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ABSTRACT: This study examines various issues arising in three-phase unbalanced power distribution networks
(PDNs) using a comprehensive optimization approach. With the integration of renewable energy sources, increasing
energy demands, and the adoption of smart grid technologies, power systems are undergoing a rapid transformation,
making the need for efficient, reliable, and sustainable distribution networks increasingly critical. In this paper, the
reconfiguration problem in a 37-bus unbalanced PDN test system is solved using five different popular metaheuristic
algorithms. Among these advanced search algorithms, the Bonobo Optimizer (BO) has demonstrated superior perfor-
mance in handling the complexities of unbalanced power distribution network optimization. The study is structured
around four distinct scenarios: (I) improving mean voltage profile and minimizing active power loss, (II) minimizing
Voltage Unbalance Index (VUI) and Current Unbalance Index (CUI), (III) optimizing key reliability indices using
both Line Oriented Reliability Index (LORI) and Customer Oriented Reliability Index (CORI) approaches, and (IV)
employing multi-objective optimization using the Pareto front technique to simultaneously minimize active power
loss, average CUI, and System Average Interruption Duration Index (SAIDI). The study aims to contribute to the
development of more efficient, reliable, and sustainable energy systems by addressing voltage profiles, power losses,
reduction of imbalance, and the enhancement of reliability together.

KEYWORDS: Unbalanced power distribution network; line and customer reliability index; unbalance voltage and
current index; meta-heuristic optimization; active power loss

1 Introduction
Power distribution networks (PDN), which have a complex structure, require careful planning and

management to operate reliably and efficiently. The increasing electricity demand, driven by the growth
of new technologies such as electric vehicles, is causing PDNs to face various challenges [1]. One of the
most important challenges in ensuring reliable and efficient operation is minimizing power losses while also
improving the network’s voltage profile [2–4]. When electricity is transmitted through a network, a portion
of the active power is lost due to the resistance in the wires and other components. Through reconfiguration,
the positions of sectional (SS) and tie switches (TS) can be optimally changed to minimize the distance
that the electric current travels along the transmission line, thereby reducing the amount of active power
lost [2,3]. This helps to increase the efficiency of the PDN while reducing costs for utilities and customers.
Additionally, reconfiguration balances the load among different parts of the network, improving the quality
of power distribution; this helps reduce voltage fluctuations and other issues that could affect the reliability
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of the power supply, and it can also help improve the resilience of the network [2]. Establishing multiple
paths in the transmission line to facilitate the flow of electric current can help reduce the impact of potential
faults or other issues in the network, minimizing the risk of power outages and other disruptions that could
have serious consequences for customers. In summary, reconfiguration in PDN is of critical importance for
reducing power losses, improving power quality and reliability, and increasing the resilience of the network.

The reconfiguration problem in power distribution networks (PDNs) is approached through four main
methods in the literature: classical methods, heuristic methods, the metaheuristic methods, and modern
methods [5]. Classical methods rely on linear and non-linear mathematical models to solve the problem.
Heuristic methods offer faster and more practical solutions, utilizing approaches based on the fundamental
characteristics of the problem. Metaheuristic methods, inspired by nature, efficiently explore large solution
spaces to find optimized results, with techniques such as genetic algorithms and particle swarm optimization.
Modern methods, on the other hand, leverage advanced technologies like artificial intelligence, machine
learning, and IoT to provide more dynamic and innovative solutions. Each of these four methods offers
unique advantages and plays a vital role in addressing reconfiguration challenges. One of the most studied
methods in recent times is metaheuristic approach [5]. These methods, inspired by nature, effectively
explore large solution spaces and demonstrate superior performance in achieving critical goals such as
reducing energy losses, improving voltage profiles, and balancing loads. Metaheuristic methods provide
robust and optimized solutions to complex problems, particularly those involving unbalanced or highly
complex solution spaces, due to their ability to conduct comprehensive and efficient searches and their
effectiveness in handling large and dynamic solution spaces. On the other hand, modern methods, leveraging
artificial intelligence, machine learning, and IoT-based approaches, hold significant potential for making
reconfiguration processes more dynamic and real-time. However, metaheuristic methods currently stand out
as a more reliable and effective tool for obtaining optimized solutions to reconfiguration problems. Table 1
shows the summary of the literature review of reconfiguration methods in PDNs.

In the literature, in many studies addressing the reconfiguration problem in PDN, distribution networks
are often modeled as balanced power systems [3,4]. In this approach, unbalanced systems are often simplified
as positive sequence systems or represented as three independent single-phase networks [6]. The balanced
modeling method is widely used to solve the reconfiguration problem because of its simple structure and
simplifies the solution process. However, real distribution networks are inherently unbalanced and therefore
the analysis and optimization of unbalanced systems becomes a more complex and challenging process.
Due to the unique characteristics of unbalanced systems, such as increased losses in power distribution
and adverse effects on power quality, more sophisticated algorithms and methods are required for effective
reconfiguration. Consequently, in solving the reconfiguration problem in PDN, researchers typically employ
metaheuristic or deterministic methods, regardless of whether the system model is considered balanced
or unbalanced. Deterministic methods for solving the reconfiguration problem usually apply complex
linear or nonlinear programming techniques. However, such approaches are more favored for solving non-
convex or nonlinear problems and may fail to reach a global optimum and run the risk of getting stuck in
local optima [7–9]. In this context, heuristics and metaheuristics have been used as effective alternatives
to traditional techniques. The different techniques and methods used in the literature for solving the
reconfiguration problem in PDN have been extensively presented in references [10] and [11]. Recently, a
comprehensive reconfiguration study conducted by considering the PDN as balanced has been presented
in [2]. In this study, many popular metaheuristic algorithms from the literature are applied to four different
test systems, and the best-performing algorithm is selected with the help of various statistical methods.
Additionally, a new reliability index calculation method is presented, contributing to the literature. In
addition to many previous studies conducted on reconfiguration considering the PDN as balanced, some
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articles published in recent years are presented as follows. In [12], a hybrid metaheuristic algorithm is applied
to reduce power loss. One popular algorithm is used for distributed generation (DG) allocation, while the
other is applied to the reconfiguration problem, aiming to improve performance in the 33-bus and 69-bus test
systems. In [13], an iterative bi-level scheduling method is applied with multi-step reconfiguration on 33-bus
and 118-bus test systems. With this method, power loss is decreased, and the voltage profile is improved.

Since real distribution lines are unbalanced three-phase systems, they have a complex structure and
are difficult to analyze. Therefore, compared to studies considering PDN as balanced, there are significantly
fewer studies in the literature focusing on the reconfiguration of unbalanced test systems. In unbalanced
distribution networks, factors such as phase angle imbalances, uneven load distribution, asymmetric line
impedances, and system faults affect current and voltage unbalanced indexes, thereby reducing power quality.
Increases in current and voltage indexes lead to issues such as overheating and equipment failures, thereby
reducing system efficiency. Therefore, it is essential to carefully analyze the current unbalance index (CUI)
and voltage unbalance index (VUI) values [3,4]. Furthermore, photovoltaic (PV) systems, a renewable energy
source increasingly integrated into power distribution networks, are among the factors that affect power
quality [14]. Fluctuations in the output of PV systems can lead to issues such as harmonics generation, reverse
power flow, and voltage imbalance. These effects also can adversely impact power quality [14].

Table 1: Literature review of power distribution network reconfiguration methods and their features

Reference Test
system
(PDN)

Objective
technique

Voltage
unbal-
anced
index
(VUI)

Current
unbal-
anced
index
(CUI)

Reliability
index

Reconfig. D.G
allocation

Search
algorithm

Load flow
solver

Objective
function

[15] Balanced Single —- —- —- ✓ —- IHSA N.A Active
Power Loss

[16] Balanced Multi —- —- ✓ ✓ —- EMA &
WGA

B/F LF Reliability
Indices
Active

Power Loss
[17] Balanced Single —- —- —- ✓ —- BPSO N-R LF

(Mat-
Power)

Active
Power Loss

[18] Balanced Single —- —- —- ✓ ✓ CSGA N-R LF
(Mat-

Power)

Voltage
Profile
Active

Power Loss
[19] Balanced Multi —- —- —- ✓ —- CSFSA N-R LF

(Mat-
Power)

Voltage
Deviation

Active
Power Loss

[20] Balanced Multi —- —- ✓ ✓ ✓ IPSO &
IGWO

N-R LF Operation
cost

Reliability
Indices
Active

Power Loss
[21] Balanced Multi —- —- ✓ ✓ ✓ MFO &

EO
N-R LF
(Mat-

Power)

Reliability
Indices VSI

Active
Power Loss

[2] Balanced Multi —- —- ✓ ✓ —- EO N-R LF Reliability
Indices
Active

Power Loss

(Continued)
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Table 1 (continued)

Reference Test
system
(PDN)

Objective
technique

Voltage
unbal-
anced
index
(VUI)

Current
unbal-
anced
index
(CUI)

Reliability
index

Reconfig. D.G
allocation

Search
algorithm

Load flow
solver

Objective
function

[22] Balanced Single —- —- —- —- ✓ Firefly
Algorithm

B/F LF Active
Power Loss

[23] Unbalanced Single —- —- ✓ ✓ —- Non-
Convex

program.

N-R LF Reliability
Indices
Active

Power Loss
[24] Unbalanced Multi ✓ — —- ✓ ✓ MILP LLF Switching

Costs
Active

Power Loss
[25] Unbalanced Multi —- —- —- ✓ —- Fuzzy-

Firefly
Algorithm

A new
method

Voltage
Deviation

Active
Power Loss

Load
Balancing

Index
[26] Unbalanced Single ✓ ✓ —- — ✓ SILS B/F LF VUI, CUI
[27] Unbalanced Single —- —- —- ✓ —- RL N-R LF

(Open-
DSS)

Active
Power Loss

[3] Unbalanced Single ✓ ✓ —- ✓ —- SMA B/F LF VUI, CUI,
Active

Power Loss
[4] Unbalanced Single ✓ ✓ —- —- ✓ EO B/F LF Active

Power Loss
Proposed Unbalanced Multi ✓ ✓ ✓ ✓ —- BO B/F LF VUI, CUI,

Reliability
Indices
Active

Power Loss

Reliability in PDNs is another critical factor that directly affects utility performance and customer
satisfaction. In studies conducted on unbalanced PDNs, it has been observed that there are limited analyses
on reliability indices. In this study, however, reliability analysis is comprehensively addressed. The study
presents detailed analysis results for reliability indices such as Average Energy Not Supplied (AENS),
Customer Average Interruption Duration Index (CAIDI), Average Service Availability Index (ASAI), System
Average Interruption Frequency Index (SAIFI), and System Average Interruption Duration Index (SAIDI).
Some studies on unbalanced PDNs in the literature are as follows. Reference [3] uses the SMA to address the
reconfiguration problem in a 123-bus unbalanced power distribution network, aiming to minimize power
loss, CUI, and VUI. The method is validated through simulations in MATLAB and OpenDSS, and the results
show the SMA’s effectiveness in minimizing losses, reducing unbalanced indices, and improving voltage
profiles, compared to other algorithms like EO and DE.

Reference [24] presents a dynamic reconfiguration approach for a three-phase unbalanced distribution
network, optimizing the network topology to adapt to time-varying load demand and distributed generation
output while minimizing power loss costs. Reference [25] presents a method to optimize unbalanced
distribution networks by maintaining the voltage profile through multi-objective reconfiguration using
the Firefly algorithm in a fuzzy domain, incorporating a load flow method, and comparing the results
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with other algorithms such as GA, ABC, PSO, and GA-PSO. Reference [27] formulates the distribution
network reconfiguration problem as a Markov Decision Process, using reinforcement learning (RL) to learn
the optimal control policy, with the power distribution network modelled as a graph, and the approach
validated on modified IEEE 13 and 34 bus test networks. Reference [28] proposes a network reconfiguration
methodology for three-phase unbalanced distribution systems under both normal operating and post-fault
conditions, focusing on real power loss minimization and faulty line isolation while ensuring maximum
service restoration and power demand fulfilment, validated on IEEE 34-bus and IEEE 123-bus systems. Ref-
erence [29] presents a modified backward/forward sweep-based power flow method (BF-PF) for three-phase
unbalanced radial distribution networks, capable of adapting the system topology during reconfiguration
and avoiding errors caused by continuous topology changes, validated through tests on the IEEE 13-node
and 123-node test feeders. Reference [30] proposes a static reconfiguration (SR) model for unbalanced
systems with variable demand, comparing it with dynamic reconfiguration (DR) by employing a selective
bat algorithm to solve the distribution network reconfiguration (DNR) problem. Tests are conducted on
both balanced and unbalanced systems, and the results of SR using SBAT are compared with selective
PSO and selective HS. Reference [31] introduces a distributionally robust chance-constrained dynamic
reconfiguration approach for a three-phase unbalanced distribution network, optimizing switching costs
and expected power supply costs while ensuring chance constraints hold under the worst-case distribution.
The proposed model is formulated as a mixed-integer linear programming problem and tested on IEEE 34-
bus and 123-bus systems to demonstrate its effectiveness and efficiency. Reference [32] proposes a teaching
learning-based optimization approach for the simultaneous reduction of real power loss and net reactive
power flow, enhancement of VSI, and minimization of aggregated voltage deviation index in a three-phase
unbalanced distribution system with DGs and shunt capacitor units. The method is applied to an IEEE 33-
bus and 123-bus system, demonstrating significant improvements in voltage stability and reductions in active
power losses.

The research gap can be listed as follows. Previous studies in the literature have predominantly applied
the reconfiguration technique to balanced PDNs to enhance system performance. However, real-world
power distribution networks are typically unbalanced in nature. In this study, the reconfiguration problem
is addressed on the IEEE 37-bus UPDN, which represents real-world conditions. Accordingly, solutions are
derived by considering the challenges of real-world conditions. In addition, in some studies on unbalanced
PDNs, analyses have been conducted without including components such as voltage regulators and capacitor
banks. While these analyses simplify the calculations, they do not fully capture the complexities of real
distribution networks. Although studies have been conducted on indices such as VUI and CUI that affect
power quality in UPDNs, no comprehensive research has been carried out in this area. In particular, this
study provides a comprehensive analysis and demonstrates the tradeoff between these indices and power
loss. A comprehensive study involving the calculation of all reliability indices in UPDNs, such as AENS,
CAIDI, ASAI, SAIFI, and SAIDI, in UPDNs has not been conducted in detail in the literature. In this study,
all reliability index calculations are performed on the 37-bus UPDN using LORI and CORI approaches.
Moreover, a multi-objective study has been performed for the first time (to the best of our knowledge) by
considering power loss, CUI and SAIDI. Thus, power loss, unbalanced index, and reliability indices are
addressed in a multi-objective manner, and the optimization process is carried out.

In this study, a comprehensive analysis is conducted on the 37-bus unbalanced PDN. The contributions
of this study are listed as follows. The study is examined under four different scenarios.

• Scenario I focuses on enhancing the efficiency of the PDN by reducing active power losses and improving
the voltage profile.
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• In Scenario II, methods aimed at reducing the adverse effects of voltage and current imbalances are
investigated, with a focus on minimizing VUI and CUI.

• In Scenario III, both the Line-Oriented Reliability Index (LORI) and the Customer-Oriented Reliability
Index (CORI) approaches are used to optimize key reliability indices such as SAIFI, SAIDI, CAIDI,
ASAI, and AENS. As a result, the reliability of the network is improved.

• In Scenario IV, active power loss, average CUI, and SAIDI values are addressed using a multi-objective
optimization approach to minimize them simultaneously with the Pareto front approach.

• In this study, popular meta-heuristic optimization algorithms from the literature, including Bonobo
Optimizer (BO) [33], Mountain Gazelle Optimizer (MGO) [34], Hippopotamus Optimization Algo-
rithm (HO) [35], Weighted Mean Optimizer (INFO) [36], and Runge-Kutta Optimizer (RUN) [37], are
employed to identify the best-performing algorithm for the reconfiguration of the 37-bus unbalanced
test system.

The remainder of this study is organized as follows: Section 2 provides the mathematical expressions
for the objective functions and constraints. Section 3 provides a detailed explanation of the mathematical
formulations and operating principles of the Bonobo Optimizer (BO) algorithm. Section 4 explains the
technical specifications of the IEEE 37-Bus Unbalanced Distribution Test System. Additionally, the current
and voltage values obtained using the 3-phase unbalanced load flow algorithm are compared with the data
provided by the IEEE 37-Bus Unbalanced Distribution Test System, and the error percentage is calculated.
Finally, the last section presents the conclusion.

2 Problem Formulation and Constraints
This section focuses on the mathematical modelling and the key constraints that define the optimization

problem for power distribution system. The goal is to provide a comprehensive framework for improving
the efficiency, reliability and overall performance of the distribution network. The optimization problem
considers various aspects critical to the operation and control of power distribution systems. This includes
maintaining the system’s radial structure, which is essential for simplifying design, fault isolation and
restoration processes. The objective functions employed in this study are carefully selected to address key
performance metrics. These include minimizing active power losses, improving voltage and current balance
indices, and enhancing reliability indices. By optimizing these objectives, significant improvements can
be achieved in terms of system efficiency, power quality, and service continuity. The subsequent sections
delve into the detailed mathematical formulations of the constraints and objective functions. This lays the
foundation for the optimization process and the comprehensive analysis of the obtained results in improving
the overall performance of the power distribution network.

2.1 Radiality
In power distribution systems, a radial structure refers to a network configuration where each customer

or load point is connected to the source (typically a substation) via a unique path without any closed
loops. This means that power flows from the source to the loads through a tree-like hierarchy, ensuring
simplicity in design and ease of fault isolation. The radial configuration is favored for its cost-effectiveness and
straightforward operation and control. To determine whether a given power distribution network satisfies
radiality, the rank method is employed. This approach leverages the properties of the network’s incidence
matrix derived from graph theory.

Mathematically, the radiality of a power distribution system can be represented and analyzed using
graph theory. The power distribution network is represented as a graph G = (V, E), where V denotes the set
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of nodes (buses), and E denotes the set of edges (branches). To verify the radiality condition, the graph G
must satisfy the following conditions [38]:

• The number of edges ∣E∣ must be equal to ∣V∣ − 1.
• G must be a tree, meaning it should be connected and acyclic (no closed loops).

Given these conditions, the mathematical expression for ensuring radiality can be stated as shown
in Eq. (1):

∣E∣ = ∣V∣ − 1 (1)

where ∣E∣ is the number of edges (distribution lines) in the network, and ∣V∣ is the number of vertices
(nodes/buses) in the network. To apply the rank method, the incidence matrix B of the graph is constructed.
For an undirected graph with m edges and n nodes, the incidence matrix B is a nxm matrix. Each column
of B corresponds to an edge and contains entries:

B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 for one end of the edge
−1 for the other end of the edge
0 for all other nodes

The incidence matrix B is constructed by placing 1 and −1 in the positions corresponding to the nodes
connected by each edge, and zeros elsewhere. The rank of the incidence matrix B is computed to assess the
network’s structure. Mathematically, a graph G is considered a tree, and thus radial, if it is both connected
and acyclic. This condition can be verified using the rank of the incidence matrix as follows:

rank(B) = n − 1 (2)

where n represents the number of nodes in the network. The rationale behind this condition is that a tree
with n nodes must have exactly n−1 edges, which implies that the rank of the incidence matrix, which
corresponds to the number of linearly independent rows or columns, should be n−1. This is due to the fact
that for a tree, the incidence matrix has one less rank than the number of nodes, indicating no cycles and
maintaining connectivity.

To maintain the radial structure during network reconfiguration, optimization algorithms often incor-
porate constraints that check for the conditions above. The objective is to reconfigure the network (by
opening or closing switches) in such a way that the system remains a tree, ensuring that each load point
remains connected to the source through a unique path, thereby maintaining radiality. The radial structure
simplifies the protection and operation of distribution systems. It allows for straightforward fault detection
and isolation, reducing the complexity of protective relays and control schemes. Moreover, it minimizes the
number of switching operations needed to restore service in the event of a fault, enhancing the reliability and
maintainability of the distribution system. By optimizing the configuration of a power distribution system
while maintaining its radial structure, significant improvements can be achieved in terms of power loss
reduction, voltage profile enhancement, and load balancing, ultimately leading to a more efficient and reliable
power distribution network.

2.2 Constraints
The following constraints, presented in Eqs. (3)–(8), are crucial for the optimization of a 3-phase

unbalanced power distribution system [4]. These constraints ensure efficient, safe, and reliable system
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operation while accounting for the complexities introduced by transformers, voltage regulators, and the
inherent unbalanced nature of the network:

• Voltage constraints

Vφ
min ≤ Vφ

i ≤ Vφ
max ∀i ∈ n, φ ∈ {A, B, C} (3)

where n denotes the set of all nodes (buses) in the power distribution network, and φ represents the
phases, which can be A, B, or C. This constraint ensures that for every node i in the set n, and for
every phase φ, the voltage Vφ

i at that node in that phase must lie within the specified Vφ
min and Vφ

max
voltage limits [2]. In this context, Vmin and Vmax are typically 0.95 and 1.05 p.u. for feeder point and Vmin
and Vmax are typically 0.90 and 1.10 p.u., remaining bus, respectively. This constraint maintains voltage
quality within acceptable limits.

• Current constraints

Iφ
ij ≤ Iφ

ij,max ∀(i, j) ∈ m, φ ∈ {A, B, C} (4)

where Iφ
ij current flow through the line between nodes i and j, Iφ

ij,max maximum allowable current for the
line between nodes i and j, and m is set of all edges (distribution lines).

• Power balance constraint
The power balance constraint ensures that the total power generated and supplied equals the total

power consumed and the losses in the system.

∑
i∈N

Pi = ∑
j∈N

(Pj + PL,j) (5)

where Pi power supplied by source i, Pj power consumed by load j, PL,j power losses in the distribution
line to load j.

• Transformer constraints
Transformers must operate within their voltage and current limits for each phase to ensure proper

operation and avoid damage.

Vφ
min ≤ Vφ

i,pri , Vφ
i,sec ≤ Vφ

max

Iφ
i, prim ≤ Iφ

i, prim,max
Iφ

i,sec ≤ Iφ
i,sec,max

(6)

where Vφ
i,pri , Vφ

i,sec , Iφ
i, prim and Iφ

i,sec are primary and secondary voltages and currents of transformer
at node i in phase φ, respectively. Iφ

i, prim,max and Iφ
i,sec,max are maximum allowable primary and sec-

ondary currents.
• Voltage regulator constraints

VRφ
min ≤ VRφ

i ≤ VRφ
max (7)

Voltage regulators are used to maintain voltage levels within desired limits, ensuring stable and reliable
voltage supply throughout the distribution network.

• Radiality constraint

rank (Bφ) = n − 1 ∀φ ∈ {A, B, C} (8)

where Bφ incidence matrix of the graph representing the network for phase φ, and n is number of nodes.
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2.3 Objective Functions
This study focuses on the optimization of power distribution systems through a multi-objective

approach, addressing three critical aspects of system performance. The objective functions considered in
this research encompass the minimization of active power losses, the improvement of voltage and current
unbalance indices, and the enhancement of reliability indices. These objectives are carefully selected to
provide a comprehensive assessment of the distribution system’s efficiency, quality, and reliability.

The first objective function aims to minimize active power losses, which directly impacts the system’s
overall efficiency and operational costs. The second objective function targets the improvement of voltage and
current unbalance indices, crucial for maintaining power quality and reducing stress on system components.
The third objective function focuses on enhancing reliability indices, including SAIFI, SAIDI, CAIDI, ASAI,
and, AENS, which are vital metrics for evaluating the system’s ability to provide continuous and quality
service to consumers.

The following subsections present a detailed formulation and analysis of each objective function,
elucidating their significance in the context of power distribution system optimization. This multi-objective
approach allows for a holistic evaluation of potential system improvements and trade-offs between different
performance criteria.

2.3.1 Power Loss as an Objective Functions
In three-phase unbalanced power distribution systems, active power losses refer to the energy lost

due to resistance during the transmission and distribution of electrical energy. These losses occur across
transmission lines, transformers, and distribution lines. In three-phase systems, imbalances arise from
differences in voltage and current between phases. These imbalances can be caused by different power
consumption per phase, unequal distribution of loads, or asymmetries in system components. Imbalanced
loads and phase shifts decrease system efficiency and lead to additional losses. Minimizing these losses is
crucial for enhancing energy efficiency and reducing operational costs, significantly impacting the overall
performance of the distribution system. Active power losses in three-phase unbalanced power distribution
systems can be calculated using the following mathematical expression, as shown in Eq. (9).

PTotal
loss = Pline

loss + Pxtrfr
loss (9)

where Pline
loss total active power loss in distribution lines, Pxtrfr

loss total active power loss in transformers.

• Power Losses in Distribution Lines:

Pline
loss =

M
∑
i=1

3
∑
j=1

Ri,j (I2
i,j) (10)

where Ri,j represents the resistance value, and Ii,j denotes the current magnitude of the jth phase of the
ith, where M is the total number of branches in the network.

• Power Losses in Transformers:
Active power losses in transformers can be divided into two main components: core losses (no-load

losses) and copper losses (load losses). Core losses occur due to magnetic hysteresis in the transformer
core and are independent of the load. Copper losses occur due to resistance in the windings and increase
with the load, as shown in Eq. (11).

Pxtrfr
loss = Pcore +

T
∑
k=1

3
∑
j=1

Rk,j (I2
k,j) (11)



682 Comput Model Eng Sci. 2025;143(1)

where Pcore core losses of transformers, T total number of transformers, Rk,j resistance value of the
jth phase of the kth transformer (in Ohms) and Ik,j current magnitude in the jth phase of the kth
transformer (in Amperes).

2.3.2 Unbalance Indexes as an Objective Functions
Unbalanced power distribution in electrical distribution networks poses a significant challenge for

Distribution Service Operators (DSOs). This imbalance leads to increased power losses, reduced system
efficiency, and shortened equipment lifespan. Two important metrics used to evaluate the performance of
unbalanced systems are the Voltage Unbalance Index (VUI) and Current Unbalance Index (CUI). A detailed
analysis of this topic is available in references [26,39]. According to IEEE Std 1159–2009 [40], the voltage
unbalance index is calculated using the following formula:

% VUI =
∣VUINeg, seq

k ∣

∣VUIPos, seq
k ∣

.100 (12)

where VNeg, seq
k and VPos, seq

k are given in Eqs. (13) and (14).

VNeg, seq
k = Vab∠θab + a2.Vbc∠θbc + a.Vca∠θca

3
(13)

VPos, seq
k = Vab∠θab + a.Vbc∠θbc + a2.Vca∠θca

3
(14)

where a = 1∠120 and a2 = 1∠240.
The IEEE has not established a definition for the CUI. However, some studies in the literature have

proposed a formulation for CUI that is analogous to the VUI [3]. Similarly, the current unbalance index is
expressed by the formula given in Eq. (15).

% CUI =
∣CUINeg, seq

k ∣

∣CUIPos, seq
k ∣

. 100 (15)

These indices quantitatively determine the degree of imbalance in the network and help DSOs develop
strategies to improve system performance.

2.3.3 Reliability Indexes as an Objective Function
In this study, various reliability indices are employed as objective functions to comprehensively eval-

uate the performance and reliability of the power distribution system. These indices, adapted from IEEE
standards [41], are presented in Eqs. (16)–(21) and serve as quantitative measures of system reliability.

• The System Average Interruption Frequency Index (SAIFI) quantifies the mean number of interruptions
experienced by a customer over a designated period, typically annually. SAIFI is utilized to assess the
frequency of interruptions experienced by each customer.

SAIFI = ∑n
i=1 Ni

NT
(16)

• Concurrently, the System Average Interruption Duration Index (SAIDI) assesses the average cumulative
duration of interruptions per customer within the specified timeframe. SAIDI serves as a metric for
determining the total duration of interruptions per customer.
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SAIDI = ∑n
i=1(Ui.Ni)

NT
(17)

• The Customer Average Interruption Duration Index (CAIDI), derived by dividing SAIDI by SAIFI,
provides insight into the mean time required for service restoration following an interruption. CAIDI
provides insight into the average duration of interruptions for customers affected by outages.

CAIDI = ∑n
i=1(Ui.Ni)
∑n

i=1 Ni
(18)

• The Average Service Availability Index (ASAI) expresses the proportion of time during which customers
receive uninterrupted power supply within the defined reporting period. ASAI is employed to evaluate
the overall availability time of the system.

ASAI = NT.8760 −∑n
i=1(Ui.Ni)

NT.8760
(19)

• The Average Energy Not Supplied (AENS) index calculates the mean energy deficit per customer served.
These metrics collectively facilitate a comprehensive evaluation of the distribution system’s reliability
performance. AENS is used to gauge the impact of interruptions on the energy supply per customer.

AENS = ENS
NT

= ∑Lai.Ui

NT
(20)

• Lastly, the ENS (Energy Not Supplied) is the total amount of energy not delivered due to interruptions.
ENS is calculated as:

ENS = ∑n
i=1 (Pi.Ui)

NT
(21)

where Ni is the number of customers interrupted by each interruption event i, NT is the total number
of customers served, Ui is the duration of each interruption event i (in hours), n is the total number of
interruption events, Lai is average load connected to bus i, Pi is the power (in kW or MW) interrupted
for each interruption event i and 8760 represents the total number of hours in a year (24 h/day * 365
days/year).

2.4 Pareto Front Approach: Mathematical Formulation and Explanation
The Pareto front approach for multi-objective optimization can be mathematically formulated as

follows, as shown in Eq. (22).

Minimise F(x) = [f1(x), f2(x), f3(x)]
Subject to ∶ g(x) ≰ 0
h(x) = 0 x ∈ X

(22)

where:

• x is the decision variable vector
• F(x) is the vector of objective functions
• f1(x), f2(x), f3(x) are the individual objective functions
• g(x) and h(x) represent inequality and equality constraints, respectively
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• X is the feasible solution space.

In the context of this study: f1(x): active power loss, f2(x): mean current unbalance index, f3(x): system
average interruption duration index.

A solution x* is said to dominate another solution x if:

∀i ∈ {1, 2, 3} ∶ fi (x∗) ≤ fi (x)
∃j ∈ {1, 2, 3} ∶ fj (x∗) < fj (x)

The Pareto front is the set of all non-dominated solutions. Mathematically, it can be defined as:

PF = {F (x)∣ x ∈ X, ∄y ∈ X∶F (y) dominates F (x)}

To quantify the quality of the Pareto front, several metrics can be used [42], as given in Eqs. (23)–(25).

1. Hypervolume Indicator (HV): HV measures the volume of the objective space dominated by the Pareto
front.

HV = volume(∪{x ∈ PF}[r, F(x)]) (23)

where r is a reference point.
2. Generational Distance (GD): GD measures how far the obtained Pareto front is from the true Pareto

front.

GD = 1
n

.

�
���

n
∑
i=1

di2 (24)

where di is the Euclidean distance between each point and the nearest member of the true Pareto front,
and n is the number of points in the obtained Pareto front.

3. Spread (Δ): Δ measures the distribution of solutions along the Pareto front.

Δ =
(df + dl +∑n−1

i=1 ∣di − d∣)
df + dl + (n − 1)d

(25)

where df and dl are the Euclidean distances between the extreme solutions and the boundary solutions
of the obtained Pareto front, di is the distance between consecutive solutions, and d is the average of
these distances.

The optimization process aims to find a set of solutions that minimize all objective functions simul-
taneously while satisfying the constraints. The resulting Pareto front provides a range of optimal trade-offs
between the competing objectives, allowing decision-makers to choose the most suitable solution based on
their specific requirements and priorities.

3 Bonobo Optimizer (BO) Algorithm
The Bonobo Optimizer (BO) is a metaheuristic search algorithm [33,43] inspired by the social behavior

and reproductive strategies of bonobos. Bonobos exhibit a fission-fusion social strategy, where they form
temporary subgroups of varying sizes within their community, and later reunite. Additionally, bonobos
display four main reproductive strategies: promiscuous, restrictive, consort ship, and extra-group mating.
The proposed BO algorithm artificially models these natural behaviors of bonobos to solve real-parameter
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optimization problems. The primary innovation of BO resides in the updating strategies for the search
agents and their parameters, along with the approach used for selecting mating partners. The BO algorithm
initializes a population of solutions (called bonobos) and their associated parameters. The algorithm then
iteratively updates the bonobos using different mating strategies depending on the current phase of the
optimization (positive or negative phase). The fission-fusion social strategy is used to select a bonobo
for mating, and the mating process is guided by the four reproductive strategies observed in bonobos.
The adaptive nature of the BO algorithm’s parameters, such as the phase probability, extra-group mating
probability, and temporary subgroup size factor, allows for a balanced exploration and exploitation of the
search space. The BO algorithm mathematically models the social behavior and reproductive strategies
observed in bonobos. The fundamental mathematical components of the model are divided into three
sections, which are detailed in the following parts.

3.1 Positive Phase (PP) and Negative Phase (NP)
The positive phase count (cpp) and negative phase count (ncp) variables are used to track the current

phase of the algorithm. If there is an improvement in the best solution, the phase is considered as PP, and
cpp is incremented. Otherwise, the phase is NP, and ncp is incremented.

3.2 Fission-Fusion Social Strategy
The maximum temporary subgroup size (sgstmax) is calculated based on the population size (N) and the

temporary subgroup size factor (sgstfactor) as follows:

Tsgstmax = max(2, sgsttfactor∗N) (26)

If ( sgstfactor * N) is not an integer, the nearest integer value is chosen.

3.3 Reproductive Strategies
For the promiscuous and restrictive mating strategies, the creation of a new bonobo is performed using

the following equation:

newbonoj = bonoj
i + r1. (alphaj

bono − bonoj
i) + (1 − r1) * lgfa*(bonoj

i − boboj
p) (27)

Here, newbonoj represents the jth variable of the new bonobo, bonoj
i is the jth variable of the current

bonobo, alphaj
bono is the jth variable of the alpha bonobo, boboj

p is the jth variable of the selected mating
partner bonobo, r1 is a random number, and lgfa is the directional parameter (1 or −1). For the consort-ship
and extra-group mating strategies, the new bonobo is generated using the following equations:

newbonoj = bonoj
i + beta1∗(Varj

max − bonoj
i) , if r3 ≤ pd

newbonoj = bonoj
i + beta2 * (bonoj

i − Varj
min), if r3 > pd

(28)

where beta1 and beta2 are intermediate variables, Varj
max and Varj

min represent the upper and lower bounds
of the jth variable, r3 is a random number, and pd is the directional probability. This mathematical model
enables the BO algorithm to effectively simulate the social and reproductive behaviours of bonobos, leading
to its high performance in solving optimization problems.

Optimization Algorithm: The BO algorithm is a population-based optimization technique that follows
these steps:
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I. Initialization: A random initial population of solutions (bonobos) is created, and the associated
parameters are initialized.

II. Mate Selection: Using the fission-fusion social strategy, the best-fit bonobo is selected from a
temporary subgroup.

III. New Bonobo Generation: The selected bonobo generates a new bonobo offspring using the reproduc-
tive strategies corresponding to the current phase (PP or NP).

IV. Acceptance Criterion: The newly generated bonobo is accepted and added to the population if it has
a better fitness than the current best bonobo.

V. Parameter Update: Certain parameters (e.g., phase probability, extra-group mating probability, tem-
porary subgroup size) are updated to enhance the algorithm’s performance.

VI. Iteration: Steps II–V are repeated until the termination criteria are met.

This mathematical model and optimization process enable the BO algorithm to effectively simulate the
natural behaviors of bonobos and exhibit superior performance in solving optimization problems.

4 IEEE 37-Bus Unbalanced Electrical Power Distribution Network (UPDN)
The 37-bus multi-phase UPDN includes various components such as a voltage regulator, unbal-

anced spot loads (ZIP load) and multi-phase underground line segments. This system is described in
detail in reference [44,45]. The test system’s total active power, reactive power, and nominal voltage are
2457 kW, 1201 kVAr, and 4.80 kV, respectively. In the initial case, the power loss is reported to be
60.563 kW + j46.455 kVAr. The network comprises three-phase underground line segments with delta-
connected (Δ) unbalanced loads (Fig. 1). The IEEE 37-node test feeder, based on an actual feeder in
California, is characterized by

• Nominal voltage: Operates at 4.8 kV in a three-wire delta configuration.
• Underground line segments: All segments are buried.
• Substation voltage regulator: Consists of two single-phase units connected in an open delta

configuration.
• Load types: All loads are spot loads consisting of constant impedance (Z), current (I) and power (PQ).

The spot loads are significantly unbalanced.

The system includes several transformers, each with specific characteristics [44]:

• The substation transformer, located at bus 799, is rated at 2500 kVA. It operates with a voltage of
230/4.8 kV in a delta-delta (Δ-Δ) connection and has an impedance of 2.0 + j8.0%. This transformer
provides balanced three-phase output voltages of 1.00 per unit.

• The motor transformer, located at bus 775, is rated at 500 kVA and operates with a voltage of
4800/0.480 kV in a delta-delta (Δ-Δ) connection. It has an impedance of 0.85+ j1.81%. This transformer
supports a 500-horsepower induction motor, which has a starting kVA of six times the rated kVA, with
a lagging power factor of 0.4 and a lagging running power factor of 0.8.

The single-line diagram of the IEEE 37-bus unbalanced power distribution system is shown in Fig. 1. The
37-bus test system initially operates in a radial configuration. To allow reconfiguration process and to create
alternative paths, six tie switches (TSs) have been added to the system (added by the author). As illustrated
in Fig. 1, shutting all open TSs broadens the search space and heightens the complexity of the system.
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Figure 1: IEEE-PES 37-bus UPDN test system

4.1 Initial Case
In practical power systems, three-wire delta configurations are infrequently employed, necessitating

rigorous software validation to ensure compatibility with this feeder type [45]. To address this challenge, the
backward/forward sweep load flow algorithm is implemented, a robust and efficient technique particularly
well-suited for radial and weakly meshed distribution systems. This iterative method consists of two
main steps: a backward sweep, which updates branch currents based on nodal power injections, and a
forward sweep, which updates node voltages using the calculated branch currents. The process repeats
until convergence is achieved, offering superior performance in terms of computational efficiency and
convergence characteristics for distribution networks [46–48]. Figs. 2 and 3 illustrate the comparative results
between the MATLAB Script Code (MSc) implementation of the backward/forward sweep algorithm and
the IEEE-PES reference data [49], focusing on the relative errors (RE) in bus current and voltage magnitudes.
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Figure 2: Current relative error of IEEE-PES and MSc Figure 3: Voltage relative error of IEEE-PES and MSc

The analysis reveals highly satisfactory agreement, with maximum relative current and voltage errors
for each phase calculated as Iabc

max = [3.9983 4.1067 3.3742] ⋅ 10−4 and Vabc
max = [0.9641 1.006 0.460] ⋅ 10−4,

respectively. These minimal discrepancies under-score the accuracy and reliability of the implemented
algorithm in handling the 37-bus unbalanced power system under investigation. The voltage profile for each
phase is depicted in Fig. 4.

Figure 4: Voltage profile of 37-bus UPDN
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4.2 Comparison of Outcomes across Multiple Platforms
Table 2 compares the maximum and minimum bus voltage magnitudes and power losses of the

MATLAB Script Code (MSc) MATLAB/Simulink and IEEE-PES datasets. The results from these three
platforms are highly similar. In the 37-bus test system, the maximum voltage of 1.04368 is observed at the
Voltage Regulator output between nodes 799 and 701, which is omitted from Table 2 due to its nature as a
regulator output rather than a bus voltage. The highest bus voltage of 1.0317 is recorded at bus 701, adjacent
to the regulator output.

Table 2: Power flow results for the initial case of the 37-bus radial UPDN

IEEE-PES test case MATLAB simulink MATLAB script code (MSc)
Tie-switches N. A N. A N. A
Ploss (kW) 60.563 60.5468 60.555286
Vmin(p.u.) 0.9847 0.98467 0.984665

Bus no 740 740 740
Phase Phase C Phase C Phase C

Vmax (p.u.) 1.0317 1.03168 1.0316689
Bus No. 701 701 701
Phase Phase A Phase A Phase A

5 Results and Discussion
This study aims to comprehensively evaluate and optimize the performance of an unbalanced 37-

bus power distribution system through four distinct scenarios. The primary objective is to investigate
different optimization approaches and their impacts on system performance metrics. These metrics include
power loss reduction, voltage profile enhancement, current and voltage unbalance mitigation, and reliability
improvement. The research employs various optimization strategies, ranging from single-objective to multi-
objective approaches using meta-heuristic methods, to achieve these goals. The analysis is structured into
four interconnected scenarios, with additional case studies conducted under Scenarios II and III. Each
scenario employs different objective functions and metrics to improve and evaluate power distribution
system performance:

• In Scenario I, the focus is on enhancing the mean voltage profile and minimizing active power loss. This
approach aims to improve overall system efficiency and reduce energy losses.

• In Scenario II, the goal is to minimize the CUI and VUI, which are essential indicators of power
distribution system performance. This minimization is achieved by considering various cases.

• Scenario III concentrates on optimizing reliability index values in the 37-bus power distribution system.
SAIFI, SAIDI, CAIDI, ASAI and AENS values are optimized using meta-heuristic methods.

• Finally, in Scenario IV, a multi-objective optimization approach is adopted. This scenario aims to
simultaneously minimize active power loss, the average CUI, and the SAIDI value. The multi-objective
optimization is achieved using the Pareto-Front approach.

Each of these scenarios addresses different aspects of the power distribution system and aims to improve
system performance from various perspectives. The obtained results and their detailed analyses are presented
in the subsequent sections of this study.
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5.1 Scenario I: Active Power Loss Minimization
The primary objectives of this scenario are: (1) to minimize the active power losses in the 37-bus

UPDN through network reconfiguration, and (2) to enhance the mean voltage profile of the system. This
scenario investigates the impact of strategic integration of six additional TSs on system performance. The
analysis specifically aims to evaluate the algorithms’ capabilities in a more complex system configuration
while maintaining radial operation and creating alternative paths for power flow optimization. Since IEEE-
PES data has not provided any information about switches (TSs and SSs) for 37-bus UPDN, this study
assumes the ubiquitous placement of switches across all network branches. The system undergoes a structural
modification through the strategic integration of six additional TSs, as detailed in Table 3. This modification
serves multiple purposes:

• To facilitate a more comprehensive assessment of the algorithms’ capabilities, the system’s complexity is
intentionally augmented,

• The 37-bus is initially in radial operation, and to make the system suitable for reconfiguration process
and create alternative paths,

• Minimizing the active power loss,
• Mitigating the number of customers affected in the event of a fault.

Table 3: Placement of supplementary TSs and the corresponding branch lengths

Tie-switch (TSs) no. From (Bus) To (Bus) Length (ft.) Configuration type
1 701 724 1930 721
2 712 729 1950 724
3 718 731 1737 723
4 725 741 3100 723
5 729 732 1100 724
6 732 737 3000 723

The complexity of the PDN has been significantly enhanced through the integration of six additional
tie-switches, yielding 111,129 potential radial configurations as computed using the Laplacian methodology.
Within this enhanced scenario, the primary objective function is oriented towards the minimization of
power dissipation within the 37-bus Unbalanced Power Distribution Network (UPDN). The results obtained
from the computational analysis of this optimization process are presented in Table 4. Post-reconfiguration
analysis reveals a significant reduction in active power loss, with levels decreasing to 51.82 kW. Concurrently,
the minimum voltage magnitude is ascertained to be 0.9868 per unit, localized at bus-740/phase C. When
juxtaposed with the initial configuration, this optimized topology demonstrates a noteworthy 14.42%
diminution in power loss.

Table 4: 37-bus radial UPDN power flow after reconfiguration

MATLAB/Simulink test case MATLAB script code (MSc)
Tie-Switches 704–720, 708–732, 709–731,

737–738, 744–729, 732–737
704–720, 708–732, 709–731,
737–738, 744–729, 732–737

Ploss (kW) 51.8196 51.82044
Vmin (p.u.) 0.9868 0.98679

(Continued)
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Table 4 (continued)

MATLAB/Simulink test case MATLAB script code (MSc)
Bus No. 740, Phase C 740, Phase C
Phase

Vmax (p.u.) 1.03168 1.03167
Bus No. 701, Phase A 701, Phase A
Phase

Active power 14.4140% 14.4246%Loss reduction

Fig. 5 shows the recreated line topology resulting from the reconfiguration process, with minimum
power loss considered as the fitness function.
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Figure 5: 37-bus test system network topology after reconfiguration process
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The voltage values for the buses and phases following the reconfiguration process are given in Fig. 6. The
bus voltage differences before and after the reconfiguration of the power distribution network are presented
in Fig. 7. As illustrated in the figure, voltage magnitude improvements are evident at all buses, with the
exception of buses numbered 706 (A and C phases), 720 (A and C phases), and 725 (A, B and C phases).

Figure 6: Voltage profile of 37-bus UPDN after reconfig-
uration

Figure 7: Voltage differences for each bus before and after
reconfiguration

5.2 Scenario II: Mitigating Current and Voltage Unbalance Indices
This scenario focuses on comprehensive analysis of system unbalance through three specific objectives:

(1) to reduce both CUI and VUI below industry-standard thresholds (30% for CUI and 3% for VUI), (2)
to evaluate the effectiveness of network reconfiguration in mitigating unbalance indices, and (3) to analyze
the impact of different optimization cases on system balance. To achieve these objectives, the unbalance
indices are integrated into the objective function, as defined in Eqs. (12) and (15). The investigation utilizes
the same network configuration as Scenario I, incorporating six TSs to ensure reproducibility and maintain
computational complexity. Within this framework, three distinct cases of network reconfiguration are
systematically analyzed, each targeting different aspects of system imbalance in the 37-bus UPDN:

• The primary case focuses on minimizing the mean values of both the CUI and VUI across the
power system.

• The subsequent case aims to reduce the peak values of CUI and VUI.
• The final case specifically targets the minimization of the CUI at the feeder point.

In accordance with industry standards, the VUI is constrained to a maximum of 3%. While no definitive
standard exists for the CUI, a recommended upper limit of 30% is generally accepted. For instance, in the
original configuration of the 37-bus test system, the maximum CUI value, observed at bus-742, reaches
86.98%, significantly exceeding the advised 30% threshold. The implementation of the reconfiguration
approach in this study yields notable improvements. Specifically, the mean CUI value exhibits a substantial
reduction from 40.373% in the initial configuration to 26.595% post-reconfiguration, demonstrating the
effectiveness of the proposed methodology in mitigating current imbalances.
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5.2.1 Comprehensive Analysis and Optimization of Current Unbalance Index (CUI) in 37-Bus Power
Distribution Systems
This section presents an in-depth analysis of three distinct cases, each designed to minimize the

CUI. The mathematical formulation for CUI calculation is explicitly defined in Eq. (15). It is imperative
to note that the computation of the CUI for any given bus necessitates non-zero current values across
all three phases (A, B, and C). The index becomes indeterminate if any of these phase currents approach
zero. In alignment with established methodologies, this study adopts the IEEE Power and Energy Society
(IEEE-PES) approach as a reference framework for CUI calculations. This approach, notably, disregards
currents at the milli-ampere (mA) or micro-ampere (μA) levels, effectively treating such minute values
as zero at any bus. This approximation, while potentially introducing minor discrepancies, allows for a
standardized comparison across different network configurations and load scenarios. The implementation of
this methodology facilitates a comprehensive evaluation of current imbalances within the system, providing
valuable insights into the efficacy of various reconfiguration strategies in mitigating these imbalances.

Initial Configuration Analysis for Current Unbalance Index
The initial configuration analysis of the 37-bus test system reveals significant current unbalance

characteristics throughout the network. Fig. 8 presents a visualization of the CUI distribution across the 37-
bus power distribution network in its initial configuration. As demonstrated in Fig. 8, the system exhibits
varying degrees of current unbalance across different buses, with several nodes showing concerning levels of
imbalance. The comprehensive analysis indicates that 14 buses in the system exceed the Current Unbalance
Index (CUI) threshold of 30%, suggesting substantial unbalance issues in the network’s current distribution.

The severity of the current unbalance is particularly evident at bus 742, where the maximum CUI
value reaches 86.982% (Table 5). This extreme value indicates a significant deviation from balanced current
conditions at this location. The system-wide impact of current unbalance is further reflected in the average
CUI value of 40.373%, demonstrating that the unbalance issue is not isolated but rather a systemic concern.
Critical buses exhibiting severe unbalance include bus 707 with 84.742%, bus 714 with 76.341%, and bus
722 with 80.882%, among others. The system’s voltage profile maintains a range between 0.98466 at Phase
C of Bus 740 and 1.03167 at Phase A of Bus 701, indicating moderate voltage variation despite significant
current unbalance.

Table 5: Post-reconfiguration results for the current unbalance index

Initial case Power loss as an
optimization

objective function

Case-1 Case-2 Case-3

Mean of CUI in
UPDN

Min. of highest
CUI value in

UPDN

Min. of CUI
Feeder Bus (799)

Tie-Switches 701–724, 718–731,
725–741, 732–737,
729–732, 712–729

701–724, 718–731,
725–741, 732–737,
729–732, 712–729

701–724, 718–731,
725–741, 732–737,
729–732, 712–729

701–724, 718–731,
725–741, 732–737,
729–732, 712–729

701–724, 718–731,
725–741, 732–737,
729–732, 712–729

CUI value for the
feeder (at Bus-799)

16.759694 16.704626 17.483028 16.974486 16.309998

Mean of CUI value 40.373021 35.924977 26.595292 30.780235 39.647689
Highest CUI 86.981821 86.984318 86.994039 86.952930 87.031426

Bus No. Bus 742 Bus 742 Bus 742 Bus 705 Bus 742
Minimum Voltage 0.984665 0.986790 0.934915 0.951374 0.918246

Phase Phase C Phase C Phase C Phase C Phase C
Bus No Bus 740 Bus 740 Bus 731 Bus 735 Bus 728

(Continued)
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Table 5 (continued)

Initial case Power loss as an
optimization

objective function

Case-1 Case-2 Case-3

Mean of CUI in
UPDN

Min. of highest
CUI value in

UPDN

Min. of CUI
Feeder Bus (799)

Maximum Voltage 1.031668 1.031668 1.031668 1.031668 1.031668
Phase Phase A Phase A Phase A Phase A Phase A

Bus No. Bus 701 Bus 701 Bus 701 Bus 701 Bus 701
Active Power Loss

(kW)
60.555286 51.820443 109.068225 88.412655 126.751245

Number of buses
exceeding the 30%

CUI threshold

704 (31.056%) 703 (32.185%) 707 (84.484%) 703 (38.731%) 704 (50.320%)
705 (42.295%) 704 (50.344%) 710 (57.377%) 705 (86.953%) 706 (65.460%)
707 (84.742%) 708 (40.708%) 712 (33.633%) 706 (33.785%) 707 (49.292%)
708 (41.612%) 709 (40.712%) 714 (50.915%) 710 (58.690%) 708 (35.014%)
710 (57.008%) 710 (56.590%) 718 (50.875%) 711 (44.009%) 709 (35.009%)
714 (76.341%) 711 (53.351%) 722 (80.782%) 712 (42.102%) 710 (60.039%)
720 (57.773%) 712 (66.686%) 725 (30.434%) 720 (33.855%) 712 (36.729%)
722 (80.882%) 714 (50.335%) 742 (86.994%) 722 (80.95%) 714 (50.310%)
733 (42.526%) 718 (50.289%) 725 (33.783%) 718 (50.263%)
734 (39.313%) 720 (39.109%) 737 (39.597%) 720 (75.919%)
737 (58.870%) 722 (80.906%) 738 (52.746%) 722 (80.866%)
738 (50.236%) 729 (50.450%) 741 (42.039%) 724 (48.221%)
742 (86.982%) 730 (37.462%) 742 (86.924%) 725 (65.440%)
744 (39.994%) 733 (40.704%) 729 (37.521%)

734 (30.555%) 730 (35.004%)
741 (50.499%) 732 (35.714%)
742 (86.984%) 733 (31.267%)

734 (32.800%)
737 (36.805%)
742 (87.031%)

Impact of Active Power Loss Minimization on Current Unbalance Index
When the system configuration is optimized for minimum power loss, notable changes in current

unbalance characteristics are observed throughout the network. Fig. 9 illustrates the distribution of Current
Unbalance Index (CUI) values across the 37-bus power distribution network following network reconfigura-
tion with power loss minimization as the objective function. As illustrated in Fig. 9, the optimization process
leads to a redistribution of current unbalance across the system, resulting in some interesting modifications
to the CUI profile.

The most significant finding is the increase in the number of buses exceeding the 30% CUI threshold,
rising from 14 in the initial case to 17 under power loss minimization. Despite this increase in the number
of affected buses, the optimization achieves a reduction in the average CUI value to 35.924%. However, the
maximum CUI value remains virtually unchanged, showing a marginal increase to 86.984% at bus 742.
The analysis reveals that buses 712 (66.686%), 722 (80.906%), and 742 (86.984%) demonstrate particularly
high unbalance levels under this configuration. The voltage profile shows a slight improvement, with the
minimum voltage increasing to 0.98679 at Phase C of Bus 740. This comparative analysis between the
initial and optimized configurations reveals an interesting trade-off: while power loss minimization succeeds
in reducing the average current unbalance across the system, it simultaneously increases the number of
buses experiencing significant unbalance. This observation suggests that optimization strategies focused
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solely on power loss reduction may not necessarily lead to comprehensive improvements in current balance
conditions. The findings emphasize the need for multi-objective optimization approaches that can address
both power loss and current unbalance concerns simultaneously.

Figure 8: CUI results for the initial case Figure 9: CUI results when the minimum power loss is
considered as a fitness function

Case-1: Mean Current Index Minimization
In this part of the study, the objective function is configured to minimize the mean CUI value, taking into

account the current flow across all branches of the PDN. Post-reconfiguration analysis yields the following
results: The network’s radiality is maintained through the strategic opening of switches between buses 702–
713, 703–727, 709–731, 701–724, 732–737, and 729–732. This reconfiguration results in a significant reduction
of the mean CUI from its initial value of 40.373% to 26.595%. Concurrently, the minimum bus voltage
magnitude is observed at Bus 731/phase C, registering 0.934 p.u., which falls within the predefined voltage
limit parameters. However, it is noteworthy that the active power loss exhibits an inverse trend, escalating
from an initial 60.555 to 109.068 kW post-reconfiguration. This outcome underscores a salient conflict
between the optimization of mean CUI and active power loss, a trade-off that warrants careful consideration
by decision-makers in the context of Power Distribution Network (PDN) operational requirements. Further
analysis reveals that in the initial configuration, 14 buses exceeded the 30% CUI threshold. Comparatively,
across the five cases in Table 5 examined in Scenario II, the mean case demonstrates the most favorable
outcome, with only 8 buses surpassing this limit. The remaining buses maintain CUI values below the
30% benchmark. Comprehensive visualization of these results is presented in Figs. 10 and 11, where Fig. 10
illustrates the post-reconfiguration voltage profile distribution, and Fig. 11 demonstrates the resulting CUI
values and their distribution across the network. Detailed quantitative results for this case are documented
in the case-1 column of Table 5, providing quantitative validation of the optimization outcomes.
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Figure 10: Voltage profile after reconfiguration in the case
of mean CUI as an objective function

Figure 11: CUI results when the mean CUI is considered
as a fitness function

Case-2: Maximum Current Unbalance Index Minimization
The primary objective of this analysis is to minimize the maximum value of the CUI within the UPDN.

During the reconfiguration, switches between buses 702–705, 704–720, 708–733, 730–709, 744–729, and 732–
737 are opened, ensuring the preservation of the network’s radial topology. Initially, the maximum CUI is
observed to be 86.981 at bus 742, which subsequently reduces to 86.952 at bus 705 after reconfiguration. The
lowest bus voltage magnitude is recorded as 0.9513 at bus 735 on phase C. Notably, the active power loss
increases from 60.555 kW to 88.412 kW. Thirteen buses exceed the 30% CUI threshold, with values ranging
from 33.785% to 86.953%. The average CUI across the network decreases from 40.373 to 30.780. Conversely,
the CUI at the feeder bus (bus 799) shows a slight increase from 16.759 to 16.974. These outcomes are detailed
in the Case-2 column of Table 5. Fig. 12 demonstrates voltage profile after reconfiguration when minimizing
the maximum CUI as the objective function, while Fig. 13 shows the corresponding CUI results for this
optimization criterion.

Figure 12: Voltage profile after reconfiguration in the case
of minimization of the maximum CUI as an objective
function

Figure 13: CUI results when the minimization of the
maximum CUI is considered as a fitness function
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Case-3: Feeder Point Current Unbalance Index Minimization
In the context of this case study, the objective function has been meticulously formulated with the

explicit purpose of minimizing the CUI at the feeder bus. The post-reconfiguration analysis yields the
following results: Network radiality is maintained through the strategic opening of switches between buses
702–703, 704–720, 708–732, 709–731, 738–711, and 744–729. This reconfiguration strategy successfully
reduces the CUI at the feeder bus from an initial value of 16.759% to 16.309%, achieving the primary objective
of this case study. However, this optimization comes at a significant cost to other network parameters:
• Active Power Loss: A substantial increase is observed, with losses escalating to 126.751 kW, which

represents more than a twofold increase from the initial power loss. This dramatic rise in power
dissipation highlights a critical trade-off in the optimization process.

• Maximum CUI: Contrary to the reduction at the feeder bus, the highest CUI value in the network
experiences an increase. Initially observed at 86.981% at bus-742, it rises to 87.031% post-reconfiguration,
albeit at a different network location.
These results underscore the complex interrelationships within power distribution networks and the

challenges inherent in optimizing a single parameter without adversely affecting others. The marginal
improvement in feeder bus CUI is achieved at the expense of overall network efficiency and balance. This
case study exemplifies the need for a holistic approach to network optimization, where improvements
in localized parameters must be weighed against their system-wide implications. It also emphasizes the
importance of multi-objective optimization strategies in power distribution network reconfiguration to
achieve a more balanced improvement across various performance metrics. Fig. 14 demonstrates voltage
profile after reconfiguration in the case of minimization of CUI at feeder bus as an objective function
and Fig. 15 shows CUI results when the minimization of CUI at feeder bus is considered as a fitness function.

Figure 14: Voltage profile after reconfiguration in the case
of minimization of CUI at feeder bus as an objective
function

Figure 15: CUI results when the minimization of CUI at
feeder bus is considered as a fitness function

Further analysis of the reconfiguration outcomes reveals additional insights into the network’s per-
formance: The mean CUI across the network exhibits a decrease from 40.373% to 39.648%. This minimal
reduction in average imbalance suggests that the localized improvement at the feeder bus does not signif-
icantly propagate throughout the entire system. Voltage profile analysis indicates that the minimum bus
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voltage magnitude is observed at bus-728/phase C, registering 0.918 p.u. This value, while within typical
operational limits, may warrant attention in future optimization efforts to ensure robust voltage stability
across the network. A comprehensive examination of CUI distribution reveals that 20 buses exceed the 30%
CUI threshold, with values spanning from 31.267% to 87.031%. This represents a substantial increase in the
number of buses experiencing significant current imbalance compared to previous cases. The remaining
buses maintain CUI values below the 30% benchmark, indicating a polarized distribution of current imbal-
ances across the network. For comparative purposes, the CUI values obtained when TSs are open and active
power loss is considered as the objective function are presented in the fourth column from the end in Table 5.
This provides a baseline for assessing the trade-offs between different optimization strategies. These results
are meticulously documented in the case-3 column of Table 5, facilitating a comprehensive comparison
with other optimization scenarios. This comprehensive analysis underscores the complex interplay between
localized improvements and system-wide performance in power distribution networks. It highlights the
necessity for multi-objective optimization approaches that can balance conflicting parameters such as feeder
bus CUI, mean network CUI, voltage profiles, and active power losses. Such holistic strategies are crucial for
achieving optimal network configurations that satisfy diverse operational requirements and constraints.

Summary and Discussion for CUI Optimization Results
The summary based on the obtained CUI results are listed as follows:

• In a reconfiguration study where the fitness function is to reduce active power losses, after optimization
process the buses that exceed the 30% CUI limit have increase from 14 to 17 buses. This result indicates
an increase in current imbalance in some buses.

• The literature review reveals that reconfiguration studies are predominantly conducted on balanced test
systems. However, if the system is considered balanced, the changes and effects of some parameters
cannot be examined. As shown in this study, working on unbalanced test systems is quite important to
see the effects of parameters such as VUI and CUI on the system.

• In the case of the average of CUI in PDN is considered as an objective function, the lowest number of
busbar (8 buses in total) is obtained which exceed the 30% CUI limit.

• In all 3 cases, the active power loss values increase after the optimization process for the reduction of
CUI. Thus, it shows that both CUI and active power losses cannot be reduced at the same time and there
is a conflict between them. This indicates that further research is needed to find a solution that addresses
both issues.

5.2.2 Comprehensive Analysis and Optimization of Voltage Unbalance Index (VUI) in 37-Bus Power
Distribution Systems
This subsection presents an in-depth analysis of two distinct cases, focusing on the minimization of

the Voltage Unbalance Index (VUI). The mathematical formulation for VUI calculation is explicitly defined
in Eq. (12). Voltage unbalance in power distribution networks is evaluated through different standards and
calculation methods. Three primary standards have established distinct approaches for quantifying voltage
unbalance. The American National Standards Institute (ANSI C84.1-1995) specifies a maximum voltage
unbalance threshold of 3% under no-load conditions. The International Electrotechnical Commission
(IEC) mandates a more stringent limit of 2%, while NEMA MG1-1993 recommends derating induction
motors when voltage unbalance exceeds 1%. Additionally, IEEE standards (Std. 141-1993 and Std. 241-1990)
suggest that electronic equipment may experience operational issues with voltage unbalance exceeding
2%–2.5% [39,50]. The calculation methodologies also differ among these standards. NEMA defines voltage
unbalance using line-to-line voltage measurements, expressed as the ratio of maximum deviation from
average to the average of three-line voltages. IEEE employs a similar formula but utilizes phase voltages
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instead. The IEC standard adopts a distinct approach based on symmetrical components, defining voltage
unbalance as the ratio of negative sequence component to positive sequence component of voltage, expressed
as a percentage. It is noteworthy that while NEMA and IEEE formulations appear similar, their use of
different voltage measurements (line vs. phase voltages) can yield varying results, particularly considering
that line voltages exclude zero-sequence components while phase voltages include them. This distinction
becomes especially relevant for three-phase loads without neutral connections, such as asynchronous motors,
where zero-sequence components have minimal impact on performance [50]. These divergent standards
underscore the importance of voltage balance in power systems and provide critical benchmarks for assessing
the efficacy of the proposed reconfiguration strategies. The implementation of these standards in our analysis
serves dual purposes:

• It provides a framework for evaluating the performance of the reconfigured network against established
industry norms.

• It highlights the potential challenges in meeting different regulatory requirements simultaneously, which
is a crucial consideration in practical power system operations.

Initial Configuration Analysis for Voltage Unbalance Index
The initial configuration analysis provides a comprehensive assessment of the Voltage Unbalance Index

(VUI) in the 37-bus distribution system under its default operational settings. In this scenario, tie-switches
are configured at positions 701–724, 718–731, 725–741, 732–737, 729–732, and 712–729. The analysis revealed
significant variability in VUI values across different buses, highlighting critical voltage imbalance issues. As
shown in Table 6, the mean VUI value in the initial configuration is recorded as 0.9383, with a maximum
value of 1.3755 observed at Bus 724. Furthermore, a total of 14 buses exceeded the VUI threshold of 1%,
indicating widespread voltage imbalance across the network. The minimum voltage magnitude is observed
as 0.9847 at Phase C of Bus 740, while the maximum voltage remained consistent at 1.0317 at Phase A of Bus
701. Fig. 16 presents a visualization of the VUI distribution across the 37-bus power distribution network in its
initial configuration. The results underscore the presence of significant voltage imbalance at critical locations,
particularly at buses with the highest VUI values. This analysis establishes a baseline for further optimization
efforts, offering insights into areas of improvement to enhance voltage stability and reduce power losses.

Table 6: Post-reconfiguration results for the voltage unbalance index

Initial case Power loss as an
optimization

objective function

Case-1 Case-2

Mean of CUI in
UPDN

Min. of highest
CUI value in

UPDN
Tie-switches 701–724, 718–731,

725–741, 732–737,
729–732, 712–729

704–720, 708–732,
709–731, 737–738,
744–729, 732–737

708–732, 713–704,
727–744, 730–709,
737–738, 732–737

708–733, 713–704,
727–744, 701–724,
718–731, 729–732

VUI value for the feeder
(at Bus-799)

0.00 0.00 0.00 0.00

Mean of VUI value 0.938323 0.924569 0.697290 0.910307
Max. VUI value 1.375499 1.201689 1.054558 1.025643

Bus No. Bus 724 Bus 720 Bus 730 Bus 701
Minimum voltage 0.984665 0.986790 0.960947 0.929879

Bus No. Phase C Phase C Phase C Phase C
Phase Bus 740 Bus 740 Bus 735 Bus 724

(Continued)
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Table 6 (continued)

Initial case Power loss as an
optimization

objective function

Case-1 Case-2

Mean of CUI in
UPDN

Min. of highest
CUI value in

UPDN
Maximum voltage 1.031668 1.031668 1.031668 1.031668

Bus No. Phase A Phase A Phase A Phase A
Phase Bus 701 Bus 701 Bus 701 Bus 701

Active power loss (kW) 60.555286 51.820443 87.342489 117.280602
Number of buses

exceeding the 1% VUI
threshold

701 (1.0256%) 701 (1.0256%) 701 (1.0256%) 701 (1.0256%)
702 (1.0103%) 705 (1.0027%) 702 (1.0280%) 702 (1.0114%)
704 (1.0784%) 706 (1.1812%) 703 (1.0367%) 703 (1.0112%)
705 (1.0550%) 707 (1.1774%) 705 (1.0359%) 705 (1.0055%)
706 (1.2100%) 711 (1.0780%) 712 (1.0313%) 713 (1.0207%)
707 (1.3461%) 712 (1.0122%) 713 (1.0364%) 722 (1.0042%)
712 (1.0716%) 720 (1.2017%) 724 (1.0267%) 724 (1.0061%)
713 (1.0430%) 722 (1.1909%) 727 (1.0458%) 727 (1.0217%)
714 (1.0671%) 724 (1.0924%) 730 (1.0546%) 730 (1.0025%)
720 (1.1960%) 725 (1.1732%) 742 (1.0505%) 731 (1.0105%)
722 (1.3628%) 731 (1.0073%) 742 (1.0196%)
724 (1.3755%) 732 (1.0162%)
725 (1.2189%) 738 (1.0402%)
742 (1.0696%) 740 (1.1026%)

741 (1.0919%)
742 (1.0179%)

Impact of Active Power Loss Minimization on Voltage Unbalance Index
This section examines the effects of active power loss minimization on the Voltage Unbalance Index

(VUI) through a reconfiguration of the distribution network. In this optimized configuration, tie-switches
are reconfigured to positions 704–720, 708–732, 709–731, 737–738, 744–729, and 732–737. The optimization
achieves a significant reduction in active power loss, as shown in Table 6, decreasing it from 60.5553 kW
to 51.8204 kW. The voltage profile shows a marginal improvement, with the minimum voltage magnitude
increasing from 0.9847 to 0.9868 at Phase C of Bus 740, while the maximum voltage remains constant at
1.0317 at Phase A of Bus 701. The mean VUI value decreases from 0.9383 to 0.9246, and the maximum VUI
value drops from 1.3755 (at Bus 724) to 1.2017 (at Bus 720). However, as shown in Table 6, the number of
buses exceeding the 1% VUI threshold increases from 14 to 16, reflecting a complex trade-off between power
loss reduction and voltage balance. Fig. 17 illustrates the post-reconfiguration VUI distribution when active
power loss minimization is employed as the objective function. The results indicate an overall improvement
in voltage balance, as evidenced by the reduction in mean and maximum VUI values. Nonetheless, the
increase in the number of buses surpassing the VUI threshold highlights the challenge of achieving uniform
voltage balance while minimizing power losses. This analysis underscores the multifaceted nature of system
optimization, where improvements in one metric may have unintended consequences for another.

The examination of two cases (Case-1 and Case-2) within this context aims to elucidate the effectiveness
of various reconfiguration approaches in minimizing voltage unbalance. This analysis also takes into account
the practical implications of adhering to these industry standards.
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Figure 16: VUI results for initial case Figure 17: VUI results when the minimum Power Loss is
considered as a fitness function

Case-1: Mean Voltage Index Minimization
In the present investigation, the objective function has been meticulously formulated to minimize

the mean VUI, with comprehensive consideration given to voltage magnitudes across the entirety of the
branches within the test system’s topology. Post-reconfiguration results indicate that switches 708–732, 713–
704, 727–744, 730–709, 737–738, and 732–737 are opened, maintaining network radiality. The mean VUI
value decreased from an initial 0.9383 to 0.6973. After the reconfiguration, the number of buses exceeding
the 1% VUI threshold is 10, namely buses 701, 702, 703, 705, 712, 713, 724, 727, 730, and 742. Among them,
Bus 730 recorded the highest VUI value, calculated at 1.054558%. Conversely, active power loss increased to
87.3425 kW. The minimum magnitude of the bus voltage is determined to be 0.961 at bus-735, phase C. These
findings are presented in the case-1 column of Table 6. Figs. 18 and 19 illustrate the comprehensive results of
network reconfiguration with mean VUI minimization as the objective function. Specifically, Fig. 18 depicts
the voltage profile following reconfiguration, while Fig. 19 presents the corresponding VUI values obtained
under optimization criterion.

Case-2: Maximum Voltage Unbalance Index Minimization
In this particular scenario, the objective function has been strategically formulated to minimize the apex

value of the VUI within the confines of the test system. Post-reconfiguration analysis reveals the following
outcomes: Switches 708–733, 713–704, 727–744, 701–724, 718–731, and 729–732 are opened. The maximum
VUI value decreased from an initial 1.3755 at bus-724 to 1.0256 at bus-701. Conversely, active power loss
increased to 117.28060 kW. The minimum bus voltage magnitude is determined to be 0.9299 per unit,
occurring at bus-724/phase C. Eleven buses (701, 702, 703, 705, 713, 722, 724, 727, 730, 731, and 742) exceeded
the 1% VUI threshold, while the remaining buses maintained VUI values below 1%. The mean VUI value
reduced from 0.9383 to 0.9103. Notably, the VUI at the feeder bus (bus-799) remained constant throughout
the reconfiguration process. Table 6, case-2 column, presents the post-reconfiguration VUI results. Fig. 20
demonstrates the voltage profile obtained after network reconfiguration, where the minimization of the
maximum VUI is adopted as the objective function. Similarly, Fig. 21 presents the corresponding VUI results
when this minimization criterion is employed as the fitness function in the optimization process.
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Figure 18: Voltage profile after reconfiguration in the case
of mean VUI as an objective function

Figure 19: VUI results when the mean VUI considered as
a fitness function

Figure 20: Voltage profile after reconfiguration in the case
of minimization of highest VUI as an objective function

Figure 21: VUI results when the minimization of highest
VUI value considered as a fitness function

Summary and Discussion for VUI Optimization Results
The Voltage Unbalance Index (VUI) optimization results reveal several important insights into the

reconfiguration of the unbalanced power distribution network. Initially, 14 buses exceeded the 1% VUI limit
set by NEMA standards. After reconfiguration aimed at minimizing the mean VUI (Case-1), this number
decreased to 10 buses, indicating a significant improvement in voltage balance across the network.

• In the initial scenario (Case-1), where the objective function is formulated to minimize the mean VUI,
a significant amelioration in voltage equilibrium is observed. The average VUI undergoes a substantial
reduction, diminishing from an initial value of 0.9383 to a markedly improved 0.6973, thus indicating
a notable enhancement in overall system voltage balance. This substantial reduction demonstrates
the effectiveness of the reconfiguration approach in addressing voltage imbalances. However, it is
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noteworthy that this improvement came at the cost of increased active power loss, which rose from
60.55 to 87.34 kW. This trade-off highlights the complex relationship between voltage balance and power
efficiency in distribution networks.

• Case-2, which focused on minimizing the maximum VUI value, yielded different results. The highest
VUI value is reduced from 1.3755 at bus-724 to 1.0256 at bus-701. While this alteration signifies a notable
enhancement in voltage equilibrium, the system nonetheless exhibits persistent areas of concern. Post-
reconfiguration analysis reveals that 11 buses continue to surpass the stipulated 1% VUI threshold,
indicating residual voltage asymmetry within the network topology despite the overall amelioration.
Notably, the active power loss in this case increased significantly to 117.28 kW, further emphasizing the
conflict between VUI minimization and power loss reduction.

• Comparing the voltage profiles and VUI distributions before and after reconfiguration (as shown
in Figs. 16–21) reveals the spatial impact of the optimization process. The reconfiguration altered the
voltage balance across different buses, generally improving the overall network balance but with localized
variations. It is important to note that in both optimization cases, the VUI at the feeder bus (bus-799)
remained unchanged. This suggests that the reconfiguration process primarily affects the downstream
network, with limited impact on the main feeder point.

These results underscore the complexity of optimizing unbalanced distribution networks. While VUI
can be significantly improved through reconfiguration, this often comes at the expense of increased power
losses. Future research could explore multi-objective optimization techniques to find a better balance
between voltage unbalance mitigation and power loss minimization. Additionally, the impact of VUI opti-
mization on other network parameters, such as reliability and power quality, warrants further investigation.

5.3 Scenario III: Reliability Enhancement in Power Distribution Systems
Reliability is a critical factor in electrical distribution systems, playing a pivotal role in customer

satisfaction and overall system performance. It represents the system’s ability to provide uninterrupted, high-
quality power supply and is quantified through various indices. Building on this foundation, this scenario
focuses on the optimization of reliability indices in a 37-bus unbalanced power distribution network with
three primary objectives: (1) to optimize five crucial reliability indices (AENS, ASAI, CAIDI, SAIDI, and
SAIFI) using meta-heuristic methods, (2) to implement and validate the Intelligent Matrix (IM) method for
rapid reliability assessment, and (3) to evaluate the effectiveness of network reconfiguration in improving
system reliability.

The reliability analysis employs an innovative approach based on the Intelligent Matrix (IM) [51]
method, which utilizes a matrix representation of the system topology. This method incorporates the
failure rates and repair times of various components such as busbars, cables, switches, and fuses. The
IM approach facilitates expeditious computation of reliability indices, demonstrating particular efficacy in
intricate network topologies characterized by multiple power sources. This methodology’s robustness in
handling complex configurations underscores its utility in comprehensive system reliability assessments,
enabling rapid evaluation of diverse network architectures without compromising analytical rigor. The study
addresses five fundamental reliability indices:

• AENS (Average Energy Not Supplied)
• ASAI (Average Service Availability Index)
• CAIDI (Customer Average Interruption Duration Index)
• SAIDI (System Average Interruption Duration Index)
• SAIFI (System Average Interruption Frequency Index)
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These indices have been calculated separately for each phase (A, B, and C) of the system, providing
a more nuanced understanding of the unbalanced network’s performance. The calculations are performed
using two distinct approaches:

• Line Oriented Reliability Index (LORI) Calculation Results: This approach evaluates the impact of
network lines on reliability, considering the topology and characteristics of the distribution lines.

• Customer Oriented Reliability Index (CORI) Calculation Results: This approach considers reliability
indices from the customer’s perspective, focusing on the end-user experience of power supply reliability.

The IM method allows for the calculation of failure rates (λ) and unavailability (U) for each bus
and load point in the system. These values are then used to compute the reliability indices. The method’s
flexibility enables easy recalculation of indices when network topology changes, such as in reconfiguration
scenarios. The optimization of these reliability indices has been conducted using meta-heuristic methods.
The optimization process aims to improve the index values, thereby enhancing the overall system reliability.
The results obtained underscore the significance of reliability optimization in unbalanced power distribution
networks and provide valuable insights for future studies.

This section will delve into the detailed methodology of the IM approach, present the results obtained,
and discuss their implications on system performance. The analysis will provide a comprehensive under-
standing of how reliability optimization can be achieved in unbalanced distribution systems, considering
both line-oriented and customer-oriented perspectives. Furthermore, this study’s approach of calculating
reliability indices for each phase separately offers a nuanced view of system performance, allowing for
targeted improvements in specific areas of the network. This granular analysis is particularly valuable in
unbalanced systems, where phase-specific issues may significantly impact overall reliability. The subsequent
subsections will elaborate on the optimization techniques used, present detailed results, and provide a critical
analysis of the findings. This comprehensive examination will contribute to the broader understanding
of reliability optimization in unbalanced power distribution networks and its potential applications in
real-world scenarios.

5.3.1 Mathematical Approaches of Reliability Indices in Power Distribution Network
This study uses an innovative approach for calculating reliability indices in power distribution networks

using an Intelligent Matrix (IM) method [2,51]. To elucidate the proposed methodology, a 5-bus radial power
distribution network is presented in Fig. 22.

1 2 3 4 5

Gnd Gnd Gnd Gnd

Figure 22: 5-Bus radial power distribution network scheme [21]

The IM method employs a matrix representation of the system topology, incorporating failure rates (λ)
and unavailability (U) of various components such as buses, cables, switches, and fuses. The intelligence
matrix (IMsys) is constructed based on the network configuration, with each element representing the
connection and type of component between buses. In a 5-bus test system, the IMsys in Eq. (29) is formulated
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as a 5 × 5 matrix, where elements denote bus and fuse (B + F), switch (S), or cable (C) connections. The
reliability index calculation depicted in Fig. 22 utilizes an IM akin to the one found in to [51]. The IM
associated with Fig. 22 is specified in Eq. (29).

IMSystem =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B S 0 0 0
C B + F S 0 0
0 C B + F S 0
0 0 C B + F S
0 0 0 C B + F

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦nxn

(29)

The failure rate matrix (λIM) in Eq. (30) and unavailability matrix (UIM) in Eq. (31) are derived from
IMsys, using component-specific reliability data.

λIM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λB + λF 0 λSwtch 0 0
0 λB + λF 0 0 λSwtch

λCable 0 λB + λF λSwtch 0
0 0 λCable λB + λF 0
0 λCable 0 0 λB + λF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦nxn

(30)

UIM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

UB + UF 0 US 0 0
0 UB + UF 0 0 US

UC 0 UB + UF US 0
0 0 UC UB + UF 0
0 UC 0 0 UB + UF

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦nxn

(31)

These matrices are then used to calculate bus-specific λ and U values, which form the basis for
computing system-wide reliability indices such as AENS, ASAI, CAIDI, SAIFI, and SAIDI. The method’s
flexibility allows for easy re-calculation when network topology changes, as demonstrated in the case of
network reconfiguration. This approach enables a more nuanced analysis of reliability in unbalanced systems,
as it can be applied to each phase separately, providing a comprehensive view of system performance and
facilitating targeted improvements in specific areas of the network. To account for the exclusion of the slack-
bus failure rate (λSlack

Bus ) and circuit breaker failure rate (λCircuit
Breaker) from the matrix, these values should be

included in the λIM expression. Therefore, the total λ (λTotal) is calculated as specified in Eq. (32).

λTotal = λLine
IM + λSlack

Bus + λCircuit
Breaker (32)

The λIM value, a pivotal parameter in reliability analysis, is derived based on a methodological frame-
work that presupposes the hierarchical arrangement of busbars in ascending order. However, in scenarios
involving alterations to the line topology, such as modifications to the network switch positions, the λIM
value necessitates reconfiguration. This reconfiguration process is facilitated through the implementation
of the depth-first search algorithm. The bus incidence matrix, as delineated in Section 2.1, is employed
to determine the route terminus. For the computation of failure rate (λ), unavailability (U), and outage
duration (r = U/λ) of interconnected buses, the Dijkstra Algorithm is utilized to ascertain the shortest
path. The proposed methodology exhibits versatility in its application to systems incorporating multiple
supply sources. Consequently, this methodological approach engenders enhanced computational efficacy
in the derivation of reliability indices within contexts characterized by the proliferation of renewable
energy sources as distributed generation units within power systems. The framework’s adaptability proves
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particularly salient in addressing the complexities introduced by the integration of these stochastic and
decentralized power sources, thereby enabling robust reliability assessments in increasingly diverse and
dynamic network architectures.

5.3.2 Reliability Indices Calculation Data in Power Distribution Network
The reliability of a power distribution network is a critical measure of its performance, directly impacting

both operational efficiency and customer satisfaction. Accurate calculation of reliability indices requires
comprehensive data on the failure rates and repair times of various network components. In this study, the
reliability indices for the 37-bus power distribution network are calculated using detailed failure rates and
repair times for key components, as outlined in Tables 7 and 8. The failure rates (λ) and repair times (r) for
components such as fuses, switches, busbars, circuit breakers, slack buses, distribution lines, and loads form
the foundation for reliability analysis. For example, fuses have a failure rate of 0.250 failures per year and
a repair time of 3 h, while switches have a failure rate of 0.150 failures per year and a repair time of 40 h.
These values are critical as they provide the basis for determining the reliability of each component and,
consequently, the entire network. Table 7 presents a comprehensive list of these values, which are essential
for the reliability calculations:

Table 7: Components failure rate and repair-time-data

Component λ (failures/year) r (repair hours)
Busbar 0.100 6

Circuit breaker 0.200 10
Distribution line 0.01~0.40 5

Fuse 0.250 3
Load 0.0~0.30 5

Slack bus 0.643 10
Switch 0.150 40

Note: Bold column headers indicate the primary parameters used in the
reliability analysis of power distribution network components.

Table 8: Failure rate of distribution line

Branch 799–701 701–702 702–705 702–713 702–703 703–727 703–730 704–714 704–720
λ (f/y) 0.3172 0.2583 0.2212 0.2185 0.2821 0.2106 0.2344 0.2000 0.2477
Branch 705–742 705–712 706–725 707–724 707–722 708–733 708–732 709–731 709–708
λ (f/y) 0.2159 0.2106 0.2132 0.2450 0.2026 0.2159 0.2159 0.2344 0.2159
Branch 710–735 710–736 711–741 711–740 713–704 714–718 720–707 720–706 727–744
λ (f/y) 0.2079 0.2795 0.2212 0.2079 0.2291 0.2291 0.2556 0.2344 0.2132
Branch 730–709 733–734 734–737 734–710 737–738 738–711 744–728 744–729 709–775
λ (f/y) 0.2079 0.2318 0.2371 0.2291 0.2212 0.2212 0.2079 0.2132 0.0100
Branch 701–724 712–729 718–731 725–741 729–732 732–737
λ (f/y) 0.3225 0.3238 0.3097 0.4000 0.2675 0.3934

The failure rates of distribution lines vary depending on their length, exposure to environmental
conditions, and other factors. These rates range from 0.01 to 0.40 failures per year, with a repair time typically
around 5 h. The detailed failure rates for each distribution line segment are provided in Table 8, which
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helps in identifying the most vulnerable parts of the network and planning maintenance and reliability
improvement strategies. To calculate reliability indices such as SAIFI, SAIDI, and so on, the number of
customers connected to each bus is crucial.

This data is used to determine the impact of outages on the end-users. Fig. 23 illustrates the distribution
of customers connected to each bus for phases A, B, and C, providing a visual representation of customer
load distribution across the network. This information is crucial for understanding the potential impact of
outages on different parts of the network and is essential for calculating customer-oriented reliability indices.
The load failure rate is another critical factor in reliability analysis. It represents the likelihood of a load
experiencing a failure within a given time frame. Fig. 24 illustrates the load failure rates for different buses,
providing critical insights into the network’s vulnerability to failures and identifying which parts are more
prone to outages. This information is essential for prioritizing maintenance and implementing reliability
improvement efforts, ensuring a more robust and resilient power distribution system.

Figure 23: Number of customers for each bus Figure 24: Load failure rate for each bus

The calculation of reliability indices is performed using the Intelligent Matrix (IM) method. This method
leverages the failure rates, repair times, and customer data to provide a precise assessment of the network’s
reliability. By analyzing this data, the IM method can identify the most critical components that contribute
to system unreliability and recommend targeted improvements.

5.3.3 Line Oriented Reliability Index (LORI) Optimization Results for Each Phase
This section presents the optimization results of a 37-bus distribution system using the Line Oriented

Reliability Index (LORI) [2] method. The analysis is conducted separately for each phase (A, B, and C) to
account for potential phase imbalances and their impacts on system reliability. Tables 9–11 illustrate the LORI
calculation results for phases A, B, and C, respectively. These tables provide crucial information about tie-
switch configurations, minimum voltage levels, power losses, and various reliability indices such as SAIFI,
SAIDI, CAIDI, AENS, and ASAI. As shown in Table 9, the optimal tie-switch configuration for Phase A
includes switches 708–732, 709–731, 734–737, 738–711, 744–729, and 701–724. Table 10 reveals a different
configuration for Phase B, while Table 11 presents yet another distinct arrangement for Phase C. This variation
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in optimal tie-switch configurations across phases indicates that phase-specific optimization can lead to
different network topologies.

Table 9: Line Oriented Reliability Index (LORI) calculation results for Phase A

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
734–737,
738–711,
744–729,
701–724,
718–731

Min voltage 0.98467 0.98467 0.97549 0.97549 0.97549 0.97549
Phase Phase C Phase C Phase A Phase A Phase A Phase A

Bus No. Bus 740 Bus 740 Bus 738 Bus 738 Bus 738 Bus 738
Active power loss (kW) 60.5553 60.5553 66.7283 66.7283 66.7283 66.1432

Saifi
(failure/customer.year)

18.9067 18.9067 19.4793 19.4793 19.4793 19.4040

Saidi
(hour/customer.year)

42.4859 42.4859 35.7825 35.7825 35.7825 35.7825

Caidi (hr/cus.inter) 2.2471 2.2471 1.8369 1.8369 1.8369 1.8441
Aens (MW hour
/customer.year)

0.029780 0.029780 0.025087 0.025087 0.025087 0.025087

Asai (p.u.) 0.995150 0.995150 0.995915 0.995915 0.995915 0.995915
Eens (MW hr/yr) 30.8814 30.8814 26.0149 26.0149 26.0149 26.0149

Table 10: Line Oriented Reliability Index (LORI) calculation results for Phase B

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

702–713,
709–708,
733–734,
737–738,
744–729,
718–731

702–713,
708–732,
709–708,
737–738,
744–729,
718–731

702–713,
708–732,
709–708,
744–729,
718–731,
725–741

702–713,
709–708,
733–734,
737–738,
744–729,
718–731

Min. Voltage 0.98467 0.98467 0.96962 0.96854 0.96962 0.96962
Phase Phase C Phase C Phase C Phase C Phase C Phase C

Bus No. Bus 740 Bus 740 Bus 735 Bus 735 Bus 735 Bus 735
Active power loss (kW) 60.5553 60.5553 72.2751 74.2651 72.2751 72.2751

Saifi
(failure/customer.year)

18.9067 18.9067 19.5133 19.5292 19.3504 19.5133

(Continued)
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Table 10 (continued)

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Saidi

(hour/customer.year)
35.1679 35.1679 28.9355 28.9355 28.9355 28.9355

Caidi (hr/cus.inter) 1.8601 1.8601 1.4829 1.4817 1.4953 1.4829
Aens (MW

hour/customer.year)
0.024640 0.024640 0.020277 0.020277 0.020277 0.020277

Asai (p.u.) 0.995985 0.995985 0.996697 0.996697 0.996697 0.996697
Eens (MW hr/yr) 22.4718 22.4718 18.4925 18.4925 18.4925 18.4925

Table 11: Line Oriented Reliability Index (LORI) calculation results for Phase C

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

Min. Voltage 0.98467 0.98467 0.97163 0.97163 0.97163 0.97163
Phase Phase C Phase C Phase C Phase C Phase C Phase C

Bus no. Bus 740 Bus 740 Bus 735 Bus 735 Bus 735 Bus 735
Active power loss (kW) 60.5553 60.5553 61.57339 61.57339 61.57339 61.57339

Saifi
(failure/customer.year)

18.9067 18.9067 19.5859 19.5859 19.5859 19.5859

Saidi
(hour/customer.year)

33.6472 33.6472 30.2262 30.2262 30.2262 30.2262

Caidi (hr/cus.inter) 1.7796 1.7796 1.5433 1.5433 1.5433 1.5433
Aens (MW

hour/customer.year)
0.023602 0.023602 0.021202 0.021202 0.021202 0.021202

Asai (p.u.) 0.996159 0.996159 0.996550 0.996550 0.996550 0.996550
Eens (MW hr/yr) 36.7251 36.7251 32.9905 32.9905 32.9905 32.9905

The minimum voltage levels, as reported in Tables 9–11, remain above 0.96 p.u. for all phases, ensuring
acceptable voltage profiles throughout the system. Specifically, Table 9 shows a minimum voltage of 0.97549
p.u. for Phase A, Table 10 reports 0.96962 p.u. for Phase B, and Table 11 indicates 0.97163 p.u. for Phase C.

Power losses exhibit significant variations among phases. As evident from Table 10, Phase B demon-
strates the highest losses (72.2751 kW) compared to Phase A (66.7283 kW, Table 9) and Phase C
(61.57339 kW, Table 11). This disparity highlights the importance of phase-balancing in distribution systems.
Reliability indices also demonstrate phase-dependent improvements. For instance, SAIDI values for Phases
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A, B, and C are 35.7825, 28.9355, and 30.2262 hours/customer/year, respectively, as shown in Tables 9–
11. These results suggest that Phase B experiences the lowest average outage duration, while Phase A has
the highest.

The LORI method’s effectiveness is evident in the improved ASAI values across all phases. Tables 9–
11 indicate that each phase achieves an availability of over 0.995, demonstrating high system reliability.
Specifically, Phase A achieves an ASAI of 0.995915 (Table 9), Phase B reaches 0.996697 (Table 10), and Phase
C attains 0.996550 (Table 11).

5.3.4 Customer Oriented Reliability Index (CORI) Optimization Results for Each Phase
The Customer Oriented Reliability Index (CORI) calculation [52] results, presented in Tables 12–14

for Phases A, B, and C, respectively, offer a complementary perspective to the LORI analysis by focusing
on customer-centric reliability metrics. Similar to the LORI results, the CORI analysis reveals phase-
specific optimal tie-switch configurations, emphasizing the importance of considering phase imbalances in
distribution system optimization. As shown in Table 12, the optimal configuration for Phase A under CORI
includes switches 708–732, 709–731, 734–737, 738–711, 744–729, and 701–724, which is identical to the LORI
result for Phase A. However, Tables 13 and 14 reveal different configurations for Phases B and C, respectively.
The CORI method yields slightly different reliability index values compared to LORI, reflecting its customer-
focused approach. For example, SAIFI values for Phases A, B, and C are 19.66409, 19.70010, and 19.74711
failures/customer/year, respectively, as reported in Tables 12–14.

Table 12: Customer Oriented Reliability Index (CORI) calculation results for Phase A

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

708–732,
709–731,
734–737,
738–711,
744–729,
701–724

Min. Voltage 0.98467 0.98467 0.97549 0.97549 0.97549 0.97549
Phase Phase C Phase C Phase A Phase A Phase A Phase A

Bus No. Bus 740 Bus 740 Bus 738 Bus 738 Bus 738 Bus 738
Active power loss (kW) 60.5553 60.5553 66.7283 66.7283 66.7283 66.7283

Saifi
(failure/customer.year)

19.09149 19.09149 19.66409 19.66409 19.66409 19.66409

Saidi
(hour/customer.year)

43.4098 43.4098 36.7064 36.7064 36.7064 36.7064

Caidi (hr/cus.inter) 2.2738 2.2738 1.8667 1.8667 1.8667 1.8667
Aens (MW

hour/customer.year)
0.030427 0.030427 0.025734 0.025734 0.025734 0.025734

Asai (p.u.) 0.995045 0.995045 0.995810 0.995810 0.995810 0.995810
Eens (MW hr/yr) 31.5526 31.5526 26.6860 26.6860 26.6860 26.6860
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Table 13: Customer Oriented Reliability Index (CORI) calculation results for Phase B

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

702–713,
708–732,
709–708,
737–738,
744–729,
718–731

702–713,
708–732,
709–708,
737–738,
744–729,
718–731

702–713,
708–732,
709–708,
737–738,
744–729,
718–731

702–713,
708–732,
709–708,
737–738,
744–729,
718–731

Min. Voltage 0.98467 0.98467 0.96854 0.96854 0.96854 0.96854
Phase Phase C Phase C Phase C Phase C Phase C Phase C

Bus No. Bus 740 Bus 740 Bus 735 Bus 735 Bus 735 Bus 735
Active power loss (kW) 60.5553 60.5553 74.2651 74.2651 74.2651 74.2651

Saifi
(failure/customer.year)

19.07760 19.07760 19.70010 19.70010 19.70010 19.70010

Saidi
(hour/customer.year)

36.0224 36.0224 29.7900 29.7900 29.7900 29.7900

Caidi (hr/cus.inter) 1.8882 1.8882 1.5122 1.5122 1.5122 1.5122
Aens (MW

hour/customer.year)
0.025239 0.025239 0.020875 0.020875 0.020875 0.020875

Asai (p.u.) 0.995888 0.995888 0.996599 0.996599 0.996599 0.996599
Eens (MW hr/yr) 23.0178 23.0178 19.0385 19.0385 19.0385 19.0385

Table 14: Customer Oriented Reliability Index (CORI) calculation results for Phase C

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Tie-switches 701–724,

718–731,
725–741,
732–737,
729–732,
712–729

701–724,
718–731,
725–741,
732–737,
729–732,
712–729

704–720,
708–732,
713–704,
733–734,
737–738,
744–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

704–720,
708–732,
730–709,
733–734,
737–738,
744–729

704–720,
708–732,
713–704,
733–734,
737–738,
744–729

Min. Voltage 0.98467 0.98467 0.97163 0.97163 0.97163 0.97163
Phase Phase C Phase C Phase C Phase C Phase C Phase C

Bus No. Bus 740 Bus 740 Bus 735 Bus 735 Bus 735 Bus 735
Active power loss (kW) 60.5553 60.5553 61.7678 61.5734 61.5734 61.7678

Saifi
(failure/customer.year)

19.08911 19.08911 19.74711 19.76831 19.76831 19.74711

Saidi
(hour/customer.year)

34.5592 34.5592 31.1383 31.1383 31.1383 31.1383

Caidi (hr/cus.inter) 1.8104 1.8104 1.5769 1.5752 1.5752 1.5769

(Continued)
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Table 14 (continued)

Initial case Fitness function

SAIFI SAIDI CAIDI ASAI AENS
Aens (MW

hour/customer.year)
0.024242 0.024242 0.021841 0.021841 0.021841 0.021841

Asai (p.u.) 0.996055 0.996055 0.996445 0.996445 0.996445 0.996445
Eens (MW hr/yr) 37.7199 37.7199 33.9853 33.9853 33.9853 33.9853

These values show a more consistent pattern across phases than in the LORI results. SAIDI values in the
CORI analysis follow a similar trend to the LORI results, with Phase B showing the lowest average outage
duration. Table 12 reports a SAIDI of 36.7064 hours/customer/year for Phase A, Table 13 shows 29.7900 for
Phase B, and Table 14 indicates 31.1383 for Phase C. The CORI method also demonstrates improvements in
ASAI, with all phases achieving values above 0.995, consistent with the LORI results and indicating high
system reliability from a customer perspective.

Specifically, Tables 12–14 report ASAI values of 0.995810, 0.996599, and 0.996445 for Phases A, B, and C,
respectively. An interesting observation is the variation in power losses between LORI and CORI methods,
particularly for Phase B. Table 13 shows that CORI yields higher losses (74.2651 kW) for Phase B compared
to the LORI result (72.2751 kW) in Table 10. This difference underscores the trade-offs between line-oriented
and customer-oriented optimization approaches.

An examination of the tables between Table 9 and Table 14 reveals that the SAIFI value remains
unchanged even after optimization. This outcome is primarily due to the fact that the failure rate used in
SAIFI calculations is directly proportional to the length of the line. Shorter branches exhibit lower failure
rates, while longer branches are associated with higher failure rates. Given that the six new tie switches added
to the distribution network are longer than the longest branches in the 37-bus system, this result is anticipated.

In conclusion, the phase-specific LORI and CORI analyses provide valuable insights into the complex
interplay between network topology, power losses, and reliability indices in the 37-bus distribution system.
The results presented in Tables 9 and Table 14 highlight the importance of considering both line-oriented
and customer-oriented perspectives in distribution system optimization, as well as the potential benefits of
phase-specific optimization strategies. Future research could explore the integration of these approaches to
develop more comprehensive optimization methodologies for distribution systems.

5.4 Scenario IV: Pareto-Front Optimization for Power Distribution: A Multi-Objective Approach
This scenario implements a multi-objective optimization framework using the Pareto-Front approach

to simultaneously optimize three critical performance indices in power distribution systems: Active Power
Loss (Pactive

loss ), Mean Current Unbalance Index (CUImean), and System Average Interruption Duration Index
(SAIDI). The objectives are: (1) to find optimal trade-offs between these competing performance metrics,
(2) to identify and analyze the relationships between system efficiency, unbalance conditions, and reliability,
and (3) to provide decision-makers with a comprehensive set of non-dominated solutions. The Pareto-Front
method is particularly suitable for this multi-objective optimization problem as it allows for the exploration
of trade-offs between conflicting objectives without predefined weights. In this context, the Pareto front
represents the set of non-dominated solutions where an improvement in one objective cannot be achieved
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without degrading at least one of the other objectives. The optimization process seeks to identify the Pareto-
optimal solutions that offer the best compromise among these three critical aspects of power distribution
system performance.

• Minimization of active power loss
• Reduction of mean current unbalance index
• Improvement of SAIDI

The Pareto front approach provides decision-makers with a comprehensive view of the solution space,
enabling them to select the most appropriate configuration based on specific system requirements and
priorities. The Pareto front approach acknowledges the inherent complexity of power systems, where
enhancements in one aspect may come at the expense of another, and offers a robust framework for
identifying the optimal operating points that achieve the best compromise among the multiple, often
conflicting, objectives. The optimization algorithm iteratively generates and evaluates potential solutions,
progressively constructing the Pareto front.

Each point on the Pareto front represents a unique system configuration with its corresponding values
for active power loss, mean current unbalance index, and SAIDI. This approach allows for a nuanced
understanding of the system’s behavior and the identification of optimal operating points that balance
efficiency, power quality, and reliability. The 3D Pareto front graph obtained in this study provides a visual
representation of the relationship between these three performance parameters and the optimal solution set,
as shown in Fig. 25. This graphical illustration depicts the balance between the system’s efficiency, power
quality, and reliability, enabling decision-makers to select the most appropriate configuration based on the
specific requirements and priorities of the power distribution network. This holistic perspective provided by
the Pareto front visualization allows for a deeper understanding of the system’s behavior and facilitates the
decision-making process for distribution system operators.

Figure 25: Pareto front result
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5.5 Analysis of Meta-Heuristic Algorithms for Distribution Network Reconfiguration
This study evaluates the performance of five meta-heuristic algorithms in solving the distribution

network reconfiguration problem, focusing on minimizing power loss. The algorithms under consideration
are bonobo optimizer (BO) [33], mountain gazelle optimizer (MGO) [34], hippopotamus optimization algo-
rithm (HO) [35], weighted mean optimizer (INFO) [36], and Runge-Kutta optimizer (RUN) [37]. Table 15
provides a comprehensive overview of the algorithms’ performance. The global optimum for this problem is
established at 51.82044 kW. Notably, BO, MGO, INFO, and RUN all achieve this optimum in their best-case
scenarios, demonstrating their capability to find the optimal solution. However, BO outperforms the others
in terms of consistency, reaching the global optimum in 15% of the runs, followed by INFO at 11%. This
observation indicates that BO achieves a more efficacious equilibrium between exploration and exploitation
within the solution space. The worst-case scenarios are also crucial in assessing algorithm robustness. BO and
INFO show the least deviation from the optimum in their worst cases (57.7455 and 56.7846 kW, respectively),
indicating better worst-case performance compared to the other algorithms.

Table 15: Performance metrics of Meta-heuristic algorithms for distribution network reconfiguration

Algorithms
name

Best case Worst case Average Switch status
(Best-Case)

Switch status
(Worst-Case)

Global
success rate

Pmin
loss (kW) Pmax

loss (kW) Pavg
loss (kW) Pmin

loss (kW) Pmax
loss (kW) %

BO 51.82044 57.7455 53.2139 704–720, 708–732,
709–731, 737–738,
744–729,732–737

708–732, 709–731,
737–738, 744–729,
701–724, 732–737

15/100

MGO 51.82044 62.7957 55.4043 704–720, 708–732,
709–731, 737–738,
744–729,732–737

704–720, 705–712,
708–732, 711–741,
714–718, 734–737

5/100

HO 52.1779 67.1331 57.9115 704–720, 708–732,
709–731, 737–738,
712–729, 732–737

702–713, 705–712,
708–732, 709–731,
738–711, 744–729

0/100

INFO 51.82044 56.7846 53.2440 704–720, 708–732,
709–731, 737–738,
744–729,732–737

707–724, 708–732,
711–741, 744–729,
718–731, 732–737

11/100

RUN 51.82044 65.6247 56.6648 704–720, 708–732,
709–731, 737–738,
744–729,732–737

705–712, 706–725,
708–732, 709–731,
720–707, 734–737

1/100

Table 16 offers insight into the convergence behavior of the algorithms. Although this information is
supplementary, it uncovers notable patterns that warrant attention. BO, RUN and MGO consistently use the
maximum allowed iterations (200) to find their best solutions, suggesting they might benefit from extended
run times. In contrast, HO and INFO show more variable iteration counts, with minimums of 1 and 2
respectively, indicating they sometimes converge very quickly but may also get stuck in local optima.

The statistical indicators in Table 17 provide a deeper understanding of algorithm consistency and
accuracy. This table provides a comprehensive statistical analysis of the algorithms, including mean absolute
error (MAE), mean squared error (MSE), median, mode, relative error percentage (RE %), standard deviation
(STD), standard error, and variance. BO demonstrates the best overall statistical performance with the lowest
standard deviation (1.2193), standard error (0.1219), and percentage relative error (2.5980%). This is followed
closely by INFO, which shows similar, though slightly inferior, statistics. These results suggest that BO and
INFO are the most consistent and accurate among the tested algorithms.
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Table 16: Iteration counts for achieving minimum power loss

Algorithms name Number of iteration for Pmin
loss (kW)

Maximum Minimum Average
BO 200 50 145.39

MGO 200 40 154.07
HO 196 1 57.59

INFO 195 2 130.20
RUN 200 53 153.61

Table 17: Statistical performance indicators of meta-heuristic algorithms in network reconfiguration

Algorithms
name

STD(σ) Standard error RE% MAE MSE Median Mode Variance

BO 1.2193 0.1219 2.5980 1.3825 3.3830 53.0037 51.8204 1.4866
MGO 2.2099 0.2210 6.4488 3.5729 17.6006 55.2074 51.8204 4.8838
HO 2.7261 0.2726 10.4989 6.0801 44.3245 57.5704 54.1952 7.4314

INFO 1.2904 0.1290 2.6531 1.4126 3.6440 52.9446 51.8204 1.6651
RUN 2.9922 0.2992 8.5298 4.8334 32.2251 56.3442 56.3494 8.9530

The mean absolute error and mean squared error further corroborate this finding, with BO and INFO
showing significantly lower error rates compared to the other algorithms. This indicates their solutions are,
on average, closer to the global optimum. Table 18 elucidates the computational efficiency of the algorithms.
Notably, although the BO algorithm demonstrates superior performance in terms of solution quality and
consistency, it does not exhibit the highest computational speed. MGO demonstrates the lowest average
runtime (30.84 s), followed by INFO (42.33 s). BO has the highest average runtime (105.48 s), which might
be a consideration in time-sensitive applications. However, it’s important to note that BO’s longer runtime is
offset by its superior solution quality and consistency. In many optimization scenarios, especially in power
systems where the cost implications of suboptimal solutions can be significant, the additional computational
time may be justified by the improved results.

Table 18: Computational efficiency comparison of meta-heuristic algorithms

Algorithms name Duration (seconds) Outliers no.

Highest Lowest Mean Median
BO 146.8154 26.8617 105.4786 110.0962 5

MGO 66.7358 9.8262 30.8430 28.6601 4
HO 138.6647 59.3236 94.8392 93.8213 1

INFO 67.4694 17.9536 42.3269 42.0855 0
RUN 111.3364 4.5898 48.0112 47.5680 0
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Fig. 26 depicts the computational efficiency comparison of the five meta-heuristic algorithms investi-
gated in the distribution network reconfiguration problem. The graph shows the elapsed time in seconds
required for each algorithm to complete its optimization process. The box plots provide a visual representa-
tion of the statistical distribution of the execution times for each algorithm. The central line within each box
represents the median value, while the bottom and top of the boxes indicate the 25th and 75th percentiles,
respectively. The whiskers extend to the minimum and maximum values, excluding any outliers, which are
plotted as individual points.

Figure 26: Elapsed time comparison of meta-heuristic algorithms

The figure clearly demonstrates that the MGO algorithm has the lowest average execution time, with
a median value of around 28.66 s. This is followed by the INFO algorithm, which has a median runtime
of approximately 42.09 s. In contrast, the BO algorithm exhibits the highest average execution time,
with a median value of 110.10 s. The presence of outliers in the BO, MGO, and HO algorithms suggests
that, under certain conditions, these methods may require significantly more time to converge compared
to their typical performance. The absence of outliers in the INFO and RUN algorithms indicates more
consistent computational efficiency across the tested instances. The trade-off between solution quality and
computational speed is an important consideration when selecting the most appropriate algorithm for a
given distribution network reconfiguration problem. The insights provided by Fig. 26 can help researchers
and practitioners make informed decisions based on their specific requirements and constraints.

Based on this comprehensive analysis, the BO algorithm emerges as the most promising approach for
this distribution network reconfiguration problem. It consistently achieves the global optimum, demon-
strates the highest success rate, and shows the best statistical performance in terms of consistency and
accuracy. While it does require more computational time, the quality of its solutions justifies this trade-off
in most practical scenarios. The INFO algorithm also shows promise, often performing second-best to BO
across various metrics. In situtions where computational speed is a critical factor, INFO might be considered
as an alternative, offering a balance between solution quality and runtime efficiency. Future work could focus
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on hybrid approaches that combine the strengths of BO and INFO, potentially leading to even more robust
and efficient optimization techniques for distribution network reconfiguration.

6 Conclusion
In conclusion, this study provides a comprehensive analysis of reconfiguration in unbalanced three-

phase PDNs by focusing on the 37-bus test system under multiple scenarios. Through a multi-objective
optimization approach, the research effectively addresses key challenges in unbalanced PDNs, including
active power loss reduction, voltage and current imbalance minimization, voltage profile improvement and
enhancement of network reliability. This study presents practical strategies for developing more reliable,
efficient, and sustainable energy systems, taking into account the unbalanced structure of PDNs. It is based
on four different scenarios.

In Scenario I, it is demonstrated that significant improvements in grid efficiency can be achieved by
minimizing active power losses and optimizing average voltage profiles. The post-reconfiguration analysis
reveals a substantial reduction in active power loss from 60.56 to 51.82 kW, representing a 14.4% improvement
in system efficiency.

In Scenario II, current and voltage imbalance index values are minimized to reduce the negative impacts
of unbalanced loads, which is a critical problem in modern distribution systems. The implementation
achieved remarkable results, reducing the mean CUI from 40.37% to 26.60%, with the number of buses
exceeding the 30% CUI threshold decreasing from 14 to 8. Similarly, the mean VUI showed significant
improvement, decreasing from 0.938 to 0.697, while the maximum VUI was reduced from 1.376 at bus-724
to 1.026 at bus-701, demonstrating enhanced voltage stability across the network.

In Scenario III, a comprehensive reliability index calculation is conducted for 3-phase unbalanced PDNs
using Line-Oriented Reliability Index (LORI) and Customer-Oriented Reliability Index (CORI) approaches.
The LORI analysis reveals significant phase-dependent improvements in reliability indices, particularly
in SAIDI values, which improved from 42.49 to 35.78 hours/customer/year for Phase A, 35.17 to 28.94
hours/customer/year for Phase B, and 33.65 to 30.23 hours/customer/year for Phase C.

In Scenario IV, a multi-objective optimization approach is applied to simultaneously address power
loss, current instability, and reliability (SAIDI), and balanced improvements are achieved between these
conflicting criteria.

Advanced meta-heuristic algorithms such as the Bonobo Optimizer, Mountain Gazelle Optimizer,
Hippopotamus Optimization Algorithm, Weighted Mean Optimizer, and Runge-Kutta Optimizer have
been applied to solve the reconfiguration problem in three-phase unbalanced 37-bus PDNs, and their
performances have been compared. The algorithm that emerged as the most effective in providing solutions
to the problems discussed in this paper is the BO. As a result, in this study, considering the complexity of
the three-phase 37-bus unbalanced PDN system, optimization has been performed using different meta-
heuristic algorithms and an important contribution has been made for more efficient, reliable and sustainable
energy systems.
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Abbreviations
AENS Average Energy Not Supplied
ASAI Average Service Availability Index
B/F LF Backward/forward load flow
BO Bonobo optimizer
BPSO Binary particle swarm optimization
CAIDI Customer average interruption duration index
CORI Customer oriented reliability index
CSFSA Chaotic stochastic fractal search algorithm
CSGA Chaotic search group algorithm
CUI Current unbalance index
EMA Exchange market algorithm
EO Equilibrium optimizer
GD Generational distance
GWO Grey wolf optimizer
HO Hippopotamus optimization algorithm
IHSA Improved harmony search algorithm
INFO Weighted mean optimizer
LLF Linear load flow
LORI Line oriented reliability index
MFO Moth flame optimizer
MGO Mountain gazelle optimizer
MILP Mix integer linear programming
NA Not applicable
NP Negative phase
N-R LF Newton-Raphson load flow
Open-DSS Open distribution system simulator
PDN Power distribution networks
PP Positive phase
RL Reinforcement learning
RUN Runge-Kutta optimizer
SAIDI System average interruption duration index
SAIFI System average interruption frequency index
SILS Smart iterated local search
SMA Slime mould algorithm
SSs Sectional switches
TSs Tie-switches
UPDN Unbalanced power distribution networks
VSI Voltage stability index
VUI Voltage unbalance index
WGA Wild goats’ algorithm
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