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ABSTRACT: The traditional first-order reliability method (FORM) often encounters challenges with non-convergence
of results or excessive calculation when analyzing complex engineering problems. To improve the global convergence
speed of structural reliability analysis, an improved coati optimization algorithm (COA) is proposed in this paper. In
this study, the social learning strategy is used to improve the coati optimization algorithm (SL-COA), which improves
the convergence speed and robustness of the new heuristic optimization algorithm. Then, the SL-COA is compared with
the latest heuristic optimization algorithms such as the original COA, whale optimization algorithm (WOA), and osprey
optimization algorithm (OOA) in the CEC2005 and CEC2017 test function sets and two engineering optimization
design examples. The optimization results show that the proposed SL-COA algorithm has a high competitiveness.
Secondly, this study introduces the SL-COA algorithm into the MPP (Most Probable Point) search process based on
FORM and constructs a new reliability analysis method. Finally, the proposed reliability analysis method is verified
by four mathematical examples and two engineering examples. The results show that the proposed SL-COA-assisted
FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful
application to problems such as composite cylinder design and support bracket analysis.

KEYWORDS: Hybrid reliability analysis; single-loop interactive hybrid analysis; most probability point; metaheuristic
algorithms; coati optimization algorithm

1 Introduction
With the increasing complexity of engineering structures, structural reliability analysis (SRA) plays

an increasingly important role in engineering design, operation, and maintenance. Traditional structural
reliability analysis methods, while capable of obtaining relatively accurate results, suffer from extremely low
computational efficiency when faced with small failure probabilities or large-scale finite element analyses.
Therefore, the development of efficient and accurate structural reliability analysis methods has become a
research hotspot. This study aims to address this challenge by improving existing optimization algorithms
and combining them with the first-order reliability method (FORM) to propose a new structural reliability
analysis framework for solving reliability analysis problems in complex engineering structures. This research
not only has significant theoretical value but also boasts broad application prospects, providing engineers
with more reliable and efficient analysis tools for engineering design.
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SRA is not only beneficial to the systematic adjustment of structural safety factors but also a key factor
in structural design and operation maintenance [1–3]. SRA plays a very important role in preventing higher-
level risks in the life expectancy of engineering structures [4,5]. Higher-level risks in engineering structures
can include catastrophic failures, such as bridge collapses, building collapses, and aircraft crashes. For exam-
ple, the collapse of the I-35W Mississippi River bridge in Minneapolis in 2007 resulted in significant loss of
life and property damage [6]. Reliability analysis can help prevent such failures by ensuring that engineering
structures are designed to withstand expected loads and environmental conditions with high reliability. At
the same time, it can also help engineers design more safe and reliable mechanical systems [7–10].

SRA is usually performed by calculating or estimating the probability that the research object violates
the limit state function (LSF) during its life cycle [11,12]. Monte Carlo simulation (MCS) is a very important
tool in the field of SRA, which has been widely studied based on the original MCS [13]. In addition, the use
of analytical methods to complete SRA has also been widely studied. Common analytical methods include
FORM [14], second-order reliability method (SORM) [15], first-order second-moment (FOSM) [16] and so
on. Compared with using MCS to complete SRA, the analytical method requires lower computational cost.
While analytical methods such as FORM generally require lower computational costs compared to MCS for
low-dimensional problems, they face significant limitations in high-dimensional problems. This is because
the complexity of the reliability analysis increases exponentially with the number of dimensions. In high-
dimensional spaces, analytical methods may struggle to find the Most Probable Point (MPP) efficiently,
leading to increased computational costs and potential inaccuracies. Furthermore, the assumptions made
in analytical methods, such as local linear approximations of the LSF, may become less valid in high-
dimensional spaces, further compromising the accuracy of the results. Although the use of MCS to complete
structural reliability analysis can obtain a more accurate failure probability or reliability index. However,
with the increasing complexity of engineering structures, the computational efficiency of MCS is very low in
the face of engineering examples with small failure probability or large-scale finite element analysis [17,18].
Therefore, the subset simulation (SS) method [19], importance sampling (IS) method [20], and line sampling
(LS) [21] method have been developed. In addition, the use of surrogate models instead of simulation or
complex constraint functions has a very effective effect on reducing the number of assessments of limit states.
Common surrogate models include the Kriging model [22–24], polynomial chaos expansion (PCE) [25],
response surface method (RSM) [26], artificial neural network (ANN) [27], or support vector regression
(SVR) method [28,29]. However, in the face of high-dimensional problems, it may be impossible to establish a
reliable alternative model for SRA [30,31] due to overfitting or underfitting. Relatively speaking, the accuracy
of the surrogate model-assisted hybrid reliability analysis method depends largely on the reliability of the
surrogate model and the selection of training sample points [32,33]. However, the accuracy of the analytical
reliability method depends more on searching the MPP, that is, the point [34,35] with the smallest distance
from the origin in the standard normal space. This makes the calculation cost required in the process of
reliability analysis by analytical method relatively lower. Therefore, this study mainly considers the FORM.

In recent years, researchers have continued to refine and expand the capabilities of FORM. Zhang
et al. [36] proposed an enhanced finite step length (EFSL) method to improve the efficiency and robustness of
solving complex nonlinear reliability-based design optimization (RBDO) problems. Yang et al. [37] proposed
an efficient local adaptive Kriging approximation method with a single-loop strategy (LAKAM-SLS) to
enhance the computational efficiency of Kriging-based RBDO. These developments aim to enhance the
accuracy, efficiency, and robustness of FORM, particularly in addressing the challenges posed by complex
and high-dimensional engineering structures. By incorporating these recent advancements, the field of SRA
is continuously evolving, striving to provide more reliable and efficient methods for assessing structural safety
and preventing catastrophic failures.
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In the past few years, researchers have done a lot of research on SRA based on analytical methods.
Among them, the traditional MPP search methods include the gradient method or conjugate gradient
method. Although for low-dimensional reliability analysis problems, traditional FORM often obtains stable
and accurate analysis results. Studies have shown that the relaxed Hasofer–Lind and Rackwitz–Fiessler
(RHL-RF) [38], and non-negative constraint method (NNCM) [39] are inefficient in solving nonlinear
convex LSFs [40]. These methods often face the problem of over-reliance on parameter settings or non-
convergence of results. In addition, the convex problem may also be a big challenge for gradient FORM, and
its computational cost may increase significantly in some solving processes. The meta-heuristic algorithm
can obtain accurate results or close to the exact solution, which avoids the problem that the gradient method
cannot obtain the reliability analysis solution due to the inability to converge [41,42].

As a non-gradient optimization algorithm, the meta-heuristic algorithm solves the optimization
problem by simulating biological behavior or physical processes [43]. At present, there have been many
studies on heuristic algorithm-assisted FORM. Zhu et al. [40] proposed an improved particle swarm
optimization (PSO) algorithm-assisted FORM. The results show that the new FORM has higher stability
and computational efficiency in the solution of MPP for complex problems. Pedroso [44] combines a typical
differential evolution algorithm with FORM. From the calculation results, it can be seen that it has a very
good performance in finite element examples that require large-scale simulation. Zhong et al. [45] proposed
a new Harris Hawk optimization algorithm (HHO). The combination of the HHO algorithm and FORM
improves the efficiency and stability of solving MPP points in high-dimensional examples. In FORM, the
most critical issues of non-gradient search include. 1) The accuracy and robustness of MPP search; 2) Improve
the reliability analysis ability of complex engineering structure models. If the simulation strategy is difficult or
even impossible to obtain effective reliability analysis results, FORM can provide acceptable analysis results
with low computational difficulty; 3) Improve the computational efficiency of FORM for complex reliability
analysis problems. It is still important to develop a meta-heuristic algorithm with higher global convergence
performance and faster convergence efficiency, which plays an important role in improving the efficiency,
accuracy, and stability of searching MPP points.

Coati optimization algorithm (COA) [46] is a heuristic optimization algorithm, which has been
proved to have good global development and local search capabilities. At the same time, it is also an
optimization algorithm that does not need to apply any parameters to control. However, in the process of
solving MPP, problems such as inaccurate calculation results or low computational efficiency may still be
encountered. In this study, the social learning strategy is used to improve the COA (SL-COA), aiming to
improve computational efficiency, global convergence ability, and robustness of the algorithm. By testing the
benchmark test sets CEC2005 and CEC2017 and four optimization design examples, the SL-COA algorithm
is demonstrated to improve the convergence speed and robustness. Secondly, this study combines the
SL-COA algorithm with FROM to construct a reliability analysis method. Finally, the applicability and
effectiveness of the SL-COA algorithm in the field of reliability analysis are verified by four mathematical
examples and two engineering examples.

The rest of the paper is structured as follows: In Section 2, the knowledge of FORM and COA is briefly
introduced. Then, in Section 3, the proposed SL-COA and the novel framework are explained in detail.
In Section 4, both mathematical and engineering examples are conducted to test the effectiveness of the
enhanced COA and proposed hybrid reliability analysis framework, and then their results are fully discussed.
Ultimately, Section 5 provides a conclusion and prospects for this study.
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2 Review of Related Knowledge

2.1 First-Order Reliability Method
SRA plays an important role in evaluating the safety and reliability of engineering structures under load

and degradation. Estimating the failure probability based on a specific LSF is the most important goal of
SRA [40]:

Pf = ∫
g(x)≤0

. . .∫ fx (x1 , . . . , xn) dx1 . . . dxn (1)

where g (x) denotes the LSF, fx (x) denotes the joint probability density function (PDF) of n-dimensional
random variable set x. Because of the difficulty of solving the integral, researchers have proposed a method
to solve the approximate solution close to the accurate reliability index by searching MPP. As shown in Fig. 1,
a schematic diagram for searching MPP in a certain probability space is given.

Figure 1: Schematic representation mixed model in the U-space

2.1.1 First-Order Reliability Method Based on Gradient
Eqs. (2) and (3) give the calculation formula of MPP point and reliability index by gradient method. This

method is a reliability analysis method that combines the design point search based on an iterative gradient
with the local linear approximation of the LSF in the standard normal probability space.

U k+1 =
∇T g (U k)U k − g(U k)

∇T g(U k)αk
αk+1 (2)

βk+1 =
∇T g (U k)U k − g(U k)

∇T g(U k)αk
(3)

where α denotes the normalized sensitivity vector. Furthermore, U k+1=βk+1αk+1. The iterative formulas of
different gradient reliability analysis methods are different. The element in U k is ui = Φ−1[Fx(xi)], which
denotes the normal standard random variable. Eq. (4) gives the calculation formula of U k .

X k = σ eU k + μe (4)

where

σ e =
φ {Φ−1 [Fx (xi)]}

fx(xi)
(5)
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μe = xi − σ e Φ−1 [Fx (xi)] (6)

where, Fx (xi) and fx(xi) denotes the cumulative distribution function (CDF) and the PDF of original
variable xi . The calculation of αk+1 is the most important difference between different gradient reliability
analysis methods, for example:

1). Hasofer–Lind and Rackwitz–Fiessler method (HL-RF) [38].
HL-RF is one of the most classic forms. The iterative formula of this method is given by Eq. (7).

αk = −
∇g (U k)
∥∇g (U k)∥

(7)

2). Conjugate HL-RF algorithm [2]
To improve the performance of HL-RF, researchers proposed a conjugate HL-RF algorithm. αk can be

computed as follows:

αk = −
U k + λk d k

∥U k + λk d k∥
(8)

where λ can be computed by Eq. (9).

λk+1 =
⎧⎪⎪⎨⎪⎪⎩

λk/c ∥U k+1 −U k∥ ≥ ∥U k −U k−1∥
λk ∥U k+1 −U k∥ < ∥U k −U k−1∥

(9)

where 1.2 < c < 1.5. The calculation formula of conjugate gradient vector dk is shown as Eq. (10).

d k+1 = −∇g (U k) −
∥∇g (U k)∥2

∥∇g (U k−1)∥2 d k−1 (10)

where d0 = 0. With the help of scalar factor ∥∇g(U k)∥2

∥∇g(U k−1)∥2 , αk no longer coincides with the sensitivity vector of
the previous iteration, reducing the periodicity risk.

3). Finite step length method (FSL) [36]
The radial sensitivity vector in FSL is calculated by Eq. (11).

αk+1 =
U k − λ∇g (U k)
∥U k − λ∇g (U k)∥

(11)

where λ is bigger than 0. In the iterative process, the calculation formula is the same as that shown in Eq. (9).
The iterative instability of highly nonlinear LSF is controlled by changing factor c.

2.1.2 First-Order Reliability Method Based on Heuristic Algorithm
The computational efficiency and stability of the gradient-based FORM are good for low and nonlinear

reliability analysis problems. However, in the face of moderate nonlinear problems and moderate dimen-
sional reliability problems, acceptable reliability analysis results may not be obtained. The heuristic algorithm
is very effective in obtaining acceptable reliability analysis results for complex problems. By transforming the
reliability analysis problem into the following Eq. (12):

min
x

f (x) = ∥U k∥ + ρ max {0, g (x)} (12)
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where f (x) denotes the fitness function. g (x) denotes the LSF. ρ is the penalty factor [5]. It can be seen
from Eq. (12) that the method improves the efficiency of solving the reliability index by solving the MPP in
the failure domain.

Fig. 2 shows the calculation flow of the first-order reliability method using the heuristic algorithm.
Step 1: Initialize the heuristic algorithm and initialize the relevant parameters.
Step 2: Build the fitness function based on the reliability analysis problem by Eq. (12).
Step 3: A heuristic optimization algorithm is used to optimize the fitness function.
Step 4: Use the Eq. (13) to determine whether the current optimization results are accurate. ε = 1 × 10−6

is used in the current study. If the current optimization result does not satisfy Eq. (13), implement Step 5;
Otherwise, Step 6 is implemented.

(∥βk − βk−1∥)/βk < ε (13)

Step 5: Update related parameters such as the penalty factor and return to Step 2.
Step 6: Output the current reliability analysis result.

Figure 2: First-order reliability method flow based on the heuristic algorithm

2.2 Coati Optimization Algorithm
The batch normalization (BN) layer is an optimization method widely used in deep neural networks

proposed by Ioffe [47] aiming to improve the training speed of models and reduce the impact of gradient
vanishing and exploding problems. The BN layer normalizes the inputs between network layers, giving them
zero mean and unit variance, thereby enhancing training stability. In CNNs, BN layers are typically inserted
between convolutional layers and activation function layers. The COA is a novel metaheuristic algorithm
introduced by Dehghani in 2022 [46]. It sets up a mathematical model to mimic the behavior of coati in
nature. The basic idea of COA is the simulation of the two natural behaviors of coatis:

i. Capturing and pursuing iguanas,
ii. Evasion of potential threats.

Correspondingly, the execution process of COA is elucidated and mathematically represented in two
distinct phases: exploration and exploitation.
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Initialization: The initial positions of the coatis in the search space are randomly set using:

Xi ∶ xi , j = lb j + r ⋅ (ub j − lb j) , i = 1, 2, . . . , N , j = 1, 2, . . . , m (14)

where Xi is the position of the ith coati in search space, xi , j is the value of the jth decision variable, N is the
number of coatis, m is the number of decision variables, r is a random real number between 1 and 2, and lb j
and ub j are the lower bound and upper bound of the jth decision variable, respectively. After initialization,
the individual coati starts to perform the two phases.

Phase 1: Hunting strategy (exploration phase)
The initial stage of population adjustment among the coatis within the search space involves simulating

their behaviors when facing iguana attacks. It is assumed that half of the coatis choose to climb the tree, while
the other half opt to stay on the ground, anticipating the iguana’s descent. This methodology encourages
coatis to migrate to different positions within the search space, highlighting the ability of COA to explore
the entire problem-solving domain globally.

Climbing Coatis: It is postulated that the best member of the population occupies the position of the
iguana. Therefore, the position of the coatis rising from the tree is mathematically simulated using Eq. (15).

XP1
i ∶ xP1

i , j = xi , j + r ⋅ (Iguana j − I ⋅ xi , j) ,

For

i = 1, 2, . . . , ⌊N
2
⌋ and j = 1, 2, . . . , m. (15)

where XP1
i is the new position calculated for the ith coati, xP1

i , j is the value of its jth dimension, r is random
variable in the interval [0, 1], Iguana j represents the iguana’s position in the jth dimension, I is an integer,
which is randomly selected from the set {1, 2}, and ⌊⋅⌋ is the floor function.

Ground Coatis: Once the iguana descends to the ground, it is positioned at a random location within
the search space. Subsequently, the coatis on the ground navigates the search space, a process replicated
using Eqs. (16) and (17).

IguanaG ∶ IguanaG
j = lb j + r ⋅ (ub j − lb j) , j = 1, 2, . . . , m (16)

XP1
i ∶ xP1

i , j =
⎧⎪⎪⎨⎪⎪⎩

xi , j + r ⋅ (IguanaG
j − I ⋅ xi , j) , FG

Iguana < Fi

xi , j + r ⋅ (xi , j − IguanaG
j ) , el se

For

i = ⌊N
2
⌋ + 1, ⌊N

2
⌋ + 2, . . . , Nand j = 1, 2, . . . , m (17)

where IguanaG represents the position of the iguana on the ground, F is the value of the objective function.
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If a newly calculated position for each coati improves the value of the objective function, it is considered
suitable for the update process; otherwise, the coati maintains its current position. This update criterion
applies to all coatis with indices i = 1, 2, . . . , N , as defined by Eq. (18).

Xi =
⎧⎪⎪⎨⎪⎪⎩

XP1
i , FP1

i < Fi

Xi , el se
(18)

Phase 2: Escaping strategy (exploitation phase)
The second stage of updating the coati positions is mathematically structured to mirror the natural

response of coatis when they encounter and evade predators. When faced with a predator’s attack, coatis
adopt a strategy that leads them to a safer spot near their current position. This behavior underscores the
coatis’ capacity for local search and exploiting their surroundings.

Local Position Update: To emulate this behavior, a random position is generated in close proximity to
the current location of each coati, as determined by Eq. (19).

lbl ocal
j =

lb j

t
, ubl ocal

j =
ub j

t
, where t = 1, 2, . . . , T

XP2
i ∶ xP2

i , j = xi , j + (1 − 2r) ⋅ (lbl ocal
j + r ⋅ (ubl ocal

j − lbl ocal
j )) ,

i = 1, 2, . . . , N , j = 1, 2, . . . , m (19)

where lbl ocal
j and ubl ocal

j represent the local lower and upper bounds for the jth decision variable, lb j and
ub j denote the lower bound and upper bound of the jth decision variable, t is the iteration counter, XP2

i is the
new position calculated for the ith coati on the second phase of COA and xP2

i , j is the value of its jth dimension.
Position Acceptance: The freshly computed position is considered acceptable if it enhances the value

of the objective function, which is assessed using the condition expressed in Eq. (20).

Xi =
⎧⎪⎪⎨⎪⎪⎩

XP2
i , FP2

i < Fi

Xi , el se
(20)

where F is the objective function.
One iteration of the COA is completed after updating the positions of all coatis in the search space during

the first and second phases. This cycle continues until the final iteration of the algorithm is reached. At the
end of the COA run, the best solution obtained throughout all iterations of the algorithm is presented as the
output. The various steps involved in the COA implementation are illustrated in Fig. 3 through a flowchart.
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Figure 3: Block diagram of COA

3 Improved COA-Based FORM
In this section, the proposed hybrid reliability analysis model is discussed. Firstly, the improved COA

is explained, and after that, the framework of this analysis model is defined and illustrated.

3.1 Social Learning-Adapted COA
The status monitoring of the forging press machine uses 4 types of sensors, including 4 channels of

displacement signals, 4 channels of impact force signals, 2 channels of hydraulic signals, and 2 channels of air
pressure signals. Each set of data collected consists of one sample with 12 channels. According to the duration
of approximately 8 s for each forging operation on the forging press machine, the length for each signal is set
at 8000 data points with a sampling frequency of 1000 Hz.

This paper introduces a novel method for COA enhancement called SL-COA. Social learning is a basic
behavior of the biotic population. In the field of swarm intelligence algorithms, this concept is initially
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explained in another bioinspired algorithm called PSO [48]. It is a swarm intelligence algorithm proposed
by Kennedy and Eberhart in 1995, inspired by the social behavior of birds and fish. The core concept of the
algorithm is as follows.

Considering a D-dimensional space consists of n particles, the velocity and position of each particle are
defined as

Vi = (vi1 , vi2, . . . , vi D) , i = 1, 2, . . . , N (21)
Xi = (xi1 , xi2, . . . , xi D) , i = 1, 2, . . . , N (22)

In each iteration, the above expression is updated as

Vid = wVid−1 + c1r1 (Pid − Xid) + c2r2 (Pgd − Xid) (23)
Xid+1 = Xid + Vid t (24)

where Vid is the velocity in dth iteration, Pid is the best position of an individual particle, and Pgd is the best
position of the whole swarm, w is inertia weight and c is learning factor.

This expression elucidates the concept that an individual’s velocity within a group can be characterized
as a blend of influences from their prior velocity, self-awareness, and the collective influence of the group.
Actually, this idea is also suitable for most of the swarm intelligence algorithms [48–51]. In this paper, this
idea is used to improve the learning process of the behavior of coatis. That is the Eqs. (15), (17) and (19).

There are two types of indexes related to the swarm learning process in PSO, that is inertia weight w
and learning factor c. The inertia weight is a parameter measured by the influence of the prior velocity of the
swape. A higher value of w results in less frequent velocity changes, as it diminishes the impact of velocity
adjustments. The learning factor is employed to fine-tune both self-awareness and the collective impact of
the group. Conversely, a greater value of c leads to a more pronounced velocity change [49,50]. As for COA,
the learning factor c is adopted in both phases 1 and 2. It improves the convergence speed in Phase 1 and
regulates the swarm diversity in Phase 2, preventing premature convergence to suboptimal solutions.

In PSO, the learning index is treated as a constant. However, it should be noticed that as the iterations
progress, the disparity between each individual varies. In response to this variation, the learning index should
be mathematically linked to it [49]. Consequently, a variable learning index is introduced as c = cmax −
(cmax − cmin) t

T , where t is the current iteration, T is total iteration, cmax and cmin are the maximum and
minimum learning index respectively. This expression represents that with iterations progress, the learning
index gradually decreases from cmax to cmin .

Therefore, the updated process (Eqs. (15), (17), and (19)) of COA is changed to Eqs. (25)–(27), respec-
tively.

XP1
i ∶ xP1

i , j = xi , j + cr ⋅ (Iguana j − I ⋅ xi , j) (25)

XP1
i ∶ xP1

i , j =
⎧⎪⎪⎨⎪⎪⎩

xi , j + cr ⋅ (IguanaG
j − I ⋅ xi , j) , FG

Iguana < Fi

xi , j + cr ⋅ (xi , j − IguanaG
j ) , el se

(26)

XP2
i ∶ xP2

i , j = xi , j + c (1 − 2r) ⋅ (lbl ocal
j + r ⋅ (ubl ocal

j − lbl ocal
j )) (27)

The block diagram of the algorithm is shown in Fig. 4.
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Figure 4: Block diagram of SL-COA

3.2 The Proposed Framework for FORM
By combining the improved algorithm with FORM, a new reliability analysis framework is constructed.

The framework applies the SL-COA algorithm to the MPP search process and then converts the output results
into reliability index β and failure probabilities Pf . The proposed reliability analysis framework is shown
in Fig. 5.
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Figure 5: Block diagram of SL-COA-based FORM framework

4 Study Case and Discussion
In the following section, the performance of the improved optimization algorithm and the proposed

reliability analysis framework are tested in sequence.

4.1 Examples for Illustration
In this example, the objective function shown in Eq. (28) is optimized to compare the effects of different

learning factors on the performance of the optimization algorithm SL-COA. Among them, the number of
populations is set to 20, and the maximum number of iterations is set to 50.

F (x) =
100
∑
i=1
−xi sin (

√
−xi sin(

√
∣xi ∣)) (28)

where variable x is the normal distribution variable. The lower bound of the variable is 500. The upper bound
of the variable is 500. Table 1 shows the optimization results of different learning factors c and adaptive
learning factors after 50 times of optimization.

Table 1: Optimization results in different learning factors

Methods Min Average Max Cov
COA −41,898.28 −41,569.50 −16,037.74 0.1300

SL-COA

c = 2.5 −41,898.29 −41,415.68 −32,337.47 0.0378
c = 2 −41,898.29 −41,515.93 −30,054.15 0.0410

c = 1.5 −41,898.29 −41,749.64 −38,592.40 0.0123
c = 1 −41,898.11 −41,513.82 −30,049.21 0.0402

c = 0.5 −41,898.23 −38,039.66 −18,341.69 0.1561
c = 0.01 −15,465.81 −12,070.21 −9259.90 0.0969

c = cmax − (cmax − cmin) t
T −41,898.29 −41,751.04 −40,917.10 0.0050
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where cmax = 2.1, cmin = 0.8. It can be seen from the results in the table that the stability of the optimal
solution obtained by using a fixed learning factor is relatively low. Comparing the average value of the optimal
solution obtained in the repeated experiments, it can be found that the searchability of the SL-COA algorithm
decreases as the learning factor c decreases. It can be seen that the optimal solution obtained by the proposed
adaptive learning factor change strategy has higher accuracy and higher stability.

4.2 Examples of Optimization Procedure
The optimization performance of SL-COA is firstly evaluated under some mathematical and engineer-

ing cases. This discussion is conducted by comparing with another metaheuristic algorithm. That includes
WOA (2016) [52], OOA (2023) [53], Rime Optimization Algorithm (RIME) algorithm (2023) [54], the multi-
verse optimizer (MVO) (2015) [55], the tree-seed algorithm (TSA) (2015) [56] as well as its original version
COA (2023) [46].

4.2.1 Mathematical Examples
Firstly, CEC2005 is used to justify the performance of the SL-COA. There are totally 25 functions

in this setting: Unimodal function ( f1∼ f5), Basic multimodal function ( f6∼ f12), Extended multimodal
function ( f13∼ f14) and Mixed composite function ( f15∼ f25). Among these problems, f15∼ f25 are believed
to have most difficulties due to its complex structure. In this section, f1∼ f14 are used to evaluate the
basic optimization abilities of the proposed algorithm. The search history, trajectory curve, average curve
as well as convergence curve of SL-COA is illustrated in Fig. 6. These problems vary in complexity and
dimensionality, making them suitable for evaluating the performance of optimization algorithms across a
wide range of scenarios.

The results demonstrate that SL-COA effectively identifies optimal solutions for each function. The
search history graph, which displays position swaps after each iteration, exhibits a high concentration
near the optimization point in the search space. The trajectory curve, representing the fitness of the first
dimension, steadily decreases as the iterations progress. It initially exhibits steep changes but tends to
stabilize towards the end of the optimization process. The average curve, depicting the mean fitness of all
search candidates, and the convergence curve, showcasing the best individual’s performance, collectively
provides an overview of the optimization’s overall performance. It’s important to observe that when testing
the proposed SL-COA under function F7, there is a fluctuation throughout the entire iteration process, as
evidenced by the trajectory curve. In this case, the vertical coordinates of the trajectory curves represent
the function value, and the horizontal coordinates represent the iteration number. However, this fluctuation
remains within the range of [−1, 0], and considering the good performance of the entire swarm, it can be
deemed acceptable on the whole.

After that, CEC2017 is used to future evaluate the performance of the optimization. The function
details of this testing set is listed in Table 2. CEC2017 contains 30 optimization problems, categorized
into four groups: unimodal functions, multimodal functions, hybrid functions, and composition functions.
Similar to the CEC2005 test set, these problems are designed to be challenging and representative of real-
world optimization problems. The CEC2017 test set includes more complex and high-dimensional problems
compared to the CEC2005 test set, making it a more rigorous benchmark for evaluating the performance of
optimization algorithms.

The key parameters of each algorithm are listed in Table 3. Additionally, the size of the population is set
to 30, the maximum iteration number is 1000. Each function is tested 50 times, and the average, standard
deviation and errors of the results are calculated.
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F1 Search history Trajectory curve Average curve

Average curve

Convergence curve

Convergence curveF2 Search history Trajectory curve

Average curve Convergence curveF3 Search history Trajectory curve

Average curve Convergence curveF4 Search history Trajectory curve

Average curve Convergence curveF5 Search history Trajectory curve

Average curve Convergence curveF6 Search history Trajectory curve

Average curve Convergence curveF7 Search history Trajectory curve

Average curve Convergence curveF8 Search history Trajectory curve

Figure 6: (Continued)
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F10 Search history Trajectory curve Average curve Convergence curve

F11 Search history Trajectory curve Average curve Convergence curve

Average curve Convergence curveF12 Search history Trajectory

Average curve Convergence curveF13 Search history Trajectory

Average curve Convergence curveF14 Search history Trajectory

Average curve Convergence curveF9 Search history Trajectory curve

Figure 6: Test results for CEC2005
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Table 2: Function details of CEC2017

Types No. Description f
Unimodal functions F3 Shifted and Rotated Zakharov function 300

Multimodal functions

F4 Shifted and Rotated Rosenbrocks function 400
F5 Shifted and Rotated Rastrigins function 500
F6 Shifted and Rotated Expanded Scaffers F6 function 600
F7 Shifted and Rotated Lunacek Bi_Rastrigin function 700
F8 Shifted and Rotated Non-Continuous Rastrigins function 800
F9 Shifted and Rotated levy function 900
F10 Shifted and Rotated Schwefels function 1000

Hybrid functions

F11 Hybrid function 1 (N = 3) 1100
F12 Hybrid function 2 (N = 3) 1200
F13 Hybrid function 3 (N = 3) 1300
F14 Hybrid function 4 (N = 4) 1400
F15 Hybrid function 5 (N = 4) 1500
F16 Hybrid function 6 (N = 4) 1600
F17 Hybrid function 6 (N = 5) 1700
F18 Hybrid function 6 (N = 5) 1800
F19 Hybrid function 6 (N = 5) 1900
F20 Hybrid function 6 (N = 6) 2000

Composition functions

F21 Composition function 1 (N = 3) 2100
F22 Composition function 2 (N = 3) 2200
F23 Composition function 3 (N = 4) 2300
F24 Composition function 4 (N = 4) 2400
F25 Composition function 5 (N = 5) 2500
F26 Composition function 6 (N = 5) 2600
F27 Composition function 7 (N = 6) 2700
F28 Composition function 8 (N = 6) 2800
F29 Composition function 9 (N = 3) 2900
F30 Composition function 10 (N = 3) 3000

Table 3: Parameter values for heuristic algorithms

Algorithms Parameters
SL-COA cmax = 2.1; cmin = 0.8

COA /
WOA a1 = [2, 0] ; a2 = [−2,−1] ; b = 1
OOA /
RIME W = 5;
MVO MEPMax = 1; WEPMin = 0.2
TSA c1 = c2 = c3 = [0, 1] ; Pmin = 1; Pmax = 4
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The output results are analyzed to compute their mean value and standard deviation. Subsequently,
each algorithm is assigned a ranking based on the magnitude of their errors. A comprehensive breakdown
of the results can be found in the “CEC2017 Results” appendix. The sum of rankings across all functions
and the mean value for each algorithm are presented in Table 4. Additionally, the convergence curve of each
algorithm is shown in Fig. 7 and the box diagram illustrates the distribution of optimization results shown
in Fig. 8.

Table 4: Rank results based on the errors of the heuristic algorithm under CEC2017

SL-COA COA WOA OOA RIME MVO TSA FORM
Sum 46 81 140 171 75 86 179 156

Mean 1.7037 3.0000 5.1852 6.3333 2.7778 3.1852 6.6296 5.7939
Total rank 1 3 5 7 2 4 8 6

Figure 7: (Continued)
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Figure 7: (Continued)
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Figure 7: (Continued)
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Figure 7: Convergence curve of CEC2017
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Figure 8: (Continued)
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Figure 8: (Continued)



Comput Model Eng Sci. 2025;143(1) 789

Figure 8: (Continued)
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Figure 8: (Continued)
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Figure 8: Box diagram of CEC2017

It could be found that SL-COA performs better on most of the functions. When comparing it to the
original version (COA), it becomes evident that SL-COA offers distinct advantages for most functions,
except for F10, F11, and F17. When compared to other heuristic algorithms, this algorithm demonstrates a
notable superiority in terms of both average values and standard deviation. The convergence curve graphs
illustrate the convergence performance of different algorithms. It can be observed that SL-COA exhibits faster
convergence and effectively avoids local optima during the search process. The box graph visually displays the
output distribution of the proposed algorithm, effectively illustrating both the average and standard deviation
of the results.

Upon closer examination, while it’s true that RIME occasionally exhibits better performance with
specific test functions, the cumulative rank sum of RIME remains significantly higher than that of SL-
COA. This may be attributed to its frequent failure to address certain hybrid and composite functions.
RIME is believed to have a better optimization performance than COA, however, it cannot match the
proposed SL-COA overall. Additionally, it is worth noting that when tackling composition functions,
SL-COA demonstrates a clear advantage. While the error in certain problems (e.g., F30) is still large, it
consistently delivers superior results when compared to other algorithms for the majority of cases.

4.2.2 Engineering Examples
In this section, four examples with engineering backgrounds are tested to evaluate the performance

of the SL-COA. These comparisons are also conducted between SL-COA and the six heuristic algorithms
mentioned above.

Example 1. Welded beam design problem
The objective of this problem is to find the optimal dimensions of a welded beam that minimizes the

cost while satisfying certain constraints on its performance and safety (shown in Fig. 9) [57]. The design of
the welded beam involves four variables: height (h), length (l), thickness (t), and width (b). The objective
function to minimize is the cost of the beam, which is given by:
Consider: x⃗ = [x1x2x3x4] = [hl tb]
Minimize: f (x⃗) = 1.10471x2

1 x2 + 0.04811x3x4 (14.0 + x2)
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Subject to: g1 (x⃗) = τ (x⃗) − τmax ≤ 0,

g2 (x⃗) = σ (x⃗) − σmax ≤ 0,
g3 (x⃗) = δ (x⃗) − δmax ≤ 0,

g4 (x⃗) = x1 − x4 ≤ 0, (29)

g5 (x⃗) = P − Pc (x⃗) ≤ 0,
g6 (x⃗) = 0.125 − x1 ≤ 0,
g7 (x⃗) = 1.10471x2

1 + 0.04811x3x4 (14.0 + x2) − 5.0 ≤ 0

Parameter range: 0.1 ≤ x1 , x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

where τ (x⃗) =
√
(τ′)2 + 2τ′τ′′x2

2R + (τ′)2,

τ′ = p√
2x1x2

, τ′′ = MR
J

,

M = P (L + x2

2
) ,

R =
√

x2
2

4
+ (x1 + x3

2
)

2
,

J = 2(
√

2x1x2 (
x2

2
12
+ (x1 + x3

2
)

2
))

σ (x⃗) = 6PL
x4x2

3
, δ (x⃗) = 4PL3

Ex3
3 x4

Pc (x) = 4.013E

√
x2

3 x2
4

6
P = 6000lb, L = 14in, δmax = 0.25in,
E = 30 × 106 psi , G = 12 × 106 psi ,
τmax = 13600psi , σmax = 30000psi .

t h

l
b

Figure 9: Welded bean design

The comparison results are listed in Table 5.
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Table 5: Results of welded beam design problem

SL-COA COA WOA OOA RIME MVO TSA
h 0.1843 0.1950 0.1367 0.5444 0.3050 0.2043 0.2021
l 3.7468 3.4130 5.8852 2.4602 2.4823 3.2614 3.4554
t 9.0428 9.1607 8.9525 5.5247 7.3807 9.0443 8.9331
b 0.2057 0.2051 0.2096 0.5504 0.3084 0.2057 0.2109
f 1.7088 1.7176 1.9167 3.2136 2.0601 1.7954 1.7379

Example 2. Tension/compression spring design problem
The tension/compression spring design problem is another classical optimization problem in engi-

neering (shown in Fig. 10) [58]. The objective of this problem is to determine the optimal dimensions and
parameters of a tension or compression spring to meet certain performance requirements while minimizing
manufacturing or material costs. The comparison of different algorithms is shown in Table 6.
Consider: x⃗ = [x1x2x3] = [dDN]
Minimize: f (x⃗) = (x3 + 2) x2x2

1

Subject to: g1 (x⃗) = 1 − x3
2 x3

71785x4
1
≤ 0,

g2 (x⃗) =
4x2

2 − x1x2

12566(x2x3
1 − x4)

+ 1
5108x2

1
≤ 0, (30)

g3 (x⃗) = 1 − 140.45x1

x2
2 x3

≤ 0

g4 (x⃗) =
x1 + x2

1.5
− 1 ≤ 0

Parameter range: 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

D

d

N

Figure 10: Tension/compression spring design

Table 6: Results of tension/compression spring design problem

SL-COA COA WOA OOA RIME MVO TSA
d 0.0500 0.0500 0.0567 0.0613 0.0690 0.0500 0.0542
D 0.3163 0.3158 0.4900 0.6364 0.9336 0.3159 0.4186
N 14.1837 14.2419 6.3108 3.9444 2.0000 14.2345 8.4397
f 0.0127 0.0127 0.0131 0.0142 0.0178 0.0128 0.0128
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Example 3. Three-bar truss design problem
This problem involves the optimization of the dimensions and geometry of a truss structure composed

of three bars (or members) and typically used to support loads or distribute forces within a structure (shown
in Fig. 11) [59]. The objective is to find the optimal design that minimizes certain criteria, such as weight or
cost while ensuring that the truss can support the applied loads and maintain structural stability. The results
are shown in Table 7.
Consider: x⃗ = [x1x2] = [S1 S2]
Minimize: f (x⃗) = (2

√
2x1 + x2) l

Subject to: g1 (x⃗) =
√

2x1+x2√
2x2

2+2x1 x2
P − σ ≤ 0,

g2 (x⃗) =
x2√

2x2
1 + 2x1x2

P − σ ≤ 0, (31)

g3 (x⃗) =
1√

2x2 + x1
P − σ ≤ 0,

Parameter range: 0 ≤ xi ≤ 1, i = 1, 2
where l = 100 cm; P = 2 kN/(cm2); σ = 2 kN/(cm2)

D

D D

x1

x2

x3

Figure 11: Three-bar truss design

Table 7: Results of three-bar truss design problem

SL-COA COA WOA OOA RIME MVO TSA
S1 0.7876 0.7880 0.7978 0.7299 0.7377 0.7894 0.7881
S2 0.4114 0.4102 0.3830 0.6064 0.5757 0.4063 0.4099
f 263.8768 263.8962 263.9554 267.0859 266.2181 263.8963 263.9069

Example 4. Pressure vessel design problem
The pressure vessel design problem (show in Fig. 12) is an important engineering optimization problem

related to the design and sizing of pressure vessels [60]. Pressure vessels are containers designed to hold and
store fluids or gases at high pressure. They are used in various industries, including petrochemical, aerospace,
and manufacturing, and must be designed to safely contain the pressurized contents while minimizing
material and manufacturing costs. The results are shown in Table 8.
Consider: x⃗ = [x1x2x3x4] = [Ts Th RL]
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Minimize: f (x⃗) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1 x4 + 19.84x2
1 x3

Subject to: g1 (x⃗) = −x1 + 0.0193x3 ≤ 0,

g2 (x⃗) = −x3 + 0.00954x3 ≤ 0, (32)

g3 (x⃗) = −πx2
3 x4 −

4
3

πx3
3 + 1296000 ≤ 0,

g4 (x⃗) = x4 − 240 ≤ 0,

Parameter range: 0 ≤ x1 , x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

Th
L

Ts

R R

Figure 12: Pressure vessel design problem

Table 8: Results of pressure vessel design problem

SL-COA COA WOA OOA RIME MVO TSA
Ts 1.2402 1.2655 1.3753 4.7514 1.2593 1.2411 1.3132
Th 0.6130 0.6223 0.6365 7.4678 0.6225 0.6135 0.6626
R 64.2557 65.2254 65.2252 54.6361 65.2262 64.2681 64.9965
L 14.2442 10.0000 10.0000 65.3512 10.0000 14.7786 11.4516
f 7236.8021 7344.0831 7880.9304 79339.1339 7322.6112 7275.4761 7871.8263

It is shown that the utilization of SL-COA produces the best design for all four problems. The
convergence curve is shown in Fig. 13. It is evident that SL-COA exhibits swift convergence and possesses the
capability to thoroughly explore the solution space, thereby avoiding premature convergence to local optima.
The number of iterations needed may vary depending on the complexity of the problems, but SL-COA
consistently maintains a leading position among other algorithms. It’s worth mentioning that RIME, known
for its strong performance in mathematical scenarios, no longer exhibits its advantages in this engineering
context. This could be attributed to its suboptimal optimization for solving certain polynomial functions,
which mirrors its performance in mathematical problems (F7, F25, F27). These findings underscore the
competitive edge held by the proposed SL-COA in addressing real world engineering challenges.
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Figure 13: Convergence curve of 4 engineering problems

4.3 Examples of Reliability Analysis
In this section, the proposed SL-COA-based FORM framework is evaluated by mathematical examples

and engineering examples. The proposed SL-COA FORM framework is compared with the FORM based
on Sequential Quadratic Programming (SQP) or other optimization algorithms. In addition, the reliability
analysis results of MCS are considered to be accurate reliability analysis results, which can be used to refer
to other reliability analysis results.

4.3.1 Mathematical Examples
Example 1. Explicit performance function
Example 1 showcases reliability analysis problems with different explicit performance functions.

Simulating the failure domain of the structural performance functions demonstrates how to effectively
utilize the SL-COA algorithm to find the MPP, thereby calculating the reliability index. A mathematically
straightforward problem involving three uncertain variables is tested in this section. We examine two distinct
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performance functions, denoted as g1 and g2, and their corresponding formulations.

g1 = y − x1x2 (33)
g2 = 3y − x2

1 x2 (34)

where x1 and x2 are normally distributed variables with mean values of μ1 = 3.0 and μ2 = 2.0. The standard
deviations σ1 = 0.3 and σ2 = 0.2, respectively. The interval variable y ∈ [8, 12]. It is obvious that y∗ = 8. The
reliability index β and the number of function calls are tested. The results are shown in Table 9.

Table 9: Results of the explicit performance function

Example 1.1 g1 = y − x1x2 Example 1.2 g2 = 3y − x2
1 x2

Call β Error call β Error
MCS 107 2.2197 – MCS 107 1.3902 –

FORM-SQP 14 0.0000 1.0000 FORM-SQP 17 0.0000 1.0000
FORM-SL-COA 50 2.1782 0.0187 FORM-SL-COA 30 1.3800 0.0074

FORM-PSO 170 2.2476 0.0126 FORM-PSO 190 1.3583 0.0229
FORM-COA 60 2.3840 0.0740 FORM-COA 40 1.5148 0.0896
FORM-WOA 60 1.6327 0.2644 FORM-WOA 100 0.8188 0.4110
FORM-OOA 110 2.3860 0.0749 FORM-OOA 140 0.4056 0.7082
FORM-RIMA 120 2.2434 0.0107 FORM-RIMA 80 1.6172 0.1633
FORM-MVO 150 0.0055 0.9975 FORM-MVO 40 1.5905 0.1441
FORM-TSA 200 0.7350 0.6689 FORM-TSA 20 1.0114 0.2725

The convergence curve is shown in Fig. 14.
This example illustrates the effective resolution of the problem using the proposed method, which deliv-

ers high accuracy and efficient function calls. In the heuristic algorithm-based FORM, the determination of
function calls occurs at the conclusion of their interactions.

In Example 1.1, the output shows the third fewest errors, yet it delivers exceptional performance in terms
of the number of function calls. In Example 1.2, it yields the most precise results while utilizing the second
lowest number of function calls.

Example 2. Nonlinear performance function
Example 2 presents reliability analysis problems with nonlinear performance functions. Nonlinear

performance functions are common in practical engineering structures, such as those resulting from material
nonlinearity or geometric nonlinearity in structural responses. Example 2 proves the effectiveness and
accuracy of the SL-COA algorithm in handling nonlinear reliability analysis problems, which is crucial for
evaluating the safety of complex engineering structures. A nonlinear problem is solved in this example. The
LSF is

g = sin(5
2

x1) −
(x1 + 4) (x2 − 1)

20
+ y (35)

where x1 and x2 are normally distributed variables with u1 = 1.5, σ1 = 1 and μ2 = 2.5, σ2 = 1. The interval
variable y ∈ [2, 2.5]. The results are shown in Table 10.
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Figure 14: Convergence curve of Example 1

Table 10: Results of the nonlinear performance function

Call β Error
MCS 107 1.8748 –

FORM-SQP 14 0.0787 0.9580
FORM-SL-COA 20 1.8925 0.0148

FORM-PSO 120 1.8498 0.0133
FORM-COA 40 1.6074 0.1426
FORM-WOA 30 1.7821 0.0494
FORM-OOA 80 1.9486 0.0394

(Continued)
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Table 10 (continued)

Call β Error
FORM-RIMA 150 2.0602 0.0989
FORM-MVO 50 1.4629 0.2197
FORM-TSA 60 1.9470 0.0385

Example 3. Performance function with multiple independent interval variable
Example 3 showcases performance functions with multiple independent interval variables. In practical

engineering, certain parameters (such as geometric dimensions, material properties, etc.) may have uncer-
tainties, which are often represented in the form of interval variables. For the third example, an LSF with two
interval variables is used to test the proposed framework. The performance function is

g = −10y1 + y2x2 − ln(x1) (36)

where x1 and x2 are normally distributed variables with μ1 = 5, σ1 = 3 and μ2 = 1.5, σ2 = 0.9, y1 ∈ [0, 1.5] , y2 ∈
[1, 1.5]. The results are shown in Table 11.

Table 11: Results of function with multiple independent interval variables

Call β Error
MCS 107 1.4889 –

FORM-SQP 9 0.5340 0.6414
FORM-SL-COA 40 1.4775 0.0077

FORM-PSO 110 1.1352 0.2375
FORM-COA 80 1.2984 0.1279
FORM-WOA 50 1.6700 0.1216
FORM-OOA 140 1.2549 0.1572
FORM-RIMA 160 1.1281 0.2423
FORM-MVO 20 1.1555 0.2239
FORM-TSA 200 0.6594 0.5571

Example 4. Performance function with various probability distribution
Example 4 presents performance functions with different probability distributions (such as Weibull,

Gumbel, Exponential, and Normal distributions). In practical engineering, the probability of distributions
of different parameters may vary, adding complexity to the reliability analysis. A performance function with
both normal and non-normal random variables is considered as below.

g = x1x2 y − x3x2
4/8 (37)

The means, standard derivations, and non-normal random variables are considered as shown
in Table 12.

The results are shown in Table 13.
The convergence curve of Example 2, Example 3, and Example 4 is shown in Fig. 15.
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Table 12: Random variable for Example 4

Variable Mean Standard deviation Distribution
x1 4 0.1 Weibull
x2 0.875 0.1 Gumbel
x3 100 100 Exponential
x4 150 10 Normal

Table 13: Results of function with various probability distributions

Call β Error
MCS 107 4.4895 –

FORM-SQP 33 0.0000 1.0000
FORM-SL-COA 40 4.3342 0.0346

FORM-PSO 150 4.9943 0.1124
FORM-COA 30 4.1644 0.0724
FORM-WOA 80 4.2017 0.0641
FORM-OOA 120 4.0550 0.0968
FORM-RIMA 170 4.0494 0.0980
FORM-MVO 60 4.0226 0.1040
FORM-TSA 80 5.3949 0.2017

Figure 15: Convergence curve of Examples 2, 3, and 4

From the calculation results of the above mathematical examples, it can be seen that SL-COA performs
well. Firstly, when the gradient-based FORM cannot obtain acceptable solution results, the FORM based
on a heuristic algorithm can obtain effective analysis results. Secondly, compared with other optimization
algorithms, the reliability index obtained by SL-COA is closer to the reference result calculated by MCS.
This reflects the computational performance of SL-COA, that is, the algorithm can find more acceptable
MPP points.

Since the SL-COA-based FORM framework meets the end iteration condition defined in this paper with
very few function calls. The reliability index value with more function calls is worth exploring. Therefore,
extra testing is conducted by setting a fixed function call number. The results are shown in Table 14.
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Table 14: Results with different function calls

Example 1.1: explicit performance function
MCS FORM-SL-COA

Call 107 40 80 100 103 104 105 106 107

Beta 2.2197 2.1682 2.1782 2.2046 2.2046 2.2046 2.2046 2.2046 2.2046
Error – 0.0232 0.0187 0.0068 0.0068 0.0068 0.0068 0.0068 0.0068

Example 1.2: explicit performance function

MCS FORM-SL-COA

Call 107 40 80 100 103 104 105 106 107

Beta 1.3902 1.3800 1.3800 1.4001 1.4001 1.3991 1.3991 1.3991 1.3991
Error – 0.0074 0.0074 0.0071 0.0071 0.0064 0.0064 0.0064 0.0064

Example 2: nonlinear performance function

MCS FORM-SL-COA

Call 107 40 80 100 103 104 105 106 107

Beta 1.8748 1.8925 1.8926 1.9001 1.8988 1.8889 1.8889 1.8889 1.8862
Error – 0.0095 0.0095 0.0135 0.0128 0.0075 0.0075 0.0075 0.0061

Example 3: performance function with multiple independent interval variable

MCS FORM-SL-COA

Call 107 40 80 100 103 104 105 106 107

Beta 1.4889 1.4775 1.4822 1.4842 1.4842 1.4844 1.4844 1.4844 1.4844
Error – 0.0077 0.0045 0.0032 0.0032 0.0030 0.0030 0.0030 0.0030

Example 4: performance function with various probability distribution

MCS FORM-SL-COA

Call 107 40 80 100 103 104 105 106 107

Beta 4.4895 4.3342 4.3342 4.3979 4.4279 4.4289 4.4299 4.4299 4.4299
Error – 0.0346 0.0346 0.0204 0.0137 0.0135 0.0133 0.0133 0.0133

The range of function call values employed in this testing spans from 40 to 107. This range encompasses
the minimum requirement necessary to meet the convergence conditions and extends to the maximum value
required by the MCS comparison algorithm. The results demonstrate that the suggested framework can attain
greater accuracy with an increased number of function calls, thereby suggesting that the specific interaction
values can be adjusted to meet the accuracy requirements in practical engineering applications.

4.3.2 Engineering Examples
In this section, two structural reliability analysis cases are conducted to evaluate the performance of the

proposed framework.
Example 1: Composite cylinder analysis problem
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In this example, a composite cylinder case [61] is analyzed. The composite cylinder consists of an inner
cylinder and an outer cylinder (shown in Fig. 16). The inner cylinder has an inner diameter of a, and an outer
diameter of c, while the outer cylinder has an inner diameter of c and an outer diameter of b. The variable
c is an interval variable. The cylinder is subjected to various loading conditions, and the reliability analysis
aims to assess the cylinder’s ability to withstand these loads without failing. The results of composite cylinder
design problem are shown in Table 15.
Consider: x⃗ = [x1x2x3] = [abc]
Subject to: g1 (x⃗) = S − S1 ≤ 0,
Parameter: x1 ∼ N (36.07, 0.36072) ,

x2 ∼ N(44.45, 0.44452),

30.48 ≤ x3 ≤ 40.96, (38)

where S = a0 +
3
∑
i=1

bi xi +
3
∑
i=1

ci x2
i +

2
∑
j=1

3
∑

j=i+1
di jxi x j + e123x1x2x3

a0 = 1306319, b1 = −34404, b2 = −28761.7, b3 = −24292.4,
c1 = −5, c2 = −10.9, c3 = −9.4,
d12 = 761.1, d13 = 645.8, d23 = 550.9,
e123 = −14.1

Figure 16: Composite cylinder analysis

Table 15: Results of composite cylinder design problem

Call β Error
MCS 107 2.2272 –

FORM-SQP 22 1.8637 0.1632
FORM-SL-COA 60 2.2409 0.0062

FORM-PSO 90 3.0996 0.3917
FORM-COA 120 3.7800 0.6972
FORM-WOA 110 1.9855 0.1085
FORM-OOA 90 3.0165 0.3544
FORM-RIMA 150 3.1092 0.3960

(Continued)
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Table 15 (continued)

Call β Error
FORM-MVO 80 3.2920 0.4781
FORM-TSA 70 5.0900 1.2854

Example 2: Support bracket analysis problem
In this case, a support bracket within an aircraft braking structure is analyzed (the green triangular prism

shown in Fig. 17). The material used for this structure is structural steel, and the presence of the triangular ribs
in the middle enhances the structural strength. The bracket is subjected to forces generated during braking,
and the reliability analysis aims to assess its ability to withstand these forces without failing. Using finite
element simulation analysis, the results are obtained and fitted in MATLAB to obtain the LSF. The analysis
based on one of the functions is performed below. The results of support bracket are shown in Table 16.
Consider: x⃗ = [x1x2x3] = [LHD]
Subject to: g1 (x⃗) = 3.4675 − 0.04308x1 − 0.04707x2 − 0.02351x3 ≤ 0,
Parameter:

x1 ∼ N (30, 12) , (39)

x2 ∼ N(30, 12),
x3 ∼ N(2.5, 0.12)

Figure 17: Support bracket analysis

Table 16: Results of support bracket design problem

Call β Error
MCS 107 0.9152 –

FORM-SQP 15 0.9043 0.0119
FORM-SL-COA 70 0.9035 0.0128

FORM-PSO 70 2.8210 2.0824
FORM-COA 120 2.0524 1.2425
FORM-WOA 80 1.6221 0.7723
FORM-OOA 120 1.1727 0.2813

(Continued)
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Table 16 (continued)

Call β Error
FORM-RIMA 110 1.0158 0.1099
FORM-MVO 120 1.2116 0.3239
FORM-TSA 120 2.2269 1.4333

The proposed method successfully solves the engineering problems by delivering acceptable results with
minimal function calls in each example. The error in β determined by the proposed methods, when compared
to the results obtained through MCS, is approximately 1%. The convergence cure is shown in Fig. 18. The SQP-
based FORM exhibits superior performance in these two engineering examples. Although it fails to solve the
problems in Section 4.2.1, the results in this section might serve as a reminder that the SQP-based analysis
framework is not entirely impractical for addressing hybrid reliability analysis problems. Overall, this result
proves the capability of the SL-COA base FORM framework to tackle real engineering problems successfully.

Figure 18: Convergence curve of two engineering problems
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5 Conclusions
As a typical analytical strategy for reliability analysis, FORM faces many challenges. In the face of

solving complex engineering problems with MCS or improved MCS strategies, FORM may be able to use
its low computational difficulty to provide an acceptable analysis result. The main purpose of FORM is to
find the exact location of the MPP point. However, there are the following problems: 1) In the past, FORM
based on gradients may not be able to obtain convergent results for some reliability analysis problems; 2)
Although the FORM using the heuristic algorithm can often obtain convergent reliability analysis results, it
may not be able to obtain the acceptable MPP position because the heuristic algorithm is trapped in local
optimization. To this end, this study proposes an improved COA optimization algorithm (SL-COA), which
is committed to improving the accuracy and robustness of the optimization results. By introducing the SL-
COA algorithm into FORM, the effectiveness and practicability of FORM in complex structural reliability
analysis are improved.

The main work of this study includes: A new optimization algorithm SL-COA is obtained by improving
the COA algorithm through a social learning strategy, which improves its efficiency and robustness in
solving medium-dimensional complex problems. The improved effect of the SL-COA algorithm is tested
by CEC2005 and CEC2017 test function sets and four engineering examples, which reflect the effectiveness
and competitiveness of the algorithm. The performance of FORM based on SL-COA is tested in four
mathematical examples and two engineering examples, which shows the effectiveness and practicability of
SL-COA in the field of reliability analysis.

New analytical strategies that require lower computational costs and are suitable for multiple reliability
problems are also a research direction in future research. In the development of automotive components and
systems, reliability and safety are key concerns. SL-COA can be applied to optimize the design of automotive
parts, such as engines, transmissions, and body structures, to improve their reliability and durability.
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