
νc = (νGO VGO + νCuVCu) (1.01 − 1.43VGO + 0.165 T

T0
− 16.8HGO VGO − 1.1HGO VGO

T
T0

+ 16H2
GO V 2

GO)

(3)

where ξ = 2 (lGr/tGr) , η = (EGr/ECu)−1
(EGr/ECu)+ξ , T0 = 300 K, lGr and tGr are the length and thickness of graphene,

respectively, and HGO is the H atom coverage quantify the folding degree of GO.
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2.2 Kinematic and Constitutive Equations
The displacement field of four variables shear deformation theory without shear correction is portrayed

by [50–53]:

u1 (x , y, z) = u (x , y) − z ∂wb

∂x
− F(z)∂ws

∂x

u2 (x , y, z) = v (x , y) − z ∂wb

∂y
− F(z)∂ws

∂y
u3 (x , y, z) = w (x , y) = wb (x , y) + ws (x , y)

(4)

where the von Karman strains are:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

εx x
εy y
γx y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x

+ 1
2
(∂w

∂x
)

2

∂v
∂y

+ 1
2
(∂w

∂y
)

2

∂u
∂y

+ ∂v
∂x

+ ∂w
∂x

∂w
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+ z
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= ε0 + zεb + F (z) εs (5a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

γyz

γxz

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= G(z)
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According to Reddy theorem, F (z) = 4z3

3h2 and G (z) = 1 − d F(z)
dz = 1 − 4z2

h2 . Based on equivalent single
layer theory, that lowers 3D to 2D shear deformation theory (εz = 0), the stress–strain relationships for the
kth layer can be characterized by:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx
σy
τx y
τyz
τxz
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(k)

=
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where plane stress stiffnesses at layer k are:

Q(k)
11 = Q(k)

22 = E(k)
c

1 − (v(k)
c )

2 , Q(k)
12 = v(k)2

c E(k)
c

1 − (v(k)
c )

2 , Q(k)
44 = Q(k)

55 = Q(k)
66 (k) = E(k)

c

2(1 + v(k)
c )

(6b)

and E(k)
c and v(k)

c are computed by Eq. (3).

2.3 Nonlinear Governing Equation
Nonlinear governing equilibrium equations of composite-GOAM plates in terms of stress resultants are

drew by the virtual work principle as follows:

δuo ∶
∂Nx

∂x
+

∂Nx y

∂y
= 0 (7a)
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δvo ∶
∂Nx y

∂x
+

∂Ny

∂y
= 0 (7b)

δwb ∶
∂2Mb

x
∂x2 + 2

∂2Mb
x y

∂x∂y
+

∂2Mb
y

∂y2 + N o + N (w) = 0 (7c)

δws ∶
∂2Ms

x
∂x2 + 2

∂2Ms
x y

∂x∂y
+

∂2Ms
y

∂y2 +
∂Ss

yz

∂y
+ ∂Ss

xz
∂x

+ N o + N (w) = 0 (7d)

where the nonlinear term N (w) and the in-plane force N o terms are defined as:

N (w) = ∂
∂x

(Nx
∂w
∂x

+ Nx y
∂w
∂y

) + ∂
∂y

(Nx y + Ny
∂w
∂y

) (8a)

N o = N0
x

∂2w
∂x2 + N0

y
∂2w
∂y2 (8b)

The present work considers composite GOAM plates consisting of symmetrically arranged layers in the
thickness direction (Eq. (1)). Accordingly, the stress resultants can be expressed by:

⎡⎢⎢⎢⎢⎢⎣

Nx
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Nx y
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[ Ss
yz

Ss
xz

] = [ As
44 0
0 As

55
] ε (9d)

where {ε0, εb , εs , ε} are defined in Eq. (5). The rigidity terms are obtained as [54]:

[Aij , Dij , Ds
ij , Hs

ij] = ∫
h/2

−h/2
Qij (z) [1, z2, zF (z) , (F (z))2] dz, i j = 11, 12, 22, 66 (10a)

As
ij = ∫

h/2

−h/2
Qij (z) (G(z))2dz, i j = 44, 55 (10b)

The present study investigates the responses of rectangular GOAM plate s (0 ≤ x ≤ a, 0 ≤ y ≤ b) with
different boundary conditions (BCs). Each edge of the plate is symbolized by: C, S, or F, to denote,
respectively: clamped, simply supported, or free edge with the BCs defined in Table 1.
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Table 1: Boundary conditions

BCs Horizontal edge s (y = 0, y = b) Vertical edge s (x = 0, x = a)

C u = v = wb = ws = 0, ∂wb

∂y
= ∂ws

∂y
= 0 u = v = wb = ws = 0, ∂wb

∂x
= ∂ws

∂x
= 0

S u = wb = ws = 0, Ny = Mb
y = Ms

y = 0 v = wb = ws = 0, Nx = Mb
x = Ms

x = 0

F Nx y = Ny = Mb
y = Ms

y = 0,

2
∂Mb

x y

∂x
+

∂Mb
y

∂y
= 0, 2

∂Ms
x y

∂x
+

∂Ms
y

∂y
+ Ss

yz = 0

Nx = Nx y = Mb
x = Ms

x = 0,
∂Mb

x
∂x

+ 2
∂Mb

x y

∂y
= 0, ∂Ms

x
∂x

+ 2
∂Ms

x y

∂y
+ Ss

xz = 0

3 Solution Methodology

3.1 DQM Discretization of Partial Differential Equations
Several research [25,28,29,32] demonstrated that the DQM can effectively solve systems of differential

equations with a relatively small number of grid points, which leads to less computational cost. Furthermore,
DQM provides matrix-based operators to approximate the solution’s derivatives. This transforms the original
system of differential equations into a system of algebraic equations, which can be readily solved.

Based on DQM [55], a function f (x) with domain a ≤ x ≤ b is discretized such that the domain and
function are represented as vectors: x = [x1 = a, x2, ⋅ ⋅ ⋅ , xN = b]T and f = [ f1 , f2, ⋅ ⋅ ⋅ , fp]T , respectively.
Additionally, the approximation of its first derivative f ′ = [ f1

′, f2
′, ⋅ ⋅ ⋅ , fp

′]T is computed as f ′ = f , where
is the weighting (p × p) matrix of the first order derivative. Higher order derivatives are derived using

matrix multiplication: f ′′ = 2 f , f ′′′ = 3 f , ⋅ ⋅ ⋅ .
The DQM is developed here to discretize the governing set of partial differential equations (Eq. (7)).

The plate domain (Ω∶ 0 < x < a, 0 < y < b) is discretized in the x- and y-directions using p- and q-nodes,
respectively. The discrete values of an unknown function u(x , y) is generally arranged as a two-dimensional
array ui j = u(x j , yi) but can be rearranged as a (pq × 1)-vector constructed from the array vectors one
after another such that U = [u11 , u21 , ⋅ ⋅ ⋅uq1 , u12 , u22, ⋅ ⋅ ⋅uq2, ⋅ ⋅ ⋅ , ⋅ ⋅ ⋅ , u1p , u2p , ⋅ ⋅ ⋅uq p]

T . According to this
vector representation of the unknowns, partial derivative s∂u(x , y)/∂x and ∂u(x , y)/∂y are approximated
by vectors Ux = Cx U and Uy = CyU , respectively, such that

Cx = Kron ( x , I (q)) , Cy = Kron (I (p) , y) (11)

where I(n) is the identity matrix of dimension (n × n), x (p × p) and y (q × q) are the first order derivative
matrices of single variable functions in x and y, respectively, and Kron indicates Kronecker product. The
resulting partial derivative matrices Cx and Cy have dimensions (pq × pq). Approximation of higher and
mixed partial derivatives such as ∂2 u

∂x2 , ∂2 u
∂ y2 , ∂2 u

∂x ∂ y are computed as Ux x = Cx x U , Uy y = Cy yU and Ux y = Cx yU ,
respectively, where Cx x = C2

x , Cy y = C2
y , and Cx y = CxCy .

The governing equations for the GOAM plate, see Eqs. (5), (7) and (9), consist of four nonlinear partial
differential equations in the unknowns u (x , y) , v (x , y) , wb (x , y) and ws (x , y). They are discretized
by DQM as the unknown vectors U , V, Wb and Ws each of dimension (pq × 1) and arranged as global
unknown (4pq × 1) vectorY = [U T , VT, WT

b W T
s ]T .
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3.2 Linearization and Iterative Approach
Since the governing nonlinear set of partial differential equations for the GOAM plate is homogeneous

(without any external transversal force), it is a nonlinear eigenvalue problem. Investigation of the plate
response is based on critical buckling load λcr and postbuckling paths that describe the relation between the
applied axial load and buckling deflection. In the present study, the axial load intensity λ is plotted vs. the
maximum buckling deflection of the plate.

A simple linearization approach is adopted to solve Eq. (7). The nonlinear terms in the strain ε0, Eq. (5a),
and the nonlinear function N (w), Eq. (8a), are discretized by DQM and linearized such that

(∂w
∂x

)
2
≜ (Cx W0) ○ (Cx W) , (∂w

∂y
)

2

≜ (CyW0) ○ (CyW) , ∂w
∂x

∂w
∂y

≜ (Cx W0) ○ (CyW) (12)

where W0 = W0
b + W0

s is an approximate pq-vector. Through an iterative procedure, W0 is computed from
the previous iteration. According to the above data structure and using the notation: W0

x = Cx W0, W0
y =

CyW0 and applying the DQM, the linearized stress resultants can be written as:
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(13)

where an overbar indicate a linearized stress, O is the zero square matrix of dimension (pq) and operator ‘○’
is defined for a vector V and matrix A, each with the same number of rows, such that S = V ○ A implies that
Si j = Vi Ai j.

Now, the linearized discrete governing algebraic system for Eq. (7) is written in an iteration step ‘i’ as a
linear generalized eigenvalue problem

K(i)Y(i) = λ(i)PY(i) (14)

where K(i) and P are presented in Appendix A. Upon application of the boundary conditions to Eq. (14),
the resulting linear eigenvalue problem has to be solved for the unknown deflection vector Y(i) =
[U T V T W T

b W T
s ]T(i) as well as the compressive load λ(i). The iteration procedure is described in the

following Algorithm 1 in which the maximum of a buckling deflectionY is computed as max(Wb + Ws).
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Algorithm 1: Iterative solution of the nonlinear eigenvalue problem
Input: Y∗ (prescribed maximum buckling deflection)
Output λ, Y
1 Initialization

1.1 Set W 0 = 0 to compute the linearized stress resultants and matrixK(0) Eqs. (12)–(14)
1.2 (λ0, y0) ← Set i = 0, solve Eq. (14)
1.3 Scale Y 0 such that max Y 0 = Y∗

2 Iteration loop
For i = 1 To 10
2.1 (λi , Y i) ← Update and Solve Eq. (14)
2.2 If ∣λi − λi−1∣ < 10−6 and ∥Y i − Y i−1∥ < 10−6, Exit For loop
2.3 Else, Scale Y i such that max Y i = Y∗

2.4 End For
Output λ = λi , Y = Y i

4 Model Validation
For GOAM plates, the material properties of matrix Cu and graphene are presented in Table 2 while the

geometric parameters of graphene are lGr = 83.76 × 10−10 m, tGr = 3.4 × 10−10 m.

Table 2: Material properties of cupper and graphene at T = 300, Murari et al. [44]

Cupper Graphene
Young’s modulus (GPa) 65.79 929.57

Poisson’s ratio 0.387 0.22
Mass density (kg/m3) 8800 1800

First, an isotropic plate is considered. Table 3 compares the values of dimensionless critical buckling
loads of a square plate under uniaxial and biaxial compression assuming simply supported boundary
conditions and Poisson’s ratio v = 0.3. Different solution methods are compared: DQM [26], analytical
solution based on Mindlin plate theory [22] and the two-step perturbation method [17]. The results
demonstrate good consistency for different thickness to length ratios.

Table 3: Dimensionless critical buckling loads (λcr = 12b(1−ν2)
π2 E h3 N cr) for an isotropic SSSS plate (ν = 0.3)

Uniaxial compression Biaxial compression

h/a → 0.05 0.1 0.15 0.05 0.1 0.15
R8 3.9444 3.7864 3.5496 1.9722 1.8932 1.7747
R9 3.9437 3.7839 3.5446 1.9719 1.8920 1.7723
R10 3.9444 3.7865 3.5496 1.9722 1.8932 1.7748

Present 3.9444 3.7866 3.5502 1.9722 1.8933 1.7751

Comparisons with Prakash et al. [56] and Mohamed et al. [36] of the dimensionless postbuckling
equilibrium paths of a square isotropic plate are depicted in Fig. 2. The dimensionless deflection w = wmax/h
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is plotted vs. dimensionless axial pressure Λ = λ ( a2

π2 Dc
) , where Dc = Eh3

12(1−ν2) . The material properties are:
E = 380 GPa, ν = 0.3. Good agreement is observed especially with those of [36,56].

Figure 2: Comparison with [36,56] for postbuckling paths of simply supported isotropicsquare plate under uniaxial
compression. (E = 380 GPa; ν = 0.3; a/h = 100)

Next, to validate the present formulation and solution methodology of GOAM plates, critical buckling
loads of square GOAM plates under biaxial compression are compared with [17]. For different GO folding
degrees HGO and weight fractions WGO under three distribution patterns, the critical buckling loads are
compared in Table 4. It is clear that the current research results are in good agreement with those of [17].

Table 4: Comparison with Lv et al. [17] for critical buckling loads of square GOAM plates under biaxial compression
for different GO weight fractions WGO and H coverage HGO (a/h = 25)

HGO = 0.8 W GO = 0.025

WGO U X O HGO U X O
Lv et al. 0 0.0027 0.0027 0.0027 0 0.0051 0.0060 0.0040
Present 0.002722 0.002722 0.002722 0.005101 0.005984 0.004009
Lv et al. 0.005 0.0026 0.0026 0.0027 0.2 0.0044 0.0055 0.0036
Present 0.002648 0.002645 0.002683 0.004443 0.005570 0.003650
Lv et al. 0.01 0.0027 0.0028 0.0027 0.4 0.0039 0.0053 0.0034
Present 0.002656 0.002758 0.002677 0.003961 0.005391 0.003365
Lv et al. 0.015 0.0027 0.0031 0.0027 0.6s 0.0035 0.0052 0.0031
Present 0.002735 0.003102 0.002704 0.003550 0.005303 0.003118
Lv et al. 0.02 0.0029 0.0038 0.0028 0.8 0.0031 0.0051 0.0029
Present 0.002894 0.003819 0.002768 0.003147 0.005209 0.002883
Lv et al. 0.025 0.0031 0.0051 0.0029 1 0.0027 0.0048 0.0026
Present 0.003147 0.005209 0.002883 0.002694 0.004947 0.002635
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The postbuckling response of an X-type GOAM plate under biaxial loading is compared with Lv
et al. [17] in Fig. 3 showing good agreement.

Figure 3: Comparison with Lv et al. [17] The postbuckling response of the X-type GOAM plates under biaxial loading.
(a/h = 25, a/b = 1, WGO = 0.025, HGO = 0.8). Px = Ncr

(1−ν2
Cu)

ECu hb

5 Numerical Parametric Studies

5.1 Influence of Graphene Origami Parameters {W GO , HGO} on the Material Mechanical Properties
Fig. 4 illustrates the mutual effect of graphene origami contents (WGO) and folding

degrees parameter (HGO) on material mechanical characteristics of the studied GOAM plate:
(a) Ec , (b) νc , (c)Q11, (d)Q12 and (e)Q66. As observed from Fig. 4a, Young’s modulus of GO/Cu
composite material is generally increased with the increase of WGO and/or reduction of the folding degree
HGO . However the rate of this increase is not uniform but depends on the values of both WGO and HGO . For
example, for small graphene origami content (WGO < 0.5%), Ec has no significant change while it increases
significantly for higher values of WGO especially for smaller folding degree HGO values. Fig. 4b illustrates
that increasing either of WGO or HGO reduces the Poisson’s ratio, which can reach negative values leading the
GO/Cu composite to be transformed into an auxetic metamaterial. The influence of WGO and HGO on the
plane stress stiffnesses Q11, Q12, Q44 = Q55 = Q66, defined in Eq. (6b), are shown in Fig. 4c–e, respectively.

5.2 Influence of GO Volume Fraction Distribution Types
Herein, the effect of GO distribution patterns defined in Eq. (1) on the postbuckling response of GOAM

plates are examined. Fig. 5 presents the postbuckling curves of simply supported GOAM plates under biaxial
compression. The plate is composed of 10 layers and arranged according to different distribution types.
Compared with other distribution types of GO volume fraction, the GOAM plate with X-distribution type
exhibits the greatest critical buckling load and best postbuckling performance, followed by the U-type, then
the O-type GOAM plate. This performance demonstrates that dispersing more GO near the surfaces of the
plate is an effective way to achieve good structural performance of the metamaterial plate.
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Figure 4: Influence of Graphene Origami parameters {WGO , HGO} on the mechanical properties of a single layer

Figure 5: Influence of GO volume fraction distribution types on postbuckling behavior of a SSSS GOAM plate under
biaxial compression ( a

h = 25, WGO = 2.5%, HGO = 50%, Λ = λ ( a2

ECu h3 ) , w = wm/h)
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5.3 Influence of Graphene Folding Degrees HGO

Fig. 6 highlights the influences of graphene folding degree HGO on the dimensionless buckling and
postbuckling behavior of FG-GOAM composite plates, assuming constant GO weight fraction WGO = 2%.
A simply supported square GOAM plate under uniaxial and biaxial compression is considered. Fig. 6
demonstrates that the buckling loads in case of uniaxial compression are double those computed in case of
biaxial loading. Furthermore, the figure reveals that increasing HGO results in decreasing the postbuckling
loads. This behavior is understood since the stiffness of GOAM composite decreases with increasing HGO
due to the reduction of Young’s modulus, Poisson’s ration, and stiffness coefficient Q11 as can be observed
from Fig. 4. In general, increasing folding degree (HGO) gives rise to the transformation of GO/Cu composite
into GOAM with NPR and reduced Young’s modulus, making the metamaterial structure more flexible.

Figure 6: Influence of GO folding degrees HGO on postbuckling behavior of GOAM plate under (a) uniaxial and (b)
biaxial compression for X-distribution type ( a

h = 25, WGO = 2%, Λ = Ncr ( a2

ECu h3 ) , w = wm/h)

5.4 Influence of Graphene Weight Fraction W GO

Fig. 7 plots the postbuckling paths of X-type GOAM simply supported square plate under uniaxial and
biaxial compression for different values of graphene-origami weight fraction WGO . In the current parametric
study, the folding degree is assumed constant (HGO = 0.8). As can be seen from Fig. 7, for large graphene
origami content WGO ≥ 1.5%, a rise in GO content results in increased postbuckling loads. However, this
characteristic is violated for GOAM plates when GO weight fraction increases in the range 0 ≤ WGO < 1.5%
where the buckling loads change slowly and may even reduce. This can be interpreted since, as can be noticed
from Fig. 4a,b in the range WGO ≥ 1.5% the increased graphene content leads to a larger Young’s modulus
Ec and smaller negative Poisson’s ratio νc (or greater ν2

c ). This results in larger values of (Q11 = Ec/(1 − ν2
c)).

Accordingly, increasing graphene-origami weight fraction in the range WGO ≥ 1.5% leads to increased plate
stiffness and higher postbuckling loads. On the other side, in the smaller range 0 ≤ WGO < 1.5%, the GO/Cu
composite cannot show NPR features. The increased graphene content leads to a larger Young’s modulus but
smaller (positive) Poisson’s ratio, giving rise to the nearly constant or even decreased value of Q11.
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Figure 7: Influence of Graphene weight fraction W_Gr on postbuckling behavior of GOAM plate under (a) uniaxial
and (b) biaxial compression for X-distribution type ( a

h = 25, HGr = 0.8, Λ = λ ( a2

ECu h3 ) , w = wm/h)

5.5 Mutual Influence of GO Properties {W Gr , HGr}
In order to investigate the mutual influence of Cu\GO parameters WGO and HGO on postbuck-

ling behavior of GOAM plate, a simply supported U-type square plate under biaxial compression is
considered. The postbuckling paths for different WGO = {0%, 0.5%, 1%, 1.5%, 2%, 2.5%} and HGO =
{0%, 25%, 50%, 100%} are presented in Fig. 8. As can be observed, at WGO = 0, the postbuckling paths are
identical and as expected are independent on the value HGO . Another observation is driven form Fig. 8a–
c for HGO = {0%, 25%, 50%} that the postbuckling loads considerably increase with increasing the WGO
content. The rate of this increase reduces as the folding degrees increase. Alternative behavior is observed
in Fig. 8d for HGO = 100%. The postbuckling loads decrease with increasing WGO from 0% up to 1% but they
increase as WGO increases from 1.5% up to 2.5%. To understand these responses and theoretically investigate
mutual influences of WGr and HGr on postbuckling behavior, the mechanical properties Ec , νc of the Cu/GO
composite are computed based on Eq. (3) and plotted in Fig. 9a,b. Fig. 9a indicates that Young’s modulus
Ec increases with the increase of WGO but it decreases with the increase of HGO . With respect to Poisson’s
ratio, Fig. 9b shows that νc increases with increasing WGO , but it decreases as HGO increases. The most
important is to notice that νc becomes negative at some specific values of WGO and HGO . For example, in
the considered range (0 ≤ WGO ≤ 2.5%), νc is always positive in cases of HGO = {0%, 25%, 50%}, however
it reaches negative values in cases of HGO = {75%, 100%}. Since (Q11 = Ec/(1 − ν2

c)) is a reasonable measure
of plate stiffness, we plot 1/(1 − ν2

c) and Q11 in Fig. 9c,d, respectively. It is clear that, νc = 0 is a critical value
that can reverse the performance of GOAM plates. Fig. 9d indicates that the plate stiffness increases as
WGO increases in the cases of HGO = {0%, 25%, 50%}. However, in case of HGO = 100%, the plate stiffness
decreases in the range of WGO , where νc ≥ 0 but it increases as νc becomes negative. These theoretical
conclusions are consistent with the numerical results shown in Fig. 7 and interpret mutual influence of
Cu\GO parameters WGO and HGO on postbuckling behavior of GOAM plates.
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Figure 8: Mutual influence of GO properties {WGO , HGO} on postbuckling behavior of GOAM plate under biaxial
compression for U-distribution type ( a

h = 25, Λ = λ ( a2

ECu h3 ) , w = wm/h)

As can be observed from Figs. 5–8, the postbuckling paths are of the pitchfork bifurcation type, which
is characterized by zero lateral deflection whenever the axial load is less than a critical value λcr . The
dimensionless critical buckling load Λcr = λcr ( a2

ECu h3 ) corresponds to w = 0 in these figures. Table 5 reports
values of Λcr of simply supported GOAM square plates under uni/bi-axial compression for different values
of WGO , HGO and different FG-distribution types.

Results in Table 5 demonstrate that, for both of uniaxial and biaxial loading, for all material distribution
types, and for WGO > 0, increasing the GO folding degree (HGO) decreases the critical buckling load.
Influence of GO content (WGO) on critical buckling load depends on the value of HGO . At HGO =
{0%, 20%, 40%, 60%} the critical buckling increases as WGO increases. However, at higher folding degrees
(HGO = {80%, 100%}) the critical buckling reduces then rises as WGO increases.
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a b

c d

Figure 9: Mutual influence of GO parameters {WGO , HGO} on mechanical properties of GOAM plate (U-distribution
type)

Table 5: Dimensionless critical buckling load Λcr of simply supported GOAM square plates (a/h = 25)

Distributiontype Compression HGO % W GO %

0 0.5 1 1.5 2 2.5
U-type Uniaxial 0 4.0016 4.8362 5.5936 6.2844 6.9171 7.4988

20 4.0016 4.5684 5.0755 5.5573 6.0374 6.5326
40 4.0016 4.3247 4.6361 4.9735 5.3626 5.8232
60 4.0016 4.1010 4.2515 4.4742 4.7896 5.2197
80 4.0016 3.8938 3.9049 4.0216 4.2541 4.6266
100 4.0016 3.7002 3.5836 3.5880 3.7064 3.9602

Biaxial 0 2.0008 2.4181 2.7968 3.1422 3.4585 3.7494
20 2.0008 2.2842 2.5377 2.7787 3.0187 3.2663
40 2.0008 2.1624 2.3180 2.4867 2.6813 2.9116

(Continued)
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Table 5 (continued)

Distributiontype Compression HGO % W GO %

0 0.5 1 1.5 2 2.5
60 2.0008 2.0505 2.1258 2.2371 2.3948 2.6098
80 2.0008 1.9469 1.9524 2.0108 2.1271 2.3133
100 2.0008 1.8501 1.7918 1.7940 1.8532 1.9801

X-type Uniaxial 0 4.0016 5.2066 6.2652 7.2041 8.0431 8.7970
20 4.0016 4.8136 5.5530 6.3202 7.1821 8.1894
40 4.0016 4.4712 4.9855 5.6658 6.6117 7.9251
60 4.0016 4.1661 4.4994 5.1077 6.1354 7.7957
80 4.0016 3.8887 4.0543 4.5602 5.6147 7.6581
100 4.0016 3.6316 3.6202 3.9451 4.8706 7.2732

Biaxial 0 2.0008 2.6033 3.1326 3.6021 4.0215 4.3985
20 2.0008 2.4068 2.7765 3.1601 3.5911 4.0947
40 2.0008 2.2356 2.4927 2.8329 3.3059 3.9626
60 2.0008 2.0831 2.2497 2.5538 3.0677 3.8979
80 2.0008 1.9444 2.0272 2.2801 2.8073 3.8290
100 2.0008 1.8158 1.8101 1.9725 2.4353 3.6366

O-type Uniaxial 0 4.0016 4.4456 4.8519 5.2263 5.5726 5.8944
20 4.0016 4.3070 4.5830 4.8451 5.1036 5.3659
40 4.0016 4.1784 4.3466 4.5233 4.7204 4.9477
60 4.0016 4.0580 4.1331 4.2382 4.3843 4.5844
80 4.0016 3.9445 3.9360 3.9747 4.0693 4.2388
100 4.0016 3.8366 3.7502 3.7211 3.7529 3.8733

Biaxial 0 2.0008 2.2228 2.4260 2.6131 2.7863 2.9472
20 2.0008 2.1535 2.2915 2.4226 2.5518 2.6829
40 2.0008 2.0892 2.1733 2.2616 2.3602 2.4739
60 2.0008 2.0290 2.0665 2.1191 2.1921 2.2922
80 2.0008 1.9722 1.9680 1.9873 2.0346 2.1194
100 2.0008 1.9183 1.8751 1.8606 1.8765 1.9366

5.6 Influence of GOAM Plate Thickness
To study influence of GOAM plate thickness h on postbuckling behavior, a different normalization of the

axial load is defined as Λ = λ (100/ECu a) to excludeh from the previous normalization. A simply supported
GOAM plate (WGO = 2.5%, HGO = 50%) under biaxial compression is considered. Fig. 10 presents the
postbuckling paths of plates with different thicknesses assuming two different GO distribution types. As the
figure reveals, the postbuckling loads considerably increase with the increase of plate thickness. Moreover, X-
type GOAM plate exhibits better postbuckling performance compared with the U-type. Table 6 reports the
normalized buckling loads Λ of simply supported (SSSS) and fully clamped (CCCC) X-type GOAM plates
with different thickness and different GO parameters (WGO , HGO).
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Figure 10: Influence of plate thickness on postbuckling behavior of GOAM plate under biaxial compression for GO
distribution patterns: (a) U-type and (b) X-type (a = b = 0.1, WGr = 2.5%, HGr = 50%, Λ = λ ( 100

ECu a ) , w = wm/h)

Table 6: Normalized buckling of X-type GOAM plate under biaxial compression a = b = 0.1, Λ = λ ( 100
ECu a )

BCs a/h HGO % W GO %

0 0.5 1 1.5 2 2.5
SSSS 5 0 1.2565 1.5971 1.8966 2.1648 2.4074 2.6285

25 1.2565 1.4794 1.6917 1.9224 2.1915 2.5150
50 1.2565 1.3755 1.5228 1.7334 2.0417 2.4875
100 1.2565 1.1927 1.2148 1.3330 1.6308 2.3518

10 0 0.1887 0.2441 0.2926 0.3358 0.3745 0.4094
25 0.1887 0.2227 0.2546 0.2894 0.3307 0.3810
50 0.1887 0.2043 0.2247 0.2555 0.3021 0.3712
100 0.1887 0.1733 0.1737 0.1896 0.2336 0.3457

15 0 0.0581 0.0754 0.0907 0.1042 0.1162 0.1271
25 0.0581 0.0686 0.0784 0.0891 0.1019 0.1175
50 0.0581 0.0627 0.0689 0.0783 0.0927 0.1141
100 0.0581 0.0529 0.0529 0.0577 0.0711 0.1059

20 0 0.0248 0.0323 0.0389 0.0447 0.0499 0.0545
25 0.0248 0.0293 0.0335 0.0381 0.0436 0.0503
50 0.0248 0.0268 0.0294 0.0334 0.0396 0.0488
100 0.0248 0.0226 0.0225 0.0246 0.0303 0.0452

CCCC 5 0 2.4382 3.0315 3.5582 4.0301 4.4691 4.8689
25 2.4382 2.8626 3.2753 3.7184 4.2266 4.8298
50 2.4382 2.7091 3.0252 3.4501 4.0392 4.8676
100 2.4382 2.4224 2.5254 2.7930 3.3820 4.6985

10 0 0.4504 0.5765 0.6873 0.7861 0.8751 0.9558

(Continued)
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Table 6 (continued)

BCs a/h HGO % W GO %

0 0.5 1 1.5 2 2.5
25 0.4504 0.5307 0.6069 0.6898 0.7869 0.9046
50 0.4504 0.4909 0.5420 0.6166 0.7274 0.8894
100 0.4504 0.4218 0.4268 0.4673 0.5733 0.8357

15 0 0.1465 0.1892 0.2268 0.2601 0.2900 0.3170
25 0.1465 0.1728 0.1976 0.2247 0.2566 0.2956
50 0.1465 0.1588 0.1747 0.1986 0.2348 0.2884
100 0.1465 0.1349 0.1353 0.1478 0.1819 0.2688

20 0 0.0640 0.0830 0.0996 0.1144 0.1277 0.1396
25 0.0640 0.0755 0.0864 0.0982 0.1122 0.1294
50 0.0640 0.0692 0.0760 0.0864 0.1023 0.1258
100 0.0640 0.0585 0.0585 0.0638 0.0787 0.1169

5.7 Influence of Boundary Conditions
In almost all previous results, a simply supported GOAM plates was considered. Only Table 6 presents

comparison of first critical buckling loads Λ of SSSS and CCCC corresponding to different values of:
a/h ratio, WGO% and HGO%. In the current subsection, the first four critical buckling loads with the
associated buckling modes of GOAM plates are presented in Figs. 11–13 for different boundary conditions.
In these figures, U-type GOAM plates ( a

h = 25, WGO = 2.5%, HGO = 50%) are considered and the critical
buckling loads are normalized by Λ = λ ( a2

ECu h3 ). The first four modes entitled by the values of corresponding
normalized critical buckling load Λ are shown for: (1) simply supported GOAM plate under biaxial loading
in Fig. 11, (2) CCCC plate under uniaxial compression in Fig. 12, and (3) a CFCF plate with two opposite
sides clamped and other two opposite sides free under uniaxial loading in Fig. 13.

Figure 11: First four linear mode shapes of U-type GOAM SSSS plate under biaxial loading
( a

h = 25, WGO = 2.5%, HGO = 50%)
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Figure 12: First four linear mode shapes of U-type GOAM CCCC plate under uniaxial loading
(a/h = 25, WGO = 0.025, HGO = 0.5)

Figure 13: First four linear mode shapes of U-type GOAM CFCF plate under uniaxial loading
( a

h = 25, WGO = 0.025, HGO = 0.5)

6 Conclusions
This paper studies the characteristics of critical-buckling, and nonlinear post-buckling behavior of

multi-layer GOAM plate, subjected to uniaxial or biaxial compressive loads. The mechanical properties,
within each layer, are modeled as a function of graphene origami content, and the folding degree. Three
symmetric distributions of GOAM (i.e., U-pattern, X-pattern, and O-pattern) are considered in the anal-
ysis. Based on four variables of nonlinear high shear deformation theory, the virtual work principle is
implemented to derive the governing equations assets of nonlinear eigenvalue problems. DQM is applied
to discretize the governing equations, and the resulting algebraic nonlinear eigenvalue problem is solved
iteratively. Theoretical and numerical analyses present the effects of graphene origami content, degree of
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folding, and distribution pattern on the post-buckling response of GOMA plates. The main remarks from
the following analysis can be summarized as follows:

• Increasing the folding degree increases the transformation of GO/Cu composite into GOAM with NPR,
and reduces Young’s modulus, thus making the metamaterial structure more flexible.

• For different folding degrees HGO , a rise in graphene origami content WGO results in increasing Young’s
modulus and decreasing Poisson’s ratio.

• For a smaller range of the folding degrees, where the composite Poisson’s ratio is still positive (νc ≥ 0),
the critical and post-buckling loads of the plate with any GO distributions are increased by increasing
WGO . In contrast, as the folding degree increases, the negative Poisson’s ratio is reached and the GOAM
plate exhibits a counter-intuitive buckling behavior.

• Buckling loads under uniaxial compression are twice those calculated for biaxial loading.
• The GOAM plate with an X-distribution type demonstrates the greatest resistance to buckling and the

most favorable post-buckling behavior.
• Thicker plates demonstrate the higher-load-bearing capacity
• The following model is limited to flat plates without curvature and imperfections.
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Appendix A

K(i)Y(i) =
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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