
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.061787

ARTICLE

IDCE: Integrated Data Compression and Encryption for Enhanced Security
and Efficiency

Muhammad Usama1 , Arshad Aziz2 , Suliman A. Alsuhibany3,*, Imtiaz Hassan2 and
Farrukh Yuldashev4

1Department of Cyber Security, Pakistan Navy Engineering College, National University of Sciences and Technology,
Karachi, 75350, Pakistan
2Department of Computer Science, Main Campus, Iqra University, Karachi, 75500, Pakistan
3Department of Computer Science, College of Computer, Qassim University, Buraydah, 51452, Saudi Arabia
4Department of Informatics and Its Teaching Methods, Tashkent State Pedagogical University, Tashkent, 100170, Uzbekistan
*Corresponding Author: Suliman A. Alsuhibany. Email: salsuhibany@qu.edu.sa
Received: 03 December 2024; Accepted: 03 March 2025; Published: 11 April 2025

ABSTRACT: Data compression plays a vital role in data management and information theory by reducing redundancy.
However, it lacks built-in security features such as secret keys or password-based access control, leaving sensitive data
vulnerable to unauthorized access and misuse. With the exponential growth of digital data, robust security measures
are essential. Data encryption, a widely used approach, ensures data confidentiality by making it unreadable and unal-
terable through secret key control. Despite their individual benefits, both require significant computational resources.
Additionally, performing them separately for the same data increases complexity and processing time. Recognizing the
need for integrated approaches that balance compression ratios and security levels, this research proposes an integrated
data compression and encryption algorithm, named IDCE, for enhanced security and efficiency. The algorithm operates
on 128-bit block sizes and a 256-bit secret key length. It combines Huffman coding for compression and a Tent
map for encryption. Additionally, an iterative Arnold cat map further enhances cryptographic confusion properties.
Experimental analysis validates the effectiveness of the proposed algorithm, showcasing competitive performance in
terms of compression ratio, security, and overall efficiency when compared to prior algorithms in the field.

KEYWORDS: Chaotic maps; security; data compression; data encryption; integrated compression and encryption

1 Introduction
Data contains symbols that can manifest sequences, segments, or blocks, and are either stored or

transmitted. Data finds its application in various contexts, such as insertion into communication channels
or storage on dedicated devices. However, data, whether stored on physical storage devices or transmitted
across networks, often contains substantial redundancy. Data compression is a basic approach to address this
issue by reducing redundancy, thereby saving storage space, and minimizing transmission time through the
conversion of data into more compact forms that require fewer bits.

However, achieving robust data security requires addressing a variety of additional considerations.
Compression algorithms depend on a pattern library to achieve optimal performance when both the sender
and receiver have a thorough understanding of the same method. This dependence on a pattern library
can assist authorized access while preserving information secrecy. However, a notable deficiency arises
in many compression algorithms, such as their lack of incorporation of secret keys or password-based

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.061787
https://www.techscience.com/doi/10.32604/cmes.2025.061787
mailto:salsuhibany@qu.edu.sa

1030 Comput Model Eng Sci. 2025;143(1)

restrictions during both compression and decompression processes. This gap dents the overall level of
security, potentially exposing sensitive data to unauthorized access. Though it is important to recognize that
while data compression does offer a limited level of security, its primary objective remains the reduction of
data redundancy.

More importantly, the contemporary environment of data security presents a serious challenge. The
proliferation of interconnected computers, coupled with the exponential growth of data often reaching
Exabyte-scale magnitudes [1], increases the urgency of data security. To reinforce data security comprehen-
sively, it becomes necessary to enforce robust data encryption measures where digital assets are valuable.
Data encryption is a widely adopted approach to ensure data security. Encryption algorithms typically
manipulate data using pseudorandom generated keystreams with key control, thereby effectively achieving
data encryption. Decrypting the data involves a straightforward reversal of this process, allowing the retrieval
of plaintext from ciphertext. Despite their distinct advantages, both compression and encryption are intricate
disciplines that demand substantial computational power when dealing with extensive data. Moreover, the
intricacy arises because compression and encryption are distinct operations applied to the same data.

In the context of data manipulation, compression and encryption algorithms interact with data, either
for compressing or encrypting it. Two established approaches are commonly employed for the sequential
compression and encryption of data. The first approach involves compressing the data before encrypting it,
while the second encrypts the data prior to compression (as illustrated in Figs. 1 and 2). Data compression
serves a primary purpose in eliminating redundancy by identifying patterns, a practice that also enhances
encryption security by reducing susceptibility to statistical cryptanalysis rooted in redundancy. A secondary
reason for employing compression lies in situations where a correctly implemented encryption algorithm
generates substantial random data while minimizing redundancy, rendering the data essentially uncompress-
ible [2,3]. Although the sequential execution of compression and encryption provides significant benefits,
such as reduced data storage demands, enhanced data transmission bandwidth, and heightened security,
this duality adds complexity and increases processing time, presenting an area ripe for further exploration
and innovation.

Figure 1: Traditional approach to apply compression-first

Building upon the complexities and challenges highlighted in the preceding discussion, it becomes
evident that concurrent data compression and encryption using a single algorithm is a challenging task.
Contemporary endeavors in this direction often grapple with compromises between compression ratios
and security levels. As such, there is a promising interest in exploring integrated data compression and
encryption algorithms that can enhance data storage and transmission capacity while preserving data
integrity and security. Leveraging insights from chaos theory, cryptography, and compression studies, this
research embarks on the development of a tightly integrated compression and encryption scheme, aiming to
unpredictably vary data compression while upholding data integrity.

Comput Model Eng Sci. 2025;143(1) 1031

Figure 2: Traditional method to apply encryption first

The subsequent sections of this paper are structured as follows to provide a comprehensive understand-
ing of the proposed approach. Section 2 investigates a review of related work in the field. In Section 3, the
proposed algorithm is explained in detail. Section 4 presents the results of an experimental analysis of the
proposed algorithm’s performance. Finally, Section 5 offers conclusions drawn from the study’s findings,
summarizing its contributions and implications.

2 Related Work
The realms of data and file management commonly employ both compression and encryption algo-

rithms, finding applications in a wide array of contexts, including networks, multimedia, medical, and
military systems. Traditionally, these techniques have been executed separately, necessitating substantial
computational resources to manage the substantial data flow between the two operations. Recognizing
the potential advantages of integrating data compression and encryption into a unified approach, the aim
is twofold: to optimize data storage and transmission efficiency through compression while bolstering
resistance to statistical methods of cryptanalysis [4]. Previous attempts to integrate these operations have
been made, but they have encountered formidable challenges. The primary obstacle lies in striking a
balance between achieving an efficient compression ratio along with data security. This stability is crucial to
ensure compact, reliable, and secure data storage and transmission while safeguarding against unauthorized
access and misuse. Yet, the urgency of addressing this challenge cannot be overstated, especially in the
contemporary era marked by ever-expanding data sizes, widespread online storage, and the escalating threat
of network attacks.

Classical cryptography has historically drawn upon a rich set of mathematical tools, encompassing
number theory, algebra, algebraic geometry, and combinatory techniques [5]. However, in recent decades,
there has been a significant shift towards incorporating chaos theory from dynamical systems into the
construction of cryptosystems. Chaos theory’s distinctive attributes and features, particularly those exhibited
by discrete dynamic systems (chaotic maps), have rendered it exceptionally practical and valuable in the
realm of cryptography [6–8]. The property of sensitivity to initial conditions is of particular significance,
as it implies that each point within the system is intricately linked, in a random or arbitrary manner, to
other points with substantial disparities in their trajectories. In the context of cryptosystems, this sensitivity
becomes a fundamental building block for generating secret keys. Another vital characteristic is topological
transitivity, which guarantees the ergodicity of a chaotic map. Also, this attribute is intimately connected
with the diffusion aspect, which is pivotal for the operation of cryptosystems.

The intrinsic properties of chaotic systems bear a direct relevance to the field of cryptography, and their
integration with data compression represents a relatively novel avenue of research. Within this emerging field,
several approaches have been put forth [9–11]. These approaches can broadly be categorized into two distinct
groups: compression-oriented and encryption-oriented schemes [11,12]. In encryption-oriented algorithms,

1032 Comput Model Eng Sci. 2025;143(1)

compression is integrated within the framework of encryption, while in compression-oriented algorithms,
encryption is incorporated into the compression process. However, it’s important to note that encryption-
oriented algorithms often exhibit relatively poor compression ratios and performance when compared to
conventional compression techniques [13]. Typically, these algorithms yield compression ratios in the range
of 10%–17% [12]. The rationale behind this lies in the fundamental disparity in objectives between data
compression and encryption. Data compression primarily aims to eliminate redundancy by identifying and
exploiting patterns within the data, whereas a well-implemented encryption process generates data that is
essentially random, with entropy approaching the ideal value of 8. This divergence in objectives underscores
the inherent challenge of simultaneously optimizing compression and encryption within a single framework.

In the context of compression-oriented schemes, the body of research has been comparatively limited.
Two noteworthy instances are found in [14,15]. However, it’s worth noting that both of these approaches
are relatively dated, and their security vulnerabilities to known-plaintext attacks have been exposed in
subsequent investigations [16]. Building upon the foundation laid by [14], a notable improvement was
introduced in [17]. This work eliminated the constraints related to intervals by subdividing the Arithmetic
Coding (AC) interval and incorporating two permutations to enhance diffusion. In a separate research
direction, the randomized arithmetic coding (RAC) algorithm was presented in [18] as an enhancement for
the JPEG 2000 standard. This method incorporated randomization into the conventional arithmetic coding
process to improve encryption capabilities. However, as revealed in [16], this method has been found to
produce output of lower quality when compared to the standard approach. In the domain of non-linear
chaotic dynamical systems, reference [19] proposed the utilization of a Generalized Luroth Series (GLS) as
a foundational framework. Conversely, reference [20,21] introduced a novel approach that simultaneously
combined arithmetic coding and encryption based on chaotic maps to generate pseudorandom bit-streams.
In this latter approach, the chaotic system serves primarily as a pseudorandom bit-stream generator,
seamlessly incorporating key control into the encryption process [22,23].

Moreover, A study conducted on integrated encryption in dynamic arithmetic compression embedded
into adaptive arithmetic coding cryptography features being performed simultaneously for encryption and
compression. The proposed method indeed enhanced security at no performance cost, reducing computa-
tional overhead along with storage risks [24]. Another technique among them is a watermarking method
that joins encryption and compression. This included hashing the document through SHA-256 encryption,
compressing the document with Lempel-Ziv-Welch (LZW), and adding multiple watermarks to it. Such a
method not only improved copyright ownership but also improved compression efficiency [25]. However, the
review on different levels of encryption through compression is that there is more need for hybrid approaches
with improved encryption/decryption times, optimizing storage being two major benefits [26].

Additionally, the incorporation of encryption capabilities within Huffman coding has primarily
revolved around the manipulation of tree branches through the utilization of secret keys [15,27–31]. The
integrated approach was presented in [15] for compression and encryption. This approach involved the
manipulation of Huffman tree branches by swapping them to the left and right based on a certain key.
Subsequently, enhancements were proposed, such as the introduction of chaotically mutated Huffman
trees [27]. These modifications were designed to address challenges related to multiple code-word issues,
thereby expanding the key space and rectifying security vulnerabilities inherent in the earlier approach [15].
Building upon these advancements, further refinements were put forth in [28–30], where the combination
of two chaotic functions was utilized to prevent known-plaintext attacks. However, it is imperative to
acknowledge that this category of algorithms continues to contend with significant security concerns [16,31–
33]. Consequently, there remains a compelling need for further improvements and innovations in this
domain to enhance the overall security and robustness of these approaches.

Comput Model Eng Sci. 2025;143(1) 1033

3 Proposed Work
In this work, an innovative approach called an Integrated Data Compression and Encryption algorithm

(IDCE) is introduced, aiming to enhance both security and efficiency in a generalized computational
context. IDCE is designed to address the specific challenges posed by systems with limited resources when
handling extensive datasets. The core focus of IDCE revolves around the essential principles of efficiency and
reliability, particularly in the realms of both data compression and encryption. IDCE employs a block cipher
methodology that seamlessly integrates data compression into the encryption process as shown in Fig. 3.
The compression strategy relies on Huffman coding, while security is fortified through a combination of
chaotic-key expansion, multiple rounds, and scrambling functions.

Figure 3: Proposed integrated data compression and encryption algorithm

The process of chaotic-key expansion defines how expanded keys are derived from the secret key,
resulting in an expanded key size equal to the block size multiplied by seven rounds. Each round necessitates
a unique round key, and a single round constitutes a sequence of scrambling functions within the cipher
encoding, as explained in Section 3.2. The encryption of block data occurs by merging it with a round key
through a straightforward XOR operation, which inherently possesses its own inverse operation. Subsequent
subsections will provide in-depth details of each of these critical functions.

1034 Comput Model Eng Sci. 2025;143(1)

3.1 The IDCE Function
The IDCE function, denoted as IDCE(K , P), operates with two primary inputs: the first input is the

secret key K ∈ {0, 1}k (a k-bit data), and the second input is the plaintext P ∈ {0, 1}n (an n-bit data). It yields
an output, which is the ciphertext C ∈ {0, 1}m (an m-bit data). Here, k, n, and m are size parameters, where
k has a fixed length of 256 bits, while n and m have variable lengths. It’s crucial to note that IDCE(K , P)
must function as an encoding transformation on P ∈ {0, 1}n , effectively serving as both a compression
and encryption function from P ∈ {0, 1}n to C ∈ {0, 1}m . The function IDCE(K , P) is further detailed in
Algorithm 1.

Algorithm 1: The function IDCE (K , P)
1: Obtain round keys K0, K1 , . . . , K6 from the CKE (K) function.
2: Determine probabilities of each symbol p0, p1 , . . . , p255 from plain text P.
3: Generate Codes using the OSC(p0, p1 , . . . , p255) function.
4: for each index i from 0 to 255 with increment step = 16 do
5: Create block b from probabilities pi , pi+1 , . . . , pi+15.
6: Apply the CE function on block b using round keys K0, K1 , . . . , K6 as CE(b, K0, K1 , . . . , K6).
7: end for
8: for each symbol c in plaintext P do
9: Encode symbol c using Codes and store in buffer.
10: if the size of the buffer is greater than or equal to 128 then
11: Create block b using the read block function as RB (buffer).
12: Apply the CE function on block b using subkeys K0, K1 , . . . , K6 as CE(b, K0, K1 , . . . , K6).
13: end if
14: end for

To initiate the IDCE(K , P) process, we begin by deriving seven round keys, denoted as K0, K1 , . . . , K6,
from the provided key K. This key expansion is executed using the Chaotic Key Expansion (CKE) function,
as discussed in Section 3.4. Additionally, we compute the probabilities p0, p1 , . . . , p255 for each of the 256
ASCII symbols present in the plaintext P. This step serves as the compression header and results in a fixed-size
header of 256 bytes, organized into 16 blocks.

Subsequently, these blocks undergo the encryption process and are saved as part of the output. Then,
the Optimal Symbol Codes (OSC) function comes into play, constructing the Huffman tree in a bottom-up
manner to determine the optimal codes. TheOSC function operates iteratively, selecting and merging the
two least probable symbols in each cycle, as outlined in Algorithm 2. This process is repeated a total of n − 1
times, where 2 ≤ n ≤ 255, culminating in the final tree of optimal codes.

Algorithm 2: The function OSC(p0, p1 , . . . , pn)
1: if n > 2 then
2: Set Codes(1) to 0 and Codes(2) to 0.
3: else
4: Sort in descending order: p1 ≥ p2 ≥ ⋅ ⋅ ⋅ ≥ pn .
5: Set Codes’ to OSC(p1 , p2, . . . , pn−2, pn−1 + pn).
6: for each index i do
7: if i ≤ n − 2 then

(Continued)

Comput Model Eng Sci. 2025;143(1) 1035

Algorithm 2 (continued)
8: Set Codes(i) to Codes’(i).
9: else
10: if i = n − 1 then
11: Set Codes(i) to Codes′(n − 1) ⋅ 0.
12: else
13: Set Codes(i) to Codes′(n − 1) ⋅ 1.
14: end if
15: end if
16: end for
17: end if
18: return Codes.

With the Huffman tree established, we proceed to encode each symbol c from the plaintext P
sequentially. This encoding process employs an encoding function, taking two inputs: the symbol c and
the determined optimal codes, and generating the corresponding optimal code in bits. These bits are then
appended to a buffer, which has a maximum size of 136 bits. As the buffer accumulates bits, its size is regularly
checked. If the buffer reaches a size equal to or exceeding 128 bits, the read block (RB) function comes into
action, creating a 128-bit block for the subsequent cipher encoding. This block is then processed through
the Cipher Encoding (CE) function, which encrypts it and stores the result in the output, as explained
in Section 3.2. This sequential reading and encoding of plaintext symbols persists until the last symbol
is processed.

As a natural complement to IDCE(K , P), we introduce its inverse, denoted as invIDCE(K , C). This
inverse function maps {0, 1}m back to {0, 1}n . Hence, invIDCE(K , C) ∶ {0, 1}k × {0, 1}m → {0, 1}n , and
its functionality is defined in Algorithm 3. Likewise, the invIDCE(K , C) function reverses the operations
performed by IDCE(K , P). It commences by deriving the round keys, K0, K1 , . . . , K6, and decrypting the
16 blocks of the compression header to recover the probabilities p0, p1 , . . . , p255 for each symbol. The OSC
function is then employed to reconstruct the Huffman tree. Subsequently, each block b within the ciphertext
is read sequentially and decrypted through the Inverse Cipher Encoding (invCE) function, as explained
in Section 3.2. Furthermore, the decoding of each symbol c within a block is executed using the decoding
function, which serves as the inverse of the encoding function. This process operates bitwise on the input
symbol c and generates the encoded symbol using the provided Codes input. The sequential reading of blocks
persists until the last block is processed.

Algorithm 3: The function invIDCE (K , C)
1: Obtain round keys K0, K1 , . . . , K6 from the CKE(K) function.
2: for each index i from 0 to 255 in steps of 16 do
3: Create block b from ciphertext symbols ci , ci+1 , . . . , ci+15.
4: Determine probabilities pi , pi+1 , . . . , pi+15 by applying inverse function on block b using subkeys

K0, K1 , . . . , K6 as invCE(b, K0, K1 , . . . , K6).
5: end for
6: Generate Codes using the OSC(p0, p1 , . . . , p255) function.
7: for each block b in ciphertext C do
8: Apply the invCE function on block b using round keys K0, K1 , . . . , K6 as invCE(b, K0, K1 , . . . , K6).
9: for each symbol c in block b do

(Continued)

1036 Comput Model Eng Sci. 2025;143(1)

Algorithm 3 (continued)
10: Decode symbol c using Codes.
11: end for
12: end for

3.2 Cipher Encoding (CE)
The functionality of the CE function is explained in Algorithm 4. CE commences by initializing the state

variable s to b ⊕ K0. This initialization stage involves a straightforward XOR operation between the first-
round key K0 and the block b. The encoding process is organized into a series of iterations, each referred to
as a “round,” and the algorithm encompasses a total of seven rounds.

It’s worth noting that the operations within each round are identical, except for the variation in the final
round key. The final round, however, excludes the Chaotic Scrambling CS function call. CS is based on the
Arnold cat map, as detailed in Section 3.3. In each round, the corresponding round key Kr is incorporated
into the state variable s through a simple XOR operation: s ⊕ Kr , where r is the round counter variable,
whereas the CS function is introduced to ensure optimal confusion during the encryption. The CS function
effectively permutes the block data by preserving the actual data values but altering their arrangement via
the Arnold cat map.

On the reverse side of the encryption process, the invCE function performs inverse operations in a
precisely reversed sequence, as outlined in Algorithm 5. It’s important to note that the XOR operation is
self-inverse. Additionally, the individual inverse function, inverse chaotic scrambling invCS function, is
comprehensively described in Section 3.3.

Algorithm 4: The function CE(b, K0, K1 , . . . , K6)
1: Initialize state variable s as the XOR of block b and round key K0
2: for each round r from 1 to 6 do
3: if r is less than or equal to 5 then
4: Update s by applying the CS function
5: end if
6: Update s by XOR with round key Kr
7: end for
8: return the resulting state variable s

Algorithm 5: The function invCE(b, K0, K1 , . . . , K6)
1: Initialize state variable s as the XOR of block b and round key K6
2: for each round r from 5 to 1 in reverse order do
3: Update s by applying the inverse chaotic scrambling invCS function
4: Update s by XOR with round key Kr
5: end for
6: Update s by XOR with round key K0
7: return the resulting state variable s

It’s worth noting that the operations within each round are identical, except for the variation in the final
round key. The final round, however, excludes the CS function call. CS is based on the Arnold cat map, as

Comput Model Eng Sci. 2025;143(1) 1037

detailed in Section 3.3. In each round, the corresponding round key Kr is incorporated into the state variable
s through a simple XOR operation: s ⊕ Kr , where r is the round counter variable, whereas the CS function
is introduced to ensure optimal confusion during the encryption. The CS function effectively permutes the
block data by preserving the actual data values but altering their arrangement via the Arnold cat map.

On the reverse side of the encryption process, the invCE function performs inverse operations in a
precisely reversed sequence, as outlined in Algorithm 5. It’s important to note that the XOR operation is
self-inverse. Additionally, the individual inverse function, inverse chaotic scrambling invCS function, is
comprehensively described in Section 3.3.

3.3 Chaotic Scrambling (CS)
The chaotic scrambling function operates by transforming a 128-bit input to another 128-bit output

while applying chaotic transformations to each of the four columns, as expressed in Eq. (1):

CS(s0, s1 , . . . , s15) ⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡⎢⎢⎢⎢⎢⎢⎢⎣

s′0 s′4 s′8 s′12
s′1 s′5 s′9 s′13
s′2 s′6 s′10 s′14
s′3 s′7 s′11 s′15

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1)

This function’s fundamental form is designed for 2 bytes but is extended to accommodate 16 bytes.
To achieve this extension, the Arnold Cat Map was selected due to its simplicity and established security
properties. The Arnold Cat Map achieves data permutation or shuffling by rearranging the positions of bytes
within the block [34]. The generalized form of the two-dimensional Arnold cat map is expressed as follows:

[x
′

0
x′1
] = [1 α

β αβ + 1] [
x0
x1
] mod N (2)

In Eq. (2), α and β serve as control parameters and are set to α = 1 and β = 1 for the proposed algorithm.
Data positions undergo scrambling through the iterative application of this map across multiple rounds. The
individual byte elements are shuffled using Eq. (2), which involves simple multiplication. The bytes within a
column are replaced according to Eqs. (3) and (4) as follows:

x′0 = (x0 + αx1) mod N (3)
x′1 = (βx0 + x1(αβ + 1)) mod N (4)

On the inverse side, the inverse chaotic scrambling invCS function conducts straightforward inverse
multiplication according to Eq. (5):

[x0
x1
] = 1
(αβ + 1) − αβ

[αβ + 1 −α
−β 1] [

x′0
x′1
] mod N (5)

It’s important to note that this transformation is unkeyed, and when repeatedly composed with itself, it
ultimately results in the identity map [35]. The key cryptographic attribute of the Arnold cat map is its ability
to rearrange data positions, which is highly valuable in cryptographic applications [35]. However, it is worth
noting that after a certain number of iterations, this map can return the data positions to their original state,
effectively restoring the original data block [35]. As an example, the matrix presented in Eq. (2) necessitates
191 iterations to revert to the identity map, a value determined through experimental computation.

1038 Comput Model Eng Sci. 2025;143(1)

3.4 Chaotic Key Expansion (CKE) Function
The Tent map was chosen as the foundational chaotic map for key expansion due to its favorable

properties, including adherence to uniform distribution and invariant density characteristics [36–38]. It
operates as an iterative function, defined by Eq. (6):

xn+1 = Fλ(xn) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xn

λ
if xn ≤ λ

1 − xn

1 − λ
if xn > λ

(6)

Here, λ ∈ (0, 1) serves as a control parameter, xn ∈ (0, 1) represents the state at step n, and x0 denotes
the initial value (at n = 0). Further, the inputs xn and λ are considered as a secret key, where xn value is used
to generate pseudorandom keystream by setting threshold value t. In proposed algorithm, the threshold t
value was set to t = 0.5 (according to uniform probability model) as per Eq. (7):

bn = Ft(xn) =
⎧⎪⎪⎨⎪⎪⎩

0 if xn < t
1 if xn ≥ t

(7)

However, it is important to investigate the Tent map chaotic behavior, particularly in scenarios where
initial conditions and parameter values can lead to undesirable outcomes and vulnerabilities. The chaotic
dynamics of the Tent map rely on λ. Specifically, when λ < 1, the interval encompasses both periodic and
non-periodic behavior. However, all orbits within this regime remain unstable, as nearby points diverge from
the orbits instead of converging towards them. As λ increases, orbits with extended lengths emerge. Within
the interval, there are periodic points of varying orbit lengths, alongside non-periodic points. Notably,
the periodic points densely populate the [0, 1] range, signifying that the map has indeed achieved chaotic
behavior, as illustrated in Figs. 4 and 5. Evaluation has confirmed that the Tent map behaves in a chaotic
manner, which is advantageous for generating pseudorandom keystreams. Consequently, the proposed
keystream generator is restricted to the parameter range of λ ∈ (0.25, 0.75) [22], where parameters λ and x0
serve as a secret key.

Figure 4: Analysis of the iterative behavior of the tent map for λ = 0.4

Comput Model Eng Sci. 2025;143(1) 1039

Figure 5: Analysis of the iterative behavior of the Tent map for λ = 0.7

The adoption of the Tent map for key expansion represents a relatively better approach. It has been
introduced to enhance the diffusion and non-linearity aspects within the expanded keys. The CKE function
requires a 256-bit string as a secret key to derive seven subkeys, denoted as t0, t1 , . . . , t6. These subkeys are
converted into decimal values and employed as the initial values x0, x1 , . . . , x6 for the tent map function,
generating pseudorandom keystreams K0, K1 , . . . , K6 of size 128 bits each, serving as seven round keys. These
round keys are subsequently utilized in the CE and invCE functions for masking and unmasking through a
straightforward XOR operation with the corresponding block b. The expression for the seven round keys is
given by Ki = Fλ(xi), where i = 0, 1, . . . , 6, as detailed in Eq. (6).

4 Experiment Analysis
The performance, compression ratio, and security features of the proposed algorithm underwent thor-

ough evaluation on a computer system consisting of a Pentium-IV processor clocked at 2.4 MHz, running
the Windows 7 operating system, and equipped with 3 GB of RAM. For a thorough comparative analysis, six
established methods, namely Huffman coding [39], Advanced Encryption Standard (AES) [40], chaotically
mutated Huffman trees (CHT) [27], and Chaotically Mutated Adaptive Huffman Tree (CMAHT) [28], were
coded and executed in the Java programming language. The experimental dataset consisted of files from
the standard Calgary corpus [41]. The Calgary Corpus, with its diverse collection of text and binary files,
serves as a standard benchmark for evaluating proposed algorithm and existing techniques. Its variety of data
types allows for testing the efficiency and compatibility of such algorithms in handling both compression
and encryption processes effectively. The ensuing subsections present the outcomes of various experiments
conducted to demonstrate the algorithm’s effectiveness in terms of compression, performance, and security.

4.1 Randomness Analysis
The proposed algorithm’s ciphertexts underwent a comprehensive assessment of their randomness using

the NIST statistical test suite [42]. The NIST statistical test suite includes 16 distinct types of statistical tests,
each providing a probability p-value ranging from zero to one. A p-value of 1 implies that the binary sequence
exhibits perfect randomness, while a p-value of 0 suggests complete non-randomness. The significance level,
denoted as α, can be adjusted to suit the analysis. In this experiment, a significance level of α = 0.01 was
chosen, ensuring a 99% confidence level in the randomness of the ciphertexts. In the NIST statistical test

1040 Comput Model Eng Sci. 2025;143(1)

suite, a p-value near the significance level (in this case, α = 0.01) can be considered borderline. Specifically,
a p-value of 0.03 indicates that there is a small but noticeable deviation from perfect randomness. This
can be attributed to the inherent limitations of statistical testing when applied to finite datasets, as random
noise or slight irregularities may cause such small deviations. However, a p-value of 0.03 still falls within the
acceptable range for randomness, especially given the variety of tests performed and their collective results.

The calculated p-value are shown in Table 1 for specific files selected from the Calgary corpus.
Importantly, the ciphertexts produced by the proposed algorithm pass all statistical tests with a confidence
level of 99%, affirming their randomness, while the Binary Matrix Rank test for the bib dataset yielded a
p-value of 0.03, other datasets like news produced a p-value of 0.96, which is very close to 1, indicating strong
randomness. The consistency of the results across different datasets further reassures us that the algorithm’s
randomness is robust and reliable. Although a p-value of 0.03 is marginally below the 0.01 threshold, it
does not undermine the overall performance of the proposed algorithm. The results across other datasets,
combined with the fact that the algorithm passes all tests with a high degree of consistency, support the
conclusion that the ciphertexts exhibit strong randomness. This contributes to the algorithm’s resilience
against ciphertext-only attacks (COA), as there are no discernible patterns or repetitions in the ciphertexts.

Table 1: Randomness test

Statistical test Parameter Bib Book1 Book2 Geo News
Frequency 0.25 0.35 0.81 0.54 0.1

Block frequency M = 128 0.67 0.61 0.5 0.15 0.68
Runs 0.02 0.76 0.16 0.88 0.61

Long runs of one’s 0.77 0.57 1 0.43 0.38
Binary matrix Rank 0.03 0.38 0.55 0.03 0.96

Spectral DFT 0.16 0.72 0.24 0.11 0.67
No overlapping templates M = 73023, N = 8, M = 9 0.53 0.17 0.52 0.01 0.18

Overlapping templates M = 9, M = 1032, N = 566 0.53 0.18 0.71 0.79 0.82
Universal 0.44 0.78 0.16 0.22 0.16

Linear complexity M = 500, N = 1168 0.28 0.22 0.11 0.66 0.14
Serial m = 8, p-value1 0.94 0.37 0.75 0.62 0.05

m = 8, p-value1 0.99 0.1 0.51 0.44 0.05
Approximate entropy m = 10 0.78 0.32 0.3 0.75 0.01

Cumulative sums Forward 0.26 0.61 0.5 0.84 0.17
Reverse 0.09 0.61 0.33 0.49 0.15

Random excursions x = −1 0.7 0.81 0.28 0.41 0.53
Random excursions variant x = −1 0.44 0.91 0.45 0.8 0.68

4.2 Number of Rounds Analysis
Recent advancements in cryptanalysis have underscored the pivotal role of the number of rounds in

enhancing the security of iterative block ciphers [40]. Leveraging this insight, the proposed algorithm was
meticulously crafted, considering the optimal number of rounds required to render cryptanalytic attacks
inconsequential. To evaluate the algorithm’s robustness, a randomness test was conducted on the ciphertext
generated by a reduced version featuring four rounds. The resulting computed p-values, specifically for the
“book1” file from the Calgary corpus, are presented in Table 2. The experimental outcomes unequivocally

Comput Model Eng Sci. 2025;143(1) 1041

validate the presence of complete confusion and diffusion within the encryption process, given a 128-bit
block size and 256-bit key length. In pursuit of heightened security and bolstered resistance against linear
and differential cryptanalysis, an additional three rounds were judiciously incorporated as a security margin.

Table 2: Randomness test of reduced version with four rounds

Statistical test Parameter Book1
Frequency 0.44

Block frequency M = 128 0.55
Runs 0.73

Long runs of one’s 0.25
Binary matrix Rank 0.7

Spectral DFT 0.91
No overlapping templates M = 73023, N = 8, M = 9 0.03

Overlapping templates M = 9, M = 1032, N = 566 0.69
Universal 0.68

Linear complexity M = 500, N = 1168 0.12
Serial m = 8, p-value1 0.65

m = 8, p-value1 0.15
Approximate entropy m = 10 0.98

Cumulative sums Forward 0.61
Reverse 0.78

Random excursions x = −1 0.29
Random excursions variant x = −1 0.21

The inclusion of additional rounds also enhances the algorithm’s resistance to known-plaintext attacks
(KPA). In a KPA scenario, the attacker has access to both the plaintext and corresponding ciphertext
and attempts to derive the encryption key. By incorporating an adequate number of rounds and ensuring
strong confusion and diffusion properties, the algorithm prevents the attacker from correlating patterns
between plaintext and ciphertext. Furthermore, the algorithm demonstrates resilience against chosen-
ciphertext attacks (CCA). In CCA, an attacker manipulates ciphertext to study the corresponding plaintext
or encryption key. The optimal number of rounds, combined with robust key schedule algorithms and a
highly nonlinear encryption process, ensures that even with controlled ciphertext inputs, no exploitable
relationships emerge.

4.3 Compression Ratio
The compression ratio is a critical metric that reflects the effectiveness of an algorithm. In this context,

we conducted experiments using the standard Calgary Corpus files to provide a comprehensive evaluation
of the compression capabilities of the proposed algorithm in comparison to previously suggested algorithms.
The compression ratios were calculated using Eq. (8), where the ratio is defined as the quotient of ciphertext
length to plaintext length, expressed as a percentage.

Ratio = (ciphertext length
plaintext length

) × 100% (8)

1042 Comput Model Eng Sci. 2025;143(1)

The obtained compression ratios are presented in Table 3, encompassing results for 5 distinct Calgary
Corpus files. It is noteworthy that the compression ratio achieved by the arithmetic coding approach
surpasses that of the proposed algorithm, although it aligns closely with the performance of Huffman-based
techniques. Minor variations in compression ratios were observed for certain files, primarily attributed to
negligible padding within the cipher encoding process.

Table 3: Comparison of compression ratio

File Size (KB) Huffman (%) AC (%) CHT (%) CMAHT (%) IDCE (%)
Bib 108.65 65.6 65.9 65.6 65.6 65.6

Book1 750.75 57.1 56.7 57.1 57.1 57.1
Book2 596.54 60.3 60.1 60.3 60.3 60.3

Geo 100.00 71.1 71.6 71.1 71.1 71.1
News 368.27 65.4 65.1 65.4 65.4 65.4

Morover, the proposed IDCE algorithm relies on compression to reduce data redundancy before
encryption. For data that is inherently low in redundancy, such as random or already compressed data, the
compression phase of IDCE has limited effectiveness. This may result in minimal or no reduction in data
size, making IDCE less optimal for such cases, which required further research to adapt IDCE for such data
types, potentially through advanced preprocessing techniques or hybrid compression methods.

4.4 Key Space Analysis
Ensuring the security of an encryption algorithm demands a key space of sufficient size to withstand

various brute force attacks. The proposed algorithm distinguishes itself by supporting a robust 256-bit key
size, which proves more than sufficient for practical and reliable cryptographic applications, especially when
compared to previously known algorithms. To aid in comparisons, Table 4 provides a key space analysis that
contrasts the proposed algorithm with these established alternatives.

Table 4: Key space analysis

Algorithm Key size
Huffman –

AC –
CMAHT 144 bits

CHT 112 bits
AES 128/192/256 bits

IDCE 256 bits

The large key space also enhances resistance to KPA. In KPA, the attacker uses pairs of known
plaintext and corresponding ciphertext to derive the encryption key. The 256-bit key size ensures that
even with multiple plaintext-ciphertext pairs, the computational resources required for a brute-force attack
are astronomically high, making such attacks infeasible. Furthermore, the algorithm’s strong diffusion and
nonlinearity characteristics eliminate exploitable patterns between plaintext and ciphertext, further securing
against KPA. For COA, where the attacker has access only to the ciphertext and attempts to deduce the
key or plaintext, the vast key space makes brute force practically impossible. Additionally, the randomness

Comput Model Eng Sci. 2025;143(1) 1043

and entropy of the ciphertext (validated in 4.1) ensure that any statistical analysis by the attacker yields no
useful information. These features collectively establish robust defense mechanisms against COA, ensuring
the security and reliability of the proposed encryption system.

4.5 Key Sensitivity and Plaintext Sensitivity
An exemplary encryption algorithm must exhibit sensitivity concerning both the key and plaintext

components. Even a minor alteration of a single bit within either the key or the plaintext should yield
entirely distinct outcomes. This characteristic serves as a important test for evaluating the algorithm’s
resistance level against brute-force attacks. To assess key sensitivity, the Calgary Corpus files were encrypted
using the key “abcdefghijklmnopqrstuvwxyz123456”. Subsequently, the same set of files was
encrypted once more, this time with a slight modification to the key, altering the most significant
bit to “abcdefghijklmnopqrstuvwxyz123457”. The key sensitivity is calculated as the average
percentage of different bits using Eq. (9):

Sensitivity = ∑
b
i=1 BitChange(C1i , C2i)

a ⋅ b × 100 (9)

where a is the number of blocks in plaintext, b is the length of each ciphertext block in bits, i is the
counter, C1i is the ith block encrypted with the (“abcdefghijklmnopqrstuvwxyz123456”) key,
C2i is the ith block encrypted with the modified key (“abcdefghijklmnopqrstuvwxyz123457”),
and the BitChange(C1i , C2i) computes the number of different bits between C1i and C2i ciphertext files.
The comparison percentages of selected Calgary Corpus files is tabulated in Table 5. Notably, the observed
percentage of bit changes in the two ciphertexts closely approximates the ideal value of 50%. This outcome
underscores the algorithm’s exceptional key sensitivity, reaffirming its robust security characteristics.

Table 5: Key sensitivity analysis

Filename Beginning Middle End Complete
Bib 51.57 51.56 51.56 51.56

Book1 51.56 51.56 51.56 51.56
Book2 51.56 51.56 51.56 51.56

Geo 51.57 51.56 51.56 51.56
News 51.56 51.56 51.56 51.56

To evaluate the plaintext sensitivity of the proposed algorithm, a systematic approach was employed,
involving the random toggling of one bit within each block of plaintext. Subsequently, encryption was carried
out using the same cryptographic key. The resulting pair of ciphertext files underwent a thorough bit-by-bit
comparison. The plaintext sensitivity is calculated as the average percentage of different bits using Eq. (9). The
corresponding comparison percentages have been detailed in Table 6. Remarkably, the observed percentage
of bit changes in the two ciphertexts closely approximates the expected value of approximately 50%. This
outcome serves as compelling evidence of the algorithm’s robust plaintext sensitivity. Taken together with its
key sensitivity, experimental results confirm that the proposed algorithm excels in both aspects, making it
highly responsive to changes in both the key and plaintext.

1044 Comput Model Eng Sci. 2025;143(1)

Table 6: Plaintext sensitivity analysis

Filename Beginning Middle End Percentage
Bib 50.14 50.13 50.07 50.11

Book1 50.03 49.99 50.02 50.01
Book2 50.04 50.05 50.09 50.06

Geo 50.09 49.89 50.07 50.02
News 49.95 49.92 49.92 49.93

The algorithm’s sensitivity to both key and plaintext changes enhances its resistance to KPA, where
an attacker possesses pairs of plaintext and corresponding ciphertext. High key and plaintext sensitivity
ensure that even with such pairs, no patterns are discernible to infer the key or predict future ciphertexts.
The nonlinearity and diffusion properties prevent exploitation of relationships between plaintext and
ciphertext, thwarting KPA attempts. Moreover, The proposed algorithm mitigates CCA threat through its
strong sensitivity and diffusion mechanisms, ensuring that any modification to the ciphertext results in
an unpredictable plaintext. Additionally, the algorithm’s robust design and key space of 256 bits make
reverse-engineering or leveraging ciphertext modifications computationally infeasible. Taken together, the
experimental results confirm that the proposed algorithm excels in both key and plaintext sensitivity, making
it highly responsive to changes and resistant to advanced cryptanalytic attacks, including KPA and CCA.

4.6 Processing Time
In addition to the comprehensive analysis encompassing compression and security, there are other

critical considerations to address, notably the algorithm’s processing time. Here, the processing time
of an proposed algorithm refers to the amount of time taken to perform compression and encryption
simultaneously using (10) as:

Processing Time = Process End Time − Process Start Time (10)

Typically, compression and encryption algorithms tend to be optimized for either speed or compres-
sion/encryption efficiency, rarely excelling in both aspects simultaneously. Tables 7 and 8 summarize the
processing time comparison, comparing the proposed algorithm with prior algorithms, based on trials
conducted with the standard Calgary Corpus files. Furthermore, for the sake of comparison, test files
underwent sequential compression and encryption operations, first with Huffman and Arithmetic Coding
followed by AES encryption. This allowed for an assessment of the proposed algorithm’s effectiveness relative
to the sequential execution of compression and encryption algorithms.

Table 7: Comparison of compression-encryption processing time (s)

Filename Huffman AC AES Huffman + AES AC + AES CHT CMAHT IDCE
Bib 66 127 512 419 454 70 56 318

Book1 386 541 2904 2312 2438 403 395 1726
Book2 308 428 2692 1918 2040 319 314 1115

Geo 61 90 483 316 384 63 59 227
News 179 312 1662 1279 1274 200 175 712

Comput Model Eng Sci. 2025;143(1) 1045

Table 8: Comparison of decompression-decryption processing time (s)

Filename Huffman AC AES Huffman + AES AC + AES CHT CMAHT IDCE
Bib 36 232 839 494 750 41 31 252

Book1 237 1238 5757 3469 4481 208 244 1928
Book2 197 1076 4595 2664 3626 213 191 1586

Geo 38 199 761 527 682 38 38 314
News 110 712 2851 1836 2342 132 112 932

The results unequivocally confirm that the proposed algorithm boasts the highest processing speed
when compared to AES, Huffman + AES, and AC + AES combinations. Additionally, it significantly
reduces the time required for the simultaneous execution of data compression and encryption in contrast
to performing these operations separately. It’s worth noting that while Huffman, AC, CHT, and CMAHT
exhibit faster processing times, this is largely due to their limited security measures, where integration of
chaotic maps, such as Arnold Cat and Tent maps, enhances the security but also introduces computational
overheads. Moreover, the need for precise chaotic computations can pose challenges in real-time or
resource-constrained environments.

5 Conclusion
This paper introduces a data encoding algorithm named IDCE, designed to seamlessly integrate data

compression and encryption within a block cipher framework. By incorporating compression into the
encryption process, the proposed algorithm achieves optimal data storage and transmission efficiency
while ensuring robust security through secret key control. The proposed algorithm adopts Huffman coding
for compression, utilizes the Tent map for pseudorandom keystream generation, and incorporates the
Arnold Cat map for data scrambling with a multiple rounds structure, thereby enhancing security. The
use of a structured round design in the proposed algorithm guarantees resistance against various attacks,
while a substantial key space provides formidable resistance against brute-force attacks. We conducted a
thorough implementation and critical analysis of the proposed algorithm, utilizing a standard set of Calgary
Corpus files. The results of experiments bring forth several noteworthy findings. Notably, the ciphertexts
generated by the proposed algorithm successfully passed all tests within the NIST statistical test suite,
establishing their randomness with a high degree of confidence (99%). Furthermore, experiments revealed
several prominent attributes, including an acceptable compression ratio and performance. However, the
study has certain limitations. The proposed algorithm is primarily evaluated on standard datasets, and its
performance on diverse real-world datasets, including multimedia files, remains to be explored. Additionally,
while the algorithm balances security and efficiency, the computational overhead compared to traditional
compression-only methods needs further optimization. Future research could focus on reducing processing
time and expanding the algorithm’s adaptability to various data types and practical applications. In summary,
the proposed algorithm represents a promising advancement in the research area of data encoding, offering
a complete solution that integrates data compression and encryption without compromising on security or
efficiency. Experimental findings emphasize the proposed algorithm’s robustness and its potential to address
the important challenges of secure data storage and transmission in current computing environments.

Acknowledgement: This work was supported by the Deanship of Scientific Research, Qassim University, which funded
the publication of this project.

1046 Comput Model Eng Sci. 2025;143(1)

Funding Statement: The researchers would like to thank the Deanship of Graduate Studies and Scientific Research at
Qassim University for financial support (QU-APC-2025).

Author Contributions: The authors confirm their contribution to the paper: study conception and design: Muham-
mad Usama; data collection: Muhammad Usama, Arshad Aziz; draft manuscript preparation: All authors; funding
acquisition: Suliman A. Alsuhibany. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The datasets used in this study are publicly available benchmark datasets. Specifi-
cally, the standard Calgary Corpus [41] has been utilized, which can be accessed online at http://www.data-compression.
info/Corpora/CalgaryCorpus/ (accessed on 25 February 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Armstrong K. Big data: a revolution that will transform how we live, work, and think. Inform, Commun Soc. 2014

Nov;17(10):1300–2. doi:10.1080/1369118X.2014.923482.
2. Jridi M, Alfalou A. Real-time and encryption efficiency improvements of simultaneous fusion, compression and

encryption method based on chaotic generators. Opt Lasers Eng. 2018;102:59–69. doi:10.1016/j.optlaseng.2017.10.
007.

3. Wong K-W, Lin Q, Chen J. Simultaneous arithmetic coding and encryption using chaotic maps. IEEE Transact
Circ Syst II: Express Bri. 2010;57(2):146–50. doi:10.1109/TCSII.2010.2040315.

4. Bose R, Pathak S. A novel compression and encryption scheme using variable model arithmetic coding and coupled
chaotic system. IEEE Transact Circ Syst I: Regul Pap. 2006 Apr;53(4):848–57. doi:10.1109/TCSI.2005.859617.

5. Coutinho SC. The mathematics of ciphers: number theory and RSA cryptography. 1st ed. New York: A K
Peters/CRC Press; 1999. doi:10.1201/9781439863893.

6. Baptista MSS. Cryptography with chaos. Phys Lett A. 1998;240(1–2):50–4. doi:10.1016/S0375-9601(98)00086-3.
7. Yang D, Liao X, Wang Y, Yang H, Wei P. A novel chaotic block cryptosystem based on iterating map with output-

feedback. Chaos Solit Fract. 2009 Jan;41(1):505–10. doi:10.1016/j.chaos.2008.02.017.
8. Moses Setiadi DRI, Rijati N, Muslikh AR, Vicky Indriyono B, Sambas A. Secure image communication using galois

field, hyper 3D Logistic Map, and B92 quantum protocol. Comput Mater Contin. 2024;81(3):4435–63. doi:10.32604/
cmc.2024.058478.

9. Calcagnile LM, Galatolo S, Menconi G. Non-sequential recursive pair substitutions and numerical entropy
estimates in symbolic dynamical systems. J Nonlinear Sci. 2010;20(6):723–45. doi:10.1007/s00332-010-9071-0.

10. Grassberger P. Data compression and entropy estimates by non-sequential recursive pair substitution; 2002. [cited
2025 Feb 25]. Available from: http://arxiv.org/abs/physics/0207023.

11. Lahdir M, Hamiche H, Kassim S, Tahanout M, Kemih K, Addouche S-A. A novel robust compression-encryption
of images based on SPIHT coding and fractional-order discrete-time chaotic system. Opt Laser Technol. 2019
Jan;109(4):534–46. doi:10.1016/j.optlastec.2018.08.040.

12. Zhang Y, Xiao D, Liu H, Nan H. GLS coding based security solution to JPEG with the structure of aggregated
compression and encryption. Commun Nonlinear Sci Numer Simul. 2014;19(5):1366–74. doi:10.1016/j.cnsns.2013.
09.019.

13. Wong KW, Yuen CH. Embedding compression in chaos-based cryptography. IEEE Transact Circ Syst II: Express
Bri. 2008;55(11):1193–7. doi:10.1109/TCSII.2008.2002565.

14. Wen JG, Kim H, Villasenor JD. Binary arithmetic coding with key-based interval splitting. IEEE Signal Process
Lett. 2006;13(2):69–72. doi:10.1109/LSP.2005.861589.

15. Wu CP, Kuo CCJ. Design of integrated multimedia compression and encryption systems. IEEE Trans Multimedia.
2005;7(5):828–39. doi:10.1109/TMM.2005.854469.

http://www.data-compression.info/Corpora/CalgaryCorpus/
https://doi.org/10.1080/1369118X.2014.923482
https://doi.org/10.1016/j.optlaseng.2017.10.007
https://doi.org/10.1016/j.optlaseng.2017.10.007
https://doi.org/10.1109/TCSII.2010.2040315
https://doi.org/10.1109/TCSI.2005.859617
https://doi.org/10.1201/9781439863893
https://doi.org/10.1016/S0375-9601(98)00086-3
https://doi.org/10.1016/j.chaos.2008.02.017
https://doi.org/10.32604/cmc.2024.058478
https://doi.org/10.32604/cmc.2024.058478
https://doi.org/10.1007/s00332-010-9071-0
http://arxiv.org/abs/physics/0207023
https://doi.org/10.1016/j.optlastec.2018.08.040
https://doi.org/10.1016/j.cnsns.2013.09.019
https://doi.org/10.1016/j.cnsns.2013.09.019
https://doi.org/10.1109/TCSII.2008.2002565
https://doi.org/10.1109/LSP.2005.861589
https://doi.org/10.1109/TMM.2005.854469

Comput Model Eng Sci. 2025;143(1) 1047

16. Jakimoski G, Subbalakshmi KP. Cryptanalysis of some multimedia encryption schemes. IEEE Trans Multimedia.
2008 Apr;10(3):330–8. doi:10.1109/TMM.2008.917355.

17. Kim H, Wen J, Villasenor JD. Secure arithmetic coding. IEEE Trans Signal Process. 2007;55(5 II):2263–72. doi:10.
1109/TSP.2007.892710.

18. Grangetto M, Magli E, Olmo G. Multimedia selective encryption by means of randomized arithmetic coding. IEEE
Trans Multimedia. 2006 Oct;8(5):905–17. doi:10.1109/TMM.2006.879919.

19. Nagaraj N, Vaidya PG, Bhat KG. Arithmetic coding as a non-linear dynamical system. Commun Nonlinear Sci
Numer Simul. 2009;14(4):1013–20. doi:10.1016/j.cnsns.2007.12.001.

20. Darwish SM. A modified image selective encryption-compression technique based on 3D chaotic maps and
arithmetic coding. Multimed Tools Appl. 2019 Jul;78(14):19229–52. doi:10.1007/s11042-019-7256-6.

21. Huang YM, Liang YC. A secure arithmetic coding algorithm based on integer implementation. In: 11th Interna-
tional Symposium on Communications and Information Technology (ISCIT); 2011; Hangzhou, China: IEEE. p.
518–21. doi:10.1109/ISCIT.2011.6092162.

22. Usama M, Zakaria N. Chaos-based simultaneous compression and encryption for Hadoop. PLoS One.
2017;12(1):e0168207. doi:10.1371/journal.pone.0168207.

23. Fu S,. RHS-TRNG: a resilient high-speed true random number generator based on STT-MTJ device. IEEE Transact
Very Large Scale Integr Syst. 2023;31(10):1–14. doi:10.1109/TVLSI.2023.3298327.

24. Klein ST, Shapira D. Integrated encryption in dynamic arithmetic compression. Inf Comput. 2021;279:104617.
doi:10.1016/j.ic.2020.104617.

25. Singh AK, Thakur S, Jolfaei A, Srivastava G, Elhoseny MD, Mohan A. Joint encryption and compression-based
watermarking technique for security of digital documents. ACM Trans Internet Technol. 2021;21(1):1–20. doi:10.
1145/3414474.

26. Gadhiya N, Tailor S, Degadwala S. A review on different level data encryption through a compression techniques.
In: 2024 International Conference on Inventive Computation Technologies (ICICT); 2024; Lalitpur, Nepal: IEEE.
p. 1378–81. doi:10.1109/ICICT60155.2024.10544803.

27. Hermassi H, Rhouma R, Belghith S. Joint compression and encryption using chaotically mutated Huffman trees.
Commun Nonlinear Sci Numer Simul. 2010;15(10):2987–99. doi:10.1016/j.cnsns.2009.11.022.

28. Zhu ZL, Tang Y, Liu Q, Zhang W, Yu H. A chaos-based joint compression and encryption scheme using mutated
adaptive huffman tree. In: 2012 Fifth International Workshop on Chaos-fractals Theories and Applications; 2012;
Dalian, China: IEEE. p. 212–6. doi:10.1109/IWCFTA.2012.52.

29. Sekar JG, Arun C, Rushitha S, Bhuvaneswari B, Sowmya CS, Prasuna NS. An improved two-dimensional image
encryption algorithm using Huffman coding and hash function along with chaotic key generation. AIP Conf Proc.
2022;2676:030105. doi:10.1063/5.0114663.

30. Adeniji OD,. Text encryption with advanced encryption standard (AES) for near field communication (NFC) using
Huffman compression. In: International Conference on Applied Informatics; 2022; Cham: Springer International
Publishing.

31. Hidayat T, Zakaria MH, Pee ANC. Increasing the Huffman generation code algorithm to equalize compression
ratio and time in lossless 16-bit data archiving. Multimed Tools Appl. 2023;82(16):24031–68. doi:10.1007/s11042-
022-14130-1.

32. Zhou J, Au OC, Wong PHW. Adaptive chosen-ciphertext attack on secure arithmetic coding. IEEE Trans Signal
Process. 2009;57(5):1825–38. doi:10.1109/TSP.2009.2013901.

33. Khashman MA, Marzouk HKAAA, Alshaykh MR. Comments on A novel compression and encryption scheme
using variable model arithmetic coding and coupled chaotic system. IEEE Transact Circ Syst I: Regul Pap. 2008
Nov;55(10):3368–9. doi:10.1109/TCSI.2008.924117.

34. Zhang B, Liu L. Chaos-based image encryption: review, application, and challenges. Mathematics. 2023
Jun;11(11):2585. doi:10.3390/math11112585.

35. Rickus A, Pfluegel E, Atkins N. Chaos-based image encryption using an AONT mode of operation. In: 2015
International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA); 2015;
London, UK: IEEE. p. 1–5. doi:10.1109/CyberSA.2015.7166113.

https://doi.org/10.1109/TMM.2008.917355
https://doi.org/10.1109/TSP.2007.892710
https://doi.org/10.1109/TSP.2007.892710
https://doi.org/10.1109/TMM.2006.879919
https://doi.org/10.1016/j.cnsns.2007.12.001
https://doi.org/10.1007/s11042-019-7256-6
https://doi.org/10.1109/ISCIT.2011.6092162
https://doi.org/10.1371/journal.pone.0168207
https://doi.org/10.1109/TVLSI.2023.3298327
https://doi.org/10.1016/j.ic.2020.104617
https://doi.org/10.1145/3414474
https://doi.org/10.1145/3414474
https://doi.org/10.1109/ICICT60155.2024.10544803
https://doi.org/10.1016/j.cnsns.2009.11.022
https://doi.org/10.1109/IWCFTA.2012.52
https://doi.org/10.1063/5.0114663
https://doi.org/10.1007/s11042-022-14130-1
https://doi.org/10.1007/s11042-022-14130-1
https://doi.org/10.1109/TSP.2009.2013901
https://doi.org/10.1109/TCSI.2008.924117
https://doi.org/10.3390/math11112585
https://doi.org/10.1109/CyberSA.2015.7166113

1048 Comput Model Eng Sci. 2025;143(1)

36. Zhang L, Liao X, Wang X. An image encryption approach based on chaotic maps. Chaos Solit Fract.
2005;24(3):759–65. doi:10.1016/j.chaos.2004.09.035.

37. Lawnik M, Berezowski M. New chaotic system: m-map and its application in chaos-based cryptography. Symmetry.
2022 Apr;14(5):895. doi:10.3390/sym14050895.

38. Usama M, Khan MK, Alghathbar K, Lee C. Chaos-based secure satellite imagery cryptosystem. Comput Mathema
Applicat. 2010 Jul;60(2):326–37. doi:10.1016/j.camwa.2009.12.033.

39. Huffman DA. A method for the construction of minimum-redundancy codes. Proc IRE. 1952;40(9):1098–101.
doi:10.1109/JRPROC.1952.273898.

40. Daemen J, Rijmen V. The design of Rijndael: AES-the advanced encryption standard. Berlin/Heidelberg: Springer;
2002. doi:10.1007/978-3-662-04722-4.

41. Witten J, Bell I, Cleary T. “Calgary Corpus,” University of Calgary, Canada; 1990. [cited 2025 Feb 25]. Available
from: http://www.data-compression.info/Corpora/CalgaryCorpus/.

42. Bassham L, Rukhin A, Soto J, Nechvatal J, Smid M, Leigh S, et al. A statistical test suite for random and
pseudorandom number generators for cryptographic applications. Vol. 800. Gaithersburg, MD, USA: Special
Publication (NIST SP), National Institute of Standards and Technology; 2010. 131 p. [cited 2025 Feb 25]. Available
from: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762.

https://doi.org/10.1016/j.chaos.2004.09.035
https://doi.org/10.3390/sym14050895
https://doi.org/10.1016/j.camwa.2009.12.033
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1007/978-3-662-04722-4
http://www.data-compression.info/Corpora/CalgaryCorpus/
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762

	IDCE: Integrated Data Compression and Encryption for Enhanced Security and
obreakspace Efficiency
	1 Introduction
	2 Related Work
	3 Proposed Work
	4 Experiment Analysis
	5 Conclusion
	References

