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ABSTRACT: Streptococcus suis (S. suis) is a major disease impacting pig farming globally. It can also be transferred to
humans by eating raw pork. A comprehensive study was recently carried out to determine the indices through multiple
geographic regions in China. Methods: The well-posed theorems were employed to conduct a thorough analysis of the
model’s feasible features, including positivity, boundedness equilibria, reproduction number, and parameter sensitivity.
Stochastic Euler, Runge Kutta, and Euler Maruyama are some of the numerical techniques used to replicate the behavior
of the streptococcus suis infection in the pig population. However, the dynamic qualities of the suggested model
cannot be restored using these techniques. Results: For the stochastic delay differential equations of the model, the
non-standard finite difference approach in the sense of stochasticity is developed to avoid several problems such as
negativity, unboundedness, inconsistency, and instability of the findings. Results from traditional stochastic methods
either converge conditionally or diverge over time. The stochastic non-negative step size convergence nonstandard finite
difference (NSFD) method unconditionally converges to the model’s true states. Conclusions: This study improves our
understanding of the dynamics of streptococcus suis infection using versions of stochastic with delay approaches and
opens up new avenues for the study of cognitive processes and neuronal analysis. The plotted interaction behaviour and
new solution comparison profiles.

KEYWORDS: Streptococcus suis disease model; stochastic delay differential equations (SDDEs); existence and unique-
ness; Lyapunov function; stability results; reproduction number; computational methods

1 Introduction
In [1], the authors provide a mathematical model for streptococcus suis infection in the pig population.

The technique used to evaluate the model is beneficial for overcoming the disease. In [2], the authors
constructed a factual model to regulate model specifications in several antibiotic ramifications various
perceptions, and instructions of infection to resist streptococcus suis. In [3], the authors studied separately
from recently discovered streptococcus suis species. In [4], the author’s presence of streptococcus suis

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.061635
https://www.techscience.com/doi/10.32604/cmes.2025.061635
mailto:ali.raza@uevora.pt
mailto:ali@phs.uchenab.edu.pk
mailto:efadhal@kfu.edu.sa


450 Comput Model Eng Sci. 2025;143(1)

illness in seedling pigs was linked to pigs that performed averagely and had a sow effect rather than any
notable disease traits. In [5], the authors’ enhanced infection was only seen in the upper respiratory tract
in this investigation. We used two separate models to assess the variations in streptococcus suis disease.
In [6], the authors provide more convincing evidence for the beneficial effects of the drug vs. streptococcus
suis disease by elucidating the underlying molecular process. In [7], the authors evaluate the effect of
implementing an autogenous vaccination program on the emergence of illnesses linked to streptococcus
suis in natural environments as a challenging undertaking. In [8], the authors illustrate that the survival of
other streptococcus suis pathotypes in porcine blood is also restricted by antibody-mediated, as evidenced
by the fact that the bacterial surface was usually substantially greater following development in standard
piglets’ plasma than following incubation in serum obtained before any colostrum adoption. In [9], the
authors are shown to be the most effective solvent for a substance called separation by ultrasound-assisted
extraction (UAE), and the response surface methodology (RSM) framework accurately represented the
anticipated optimization of Emirati. In [10], the authors discovered during the streptococcus suis-2 disease,
vimentin increased lung damage, neutrophil counts, and the production of proinflammatory cytokines and
chemokines in the lungs of pigs and swine tracheal epithelial cells (STEC). In [11], the authors illustrate
how the host-defense peptide cathelicidins are avoided by the Streptococcus suis pepo protease, which
affects the pathophysiology of Streptococcus suis. It was discovered that Pepo cleaves the anti-Streptococcus
suis cathelicidins, mouse cathelicidin mouse and human cathelicidin. In [12], the authors present the
mathematical framework of climate influence on Streptococcus suis infection in pig-human populations
generally. In [13], the authors developed a fractional-order mathematical framework relying on fractional
derivative concepts. In [14], the authors’ investigation is based on the hypotheses of further studies in this
domain, especially utilizing both experimental and real-world data. The model suggested that batch-level
isolation might cause a likelihood of Streptococcus suis incidence in the facility. In [15], the authors studied
that Streptococcus suis is a human pathogen that is frequently responsible for meningitis in Asian nations
that consume pork. In [16], the authors provide an exclusive preventative option accessible to pig breeders
as a possibility to medicines for controlling the Streptococcus suis infection. In [17], the authors determine
that Streptococcus suis strain extracted from an appropriate pig tonsil is aggressive and possesses multiple
mechanisms that encourage niche conflict in pig tonsil. In [18], the authors create a computational model
of Streptococcus suis infection in a pig community. The approach employed to analyze the model is useful
in conquering the illness. In [19], the authors examine blood cortisol levels as a distress readout metric
and buprenorphine therapy as a refining measure in a novel pig Streptococcus suis disease model. In [20],
the authors created a scientific simulation to control model parameters in several antibiotic implications,
different perspectives on infection, and guidelines for resisting Streptococcus suis. In [21], the author explores
the use of Stochastic Differential Equations (SDEs) in applications of sciences and many more. In [22],
the authors studied the existence and approximate controllability of the Hilfer fractional neutral stochastic
hemivariational inequality with the Rosenblatt process. Stochastic or probabilistic components are included
in a mathematical model of Streptococcus suis infection dissemination by numerical simulation and analysis,
with an emphasis on accounting for uncertainty in disease transmission. Public health efforts for disease
control and prevention are informed by this kind of modeling, which provides insights into how the illness
could spread under various circumstances.

The main key point to study is the structure-preserving and dynamical analysis of the Streptococcus suis
disease model. The fundamental properties of the model like positivity, boundedness, and local and global
stabilities are studied rigorously. The authors used well-known methods like Euler Maruyama, stochastic
Euler, and stochastic Runge Kutta for the computational analysis and made a comparison analysis with
the proposed method like nonstandard finite difference in the sense of stochastic. The Nonstandard Finite
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Difference (NSFD) method gives a guarantee of Structure-preserving properties of the model like positivity,
boundedness, and dynamical consistency of the solution instead of other standard methods.

The paper is organized as follows: An overview of Streptococcus suis infection-like conditions and
a thorough assessment of the literature is provided in Section 1. Building the delayed model and the
ensuing mathematical analysis are the focus of Section 2. In Section 3, the local and global levels of the
model’s stability, reproduction number, and equilibria are examined. The sensitivity analysis of the model’s
parameters is covered in Section 4. The stochastic conceptualization phase is presented in Section 5. The
numerical approach of the NSFD technique and numerical simulations and the presentation of the results
are the explicit focus of Section 6. Final opinions provide a conclusive overview of the work under Section 7.

2 Model Formulation
This section presents the delay model formulation of infection spread by pigs and humans. Four

classifications were used to categorize the pig population: susceptible class Sp (t), infectious class Ip (t),
quarantine class Qp (t), and recovered class Rp (t). Because Streptococcus Suis may spread from pig to
people, the model includes the susceptible human class Sh (t), infectious human class Ih (t), and recovered
class Rh (t). System (1)–(7) defines the SIQR-SIR model diagram for people and pigs, as shown in Fig. 1.

dSp (t)
dt

= Λp − MβSp (t − τ) Ip (t − τ) e−bτ − bSp (t) t ≥ 0, τ < t (1)

dIp (t)
dt

= MβSp (t − τ) Ip (t − τ) e−bτ − (δ + m + b) Ip (t) t ≥ 0, τ < t (2)

dQp (t)
dt

= δIp (t) − (ε + m + b)Qp (t) t ≥ 0 (3)

dRp (t)
dt

= εQp (t) − bRp (t) t ≥ 0 (4)

dSh (t)
dt

= Λh − γSh (t − τ) Ip (t − τ) e−μτ − μSh (t) t ≥ 0, τ < t (5)

dIh (t)
dt

= γSh (t − τ) Ip (t − τ) e−μτ − (α + μ + β2) Ih (t) t ≥ 0, τ < t (6)

dRh (t)
dt

= β2Ih (t) − μRh (t) t ≥ 0 (7)

Figure 1: SIQR-SIR model diagram for people and pigs [13]
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By Sp (0) ≥ 0, Ip (0) ≥ 0, Qp (0) ≥ 0, Rp (0) ≥ 0, Sh (0) ≥ 0, Ih (0) ≥ 0, Rh (0) ≥ 0 initial conditions.
The pig model attribute can be expressed as follows: β is the rate of transmission, M is the relative

humidity; m is the disease-induced pig death rate; δ is the rate from infectious class to quarantine class in
pigs; ε is the pig recovered rate; μ is the human natural death rate, γ is the transmission rate from infected
pig to human, α is the disease death rate, and β2 is the human recovery rate.

3 Model Analysis
This section examines the delay model feasible region, which carries biological significance as the sug-

gested model takes into account. Consider every parameter and variable in the delay model is non-negative.
Next, the model’s equilibria and the fundamental reproduction number are determined. Furthermore, we
investigate each equilibrium at locally and globally stable.

3.1 Feasible Region
The feasible region of the system (1)–(7) is shown

L = {(Sp, Ip, Qp, Rp, Sh, Ih, Rh) ∈ R+7; N ≤ Λp + Λh

B
}

Theorem 1: The solution of the system (1)–(7) is positive in the feasible region.
Proof: Consider the system (1)–(7), we have
d Sp

d t ∣Sp=0
= Λp > 0, d Ip

d t ∣Ip=0
= MβSp (t) Ip (t) e−bτ > 0, d Qp

d t ∣
Qp=0

= δIp (t) > 0, d Rp

d t ∣Rp=0
=

εQp (t) > 0, d Sh

d t ∣Sh=0
= Λh > 0, d Ih

d t ∣Ih=0
= γSh (t) Ip (t) e−μτ > 0, d Rh

d t ∣Rh=0
= β2Ih (t) > 0.

Hence, system (1)–(7) has a positive solution with the initial condition in the feasible region. ◻
Theorem 2: The solution of the model (1)–(7) is bounded in the feasible region.
Proof: The total number of people and pigs may be written as

N (t) = Sp (t) + Ip (t) + Qp (t) + Rp (t) + Sh (t) + Ih (t) + Rh (t)
dN (t)

dt
= dSp

dt
+ dIp

dt
+ dQp

dt
+ dRp

dt
+ dSh

dt
+ dIh

dt
+ dRh

dt
dN (t)

dt
≤ Λp + Λh −BN (t)

dN (t)
dt

+BN (t) ≤ Λp + Λh

Which is a linear differential equation

N (t) ≤ Λp + Λh

B
+ (N (0) − Λp + Λh

B
) e−Bt

Using Grown’s inequality
lim
t→∞

SupN (t) ≤ Λp+Λh

B as desired. ◻

3.2 Model Equilibria and Reproduction Number
This section includes two types of model equilibria for Streptococcus Suis Equilibrium.
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Streptococcus Suis Free Equilibrium = SSFE =D
0 = (S0

p, I0
p, Q0

p, R0
p, S0

h
, I0
h

, R0
h
) = (Λp

b , 0, 0, 0, Λh

μ , .
0, 0)

Streptococcus Suis Endemic Equilibrium = SSEE =D
∗ = (S∗p, I∗p, Q∗p, R∗p, S∗h, I∗h, R∗h)

S∗p = (δ +m+ b)
Mβe−bτ , I∗p = ΛpMβe−bτ−b(δ +m+ b)

(δ +m+ b)Mβe−bτ , Q∗p = δ
(ε+m+b) I∗p, R∗p = εδ

b(ε+m+b) I∗p, S∗h = Λh

γI∗pe−μτ−μ , I∗h =
γΛh I∗pe−μτ

(γI∗pe−μτ−μ)(α+μ+β2)
, R∗h = β2 γΛh I∗pe−μτ

μ(γI∗pe−μτ−μ)(α+μ+β2)
.

The reproduction number is vastly essential in epidemiology. This determines the probability that the
illness exists in the community or not. If the reproduction is less than one, disease can be prevented in the
community; if the reproduction number is larger than one, disease exists in the community. Use the next-
generation approach to calculate the reproduction number. Thus, F is the transmission matrix, whileV is
the transition matrix.

F = [MβSpe−bτ 0
γShe−μτ 0 ] , V = [ (δ + m + b) 0

0 (α + μ + β2)
]

FV−1 = [MβSpe−bτ 0
γShe−μτ 0 ]

⎡⎢⎢⎢⎢⎢⎢⎣

1
(δ + m + b) 0

0 1
(α + μ + β2)

⎤⎥⎥⎥⎥⎥⎥⎦

FV−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

MβSpe−bτ

(δ + m + b) 0

γShe−μτ

(α + μ + β2)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

The largest eigenvalue of the matrix called the spectral radius or reproduction number at Streptococcus
suis free equilibrium, follows as R0 = MβΛpe−bτ

b(δ +m+ b) .

3.3 Stability Analysis
We will demonstrate the following well-known result about local and global stability in both model

equilibrium points. Consider the function as follows:

A = Λp − MβSp (t) Ip (t) e−bτ − bSp (t)
B = MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)
C = δIp (t) − (ε + m + b)Qp (t)
D = εQp (t) − bRp (t)
E = Λh − γSh (t) Ip (t) e−μτ − μSh (t)
F = γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)
G = β2Ih (t) − μRh (t)

The Jacobian matrix has the following elements:
∂A

∂Sp
= −MβIpe−bτ − b, ∂A

∂Ip = −MβSpe−bτ , ∂A
∂Qp

= 0, ∂A
∂Rp

= 0, ∂A
∂Sh

= 0, ∂A
∂Ih

= 0, ∂A
∂Rh

= 0, ∂B
∂Sp

=
MβIpe−nτ , ∂B

∂Ip = MβSpe−bτ − (δ + m + b), ∂B
∂Qp

= 0, ∂B
∂Rp

= 0, ∂B
∂Sh

= 0, ∂B
∂Ih

= 0, ∂B
∂Rh

= 0, ∂C
∂Sp

= 0, ∂C
∂Ip = δ,

∂C
∂Qp

= −(ε + m + b), ∂C
∂Rp

= 0, ∂C
∂Sh

= 0, ∂C
∂Ih

= 0, ∂C
∂Rh

= 0, ∂D
∂Sp

= 0, ∂D
∂Ip = 0, ∂D

∂Qp
= ε, ∂D

∂Rp
= −n, ∂D

∂Sh
= 0, ∂D

∂Ih
=

0, ∂D
∂Rh

= 0, ∂E
∂Sp

= 0, ∂E
∂Ip = −γShe−μτ , ∂E

∂Qp
= 0, ∂E

∂Rp
= 0, ∂E

∂Sh
= −γIpe−μτ , ∂E

∂Ih
= 0, ∂E

∂Rh
= 0, ∂F

∂Sp
= 0, ∂F

∂Ip =
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γShe−μτ , ∂F
∂Qp

= 0, ∂F
∂Rp

= 0, ∂F
∂Sh

= γIpe−μτ , ∂F
∂Ih

= −(α + μ + β2), ∂F
∂Rh

= 0, ∂G
∂Sp

= 0, ∂G
∂Ip = 0, ∂G

∂Qp
= 0, ∂G

∂Rp
=

0, ∂G
∂Sh

= 0, ∂G
∂Ih

= β2, ∂G
∂Rh

= −μ,

J =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−MβIpe−bτ − b −MβSpe−bτ 0 0 0 0 0
MβIpe−bτ MβSpe−bτ − (δ + m + b) 0 0 0 0 0

0 δ −(ε + m + b) 0 0 0 0
0 0 ε −b 0 0 0
0 −γShe−μτ 0 0 −γIpe−μτ − μ 0 0
0 γShe−μτ 0 0 γIpe−μτ −(α + μ + β2) 0
0 0 0 0 0 β2 −μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Theorem 3: The Streptococcus Suis Free Equilibrium = SSFE =D
0 = (S0

p, I0
p, Q0

p, R0
p, S0

h
, I0
h

, R0
h
) =

(Λp

b , 0, 0, 0, Λh

μ , 0, 0) is locally asymptotical stable (LAS) if R0 < 1. Otherwise, the system is unstable at D0 if
R0 > 1.

Proof: For stability at D0 = (S0
p, I0

p, Q0
p, R0

p, S0
h

, I0
h

, R0
h
), the Jacobian matrix (8) becomes

J (D0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b −MβS0
pe−bτ 0 0 0 0 0

0 MβS0
pe−bτ − (δ + m + b) 0 0 0 0 0

0 δ −(ε + m + b) 0 0 0 0
0 0 ε −b 0 0 0
0 −γS0

h
e−μτ 0 0 −μ 0 0

0 γS0
h

e−μτ 0 0 0 −(α + μ + β2) 0
0 0 0 0 0 β2 −μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣J (D0) − λ∣ =
����������������������������������

−b − λ −MβS0
pe−bτ 0 0 0 0 0

0 MβS0
pe−bτ − (δ + m + b) − λ 0 0 0 0 0

0 δ −(ε + m + b) − λ 0 0 0 0
0 0 ε −b − λ 0 0 0
0 −γS0

h
e−μτ 0 0 −μ − λ 0 0

0 γS0
h

e−μτ 0 0 0 −(α + μ + β2) − λ 0
0 0 0 0 0 β2 −μ − λ

����������������������������������
λ1 = λ5 = −b, λ2 = λ4 = −μ, λ3 = −(α + μ + β2), λ6 = −(ε + m + b), λ7 = MβS0

pe−bτ − (δ + m + b)
λ7 = −(δ + m + b) (1 −R0)

Hence the streptococcus Suis free equilibrium of the given system (1)–(7) is stable in the sense of local
if R0 < 1. Else, if R0 > 1, then, D0 is unstable in the sense of local. ◻

Theorem 4: The Streptococcus Suis Endemic Equilibrium = SSEE =D
∗ = (S∗p, I∗p, Q∗p, R∗p, S∗h, I∗h, R∗h)

is Locally Asymptotical Stable (LAS) if R0 > 1.
Proof: Letting from (8), we get

J (D∗) =
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−MβI∗pe−bτ − b −MβS∗pe−bτ 0 0 0 0 0
MβI∗pe−bτ MβS∗pe−bτ − (δ + m + b) 0 0 0 0 0

0 δ −(ε + m + b) 0 0 0 0
0 0 ε −b 0 0 0
0 −γS∗he−μτ 0 0 −γI∗pe−μτ − μ 0 0
0 γS∗he−μτ 0 0 γI∗pe−μτ −(α + μ + β2) 0
0 0 0 0 0 β2 −μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For eigenvalue, consider ∣J − λI∣ = 0

λ1 = −μ, λ2 = −(α + μ + β2), λ3 = −γI∗pe−μτ − μ, λ4 = −b, λ5 = −(ε + m + b)

∣ −MβI∗pe−bτ − b − λ −MβS∗pe−bτ

MβI∗pe−bτ MβS∗pe−bτ − (δ + m + b) − λ ∣ = 0

[−MβI∗pe−bτ − b − λ] [MβS∗pe−bτ − (δ + m + b) − λ] + [MβS∗pe−bτ] [MβI∗pe−bτ] = 0
λ2 + [MβI∗pe−bτ + b − MβS∗pe−bτ + (δ + m + b)] λ + [MβS∗pe−bτ] [MβI∗pe−bτ] = 0
λ2 + a1 λ + ao = 0

a1 > 0, If MβI∗pe−bτ + b + (δ + m + b) > MβS∗pe−bτ . So, a1 , a0 > 0
So, by the Routh-Hurwitz Criterion for a 2nd-degree polynomial, the coefficient of the characteristic

equation is positive with the constraintR0 > 1. Hence the endemic equilibria (EE) of the given system (1)–(7)
are stable in the sense of locally. Else, if R0 < 1, then Routh Hurwitz’s condition for stability is violated. Thus,
EE is unstable in the sense of local. ◻

3.4 Global Stability Analysis
The stability of the Streptococcus Suis infection model is demonstrated by well-known outcomes in

following global sense.
Theorem 5: The Streptococcus Suis Free Equilibrium = SSFE =D

0 = (S0
p, I0

p, Q0
p, R0

p, S0
h

, I0
h

, R0
h
) =

(Λp

b , 0, 0, 0, Λh

μ , 0, 0) is globally asymptotical stable (GAS) if R0 < 1. Otherwise, the system (1)–(7) is unstable
at D0 if R0 > 1.

Proof: Define the Volterra Lyapunov function A∶L→ R defined as

L = [Sp − S0
p − S0

p log
Sp
S0
p

] + Ip + Qp + Rp + Sh + Ih + Rh

dL
dt

= [1 −
S0
p

Sp
] dSp

dt
+ dIp

dt
+ dQp

dt
+ dRp

dt
+ [1 −

S0
h

Sh
] dSh

dt
+ dIh

dt
+ dRh

dt
dL
dt

= [
Sp − S0

p

Sp
] [Λp − MβSp (t) Ip (t) e−bτ − bSp (t)] + [MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)]

+ [δIp (t) − (ε + m + b)Qp (t)] + [εQp (t) − bRp (t)]

+ [1 −
S0
h

Sh
] [Λh − γSh (t) Ip (t) e−μτ − μSh (t)] + [γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)]

+ [β2Ih (t) − μRh (t)]
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dL
dt

≤ −Λp

(Sp − S0
p)

2

SpS0
p

− (m + b) Ip [1 − MβSpe−bτ

(m + b) ] − (m + b)Qp − bRp − Λh

(Sh − S0
h
)2

ShS0
h

− (α + μ) Ih (t) [1 − γSh (t) e−μτ

(α + μ) ] − μRh (t)

This implies that dL
d t ≤ 0 if R0 < 1 and dL

d t = 0 if Sp = S0
p, Sh = S0

h
, Ip = Qp = Rp = Ih = Rh = 0. There-

fore, D0 is globally asymptotically stable. ◻
Theorem 6: The Streptococcus suis Endemic Equilibrium = SSEE =D

∗ = (S∗p, I∗p, Q∗p, R∗p, S∗h, I∗h, R∗h)
is Globally Asymptotical Stable (GAS) if R0 > 1.

Proof: Define the Volterra Lyapunov function Z∶L→ R defined as

Z = k1 (Sp − S∗p − S∗p ln(Sp
S∗p

)) + k2 (Ip − I∗p − I∗p ln( Ip
I∗p
))

+ k3 (Qp − Q∗p − Q∗p ln(Qp

Q∗p
)) + k4 (Rp − R∗p − R∗p ln(Rp

R∗p
))

+ k5 (Sh − S∗h − S∗h ln(Sh
S∗
h

)) + k6 (Ih − I∗h − I∗h ln( Ih
I∗
h

)) + k5 (Rh − R∗h − R∗h ln(Rh

R∗
h

))

Given positive constants ki(i = 1, 2, 3, 4, 5, 6, 7), we can express the following equation:

dZ
dt

= k1 [
Sp − S∗p

Sp
] dSp

dt
+ k2 [

Ip − I∗p
Ip

] dIp
dt

+ k3 [
Qp − Q∗p

Qp

] dQp

dt
+ k4 [

Rp − R∗p
Rp

] dRp

dt

+ k5 [
Sh − S∗h

Sh
] dSh

dt
+ k6 [

Ih − I∗h
Ih

] dIh
dt

+ k7 [
Rh − R∗h

Rh

] dRh

dt

dZ
dt

= −k1Λp

(Sp − S∗p)
2

SpS∗p
− k2MβSpe−nτ (Ip − I∗p)

2 − k3δIp
(Qp − Q∗p)

2

QpQ∗p
− k4εQp

(Rp − R∗p)
2

RpR∗p

− k5Λh

(Sh − S∗h)
2

ShS∗
h

− k6γShIpe−μτ (Ih − I∗h)
2

IhI∗
h

− k7β2Ih
(Rh − R∗h)

2

RhR∗
h

If we choose ki , where (i = 1, 2, 3, 4, 5, 6, 7)

dZ
dt

= −Λp

(Sp − S∗p)
2

SpS∗p
− MβSpe−bτ (Ip − I∗p)

2 − δIp
(Qp − Q∗p)

2

QpQ∗p
− εQp

(Rp − R∗p)
2

RpR∗p
− Λh

(Sh − S∗h)
2

ShS∗
h

− γShIpe−μτ (Ih − I∗h)
2

IhI∗
h

− β2Ih
(Rh − R∗h)

2

RhR∗
h

d Z
d t ≤ 0 for R0 > 1 and d Z

d t = 0 if and only if Sp = S∗p, Ip = I∗p, Qp = Q∗p, Rp = R∗p, Sh = S∗h, Ih = I∗h, Rh

= R∗h. Hence by Lasalle’s invariance principle D∗ is globally asymptotical stable. ◻
Theorem 7. The Streptococcus suis Free Equilibrium = SSFE =D

0 = (S0
p, I0

p, Q0
p, R0

p, S0
h

, I0
h

, R0
h
) =

(Λp

b , 0, 0, 0, Λh

μ , 0, 0) is globally asymptotical stable (GAS) if R0 < 1. Otherwise, the system (1)–(7) is unstable
at D0 if R0 > 1.



Comput Model Eng Sci. 2025;143(1) 457

Proof: Define the Volterra Lyapunov function Φ∶L→ R defined as

Φ′(Ip) =
1

Ip
dIp
dt

Φ′′ (Ip) =
1

Ip
d2Ip
dt2 − 1

I2
p

(dIp
dt

)
2

Φ′′ (Ip) =
1

Ip
(MβSpe−bτ − (δ + m + b))2

Ip − 1
I2
p

(MβSpIpe−bτ − (δ + m + b) Ip)
2

Φ′′ (Ip) = (MβSpe−bτ − (δ + m + b))2 − (MβSpe−bτ − (δ + m + b))2

Φ′′ (Ip) ≤ 0 i f R0 < 1.

Thus, the system (1)–(7) is globally asymptotically stable at Streptococcus Suis Free Equilibrium. ◻
Theorem 8. The Streptococcus Suis Endemic Equilibrium = SSEE =D

∗ = (S∗p, I∗p, Q∗p, R∗p, S∗h, I∗h, R∗h)
is Globally Asymptotical Stable (GAS) if R0 > 1.

Proof: Define the Volterra Lyapunov function V ∶L→ R defined as

dV
dt

= [1 −
S∗p
Sp

] dSp
dt

+ [1 −
I∗p
Ip
] dIp

dt
+ [1 −

Q∗p
Qp

] dQp

dt
+ [1 −

R∗p
Rp

] dRp

dt
+ [1 −

S∗h
Sh

] dSh
dt

+ [1 −
I∗h
Ih
] dIh

dt
+ [1 −

R∗h
Rh

] dRh

dt
d2V
dt2 =

S∗p
S2
p

(dSp
dt

)
2

+ (1 −
S∗p
Sp

) d2Sp
dt2 +

I∗p
I2
p

(dIp
dt

)
2

+ (1 −
I∗p
Ip
) d2Ip

dt2 +
Q∗p
Q2
p

(dQp

dt
)

2

+ (1 −
Q∗p
Qp

) d2Qp

dt2

+
R∗p
R2
p

(dRp

dt
)

2

+ (1 −
R∗p
Rp

) d2Rp

dt2 +
S∗h
S2
h

(dSh
dt

)
2
+ (1 −

S∗h
Sh

) d2Sh
dt2 +

I∗h
I2
h

(dIh
dt

)
2
+ (1 −

I∗h
Ih
) d2Ih

dt2

+
R∗h
R2
h

(dRh

dt
)

2
+ (1 −

R∗h
Rh

) d2Rh

dt2

d2V
dt2 = ((Λp)2 + (MβSp (t) Ip (t) e−bτ + bSp (t))2)

S∗p
S2
p

− (2 (Λp) (MβSp (t) Ip (t) e−bτ + bSp (t)))
S∗p
S2
p

+ ((Λp) (MβIp (t) e−bτ + b))
S∗p
Sp

− ((MβIp (t) e−bτ + b)2
Sp)

S∗p
Sp

+ ((MβIp (t) e−bτ + b)2
Sp)

− ((Λp) (MβIp (t) e−bτ + b)) + ((MβSp (t) Ip (t) e−bτ)2 + ((δ + m + b) Ip (t))2)
I∗p
I2
p

−

(2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t))
I∗p
I2
p

+ (2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t))
I∗p
Ip

− ((MβSp (t) Ip (t) e−bτ)2 + (δ + m + b)2 Ip (t))
I∗p
Ip

+ ((MβSp (t) Ip (t) e−bτ)2 + (δ + m + b)2

Ip (t)) − (2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t)) + ((δIp (t))2 + ((ε + m + b)Qp (t))2)
Q∗p
Q2
p

− (2 (δIp (t)) (ε + m + b)Qp (t))
Q∗p
Q2
p

+ ((δIp (t)) (ε + m + b))
Q∗p
Qp
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− ((ε + m + b)2 Qp (t))
Q∗p
Qp

+ ((ε + m + b)2 Qp (t)) − ((δIp (t)) (ε + m + b))

+ ((εQp (t))2 + (bRp (t))2)
R∗p
R2
p

− (2 (εQp (t)) (bRp (t)))
R∗p
R2
p

+ ((bεQp (t)))
R∗p
Rp

− b (bRp (t))
R∗p
Rp

+ b (bRp (t)) − ((bεQp (t)))

+ ((Λh)2 + (γSh (t) Ip (t) e−μτ + μSh (t))2)
S∗h
S2
h

− (2 (Λh) (γSh (t) Ip (t) e−μτ + μSh (t)))
S∗h
S2
h

+ ((Λh) (γIp (t) e−μτ + μ))
S∗h
Sh

− ((γIp (t) e−μτ + μ)2 Sh (t))
S∗h
Sh

+ ((γIp (t) e−μτ + μ)2 Sh (t))

− ((Λh) (γIp (t) e−μτ + μ)) + ((γSh (t) Ip (t) e−μτ)2 + ((α + μ + β2) Ih (t))2)
I∗h
I2
h

−

(2 (γSh (t) Ip (t) e−μτ) ((α + μ + β2) Ih (t)))
I∗h
I2
h

+ ((γSh (t) Ip (t) e−μτ) (α + μ + β2))
I∗h
Ih

− ((α + μ + β2)2 Ih (t))
I∗h
Ih

+ ((α + μ + β2)2 Ih (t)) − ((γSh (t) Ip (t) e−μτ) (α + μ + β2))

+ ((β2Ih (t))2 + ((μ)Rh (t))2)
R∗h
R2
h

− (2 (β2Ih (t)) ((μ)Rh (t)))
R∗h
R2
h

+ ((μβ2) Ih (t))
R∗h
Rh

− ((μ)2 Rh (t))
R∗h
Rh

+ ((μ)2 Rh (t)) − ((μβ2) Ih (t))

For simplification, we choose

d2V
dt2 = ψ1 − ψ2

ψ1 = ((Λp)2 + (MβSp (t) Ip (t) e−bτ + bSp (t))2)
S∗p
S2
p

+ ((Λp) (MβIp (t) e−bτ + b))
S∗p
Sp

+ ((MβIp (t) e−bτ + b)2
Sp) + ((MβSp (t) Ip (t) e−bτ)2 + ((δ + m + b) Ip (t))2)

I∗p
I2
p

+ (2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t))
I∗p
Ip

+ ((MβSp(t)Ip(t)e−bτ)2 + (δ + m + b)2Ip(t)) + ((δIp(t))2

+ ((ε + m + b)Qp(t))2)
Q∗p
Q2
p

+ ((δIp(t))(ε + m + b))
Q∗p
Qp

+ ((ε + m + b)2 Qp (t)) + ((εQp (t))2 + (bRp (t))2)
R∗p
R2
p

+ ((bεQp (t)))
R∗p
Rp

+ b (bRp (t)) + ((Λh)2 + (γSh (t) Ip (t) e−μτ + μSh (t))2)
S∗h
S2
h

+ ((Λh) (γIp (t) e−μτ + μ))
S∗h
Sh

+ ((γIp (t) e−μτ + μ)2 Sh (t))
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+ ((γSh (t) Ip (t) e−μτ)2 + ((α + μ + β2) Ih (t))2)
I∗h
I2
h

+ ((γSh (t) Ip (t) e−μτ) (α + μ + β2))
I∗h
Ih

+ ((α + μ + β2)2 Ih (t)) + ((β2Ih (t))2 + ((μ)Rh (t))2)
R∗h
R2
h

+ ((μβ2) Ih (t))
R∗h
Rh

+ ((μ)2 Rh (t)) .

ψ2 = (2 (Λp) (MβSp (t) Ip (t) e−bτ + bSp (t)))
S∗p
S2
p

+ ((MβIp (t) e−bτ + b)2
Sp)

S∗p
Sp

+ ((Λp) (MβIp (t) e−bτ + b)) + (2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t))
I∗p
I2
p

+ ((MβSp (t) Ip (t) e−bτ)2 + (δ + m + b)2 Ip (t))
I∗p
Ip

+ (2 (MβSp (t) Ip (t) e−bτ) (δ + m + b) Ip (t)) + (2 (δIp (t)) (ε + m + b)Qp (t))
Q∗p
Q2
p

+ ((ε + m + b)2 Qp (t))
Q∗p
Qp

+ ((δIp (t)) (ε + m + b))

+ (2 (εQp (t)) (bRp (t)))
R∗p
R2
p

+ b (bRp (t))
R∗p
Rp

+ ((bεQp (t))) + (2 (Λh) (γSh (t) Ip (t) e−μτ + μSh (t)))
S∗h
S2
h

+ ((γIp (t) e−μτ + μ)2 Sh (t))
S∗h
Sh

+ ((Λh) (γIp (t) e−μτ + μ))

+ (2 (γSh (t) Ip (t) e−μτ) ((α + μ + β2) Ih (t)))
I∗h
I2
h

+ ((α + μ + β2)2 Ih (t))
I∗h
Ih

+ ((γSh (t) Ip (t) e−μτ) (α + μ + β2))

+ (2 (β2Ih (t)) ((μ)Rh (t)))
R∗h
R2
h

+ ((μ)2 Rh (t))
R∗h
Rh

+ ((μβ2) Ih (t)) .

It can see that

ψ1 > ψ2, d2V
dt2 > 0

ψ1 < ψ2, d2V
dt2 < 0
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ψ1 = ψ2, d2V
dt2 = 0. ◻

4 Sensitivity Analysis
This section examined the streptococcus suis model’s sensitivity. Sensity analysis is a study of how

various factors related to input uncertainty may be attributed to the inconsistency of a mathematical model’s
output outcomes. We calculate the sensitivity of the reproduction number concerning the model’s parameter.
This technique provided the most sensitive measure for the reproduction number, which helped the infection
spread. The basic format for sensitivity is as follows:

D
R
p = p

R
× ∂R

∂p

where R depict the reproduction number while the p present the parameter of the reproduction.
UΛp

= Λp

R0
× ∂R0

∂Λp
= 1 > 0,UM = M

R0
× ∂R0

∂M = 1 > 0,Uβ = β
R0
× ∂R0

∂β = 1 > 0,Uδ = δ
R0
× ∂R0

∂δ = − 1
(δ +m+ b) <

0,Ub = b
R0
× ∂R0

∂b = − (δ+m+2b)
(δ +m+ b) < 0,Um = m

R0
× ∂R0

∂m = − 1
(δ +m+ b) < 0.

The values of sensitivity and signs of the model’s parameters are presented in Table 1.

Table 1: Sensitivity indices

Parameter Sensitivity indices Signs
Λp 1 Positive
M 1 Positive
β 1 Positive
δ −0.714285 Negative
b −0.714285 Negative
m −1.357 Negative

The most significant contributing aspect to the viral transmission phenomenon is human morality (b),
as seen in Fig. 2, which has a negative connection with the fundamental reproduction number (R0). With an
increase in the pig mortality rate, the fundamental reproduction number ratio loses value. It suggests that as
the number of afflicted pigs rises, so does the systemic infection level. This means that more research on the
pig’s natural mortality rate analysis can be done, and it will become clearer why fewer pigs need to be infected.
In pigs who have it, the most recent infectious virus is prevalent. “δ” represents the rate from infectious
class to quarantine class in pigs, also “m” is the disease-induced pig death rate has negative effects on the
reproduction number. On the other hand, there is a positive correlation between reproduction number and
recruitment rate “Λp”, the relative humidity rate “M” and transmission rate “β”. The positive relationship
shows that when the value of the parameter rises, so does the reproduction number. Consequently, it implies
that decreasing the value of “Λp”, “M”, and “β”, can reduce the possibility of losing transmitted yield.



Comput Model Eng Sci. 2025;143(1) 461

Figure 2: Analysis of the sensitive indices of reproduction number

5 Stochastic Formulation Phase 1
The Stochastic delayed differential equations (SDDEs) of the streptococcus suis model (1)–(7) may be

represented by the vectorA = [Sp (t), Ip (t), Qp (t), Rp (t), Sh (t), Ih (t), Rh (t)]T . We wish to compute
the variance E∗ [ΔA (ΔA)T] and the expectation E∗ [ΔA]. Table 2 lists the probable changes together with
the associated transition probability.

Ex pectetions = E∗ [ΔA] = ∑14
i=1 Pi (ΔA)i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λp − MβSp (t) Ip (t) e−bτ − bSp (t)
MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)

δIp (t) − (ε + m + b)Qp (t)
εQp (t) − bRp (t)

Λh − γSh (t) Ip (t) e−μτ − μSh (t)
γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)

β2Ih (t) − μRh (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δt

Variance = ∑14
i=1 Pi (ΔA)i [(ΔA)i]

T .

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 + P2 + P3 −P2 0 0 0 0 0
−P2 P2 + P4 + P5 −P4 0 0 0 0

0 −P4 P4 + P6 + P7 −P6 0 0 0
0 0 −P6 P6 + P8 0 0 0
0 0 0 0 P9 + P10 + P11 0 0
0 0 0 0 −P10 P10 + P12 + P13 −P13
0 0 0 0 0 −P13 P13 + P14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δt
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Drift = G (A, t) = E∗ [ΔA]
Δt

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λp − MβSp (t) Ip (t) e−bτ − bSp (t)
MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)

δIp (t) − (ε + m + b)Qp (t)
εQp (t) − bRp (t)

Λh − γSh (t) Ip (t) e−μτ − μSh (t)
γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)

β2Ih (t) − μRh (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δt (8)

Diffusion = H (A, t) =

$
%%&E∗ [ΔA (ΔA)T]

Δt
=

$
%%%%%%%%%%%%%%&

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 + P2 + P3 −P2 0 0 0 0 0
−P2 P2 + P4 + P5 −P4 0 0 0 0

0 −P4 P4 + P6 + P7 −P6 0 0 0
0 0 −P6 P6 + P8 0 0 0
0 0 0 0 P9 + P10 + P11 0 0
0 0 0 0 −P10 P10 + P12 + P13 −P13
0 0 0 0 0 −P13 P13 + P14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Table 2: Potential modifications to the model’s procedure

Transition Probabilities

(ΔA)1 = [ 1 0 0 0 0 0 0 ]T P1 = (Λp)Δt
(ΔA)2 = [−1 1 0 0 0 0 0 ]T P2 = (MβSp (t) Ip (t) e−bτ)Δt
(ΔA)3 = [−1 0 0 0 0 0 0 ]T P3 = (bSp (t))Δt
(ΔA)4 = [0 −1 1 0 0 0 0 ]T P4 = (δIp (t))Δt
(ΔA)5 = [0 −1 0 0 0 0 0 ]T P5 = ((m + b) Ip (t))Δt
(ΔA)6 = [0 0 −1 1 0 0 0 ]T P6 = (εQp (t))Δt
(ΔA)7 = [0 0 −1 0 0 0 0 ]T P7 = ((m + b)Qp (t))Δt
(ΔA)8 = [0 0 0 −1 0 0 0 ]T P8 = (bRp (t))Δt
(ΔA)9 = [0 0 0 0 1 0 0 ]T P9 = (Λh)Δt
(ΔA)10 = [0 0 0 0 −1 1 0 ]T P10 = (γSh (t) Ip (t) e−μτ)Δt
(ΔA)11 = [0 0 0 0 −1 0 0 ]T P11 = (μSh (t))Δt
(ΔA)12 = [0 0 0 0 0 −1 0 ]T P12 = ((α + μ) Ih (t))Δt
(ΔA)13 = [0 0 0 0 0 −1 1 ]T P13 = (β2Ih (t))Δt
(ΔA)14 = [0 0 0 0 0 0 −1 ]T P14 = (μRh (t))Δt
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Therefore, dA (t) = G (A, t) +H(A, t)dB (t).

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sp
Ip
Qp

Rp

Sh
Ip
Rh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λp − MβSp (t) Ip (t) e−bτ − bSp (t)
MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)

δIp (t) − (ε + m + b)Qp (t)
εQp (t) − bRp (t)

Λh − γSh (t) Ip (t) e−μτ − μSh (t)
γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)

β2Ih (t) − μRh (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dt+

$
%%%%%%%%%%%%%%&

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 + P2 + P3 −P2 0 0 0 0 0
−P2 P2 + P4 + P5 −P4 0 0 0 0

0 −P4 P4 + P6 + P7 −P6 0 0 0
0 0 −P6 P6 + P8 0 0 0
0 0 0 0 P9 + P10 + P11 0 0
0 0 0 0 −P10 P10 + P12 + P13 −P13
0 0 0 0 0 −P13 P13 + P14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dB(t)

(10)

By studying the relevant academic literature, the Euler Maruyama approach is employed to simulate the
results of Eq. (10). Following is an outline of the data that is shown in Table 2.

An+1 =An +G (An , t)Δt +H(An , t)dB(t) .
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sn+1
p

In+1
p

Qn+1
p

Rn+1
p

Sn+1
h

In+1
h

Rn+1
h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sn
p

In
p

Qn
p

Rn
p

Sn
h

In
h

Rn
h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λp − MβSp (t) Ip (t) e−bτ − bSp (t)
MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)

δIp (t) − (ε + m + b)Qp (t)
εQp (t) − bRp (t)

Λh − γSh (t) Ip (t) e−μτ − μSh (t)
γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)

β2Ih (t) − μRh (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δt +

$
%%%%%%%%%%%%%%&

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 + P2 + P3 −P2 0 0 0 0 0
−P2 P2 + P4 + P5 −P4 0 0 0 0

0 −P4 P4 + P6 + P7 −P6 0 0 0
0 0 −P6 P6 + P8 0 0 0
0 0 0 0 P9 + P10 + P11 0 0
0 0 0 0 −P10 P10 + P12 + P13 −P13

0 0 0 0 0 −P13 P13 + P14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ΔBn

where the discretization parameter is denoted by Δt.

5.1 Stochastic Formulation Phase 2
Create an uncertainty parameter for the dynamical system (1)–(7) by including Brownian motion.

dSp (t)
dt

= Λp − MβSp (t) Ip (t) e−bτ − bSp (t) + σ1Sp (t) dB (t)
dt

t ≥ 0, τ < t (11)
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dIp (t)
dt

= MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t) + σ2Ip (t) dB (t)
dt

t ≥ 0, τ < t (12)

dQp (t)
dt

= δIp (t) − (ε + m + b)Qp (t) + σ3Qp (t) dB (t)
dt

t ≥ 0 (13)

dRp (t)
dt

= εQp (t) − bRp (t) + σ4Rp (t) dB (t)
dt

t ≥ 0 (14)

dSh (t)
dt

= Λh − γSh (t) Ip (t) e−μτ − μSh (t) + σ5Sh (t) dB (t)
dt

t ≥ 0, τ < t (15)

dIh (t)
dt

= γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t) + σ6Ih (t) dB (t)
dt

t ≥ 0, τ < t (16)

dRh (t)
dt

= β2Ih (t) − μRh (t) + σ7Rh (t) dB (t)
dt

t ≥ 0 (17)

where σi = 1, 2, 3, 4, 5, 6, 7 denote the randomness of each compartment and B (t) indicates the Brown-
ian motion.

5.2 Fundamental Properties of the Stochastic Model
This part covers the analysis of the positivity and boundedness properties of the system (11)–(17).
Let us consider the vector as follows:

U (t) = (Sp (t), Ip (t), Qp (t), Rp (t)) and V (t) = (Sh (t), Ih (t), Rh (t))

and norm

∣U (t)∣ =
√

S2
p (t) + I2

p (t) + Q2
p (t) + R2

p (t) (18)

And

∣V (t)∣ =
√

S2
h
(t) + I2

h
(t) + R2

h
(t) (19)

Furthermore, let M3,1
1 (R4x (0,∞) ∶R+) and M3,1

2 (R3x (0,∞) ∶R+) represent the collection of all non-
negative functions V1 (U , t) and V2 (U , t) that are defined on R

4x (0,∞) consequently. Additionally, the
function is twice differentiable in U and V and once differentiable in it. We have established the differentiable
operator T1 and T2 that is linked to seven-dimensional stochastic delay differential equations (SDDEs).

dU (t) = H1 (U , t) dt + k1 (U , t)dB (t) (20)
dV (t) = H2 (V , t) dt + k2 (V , t)dB (t) (21)

As

T1 =
∂
∂t

+∑4
i=1 H1i (U , t) ∂

∂Ui
+ 1

2 ∑
4
i , j=1 k1

T (U , t) k1 (U , t) ∂2

∂Ui ∂U j

And

T2 =
∂
∂t

+∑3
i=1 H2i (V , t) ∂

∂Vi
+ 1

2 ∑
3
i , j=1 k2

T (V , t) k2 (V , t) ∂2

∂Vi ∂Vj
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If T1 and T2 acts on function U∗, V∗ ∈ M3,1
1 (R4x (0,∞) ∶R+) then we denote

T1U∗ (U , t) = U∗t (U , t) +U∗U (U , t)M1 (U , t) + 1
2

Trace (k1
T (U , t)U∗UU (U , t) k1 (U , t))

T2V∗ (V , t) = V∗t (V , t) + V∗V (V , t)M2 (V , t) + 1
2

Trace (k2
T (V , t)V∗V V (V , t) k2 (V , t))

where T is Transportation.
Theorem 9 Shows that for the system (11)–(17) and any given initial conditions

(Sp (0), Ip (0), Qp (0), Rp (0)) ∈ R4
+, and (Sh (0), Ih (0), Rh (0)) ∈ R3

+ there are unique solutions
(Sp (t), Ip (t), Qp (t), Rp (t)) and (Sh (t), Ih (t), Rh (t)) t ≥ 0. Furthermore, these solutions will always
remain in R

7
+ with a probability of one.

Proof. Given that all model parameters satisfy the local Lipschitz limitations. Thus, according to Ito’s
formula, the provided model has a positive solution locally on the interval [0, τe], and the time of explosion
is represented by τe . The model can be proven to have a global solution when τe is equal to infinity.

Let n0 = 0 be a sufficiently big value such that (Sp (0), Ip (0), Qp (0), Rp (0)) and
(Sh (0), Ih (0), Rh (0)) are all inside the interval { 1

n0
, n0}. Let’s define a series for every non-negative

integer n as follows:

τn = in f

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t ∈ [0, τe] ∶ Sp (t) ∈ ( 1
n

, n), or Ip (t) ∈ ( 1
n

, n), or Qp (t) ∈ ( 1
n

, n), or Rp (t) ∈ ( 1
n

, n),

or Sh (t) ∈ ( 1
n

, n) or Ih (t) ∈ ( 1
n

, n), or Rh (t) ∈ ( 1
n

, n)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(22)

where we set in f φ = ∞(φ is empty set). Since τn is non-decreasing as n →∞,

τ∞ = lim
n→∞

τn (23)

The inequality states that τ∞ is less than or equal to τe . Now, we aim to demonstrate that τ∞ is equal to
infinity, as intended.

If this condition fails to be satisfied, then there exist values T > 0 and b1 ∈ (0, 1) that satisfy the statement.

U {τn ≤ T} ≥ b1∀n ≥ n1 (24)

Define a C4−function f ∶R4
+ → R+ by

f (Sp (t), Ip (t), Qp (t), Rp (t)) = (Sp − 1 − ln Sp) + (Ip − 1 − ln Ip) + (Qp − 1 − ln Qp)
+ (Rp − 1 − ln Rp) (25)

Define a C3−function g∶R3
+ → R+ by

g (Sh (t), Ih (t), Rh (t)) = (Sh − 1 − ln Sh) + (Ih − 1 − ln Ih) + (Rh − 1 − ln Rh) (26)

By using Ito’s formula (25), we calculate

d f (Sp (t), Ip (t), Qp (t), Rp (t)) = (1 − 1
Sp

) dSp + (1 − 1
Ip
) dIp + (1 − 1

Qp

) dQp + (1 − 1
Rp

) dRp

+ σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4
2

dt.
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d f (Sp (t), Ip (t), Qp (t), Rp (t))

= (1 − 1
Sp

)((Λp − MβSp (t) Ip (t) e−bτ − bSp (t)) dt + σ1Sp (t) dB (t))

+ (1 − 1
Ip
)((MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)) dt + σ2Ip (t) dB (t))

+ (1 − 1
Qp

)((δIp (t) − (ε + m + b)Qp (t)) dt + σ3Qp (t) dB (t))

+ (1 − 1
Rp

)((εQp (t) − bRp (t)) dt + σ4Rp (t) dB (t))

d f (Sp (t), Ip (t), Qp (t), Rp (t)) = (Λp + 4b + 2m + δ + ε + σ 2
1 + σ 2

2 + σ 2
3 + σ 2

4
2

) dt

+ σ1Sp (t) d(B(t) + σ2Ip (t) d(B(t) + σ3Qp (t) d(B(t) + σ4Rp (t) d(B(t) (27)

For simplify, we assume M1 = (Λp + 4b + 2m + δ + ε + σ 2
1 +σ 2

2+σ 2
3+σ 2

4
2 ). Then Eq. (27) could be written as

d f (Sp (t), Ip (t), Qp (t), Rp (t)) ≤ M1dt + (σ1Sp (t) + σ2Ip (t) + σ3Qp (t) + σ4Rp (t)) d(B(t)). (28)

where M1 is a positive constant, after that integrating from 0 to τn ∧ τ, we get

∫
τn∧τ

0
d f (Sp (t), Ip (t), Qp (t), Rp (t)) ≤ ∫

τn∧τ

0
M1dt

+ ∫
τn∧τ

0
(σ1Sp (t) + σ2Ip (t) + σ3Qp (t) σ4Rp (t)) d(B(t)) (29)

where τn ∧ τ = min (τn , T), the taking the expectations lead to

EU∗ (Sp (τn ∧ τ), Ip (τn ∧ τ), Qp (τn ∧ τ), Rp (τn ∧ τ)) ≤ U∗ (Sp (0), Ip (0), Qp (0), Rp (0)) + M1T .
(30)

Set Ωn = {τn ≤ T} for n > n1 and from (18), we have X (Ωn ≥ b) .
For each element a1 in the set Ωn , there exist certain indices i such that Ui(τn , a1) is equal to either n

or 1
n , where i takes on the values 1, 2, 3, 4.

Hence, U∗ ((Sp (τn , a1), Ip (τn , a1), Qp (τn , a1), Rp (τn , a1))) is less than min{n − 1 − ln n, 1
n − 1

− ln 1
n} .
Next, we obtain

U∗ (Sp (0), Ip (0), Qp (0), Rp (0)) + M1T ≥ E (IΩm(a1)U
∗ (Sp (τn), Ip (τn), Qp (τn), Rp (τn)))

≥ min {n − 1 − ln n, 1
n
− 1 − ln 1

n
} (31)

The indicator function is denoted as IΩn(a1) within the set Ωn . As n approaches infinity, we get there
to the contradiction that infinity is equal to the value of U∗ (Sp (0), Ip (0), Qp (0), Rp (0)) + M1T , which
is finite.
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As desired.
Again, by using Ito’s formula (26), we calculate

dg (Sh (t), Ih (t), Rh (t)) = (1 − 1
Sh

) dSh + (1 − 1
Ih
) dIh + (1 − 1

Rh

) dRh +
σ 2

5 + σ 2
6 + σ 2

7
2

dt

dg (Sh (t), Ih (t), Rh (t)) = (1 − 1
Sh

) ((Λh − γSh (t) Ip (t) e−μτ − μSh (t)) dt + σ5Sh (t) dB (t))

+ (1 − 1
Ih
) ((γSh (t) Ip (t) e−μτ − (α + μ + β2) Ih (t)) dt + σ6Ih (t) dB (t))

+ (1 − 1
Rh

)((β2Ih (t) − μRh (t)) dt + σ7Rh (t) dB (t))

dg (Sh (t), Ih (t), Rh (t)) = (Λh + 3μ + α + β2 +
σ 2

5 + σ 2
6

2
) dt + σ5Sh (t) dB (t) + σ6Ih (t) dB (t)

+ σ7Rh (t) dB (t) (32)

For simplify, we assume M2 = (Λh + 3μ + α + β2 + σ 2
5+σ 2

6+σ 2
7

2 ), Then Eq. (32) could be written as

dg (Sh (t), Ih (t), Rh (t)) ≤ M2dt + (σ5Sh (t) + σ6Ih (t) + σ7Rh (t)) d(B(t)) (33)

where M2 is a positive constant, after that integrating from 0 to τn ∧ τ, we get

∫
τn∧τ

0
dg (Sh (t), Ih (t), Rh (t)) ≤ ∫

τn∧τ

0
M2dt + ∫

τn∧τ

0
(σ5Sh (t) + σ6Ih (t) + σ7Rh (t)) d(B(t)) (34)

where τn ∧ τ = min (τn , T), the taking the expectations lead to

EV∗ (Sh (τn ∧ τ), Ih (τn ∧ τ), Rh (τn ∧ τ)) ≤ V∗ (Sh (0), Ih (0), Rh (0)) + M2T (35)

Hence, V∗ ((Sh (τn , V1), Ih (τn , V1), Rh (τn , V1))) is less than min{n − 1 − ln n, 1
n − 1 − ln 1

n} .
Next, we obtain

V∗ (Sh (0), Ih (0), Rh (0)) + M2T ≥ E (IhΩm(v1)V
∗ (Sh (τn), Ih (τn), Rh (τn)))

≥ min {n − 1 − ln n, 1
n
− 1 − ln 1

n
} (36)

The indicator function is denoted as IhΩn(v1) within the set Ωn . As n approaches infinity, we get there
to the contradiction that infinity is equal to the value of V∗ (Sh (0), Ih (0), Rh (0)) + M2T , which is finite.

As desired. ◻
Theorem 10. If the spectral radius v and the variance σ2

2 <
MβΛpe−bτ

b(δ +m+ b) , then the number of infected pig
population in the system (11)–(17) will exponentially approach zero.

Proof: Let’s examine the initial data (Sp (0), Ip (0), Qp (0), Rp (0), Sh (0), Ih (0), Rh (0)) ∈ R7
+ and

the system (11)–(17) has a solution (Sp (t), Ip (t), Qp (t), Rp (t), Sh (t), Ih (t), Rh (t)) if it satisfies the
stochastic delayed differential equation, where σ represents randomness and c represents drift.

dIp (t) = (MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)) dt + cσ2Ip (t) dB (t)
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Applying Ito’s lemma to the function f (Ip) = ln(Ip), we obtain

dln (Ip (t)) = g′ (Ip (t))dP + 1
2

g′′ (Ip) Ip2σ 2
2 dt.

d ln(Ip (t)) = 1
Ip (t)dIp + 1

2
(− 1

Ip2) Ip2σ 2
2 dt.

d ln (Ip (t)) = 1
Ip (t)dIp − 1

2
σ 2

2 dt.

d ln (Ip (t)) = 1
Ip (t)

[(MβSp (t) Ip (t) e−bτ − (δ + m + b) Ip (t)) dt + cσ2Ip (t) dB (t)] − 1
2

σ 2
2 dt.

d ln (Ip (t)) = (MβSp (t) e−bτ − (δ + m + b)) dt + cσ2dB (t) − 1
2

σ 2
2 dt.

ln(Ip (t)) = ln Ip (0) + (MβSp (t) e−bτ − (δ + m + b) − 1
2

σ 2
2)dt + ∫

t

0
cσ2dB (t),

Notice that, N (t) = ∫
t

0 cσ2dB (t) with N (0) = 0.

If σ2
2 >

MβΛpe−bτ

b(δ +m+ b) ,

ln (Ip (t)) > ( MβΛpe−bτ

b (δ + m + b) − (δ + m + b) − 1
2

MβΛpe−bτ

b (δ + m + b)) t +N (t) + ln Ip (0),

ln Ip (t)
t

> ( MβΛpe−bτ

2b (δ + m + b) − (δ + m + b)) + N (t)
t

+ ln Ip (0)
t

,

lim
t→∞

ln Ip(t)
t > ( MβΛpe−bτ

2b(δ +m+ b) − (δ + m + b)) > 0, with lim
t→∞

N(t)
t = 0,

If σ2
2 <

MβΛpe−bτ

b(δ +m+ b) , then

ln (Ip (t)) < ( MβΛpe−bτ

b (δ + m + b) − (δ + m + b) − 1
2

σ2
2) t + N (t) + ln Ip (0),

ln Ip (t)
t

< (δ + m + b)( MβΛpe−bτ

b (δ + m + b)2 − 1 − 1
2

σ2
2) +

N (t)
t

+ ln Ip (0)
t

,

lim
t→∞

sup ln Ip(t)
t < (δ + m + b) (R0

S − 1), when R0
S < 1, we get lim

t→∞
sup ln Ip(t)

t ≤ 0,

lim
t→∞

Ip (t) = 0, as desired.

RS
o = Rd

o −
σ 2

2
2 (δ + m + b) < 1. ◻
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6 Stochastic Nonstandard Finite Difference Scheme
The NSFD method is used in this analysis to address the stochastic delay differential equations regulating

Streptococcus suis dynamics. The discrete approximations are very carefully selected to keep stability and
be able to precisely model the turbulent behavior of the system. This ensures that the theoretical analysis
is kept consistent and that the numerical solutions stay physically significant. For (11)–(17), the stochastic
non-standard finite difference scheme has the following equation:

Sn+1
p =

Sn
p + h (Λp + σ1Sn

pΔBn)
1 + h (MβIn

pe−bτ + b)
(37)

In+1
p =

In
p + h (MβSn

pIn
pe−bτ + σ2In

pΔBn)
1 + h (δ + m + b) (38)

Qn+1
p =

Qn
p + h (δIn

p + σ3Qn
pΔBn)

1 + h (ε + m + b) (39)

Rn+1
p =

Rn
p + h (εQn

p + σ4Rn
pΔBn)

1 + hb
(40)

Sn+1
h =

Sn
h
+ h (Λh + σ5Sn

h
ΔBn)

1 + h (γIn
pe−μτ + μ)

(41)

In+1
h =

In
h
+ h (γSn

h
In
pe−μτ + σ6In

h
ΔBn)

1 + h (α + μ + β2)
(42)

Rn+1
h =

Rn
h
+ h (β2In

h
+ σ7Rn

h
ΔBn)

1 + hμ
(43)

where h represents a discretization parameter and n is a non-negative integer.

6.1 Stability Analysis
Assuming ΔBn = 0, the system (37)–(43) consists of functions A, B, C , D, and E.

A = Sp+h(Λp)
1+h(MβIpe−bτ+b) , B =

Ip+h(MβSp Ipe−bτ)
1+h(δ +m+ b) , C = Qp+h(δIp)

1+h(ε+m+b) , D = Rp+h(εQp)
1+hb , E = Sh+h(Λh)

1+h(γIpe−μτ+μ) ,

F = Ih+h(γSh Ipe−μτ)
1+h(α+μ+β2) , G = Rh+h(β2 Ih)

1+h μ .
The Jacobian matrix consists of the following elements:

∂A
∂Sp

= 1
1+h(MβIpe−bτ+b) ,

∂A
∂Ip = − MβIpe−bτ(hΛp)

(1+h(MβIpe−bτ+b))2 , ∂A
∂Qp

= 0, ∂A
∂Rp

= 0, ∂A
∂Sh

= 0, ∂A
∂Ih

= 0, ∂A
∂Rh

= 0

∂B
∂Sp

=
h(MβIpe−bτ)
1+h(δ +m+ b) , ∂B

∂Ip =
1+h(MβSpe−bτ)

1+h(δ +m+ b) , ∂B
∂Qp

= 0, ∂B
∂Rp

= 0, ∂B
∂Sh

= 0, ∂B
∂Ih

= 0, ∂B
∂Rh

= 0
∂C

∂Sp
= 0, ∂C

∂Ip = h(δ)
1+h(ε+m+b) ,

∂C
∂Qp

= 1
1+h(ε+m+b) ,

∂C
∂Rp

= 0, ∂C
∂Sh

= 0, ∂C
∂Ih

= 0, ∂C
∂Rh

= 0
∂D

∂Sp
= 0, ∂D

∂Ip = 0, ∂D
∂Qp

= h(ε)
1+hb , ∂D

∂Rp
= 1

1+hb , ∂D
∂Sh

= 0, ∂D
∂Ih

= 0, ∂D
∂Rh

= 0
∂E

∂Sp
= 0, ∂E

∂Ip = − γhe−μτ(hΛh)
(1+h(γIpe−μτ+μ))2 , ∂E

∂Qp
= 0, ∂E

∂Rp
= 0, ∂E

∂Sh
= 1

1+h(γIpe−μτ+μ) ,
∂E
∂Ih

= 0, ∂E
∂Rh

= 0

∂F
∂Sp

= 0, ∂F
∂Ip = h(γShe−μτ)

1+h(α+μ+β2) ,
∂F

∂Qp
= 0, ∂F

∂Rp
= 0, ∂F

∂Sh
= h(γIpe−μτ)

1+h(α+μ+β2) ,
∂F

∂Ih
= 1

1+h(α+μ+β2) , ∂F
∂Rh

= 0
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∂G
∂Sp

= 0, ∂G
∂Ip = 0, ∂G

∂Qp
= 0, ∂G

∂Rp
= 0, ∂G

∂Sh
= 0, ∂G

∂Ih
= h(β2)

1+h μ , ∂G
∂Rh

= 1
1+h μ

Theorem 11. For all values of n ≥ 0, the eigenvalues of the Jacobian matrix at the streptococcus suis-free
equilibrium for the system (37)–(43) are located within the unit circle if the value of R0 < 1.

Proof. The Jacobian matrix at the streptococcus suis-free equilibrium, denoted as
(S0

p, I0
p, Q0

p, R0
p, S0

h
, I0
h

, R0
h
), can be expressed as (Λp

b , 0, 0, 0, Λh

μ , 0, 0).

J (D0) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + hb

0 0 0 0 0 0

0
1 + h (MβS0

pe−bτ)
1 + h (δ + m + b) 0 0 0 0 0

0 h (δ)
1 + h (ε + m + b)

1
1 + h (ε + m + b) 0 0 0 0

0 0 h (ε)
1 + hb

1
1 + hb

0 0 0

0 −γhe−μτ (hΛh)
(1 + hμ)2 0 0 1

1 + hμ
0 0

0
h (γS0

h
e−μτ)

1 + h (α + μ + β2)
0 0 0 1

1 + h (α + μ + β2)
0

0 0 0 0 0 h (β2)
1 + hμ

1
1 + hμ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∣J (D0) − λ∣ =
�����������������������������������������������������

1
1 + hb

− λ 0 0 0 0 0 0

0
1 + h (MβS0

pe−bτ)
1 + h (δ +m + b)

− λ 0 0 0 0 0

0 h (δ)
1 + h (ε +m + b)

1
1 + h (ε +m + b)

− λ 0 0 0 0

0 0 h (ε)
1 + hb

1
1 + hb

− λ 0 0 0

0 −
γhe−μτ (hΛh)
(1 + hμ)2 0 0 1

1 + hμ
− λ 0 0

0
h (γS0

he−μτ)
1 + h (α + μ + β2)

0 0 0 1
1 + h (α + μ + β2)

− λ 0

0 0 0 0 0 h (β2)
1 + hμ

1
1 + hμ

− λ

�����������������������������������������������������

Therefore,

λ1 = λ4 = 1
1+hb < 1, λ2 =

1+h(MβS0
pe−bτ)

1+h(δ +m+ b) < 1, λ3 = 1
1+h(ε+m+b) < 1, λ5 = λ7 = 1

1+h μ < 1, λ6 = 1
1+h(α+μ+β2) .

Using the definition of R0, we can show that if R0 < 1, then λ2 < 1, and D
0 is L.A.S. on the contrary, it is

obviously to verify that λ2 > 1, if R0 > 1, which shows that D0 is unstable. ◻
Theorem 12. For all values of n ≥ 0, the eigenvalues of the Jacobian matrix at the streptococcus suis-

endemic equilibrium for the system (37)–(43) are located within the unit circle if the value of R0 > 1.
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Proof. The Jacobian matrix at the streptococcus suis- endemic equilibrium, denoted as
(S∗p, I∗p, Q∗p, R∗p, S∗h, I∗h, R∗h).

J (D∗) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 + h (MβI∗pe−bτ + b)

−
MβI∗pe−bτ (hΛp)

(1 + h (MβI∗pe−bτ + b))2 0 0 0 0 0

h (MβI∗pe−bτ)
1 + h (δ + m + b)

1 + h (MβS∗pe−bτ)
1 + h (δ + m + b)

0 0 0 0 0

0
h (δ)

1 + h (ε + m + b)
1

1 + h (ε + m + b)
0 0 0 0

0 0
h (ε)

1 + hb
1

1 + hb
0 0 0

0 −
γhe−μτ (hΛh)

(1 + h (γI∗pe−μτ + μ))2 0 0
1

1 + h (γI∗pe−μτ + μ)
0 0

0
h (γS∗he−μτ)

1 + h (α + μ + β2)
0 0

h (γI∗pe−μτ)
1 + h (α + μ + β2)

1
1 + h (α + μ + β2)

0

0 0 0 0 0
h (β2)
1 + h μ

1
1 + h μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

So, the eigenvalues of the Jacobian at D∗ as follows:
λ1 = 1

1+h μ < 1, λ2 = 1
1+h(α+μ+β2) , λ3 = 1

1+h(γI∗pe−μτ+μ) , λ4 = 1
1+hb , λ5 = 1

1+h(ε+m+b) provided that R0 > 1.

����������������������

1
1 + h (MβI∗pe−bτ + b)

− λ −
MβI∗pe−bτ (hΛp)

(1 + h (MβI∗pe−bτ + b))2

h (MβI∗pe−bτ)
1 + h (δ + m + b)

1 + h (MβS∗pe−bτ)
1 + h (δ + m + b) − λ

����������������������

= 0

A1 = Trce o f JD∗ =
1

1 + h (MβI∗pe−bτ + b)
+

1 + h (MβS∗pe−bτ)
1 + h (δ + m + b)

A2 = Determinent o f JD∗ =
⎛
⎝
⎛
⎝

1
1 + h (MβI∗pe−bτ + b)

⎞
⎠
⎛
⎝

1 + h (MβS∗pe−bτ)
1 + h (δ + m + b)

⎞
⎠
⎞
⎠

+
⎛
⎝

MβI∗pe−bτ (hΛp)
(1 + h (MβI∗pe−bτ + b))2

⎞
⎠
⎛
⎝

h (MβI∗pe−bτ)
1 + h (δ + m + b)

⎞
⎠

Lemma. For the quadratic equation λ2 − A1 λ + A2 = 0, ∣λi ∣ < 1, i = 1, 2. if and only if the following
conditions are satisfied:

(i) 1 + A1 + A2 > 0.
(ii) 1 − A1 + A2 > 0.
(iii) A2 < 1. ◻

6.2 Comparison Section
This section examines the characteristics of the graphs representing the number of infected pig

population using the Euler Maruyama, stochastic Euler, and stochastic Runge Kutta schemes, in comparison
to the NSFD scheme, across various step sizes and parameters values (See Table 3).
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Table 3: Values of parameter

Parameters Values Source [13]
Λp 0.5 Fitted
Λh 5 Fitted
β 2.3 (SSEE) 1.3 (SSFE) Estimated
β2 0.1 Estimated
μ 0.01 Estimated
M 1 Fitted
γ 0.1 Fitted
ε 0.3 Fitted
b 0.5 Estimated
m 0.3 Fitted
δ 0.6 Estimated
α 0.1 Estimated

6.3 Discussion
Fig. 3a,b provides a comparison between the infected class of the Stochastic NSFD and the Euler

Maryama Method. Fig. 3a shows convergence for both approaches at h = 0.01. When the step size was raised
to h = 1.0, the Euler Maryama Method diverged whereas the Stochastic NSFD Method remained convergent,
as shown in Fig. 3b. Similarly, Fig. 3c,d compares the infected class of the Stochastic NSFD and the Stochastic
Euler Method. At h = 0.01, both techniques converged in Fig. 3c. However, when the step size was increased to
h = 1.0, the Stochastic Euler Method diverged, while the Stochastic NSFD method-maintained convergence,
as shown in Fig. 3d. Similarly, Fig. 3e,f compares the infected class of the Stochastic NSFD and Stochastic RK
Method. At h = 0.01, both methods converged, as shown in Fig. 3e. However, when the step size increased to
h = 2.0, the Stochastic RK Method diverged, while the Stochastic NSFD method continued to converge, as
shown in Fig. 3f. Fig. 4a shows how delay affects the model’s susceptible class at different τ values (0.1, 0.2,
0.3, 0.4, 0.5). Fig. 4b shows the effect of delay on the infected class of the model at various values τ = 0.1,
0.2, 0.3, 0.4, and 0.5, indicating a gradual decline in disease from the infected class over time. Finally, Fig. 5
shows the behavior of delay on the reproduction number of the model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Comparison graph of computational methods at the Streptococcus Suis endemic equilibrium of the model
(a) The comparison behavior of the infected pig population through Euler Maruyama and stochastic NSFD methods
at h = 0.01 (convergent) (b) The comparison behavior of the infected pig population through Euler Maruyama and
stochastic NSFD methods at h = 1 (divergent) (c) The comparison behavior of the infected pig population through
stochastic Euler and stochastic NSFD methods at h = 0.01 (convergent) (d) The comparison behavior of the infected pig
population through stochastic Euler and stochastic NSFD methods at h = 1 (divergent) (e) The comparison behavior of
the infected pig population through stochastic Runge Kutta and stochastic NSFD methods at h = 0.01 (convergent) (f)
The comparison behavior of the infected pig population through stochastic Runge Kutta and stochastic NSFD methods
at h = 2 (divergent)
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(a) (b)

Figure 4: Time-Plot with the time delay on susceptible and infected population. (a) The effect of different values of
delay on susceptible pig population (b) The effect of different values of delay on infected pig population

(a)

Figure 5: Time plot of the effect of time delay (τ) with reproduction number (R0)
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7 Conclusion
This paper provides a comprehensive assessment of the mathematical analysis, including trustworthy

delay techniques, of the delayed model for streptococcus suis infection. Subpopulations are classified by
the model into four categories: susceptible class Sp (t), infectious class Ip (t), quarantine class Qp (t),
and recovered class Rp (t). Because Streptococcus Suis may spread from pig to people, the model includes
the susceptible human class Sh (t), infectious human class Ih (t), and recovered class Rh (t). The model’s
dynamic analysis examines positivity, boundedness, equilibria, and the threshold parameter. The sensitivity
of the parameters is revealed by the outcomes of the model. The linearization of the model is based on
existing concepts such as the Routh-Hurwitz criteria and the Jacobian. The focus of the research is on the
use of Lassalle’s invariance principle and Lyapunov’s theory to ensure the global stability of the model. It is
discovered that the Stochastic delayed NSFD method is the most accurate, successful, and efficient method.
In these models, stability is necessary to avoid unpredictable behavior and incorrect results in terms of
stability, optimism, and staying within normal bounds even with enormous time increments. Stochastic
delayed NFSD performs exceptionally well. Other methods such as Stochastic delayed NFSD Euler Maryama,
Stochastic Euler, and Stochastic RK-4 are considered valuable tools in our toolbox, however, at high time
scales, they break down, leading to a loss of stability and consistency. After a great deal of testing and
comparison, Stochastic delayed NFSD has emerged as the champion in stability and reliability, passing
important tests like “local stability” and the Routh-Hurwitz criterion in the study of accurate predictions. This
model can be taken forward by adding some dynamism in terms of space to real-world data for parameter
estimation, thereby making it more applicable. It could also be taken up in terms of other diseases so that
the applicability of the model further validates its relevance.

To fully capture the real-world complexities, there is a need to develop a model without the assumption
of disease transmissibility and parameter estimation. Moreover, validation based on data is needed to
enhance the reliability of the model.
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