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ABSTRACT: Heart disease prediction is a critical issue in healthcare, where accurate early diagnosis can save lives and
reduce healthcare costs. The problem is inherently complex due to the high dimensionality of medical data, irrelevant
or redundant features, and the variability in risk factors such as age, lifestyle, and medical history. These challenges often
lead to inefficient and less accurate models. Traditional prediction methodologies face limitations in effectively handling
large feature sets and optimizing classification performance, which can result in overfitting poor generalization, and
high computational cost. This work proposes a novel classification model for heart disease prediction that addresses
these challenges by integrating feature selection through a Genetic Algorithm (GA) with an ensemble deep learning
approach optimized using the Tunicate Swarm Algorithm (TSA). GA selects the most relevant features, reducing
dimensionality and improving model efficiency. The selected features are then used to train an ensemble of deep learning
models, where the TSA optimizes the weight of each model in the ensemble to enhance prediction accuracy. This
hybrid approach addresses key challenges in the field, such as high dimensionality, redundant features, and classification
performance, by introducing an efficient feature selection mechanism and optimizing the weighting of deep learning
models in the ensemble. These enhancements result in a model that achieves superior accuracy, generalization,
and efficiency compared to traditional methods. The proposed model demonstrated notable advancements in both
prediction accuracy and computational efficiency over traditional models. Specifically, it achieved an accuracy of 97.5%,
a sensitivity of 97.2%, and a specificity of 97.8%. Additionally, with a 60–40 data split and 5-fold cross-validation, the
model showed a significant reduction in training time (90 s), memory consumption (950 MB), and CPU usage (80%),
highlighting its effectiveness in processing large, complex medical datasets for heart disease prediction.

KEYWORDS: Heart disease prediction; feature selection; ensemble deep learning; optimization; genetic algorithm
(GA); ensemble deep learning; tunicate swarm algorithm (TSA); feature selection

1 Introduction
Heart disease remains a leading global health issue, contributing significantly to mortality rates. Early

and accurate predictions of heart disease are critical to improving patient outcomes and reducing healthcare
costs [1]. Several diagnostic methods are used to assess heart disease, ranging from clinical evaluations
to advanced imaging and biochemical tests, each with its strengths and limitations [2,3]. Non-invasive
techniques like the electrocardiogram (ECG) and echocardiogram (ECHO) are widely available and cost-
effective, detecting abnormal heart rhythms and assessing heart structure. However, ECGs are limited in
early-stage detection and may provide insufficient detail, while ECHOs rely heavily on operator skill and
struggle with clarity in certain patients. Cardiac stress tests assess heart function under stress but can miss
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early disease or be unsuitable for patients unable to perform physical exertion. Invasive procedures like
cardiac catheterization and angiography remain the gold standard for identifying coronary blockages but
carry risks like bleeding and infection, making them less suitable for routine use. Blood tests, such as those
measuring troponin or cholesterol levels, are simple but cannot provide structural insights and may lead to
false alarms. Non-invasive imaging, like CT coronary angiography, offers detailed artery views but involves
radiation and high costs, limiting accessibility. While these methods collectively provide a comprehensive
understanding of heart health, many struggle with early detection, accuracy, and cost-effectiveness, making
heart disease prediction and diagnosis an ongoing challenge [4,5].

However, current diagnostic methods often struggle with precision due to the complexity of symptoms
and the influence of various risk factors such as age, lifestyle, and pre-existing conditions. These challenges
create a need for an advanced predictive model that can effectively analyze patient data, account for
uncertainties, and provide reliable predictions of heart disease risk. Machine learning models improve heart
disease prediction by enabling early detection, increasing diagnostic accuracy, and tailoring treatment based
on patient data. These models can analyze complex patterns across diverse data sources like clinical records
and imaging, providing more precise predictions than traditional methods. However, challenges remain,
including the need for high-quality data, issues with interpretability, risks of overfitting, and difficulties inte-
grating into clinical practice. Despite these hurdles, Machine Learning (ML) offers promising advancements
in heart disease prediction, but further research is required for widespread clinical adoption [6–8].

Ensemble learning presents several advantages over traditional deep learning methods for heart disease
prediction, making it a compelling choice in this area [9,10]. By combining multiple models, ensemble
methods improve accuracy and robustness, leveraging the strengths of various algorithms to minimize
errors and reduce overfitting. This approach captures diverse patterns and relationships in complex medical
datasets, enhancing analysis. Additionally, ensemble methods reduce variability by averaging predictions,
providing consistent and reliable outcomes crucial for clinical decision-making. They also handle imbalanced
datasets more effectively through techniques like bagging and boosting, focus on challenging instances,
and offer insights into feature importance, aiding clinicians in understanding key risk factors. Furthermore,
ensemble methods require less extensive hyperparameter tuning than traditional deep learning, making
them easier to implement. However, determining the optimal weights for each model can be a complex task.
Different models may perform well under different conditions, and finding a single set of weights that works
across all scenarios can be difficult. This complexity often requires sophisticated optimization techniques,
which can be computationally intensive and time-consuming [11,12].

The Tunicate Swarm Algorithm (TSA) is justified for ensemble learning weight adjustment due to
its superior balance of exploration and exploitation, robustness against local optima, faster convergence
rates, and adaptability to high-dimensional and multi-objective optimization problems, making it more
effective than current swarm intelligence methods [13]. TSA can dynamically adjust its search strategy
based on the feedback from the optimization process, allowing it to fine-tune weight adjustments more
effectively in varying contexts or datasets. The fitness function is crucial in the TSA as it influences both
optimization and model performance. It assesses weight configurations using metrics like accuracy allowing
TSA to evaluate and compare models effectively. Higher fitness scores guide the algorithm in navigating the
solution space, helping to avoid local optima. The function’s adaptability accommodates various performance
metrics, addressing the complexity of heart disease by optimizing sensitivity, specificity, and interpretability.
Furthermore, it acts as a feedback mechanism that refines the search strategy through iterative evaluations
and benchmarks ensemble performance, identifying key models for enhanced interpretability and clinical
relevance [14,15].
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Feature extraction and selection are essential for enhancing heart disease prediction models. Feature
extraction transforms raw data into meaningful representations that capture critical patterns from complex
datasets, such as clinical records and imaging data, revealing hidden correlations that improve the model’s
ability to distinguish between healthy individuals and those at risk [16]. In contrast, feature selection identifies
the most relevant features, reducing dimensionality and minimizing noise to prevent overfitting and enhance
model performance. By focusing on impactful features, the model’s generalizability and interpretability
improve, allowing clinicians to better understand the critical risk factors associated with heart disease
prediction. Genetic Algorithms (GAs) are popular for feature selection because they effectively explore broad
solution spaces, avoiding local optima and handling complex subset searches. Their flexibility allows for
various data types and fitness functions, optimizing multiple criteria such as accuracy and interpretability.
GAs are also robust against noisy data and maintain diversity to prevent premature convergence, enhancing
exploration. They evaluate multiple candidates simultaneously, leading to faster convergence in high-
dimensional feature spaces, and can adapt to changing datasets. These strengths make GAs particularly
suitable for feature selection in complex scenarios [17–20].

1.1 Problem Statement
Heart disease prediction is a vital healthcare challenge, where timely and accurate diagnoses can

save lives and lower costs. However, this task is hindered by several inherent issues, including the high
dimensionality of medical datasets, which often contain numerous features, complicating the identification
of relevant information for predictions. Additionally, many features may be irrelevant or redundant, resulting
in inefficiencies and higher computational costs. The variability in individual risk factors—such as age,
lifestyle, and medical history—further complicates the prediction models and can impact their accuracy. Tra-
ditional prediction methodologies struggle to effectively handle large feature sets and optimize classification
performance, leading to overfitting, poor generalization to unseen data, and increased resource consumption
due to inefficient data processing.

1.2 Contribution
Merging optimal feature selection and optimal classifier optimization under a unified framework

for heart disease prediction is a groundbreaking approach, addressing key challenges for the first time
in this domain. The integration of optimal feature selection, through GA, ensures that only the most
relevant and impactful features are used, reducing dimensionality, noise, and computational complexity.
Simultaneously, optimizing classifier performance, achieved with TSA for model weighting, enhances the
accuracy and robustness of the prediction model. This combined approach maximizes the strengths of both
feature selection and classification, allowing the model to not only process data efficiently but also deliver
highly accurate predictions. By uniting these two processes, the framework significantly improves model
generalization, prediction precision, and resource efficiency, offering a comprehensive and superior solution
for heart disease prediction for the first time.

The remainder of this paper consists of the following sections: Section 2 provides a literature review of
relevant publications regarding heart disease prediction frameworks. The suggested approach is presented
in Section 3. The assessment of the suggested approach, including results and discussion, is presented
in Section 4. The study is concluded, and possible future directions are discussed in Section 5.

2 Literature Review
In recent years, heart disease prediction has gained significant attention within the field of medical

diagnostics due to its critical impact on global health. Numerous machine learning and deep learning models
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have been employed to improve the accuracy and reliability of predictions, leveraging advancements in
computational techniques [1–5]. Traditional models like decision trees, support vector machines (SVMs),
and k-nearest neighbors (k-NN) have demonstrated varying degrees of success. However, the complexity and
high dimensionality of medical datasets necessitate more sophisticated approaches. Ensemble deep learning
models, which combine the strengths of multiple base learners, have emerged as a promising solution
for enhancing prediction performance [9–11]. This section reviews the latest approaches in heart disease
prediction, focusing on feature selection methods, ensemble learning strategies, and optimization techniques
that contribute to enhanced predictive performance.

In recent heart disease prediction studies, feature selection methods have played a critical role in
improving model performance by identifying the most relevant features from often complex and high-
dimensional medical datasets. These approaches not only reduce computational complexity but also enhance
model interpretability and accuracy. Several feature selection techniques have been employed, ranging
from traditional statistical methods to modern optimization algorithms and machine learning-based tech-
niques [16,17]. Filter methods rank features based on statistical tests (e.g., correlation, Chi-square), offering
speed and interpretability, though they overlook feature interactions and struggle with complex, non-linear
data. Wrapper methods, such as recursive feature elimination and genetic algorithms, account for feature
interactions and boost accuracy but are computationally intensive and risk overfitting. Embedded methods,
like random forest, combine feature selection with model training, offering efficiency and reduced overfitting
but being model-specific and less interpretable. Lastly, optimization-based methods (e.g., Particle Swarm
Optimization) explore feature space efficiently and handle non-linear data but come with high computational
costs and may converge to local optima if not fine-tuned properly [18–20]. The combination of these feature
selection methods with ensemble deep learning approaches has been a focal point in recent studies, with
models showing increased accuracy and reliability when selecting optimal features.

Ensemble learning strategies for heart disease prediction are primarily classified into bagging, boosting,
and stacking. Bagging, like random forests, trains multiple models on different data subsets and com-
bines their predictions, reducing overfitting and improving accuracy. Boosting methods, such as Adaptive
Boosting (AdaBoost), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGBoost),
train models sequentially, with each model correcting the previous one’s errors, yielding higher predictive
accuracy but requiring more computational resources. Stacking combines multiple base models and uses
a meta-model to refine predictions, offering flexibility and power but necessitating careful tuning to avoid
overfitting [8–11]. In Ref. [21], the authors presented an approach that combines the strengths of ensemble
learning algorithms with Bayesian optimization for hyperparameter tuning. The ensemble classifiers utilized
include Adaptive Boosting (AdaBoost), Random Forest, and XGBoost.

The authors in Ref. [22] suggested an enhanced machine learning method for predicting heart disease
risk by randomly partitioning the dataset using a mean-based splitting approach and modeling the partitions
with Classification and Regression Trees (CART). A homogeneous ensemble is then formed from these
CART models through an accuracy-based weighted aging classifier ensemble, a refinement of the traditional
weighted aging classifier ensemble. In Ref. [23], the authors presented a deep stacking ensemble model
designed to enhance heart disease prediction by integrating two optimized, pre-trained hybrid deep learning
models with a Support Vector Machine (SVM) as the meta-learner. The first model combines Convolutional
Neural Networks (CNN) with Long Short-Term Memory (LSTM), while the second pairs CNN with Gated
Recurrent Units (GRU). Recursive Feature Elimination (RFE) is used for feature selection optimization. The
model is tested on two heart disease datasets and compared with five machine learning models: Logistic
Regression (LR), Random Forest (RF), K-Nearest Neighbors (K-NN), Decision Tree (DT), and Naïve Bayes
(NB). The results indicate that the proposed ensemble outperforms others using the full feature set.
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The work presented in Ref. [24] introduced a hybrid model that combines unsupervised and supervised
learning techniques for modeling and processing heart disease diagnosis. The model features collaborative
clustering and an ensemble approach, treating mixed data clustering as a multi-view problem where
specialized algorithms are applied to each view. A novel framework facilitates information exchange between
these algorithms, creating expert models that capture different feature spaces. The expectation-maximization
algorithm underpins this optimization, improving convergence through a collaborative entropy term. An
ensemble method akin to stacking is employed, using logistic regression as the meta-classifier to train on
expert model predictions and generate the final output. The study in Ref. [25] presented a machine learning
model that combines various preprocessing steps, hyperparameter optimization techniques, and ensemble
learning algorithms to predict heart disease. By merging three similar-featured datasets from Kaggle, they
created a comprehensive dataset for analysis. Utilizing the extra trees classifier, normalizing the data, and
applying grid search cross-validation for hyperparameter tuning while splitting the dataset in an 80:20
ratio for training and testing, their approach achieved an accuracy of 98.15%. These results highlight the
model’s potential for accurately predicting heart disease presence, which could significantly enhance early
prevention, detection, and treatment efforts, thereby reducing heart disease-related mortality and morbidity.

This study presented in Ref. [26] aims to accurately predict cardiovascular diseases (CVDs) by consider-
ing patients’ health and socio-economic conditions while addressing challenges associated with imbalanced
data. The adaptive synthetic sampling technique is employed for data balancing, and the Point Biserial
correlation coefficient is used for feature selection. Two deep learning models are utilized: the Ensemble-
based Cardiovascular Disease Detection Network (EnsCVDD-Net), which combines LeNet and Gated
Recurrent Unit (GRU), and the Blending-based Cardiovascular Disease Detection Network (BlCVDD-
Net), which integrates LeNet, GRU, and Multilayer Perceptron. Evaluating performance metrics reveals that
EnsCVDD-Net achieves 88% accuracy, 88% F1-score, 91% precision, 85% recall, and executes in 777 s, while
BlCVDD-Net surpasses state-of-the-art models with 91% accuracy, 91% F1-score, 96% precision, 86% recall,
and a 247-s execution time.

The research in Ref. [27] focused on developing an ML system for early CVD prediction by conducting
a thorough comparative analysis of various ML algorithms using the Cleveland and Statlog heart datasets.
The Cleveland dataset is used to train multiple algorithms, including decision trees, random forests,
support vector machines, logistic regression, adaptive boosting, and K-nearest neighbors, with performance
evaluated through accuracy, precision, recall, F1 score, and area under the curve metrics. Hyperparameter
tuning is employed to identify optimal settings for each algorithm, utilizing 10-fold cross-validation and a
95% confidence interval to ensure reliable performance assessment. The heart disease prediction system was
suggested in Ref. [28] which employs a bagging ensemble technique combined with Deep Belief Network
(DBN) algorithms. It focuses on predicting heart disease using datasets collected from Kaggle, utilizing
feature extraction through the Bag of Words method to accurately process the data. The utilized data
mining system, which is vital for data aggregation, leverages the bagging ensemble technique for efficient
collection and parallel processing of homogeneous data. The initial step involves data preprocessing using
this technique. The performance of the cardiovascular disease prediction using the DBN algorithm is then
compared to existing heart disease prediction systems, assessing classification accuracy, sensitivity, and
specificity to evaluate improvements over past and present methodologies.

In Ref. [29], the author’s work introduced a novel stacking model, which incorporates three base
classifiers: KNN, DT, and SVM, with a Bidirectional Long Short-Term Memory model based on Attention
Mechanisms (ABiLSTM) serving as the meta-layer for final predictions. To reduce temporal complexity
and improve accuracy, Principal Component Analysis (PCA) is employed for dimensionality reduction
and feature fusion. The performance of the Stacked Dimensionality-reduced KNN, DT, and SVM with
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an Attention-based BiLSTM (SDKABL) is evaluated against other independent classifiers using various
metrics. In Ref. [30], the authors presented a machine learning approach that employs Multiple Imputation
by Chained Equations (MICE) to mitigate missing data, the Interquartile Range (IQR) method for han-
dling outliers, and Synthetic Minority Over-sampling Technique (SMOTE) to address class imbalance. To
optimize feature selection, they utilized the Hybrid 2-tier Grasshopper Optimization with L2 regularization
methodology, termed GOL2-2T. Additionally, an Adaboost decision fusion (ABDF) ensemble learning
algorithm is enhanced with a babysitting technique for hyperparameter tuning. The heart disease prediction
model achieved an accuracy of 83.0% and a balanced F1 score of 84.0%. The incorporation of SMOTE,
IQR for outlier detection, MICE, and GOL2-2T for feature selection enhances the model’s robustness and
predictive performance.

The work presented in Ref. [31] offered a novel approach for forecasting heart disease through a 2-
tier process that combines Analysis of Variance (ANOVA) and Least Absolute Shrinkage and Selection
Operator (LASSO) regression, termed NOVA and LASSO-based Analysis for heart disease prediction
(ALAN), to identify significant features. Additionally, it employs an Ensemble Technique with Adaptive
Boosted Decision Fusion (ET-ABDF) to enhance accuracy. The ALAN technique significantly improves
the detection of critical properties for predictive modeling. The ET-ABDF model demonstrates impressive
performance in identifying cardiac disease, achieving an accuracy of 88.0%, precision of 89.81%, recall of
89.80%, and an F1 Score of 89.00%. The study in Ref. [32] introduced a new stack predictor for heart disease
detection, termed Stacked Predictor for Heart Disease Detection (SPFHD), which utilizes five common tree-
based ensemble learning algorithms as base models. The predictions from these models are integrated using
a support vector machine to enhance detection accuracy. To address class imbalance, a novel Conditional
Variational Autoencoder (CVAE) method is developed, demonstrating superior performance compared to
traditional balancing methods. The SPFHD model is further optimized through Bayesian optimization.
Results indicate that SPFHD outperforms state-of-the-art methods across four datasets, achieving F1-score
improvements of 4.68%, 4.55%, 2%, and 1% for the HD clinical, Z-Alizadeh Sani, Statlog, and Cleveland
datasets, respectively.

In Ref. [33], the authors reviewed various computer-aided diagnosis (CAD) systems for heart disease,
focusing on machine learning (ML) approaches and their strengths and weaknesses. Traditional bagging
ensemble (BE) achieved an accuracy of 95.3%, outperforming SVM and Artificial Neural Network (ANN)
by 0.3% and 3.3%, respectively, though SVM had a faster training time of 755.5 μs, outperforming ANN
and BE by 160.5 μs. Quantum-enhanced ML (QuEML) methods showed an average accuracy of 94.7%,
0.6% higher than traditional ML (TML), with a notable improvement in training time, outperforming TML
by 192.5 μs, proving QuEML’s advantage in accuracy and computational efficiency. This study presented in
Ref. [34] employed techniques like KNN, random forests, and SVM on a comprehensive dataset covering
diverse demographics, clinical, and lifestyle factors to enhance cardiovascular risk prediction. The focus is
on improving model efficiency and interpretability through feature selection, aiming for better accuracy and
resilience. With a 90% accuracy rate, the study supports efforts to improve cardiovascular risk assessment
through advanced analytics, aiding in early diagnosis and personalized treatment.
Research Gap

Ensemble deep learning models for heart disease prediction face challenges in optimizing the feature set
and fine-tuning the weights between base models, impacting accuracy, robustness, and generalization across
diverse datasets. Feature selection is critical, as using all features can lead to overfitting, and redundant data
can introduce multicollinearity. Advanced feature engineering and dynamic importance alignment across
models are needed to maximize predictive power. Additionally, balancing model diversity and accuracy
while fine-tuning ensemble weights is complex, as traditional static weighting may not adapt to shifting data
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distributions, and highly correlated models can diminish ensemble performance. Research gaps include the
need for feature selection algorithms tailored to heart disease, and advanced meta-learning for dynamic
weight optimization.

3 Methodology
The goal of this problem is to predict the presence or absence of heart disease in patients based on

their medical features. This task is formulated as a binary classification problem [1,2]. We aim to develop a
model that maximizes prediction accuracy by selecting an optimal subset of relevant features and applying
an ensemble learning method to enhance predictive performance. Let X = [x1 , x2, . . . , xn] represent a feature
vector containing patient medical attributes (e.g., age, cholesterol level, blood pressure, etc.), and let y ∈ {0, 1}
represent the binary output, where y = 1, the patient has heart disease. y = 0, the patient does not have heart
disease. The objective is to learn a classification function f ∶X → y which maps the feature vector X to the
output y [4–7].

Feature selection aims to identify a subset S ⊂ {x1 , x2, . . . , xn} of the original features that are most
relevant for predicting heart disease. This step reduces model complexity and increases accuracy by removing
irrelevant or redundant features. Mathematically, let the selected subset of features be S ⊂ {xi ∣, i ∈ I} , I ⊂
{1, 2, . . . , n}. The goal is to find the subset S that maximizes a given performance metric M ( f (X) , y). This
can be formulated as in which M ( f (XS) , y) is the performance metric (e.g., accuracy, F1-score) of the
model f on the selected feature subset S [16,17].

S∗ = arg max
S

M ( f (XS) , y) (1)

Ensemble learning improves prediction performance by combining the outputs of multiple models.
The intuition is that different models can capture different aspects of the data, and by aggregating their
predictions, we can achieve more robust and accurate results. Let f1 , f2, . . . , fk represent k individual
classifiers trained on the feature vector X. The ensemble model F(X) aggregates the predictions from these
base models, either by averaging or majority voting.

(Averaging)F (X) = 1
k

k
∑
i=1

fi(X) (2)

(Majority voting)F (X) = mode ( f1 (X) , f2 (X) , . . . , fk(X)) (3)

Given the optimal feature subset S from feature selection and the ensemble model F, the final prediction
for heart disease ŷ is obtained as ŷ = F (XS). We aim to minimize a loss function L(F (XS), y), where L is
the binary cross-entropy loss, commonly used in classification tasks:

L(F (XS), y) = − 1
m

m
∑
i=1
[y(i) log (F (X(i)

S )) + (1 − y(i)) log (1 − F (X(i)
S ))] (4)

m is the number of training samples, X(i)
S is the feature vector of the i-th example, and y(i) is the true

label for the i-th example. Here is a detailed explanation of how these models function together, with Fig. 1
illustrating the overall process [8–11].

In the context of our proposed heart disease detection model, “real-time clinical application” is a vital
aspect that can have a significant impact on patient care, particularly in high-stakes medical environments.
Our model can be deployed in real-time to assist clinicians with quick and accurate heart disease risk
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assessments. The core of real-time clinical application lies in the model’s ability to process patient data—
such as ECG readings, blood pressure, cholesterol levels, and medical history—almost instantaneously and
generate risk predictions without the need for lengthy manual analysis or delays in decision-making. For
instance, in an emergency room, the model can rapidly analyze incoming patient data, flagging high-risk
individuals based on their vital signs or symptoms. This immediate feedback helps doctors prioritize critical
cases, decide on urgent diagnostic tests (like stress tests or angiograms), or initiate treatments (such as
prescribing medication or scheduling surgery) on time. Furthermore, our model can be integrated with
electronic health record (EHR) systems to facilitate seamless data flow, ensuring that all relevant patient
information is considered when making predictions.

Figure 1: The suggested classification model for heart disease prediction

Another practical example is in telemedicine or remote monitoring, where wearable devices or health
trackers can continuously collect patient data (e.g., heart rate, activity level, and blood pressure). The model
can process this data in real-time to monitor the patient’s cardiovascular health, alerting both the patient and
healthcare provider of any potential issues. This continuous monitoring offers a dynamic, up-to-date risk
profile that can guide clinical decisions, allowing for proactive intervention and early detection of any signs
of worsening health.

However, for real-time clinical application to be effective, the model must ensure high accuracy, low
latency, and robustness across diverse patient populations. Challenges such as data quality, noise, and patient
variability need to be addressed, especially when deploying in real-world environments where data may be



Comput Model Eng Sci. 2025;143(1) 883

inconsistent or noisy. This is where optimization techniques, such as GA and TSA, enhance the model’s ability
to adapt and provide reliable results, ensuring that healthcare professionals can trust the model’s predictions
and make informed decisions without delay. Thus, the real-time aspect of our model not only supports faster
clinical decisions but also enhances patient outcomes by allowing for earlier interventions and continuous
monitoring of cardiovascular health.

3.1 Data Collection and Preprocessing
The UCI Cleveland Heart Disease dataset was collected from the Cleveland Clinic Foundation to

support research in heart disease prediction. It consists of 303 patient records and originally 76 medical
attributes, of which 14 are most commonly used for analysis. The dataset includes key clinical and diagnostic
features such as age, gender, chest pain type, blood pressure, cholesterol levels, and results from electrocardio-
grams and exercise stress tests. The primary goal of data collection was to determine the presence or absence
of heart disease based on these attributes. The dataset reflects real-world clinical conditions, incorporating a
mix of objective test results and patient-reported symptoms, though it includes challenges like missing values
and potential class imbalance. This dataset is widely used for training machine learning models to predict
heart disease, offering insights for early diagnosis and improved patient outcomes [35,36].

The preprocessing of the UCI Cleveland Heart Disease dataset is a crucial step to ensure the data is clean,
consistent, and ready for machine learning models. This involves handling missing values, which can occur
in several attributes such as the number of major vessels and thalassemia. Missing data is often addressed by
imputation (using the mean, median, or mode) or by removing incomplete records. Numerical features like
age, cholesterol levels, and blood pressure are normalized or standardized to ensure that all features are on
the same scale, which is particularly important for distance-based algorithms. Categorical features, such as
chest pain type, fasting blood sugar, and electrocardiogram results, are encoded into numerical values using
techniques like one-hot encoding to make them interpretable by machine learning models. Outliers and
noisy data points are also identified and either removed or corrected. Additionally, the dataset may be split
into training and testing sets, and sometimes further divided into cross-validation folds, to optimize model
performance and prevent overfitting. These preprocessing steps enhance the dataset’s quality, ensuring more
accurate predictions in heart disease diagnosis [37].

3.2 Feature Selection Using Genetic Algorithm
Choosing the best attributes for heart disease prediction from the UCI Cleveland Heart Disease

dataset, which includes 76 medical attributes, poses several challenges that can significantly impact the
effectiveness of predictive models. One major challenge is the high dimensionality of the dataset, where
many features may be irrelevant or redundant, leading to the “curse of dimensionality” that complicates
model training and generalization. Furthermore, ensuring that the selected features align with clinical
relevance is crucial, as statistical significance alone may not reflect the medical importance of the attributes.
Addressing these challenges through feature selection techniques is essential for developing reliable heart
disease prediction models.

Utilizing GA for feature selection in heart disease prediction is often preferred over traditional
techniques due to their ability to efficiently explore large and complex search spaces, which is particularly
beneficial given the high dimensionality of medical datasets. Unlike methods such as Recursive Feature
Elimination (RFE) or Forward/Backward Selection, which rely on greedy approaches that may converge
to local optima, GAs use evolutionary principles to evaluate multiple subsets of features simultaneously,
promoting a more comprehensive search for the optimal feature set. This global search capability helps avoid
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the pitfalls of feature redundancy and ensures a diverse selection of attributes that can enhance model per-
formance. Additionally, GAs can effectively balance exploration and exploitation, allowing for adaptability
in selecting features that improve predictive accuracy while also considering interactions between features,
something that linear or statistical methods may overlook. In comparative studies, models employing GA
for feature selection have been shown to yield better predictive accuracy and robustness in heart disease
classification tasks compared to those using conventional methods, making GA a superior choice for this
application [38,39]. A Genetic Algorithm can be mathematically defined as follows [18,19,38,39]:

– Population (P): A set of potential solutions (chromosomes) representing different feature subsets.
– Chromosome (C): A binary vector Ci = [c1 , c2, . . . , cn], where c j is a binary value indicating whether

the j-th feature is selected (1) or not (0).
– Fitness Function (F): A function F∶ P → R that evaluates the quality of each chromosome based on two

criteria: classification accuracy and the number of selected attributes. In our case, the formulation for
the fitness function is:

F (Ci) = α.Accurac y (Ci) − β.NSF(Ci) (5)

where α and β are weights to balance the importance of accuracy and feature count. The fitness function
F measures how well a specific feature subset represented by the chromosome Ci performs in terms of
prediction accuracy and complexity (number of features). The objective of the GA is to maximize F. Accuracy
is calculated as the ratio of correctly predicted instances to the total number of instances in the validation set.
Higher accuracy indicates better predictive performance. Mathematically, accuracy can be expressed as [1,2]:

Accurac y = TP + TN
TP + TN + FP + FN

(6)

TP is True Positives (correctly predicted heart disease cases), TN is True Negatives (correctly predicted
non-heart disease cases), FP is False Positives (incorrectly predicted heart disease cases), and FN is the
False Negatives (incorrectly predicted non-heart disease cases). The term NSF counts the total number of
features included in the chromosome. It serves as a penalty for using too many features, which can lead to
overfitting and reduced model interpretability. The goal is to find a balance between achieving high accuracy
and maintaining a manageable number of features.

Weights α and β control the balance between accuracy and the number of selected features in the fitness
function. A higher α gives more importance to accuracy, potentially leading the GA to select many features,
improving accuracy but complicating the model. In contrast, a higher β prioritizes fewer features, simplifying
the model. However, if β is too large relative to α, the GA may favor smaller feature sets at the cost of reduced
accuracy. Balancing these weights is key to achieving both high performance and model simplicity. The
objective of the fitness function is to balance two key goals: maximizing accuracy and minimizing complexity.
The GA aims to identify feature subsets that enable accurate heart disease predictions, which are essential
for diagnosis and treatment. At the same time, it seeks to reduce the number of features, ensuring the model
remains simple and interpretable for clinicians. This balance enhances both model performance and usability.

In the given formula in Eq. (5), α and β are hyperparameters, not learnable parameters. This classifica-
tion is justified because their values are typically predefined and control the relative importance of accuracy
and the number of selected features in the fitness function, rather than being dynamically adjusted during
the optimization process. Specific settings for α and β are generally determined through trial-and-error
(experimentally) to strike a balance between model performance and feature reduction. If α and β were
learnable parameters, they would require an explicit update mechanism, such as gradient descent, which is
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not mentioned in the context of this paper. For this paper, the values α = 0.8, β = 0.2 were found to strike an
effective balance, prioritizing model performance while encouraging feature reduction without significant
accuracy loss. These values reflect the importance of accuracy while maintaining feature selection efficiency.

The GA for feature selection begins with initialization, where an initial population of chromosomes
is generated randomly. Each chromosome is a binary vector, with each bit indicating whether a specific
feature is selected (1) or not (0). In the fitness evaluation step, each chromosome Ci in the population is
assessed using the fitness function. First, the accuracy of a classifier is calculated based on the features selected
by Ci , evaluated on a validation set. Next, the number of features selected by the chromosome is counted,
and finally, the fitness value is computed by balancing accuracy and the number of selected features. In the
selection phase, pairs of chromosomes are chosen for reproduction based on their fitness scores. In our case,
a tournament selection is used in which a random subset of chromosomes is selected, and the chromosome
with the best fitness in that subset is chosen for reproduction to ensure that chromosomes with better fitness
have a higher chance of being passed on to the next generation. Perform crossover on the selected pairs
to create offspring. This involves combining portions of two parent chromosomes to produce new ones.
One-point crossover can be applied, where a crossover point is selected randomly:

O1 = [c1 , c2, . . . , ck , c̀k+1 , . . . , c̀n] (7)
O2 = [c̀1 , c̀2, . . . , c̀k , ck+1 , . . . , cn] (8)

where O1 and O2 are the offspring produced from parents c and c̀. Apply mutation to introduce diversity
within the population. A small percentage of bits in the chromosomes may be flipped to create variations:

MU (C) =
⎧⎪⎪⎨⎪⎪⎩

1 − c j with probabil it y P
c j otherwise

(9)

In the replacement phase, the old population is replaced by the new one, often retaining the fittest
individuals from the previous generation (elitism) to preserve the best solutions. The process continues with
fitness evaluation, selection, crossover, and mutation, repeating for a set number of generations or until a
stopping criterion is met, such as fitness value convergence or achieving satisfactory accuracy.

After applying the GA for feature selection in heart disease prediction, the initial set of 14 features was
optimized and reduced to 5 key features: chest pain type (cp), exercise-induced angina (exang), Segment (ST)
depression (oldpeak), number of major vessels (ca), and thalassemia (thal). By focusing only on these five
critical features, the machine learning models benefited from reduced dimensionality, which minimized the
impact of irrelevant information. This streamlined feature set not only enhanced the models’ performance
but also helped prevent overfitting, leading to more robust and generalizable predictions.

The optimized selected features are categorized into clinically and statistically related features. Clinically
relevant features are selected based on established medical knowledge and their direct association with heart
disease risk factors, such as age, sex, chest pain type (cp), resting blood pressure (trestbps), cholesterol
(chol), and exercise-induced angina (exang), which are commonly used by healthcare professionals in
cardiovascular assessments. In contrast, statistically relevant features may not have direct clinical significance
but are included in the model due to their ability to enhance predictive performance, as shown through
statistical analysis. Features like fasting blood sugar (fbs), resting electrocardiographic results (restecg), ST
depression (oldpeak), slope, number of vessels (ca), and thalassemia (thal) may improve model accuracy
despite their weaker clinical association.

Currently, our model’s feature extraction fitness function does not explicitly prioritize clinical relevance,
as it treats both clinically relevant and statistically relevant features equally to enhance accuracy. However,
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we can modify the genetic algorithm’s chromosome representation to include an additional indicator
that distinguishes between clinical and statistical features. This indicator would signal whether a feature
is clinically important, based on established medical knowledge, or statistically significant, based on its
contribution to model performance. By incorporating this indicator into the fitness function, the model
could prioritize clinically relevant features while still benefiting from the statistical features that enhance
accuracy, allowing for a more targeted and medically informed feature selection process.

The selection of five features (cp, exang, oldpeak, ca, thal) using the GA is justified by both improved
model performance and their clinical significance in heart disease prediction. Chest pain type (cp) is a key
diagnostic indicator, as different types correlate with varying levels of risk. Exercise-induced angina (exang)
assesses stress-related cardiac function, helping identify ischemic conditions. ST depression (oldpeak)
reflects electrical activity changes during exercise, crucial for detecting myocardial ischemia. The number of
major vessels colored by fluoroscopy (ca) indicates coronary artery obstruction severity, directly impacting
diagnosis. Thalassemia type (thal) affects oxygen transport and heart function, often linked to cardiovascular
abnormalities. While GA optimizes feature selection computationally, these features align with clinical
knowledge, enhancing predictive accuracy and real-world applicability.

3.3 Optimized Ensemble Deep Learning Classifier
The proposed heart disease prediction framework employs an ensemble deep learning model that

integrates multiple neural networks to achieve robust classification results [21–25]. This ensemble approach
combines several Multi-Layer Perceptron (MLP) models, each with varying depths and configurations, to
capture intricate data patterns and minimize individual model weaknesses. The ensemble structure leverages
the diversity of these MLPs to improve generalization and predictive performance. In an ensemble setting,
each MLP model in the ensemble is trained independently, and the final prediction is typically obtained
through a weighted sum or average of the predictions from all MLPs, maximizing the collective accuracy.
Let fi(X) represent the output of the i-th MLP in the ensemble for an input feature vector X. The ensemble
prediction F(X) can be expressed as [37]:

F (X) =
N
∑
i=1

ωi fi(X) (10)

where N is the number of MLP is models in the ensemble, and ωi are the weights assigned to each
model’s output. Typically, these weights are optimized to maximize ensemble performance, balancing the
contribution of each MLP based on its accuracy or confidence. An MLP is a type of feed-forward neural
network organized in layers: an input layer, one or more hidden layers, and an output layer. Each layer l in
an MLP consists of neurons connected to neurons in the subsequent layer. The feed-forward function fMLP
for an MLP with L layers can be formulated as [40]:

fMLP (X) = σL (WLσL−1 (WL−1 . . . σ1 (W1 X + b1) . . . + bL−1) + bL) (11)

Wl and bl are the weight matrix and bias vector for layer l , σl is the activation function for layer l .
In each hidden layer, a non-linear activation function, such as ReLU (Rectified Linear Unit), is applied to
introduce non-linearity and allow the MLP to learn complex patterns. The output layer generally uses a
softmax activation function as classification task is binary.

MLPs have several advantages over other deep learning models, particularly in terms of simplicity,
flexibility, and computational efficiency. Unlike CNNs, which are designed to handle spatial data (like
images), or Recurrent Neural Networks (RNNs), which are tailored for sequential data (like time series or
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text), MLPs can be applied to a broad range of data types, making them versatile for tasks like classification,
regression, and function approximation. MLPs are easier to implement and interpret, especially for small
to moderately sized datasets, and they typically require less computational power and memory compared
to deeper models like CNNs or transformers. They work well with tabular data and can be more efficient
in problems where there is no inherent spatial or temporal structure. Moreover, MLPs are fast to train,
making them suitable for real-time applications, and their architecture allows for easier integration of
engineered features, which can significantly improve performance. However, they may not capture complex
patterns in data as effectively as CNNs or RNNs, which have specialized mechanisms for spatial or temporal
dependencies [40–42].

The architecture of the heart disease prediction model comprises key layers such as Dense layers, Batch
Normalization, Leaky ReLU activation, and Dropout, all of which are structured to improve learning effi-
ciency and prevent overfitting. In this model, Dense layers are designed with progressively increasing neuron
counts to capture complex feature interactions, enabling the network to learn high-level representations of
the data as it advances through the layers.

– Dense Layers: The Dense layers are the core of the network, responsible for learning representations
and relationships within the data. By stacking layers with increasing neuron counts, the model gradually
builds a hierarchical understanding, moving from simple to complex feature interactions, which is
particularly beneficial in binary classification tasks like heart disease prediction.

– Batch Normalization: Each Dense layer is followed by a Batch Normalization layer, which standardizes
activations across each mini-batch. This layer scales and shifts inputs to stabilize and speed up the
training process, thereby reducing the phenomenon known as “internal covariate shift” where changes
in layer outputs disrupt learning in subsequent layers. Batch Normalization has been shown to improve
model convergence rates, as it enables higher learning rates without destabilizing training.

– Leaky ReLU Activation: The hidden layers employ the Leaky ReLU activation function. Unlike the
standard ReLU, which outputs zero for negative inputs, Leaky ReLU allows a small, non-zero gradient
to pass through when input values are negative. This capability helps prevent neurons from “dying”
(remaining inactive) and ensures that even negative activations contribute to learning, enhancing the
model’s ability to capture richer features in the data.

– Dropout Layers: To further regularize the model and reduce overfitting, Dropout layers are added after
each activation function. During training, Dropout randomly deactivates a fraction of neurons, with a
dropout rate of 0.5. This regularization technique forces the model to avoid reliance on specific neurons,
promoting a more generalized understanding of the data by ensuring that each training pass depends
on a slightly different subset of neuron activations.

– Output Layer: After the hidden layers, the final output layer employs the Softmax activation function.
This function converts the raw output scores, or logits, into probabilities, assigning each input a proba-
bility score corresponding to either class (presence or absence of heart disease) for binary classification.

The output probabilities generated by the Softmax layer are compared with the true class labels using
Sparse Categorical Cross-Entropy as the loss function. This measure quantifies the difference between
the predicted probability distribution and the correct class distribution, making it especially suitable for
classification problems with integer-encoded labels. To minimize the cross-entropy loss, the model employs
the Adam optimizer. Adam adapts the learning rate for each parameter by calculating the first and second
moments of the gradients, allowing it to dynamically adjust learning rates for efficient convergence. The
optimizer was configured with a default learning rate of 0.001, a value that balances rapid convergence with
stable learning. The model was trained with a batch size of 32, which balances computational efficiency
and learning stability. To prevent overfitting, early stopping was employed, halting the training process if
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validation performance did not improve over several consecutive epochs. This approach avoids excessive
training, maintaining a focus on generalized performance on unseen data.

After training each MLP model, an ensemble learning technique was applied to enhance predictive
performance. This ensemble was constructed using LogitBoost, a powerful boosting algorithm that incre-
mentally builds an ensemble by placing greater emphasis on instances that were misclassified in earlier
rounds (see Fig. 2). In a boosting framework that uses multiple MLP models with different configurations,
the weights assigned to misclassified instances can serve as additional inputs to the subsequent MLP models
in the ensemble. This method enhances the learning process by explicitly providing information about the
importance of each sample based on the errors of the previous models. Below is a detailed explanation of
this approach, along with relevant equations [43].

Figure 2: Boosting ensemble deep learning

Given a dataset D = {(Xi , yi)}N
i=1, where Xi is the feature vector and yi is the binary class label, the

boosting algorithm iteratively trains T MLPs, denoted as MLP1 , MLP2, . . . , MLPT , each with a unique
configuration.

– Initially, every sample is assigned an equal weight w(1)i = 1
N .

– For each iteration t = 1, 2, . . . , T :

– Train MLP Model MLPi : Each MLP MLPi is configured with its specific architecture (e.g., number
of layers, neurons, activation functions). During training, the model computes the output for each
sample using the standard forward propagation process in which h(l)

i is the output of the l-th layer:

h(l)
i = f (l) (W(l)h(l−1)

i + b(l)) , h(0)i = Xi (12)
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– Calculate Predictions and Loss: After training, the MLP produces predictions ŷ(t)
i . The weighted

loss function for binary classification is:

L(t) = −
N
∑
i=1

w(t)
i [yi log ( ŷ(t)

i ) + (1 − yi) log(1 − ŷ(t)
i )] (13)

– Calculate Weighted Error: The weighted error for the model is calculated as follows:

ε(t)=
∑N

i=1 w(t)
i ⋅ I (yi ≠ ŷ(t)

i )

∑N
i=1 w(t)

i

(14)

here, I (yi ≠ ŷ(t)
i ) is an indicator function that equals 1 if the prediction is incorrect.

– Determine Model Weight: Assign a weight to the model based on its performance:

α(t) = log( 1− ε(t)

ε(t) ) (15)

– Update Sample Weights: Update the sample weights to emphasize misclassified instances:

w(t+1)
i = w(t)

i ⋅ exp(α(t) ⋅ I (yi ≠ ŷ(t)
i )) (16)

Normalize w(t+1)
i such that:

w(t+1)
i ←

w(t+1)
i

∑N
j=1 w(t+1)

j

(17)

– Use Weights as Input for the Next MLP: To enhance the learning of subsequent MLPs, the misclas-
sified instances’ weights can be incorporated as an additional feature. This involves augmenting the
input feature vector Xi of each sample with its corresponding weight from the previous iteration:

X̃(t+1)
i = [ Xi

w(t)
i
] (18)

where X̃(t+1)
i is the augmented input for the next MLP MLPt+1.

– Training the Next MLP: The next MLP model ŷ(t)
i is trained using the augmented feature set X̃(t+1)

i )
with their original labels yi :

ŷ(t+1)
i = MLPt+1 (X̃(t+1)

i ) (19)

This allows MLPt+1 to leverage the importance of samples based on the previous model’s perfor-
mance, thereby improving its ability to correct mistakes.

– Final Ensemble Prediction: The final ensemble prediction after training T MLPs is computed by
combining the predictions from all models in which ŷ(t)

i is the output of the t-th model in the
ensemble.

ŷ = sign(
T
∑
t=1

α(t) ⋅ ŷ(t)
i ) (20)
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The complexity of Boosting Ensemble Deep Learning increases significantly with larger database sizes
due to the iterative nature of boosting and the computational demands of deep learning models. In boosting,
multiple weak learners are sequentially trained, with each iteration focusing more on misclassified instances,
leading to an increased number of training cycles. When applied to deep learning, where each weak
learner is a complex neural network, this process becomes computationally intensive, requiring extensive
memory, processing power, and longer training times. The size of the dataset further exacerbates this
complexity, as larger datasets require more training epochs and batch processing, increasing the burden on
Graphics Processing Units (GPUs) or Tensor Processing Units (TPUs). Additionally, data augmentation and
feature extraction in high-dimensional datasets introduce further computational overhead. Despite these
challenges, boosting improves generalization by reducing bias and variance, making it an effective approach
for handling large-scale datasets, provided that optimized training strategies, parallelization, and efficient
resource allocation are implemented.

Simplifying Boosting Ensemble Deep Learning can be effectively achieved using a lightweight version
such as a Light Gradient Boosting Machine (LightGBM), which is optimized for speed and efficiency
while maintaining high accuracy. LightGBM reduces computational complexity by employing a histogram-
based learning approach, which speeds up training by discretizing continuous feature values into bins,
significantly lowering memory usage. It also utilizes a leaf-wise growth strategy instead of level-wise
expansion, enabling faster convergence and reducing unnecessary computations. Additionally, LightGBM
supports GPU acceleration, allowing for efficient large-scale training. LightGBM’s ability to handle large
datasets efficiently makes it an ideal alternative for simplifying and boosting ensemble deep learning while
maintaining robust predictive capabilities.
Tunicate Swarm Algorithm for Optimizing Ensemble Deep Learning Model’ Weights

This step outlines how the TSA can optimize weights for a boosting ensemble in heart disease classi-
fication. The TSA is used to find the best weights for each weak learner (model) in the ensemble. The TSA
offers distinct advantages for weight optimization in ensemble learning due to its efficient balance between
exploration and exploitation. TSA’s spiral movement and jet propulsion mechanisms enable it to avoid local
optima while maintaining solution diversity, making it more adaptive in complex, nonlinear landscapes
compared to alternatives like particle swarm optimization or ant colony optimization. Additionally, TSA’s
dynamic propulsion factor promotes convergence control, allowing for effective fine-tuning of ensemble
weights without premature convergence. With fewer parameters to tune, TSA is simpler to implement, and
its lower computational demands make it particularly suitable for high-dimensional optimization tasks in
ensemble learning, where efficient, accurate convergence is essential [13–15].

– Step 1: Initialize TSA Population: Define a population of N tunicates (solutions), where each solution
represents a weight vector αi = [α(1)i , α(2)i , . . . , α(T)i ] for i = 1, 2, . . . , N , and T weak learners (e.g., MLP

models). Initialize each weight α(T)i randomly within a defined range, such as [0, 1]. For a boosting
ensemble, constrain weights so that∑T

t=1 α(t)
i = 1 to normalize their impact on the ensemble.

– Step 2: Evaluate Fitness of Each Solution: The fitness function measures how well each weight vector αi
performs when applied to the ensemble’s predictions on heart disease classification.
– Boosting Ensemble Prediction: Compute the weighted prediction ŷi for each sample in the

validation set using the weight vector αi according to Eq. (20).
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– Define Fitness Function: Use a fitness function based on classification error, such as binary cross-
entropy loss:

L (αi) = −
1
n

n
∑
j=1
[yi log ( ŷi , j) + (1 − y j) log (1 − ŷi , j)] (21)

where yi is the true label of the j-th sample, ŷi , j is the predicted label from the ensemble weighted
by αi , and n is the number of samples.

– Step 3: Update Positions of Each Tunicate: In the TSA, tunicates update their positions in the search
space based on the best current solution and their distance from it.
– Identify the Best Solution: Find the weight vector α∗ with the minimum fitness score, representing

the best solution at the current iteration.
– Calculate Distance: For each tunicate i, calculate its distance Di from the best solution:

Di = ∣αi − α∗∣ (22)

– Position Update with Jet Propulsion Mechanism: Each tunicate updates its weights according to:

α(t)
i (new) = α∗ (t) + F ⋅ Di ⋅ sin (2πλr) (23)

F is a propulsion factor controlling convergence (often decreased over time). λ is a spiral shape
parameter to add diversity, and r is a random vector for diversity.

– Step 4: Enforce Constraints and Boundary Checking: After updating, ensure each tunicate’s weights α(t)
i

stay within boundaries.
– Normalization for Boosting: For boosting ensembles, weights should sum to 1:

αi =
αi

∑T
t=1 α(t)

i

(24)

– Boundary Check: If any α(t)
i lies outside the range [0, 1], set it to the closest boundary.

– Step 5: Repeat Until Convergence:
– Iterate: Repeat Steps 2 to 4 for a set number of iterations or until convergence (fitness does not

improve significantly).
– Convergence Criterion: When the change in fitness falls below a threshold, or a maximum number

of iterations is reached, stop the search.
– Step 6: Obtain Final Ensemble Prediction: After the TSA converges, the best solution α∗ with the lowest

fitness is selected as the optimal weight vector for the ensemble. Use α∗ to make the final ensemble
prediction for heart disease classification using Eq. (20).

The TSA was chosen for optimizing the weights of the ensemble model due to its effectiveness in
navigating the complex, high-dimensional parameter space, independent of dataset size. Unlike simpler
algorithms, TSA excels at balancing exploration and exploitation, leveraging strategies inspired by tuni-
cate swarms to avoid local optima in the non-convex optimization landscape of deep learning models.
Its adaptability and dynamic behavior enable it to handle the intricate, non-linear interactions between
ensemble components better than traditional methods like gradient descent or particle swarm optimization.
TSA’s superior convergence, resilience to initialization and noise, and ability to enhance ensemble diversity
make it a robust choice for fine-tuning weights. Additionally, its scalability and flexibility ensure it can
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efficiently adapt to varying ensemble sizes and complexities, providing a reliable and precise solution for
weight optimization.

The focus here is on tuning the weights assigned to pre-trained models in the ensemble to optimize
their combined output. The dataset is only indirectly involved because the ensemble models are already
trained, and the TSA is adjusting how much influence each model has in the final decision. This process
leverages the pre-trained models’ performance on the dataset rather than manipulating the dataset directly.
The optimization process is less dependent on the dataset size or quality because it tunes the weights of
pre-trained models. The ensemble’s performance benefits from the diversity and strengths of the individual
models, which may have been trained on different datasets or subsets. This targets meta-level optimization,
focusing on the interactions and contributions of pre-trained models within the ensemble. It adjusts higher-
order parameters (e.g., model weights) to improve the overall ensemble performance.

The suggested model prevents overfitting on a high-dimensional and small dataset through a combi-
nation of strategies aimed at robust evaluation and generalization. Feature selection using a GA reduces
dataset dimensionality by retaining only the most relevant features (e.g., cp, exang, oldpeak, ca, and thal),
minimizing irrelevant information and enhancing generalization. Cross-validation with multiple folds (e.g.,
5-fold or 10-fold) exposes the model to various data subsets, reducing the risk of overfitting to specific
splits. Additionally, testing across different dataset splits (e.g., 70–30, 60–40) ensures the model’s robustness
under varying training-to-testing ratios. Ensemble learning further adds another layer of regularization
and mitigates overfitting by combining predictions from multiple models, reducing variance and improving
generalization. Finally, the TSA optimizes the ensemble’s weights, balancing the contribution of each model
based on its performance, ensuring robust and reliable predictions.

3.4 Model’s Interpretability for Clinical Use
In our suggested heart disease detection model, the feature selection module plays a critical role in

enhancing the model’s interpretability for clinical use. By GA for feature selection, the model identifies and
prioritizes the most relevant clinical features. This process narrows down the vast amount of input data to
a set of key features that are most predictive of heart disease risk. Clinicians can use these insights to make
informed decisions by focusing on the specific variables highlighted by the model as having the strongest
correlation with heart disease. For instance, if the feature selection process identifies cholesterol levels and age
as significant predictors, clinicians can prioritize interventions targeting these factors, such as recommending
dietary changes, lifestyle modifications, or prescribing cholesterol-lowering medication. Additionally, by
understanding which features are most influential in the model’s predictions, clinicians gain clarity on the
reasoning behind the risk scores, enabling them to explain the rationale for treatment decisions to patients
more effectively.

The ensemble nature of the model, combining multiple algorithms to improve predictive accuracy,
provides further confidence in the model’s outputs. Since the ensemble model aggregates insights from
different classifiers, it reduces the risk of overfitting to any one particular dataset or feature set, offering a
more robust and reliable prediction. Therefore, clinicians can use the model’s risk scores, along with the
insights into which features are most critical, to guide their clinical decisions, ensuring that interventions
are personalized and based on the most relevant factors for each patient. This interpretability makes the
model not only a powerful decision-support tool but also an accessible one for clinicians in real-world
clinical settings.

The selected five features—cp (chest pain type), exang (exercise-induced angina), oldpeak (ST depres-
sion induced by exercise), ca (number of major vessels colored by fluoroscopy), and thal (thalassemia
type)—are widely recognized and commonly used in heart disease prediction across diverse demographic



Comput Model Eng Sci. 2025;143(1) 893

datasets. These features have been extensively validated in various clinical studies and are routinely collected
in different healthcare settings, making them generalizable to a broad population. Their physiological
relevance ensures that they remain key indicators of cardiovascular health, regardless of demographic
variations such as age, gender, or ethnicity.

However, in cases where one or more of these features are unavailable for certain patients due to missing
records or data collection inconsistencies, the model can still function effectively through several approaches.
Data imputation techniques (such as mean/mode imputation or regression-based estimation) can be used
to estimate missing values. Additionally, the model can be adapted by retraining it on alternative feature
subsets, ensuring flexibility without significant performance loss. If missing data is prevalent, probabilistic
modeling or uncertainty-aware decision-making can be integrated to maintain reliable predictions. These
strategies ensure that the model remains robust and applicable across diverse real-world clinical datasets.

4 Experimental Results and Discussions

4.1 Datasets, Evaluation Metrics, and Implementation
In this section, the proposed model was validated using the UCI Cleveland Heart Disease dataset,

sourced from the Cleveland Clinic Foundation. Each entry in this dataset represents a unique case of heart
disease, encompassing variations in patient characteristics such as age, gender, and medical history, which
reflect a broad spectrum of heart disease manifestations (see Table 1). This diversity supports the model’s
ability to generalize across a wide range of patient profiles and heart disease indicators. The UCI Cleveland
Heart Disease dataset is designed to capture a representative sample of the population, providing valuable
insights into key factors associated with heart disease risk and progression. It includes various age groups,
with a particular focus on adults and older adults who are more susceptible to heart disease due to age-related
factors. The dataset maintains a balanced distribution across gender, recognizing the distinct heart disease
risk profiles in males and females, influenced by physiological differences and lifestyle factors. Furthermore,
it records critical medical information such as cholesterol levels, blood pressure, chest pain type, fasting
blood sugar, and previous heart-related events, along with lifestyle details including smoking habits, and
exercise-induced angina. This comprehensive dataset structure enhances the robustness of machine learning
models for heart disease detection and prediction by providing a well-rounded view of relevant risk factors
and patient diversity [35,36].

Table 1: Summary of variables in the UCI cleveland heart disease dataset

No. Variable
name

Description Type Missing
values

1 Age Age (in years) Integer No
2 Sex 1 =male, 0 = female Categorical No
3 Cp Chest pain type, with values ranging from 1 to 4 Categorical No
4 Trestbps Resting blood pressure in mm Hg. Integer No
5 Chol Serum cholesterol level in mg/dL Integer No
6 Fbs Fasting blood sugar level Categorical No
7 Restecg Resting electrocardiographic results Categorical No
8 Thalach Maximum heart rate achieved during an exercise test Integer No
9 Exang Exercise-induced angina Categorical No
10 Oldpeak ST depression induced by exercise relative to rest Integer No

(Continued)
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Table 1 (continued)

No. Variable
name

Description Type Missing
values

11 Slope The slope of the peak exercise ST segment Categorical No
12 Ca Number of major vessels colored by fluoroscopy (0–3) Integer Yes
13 Thal A blood disorder called thalassemia Categorical Yes

The experiment was carried out on a system equipped with an Intel(R) Core (TM) i7 processor and
8 GB of RAM. This hardware configuration, though modest, provided sufficient computational power
to support deep learning computations and analysis tasks effectively. This setup employs Python 3.8 for
compatibility with current libraries and uses Anaconda for package management. Core Python libraries
include Pandas and NumPy for data handling and preprocessing, scikit-learn for machine learning utilities
(e.g., train-test split, standardization, and feature selection techniques), and TensorFlow/Keras to build and
train ensemble models. For weight optimization in the ensemble, NiaPy was used to apply the TSA, aiming
to improve model performance by finding optimal weight combinations for each model in the ensemble.
Additionally, Matplotlib and Seaborn support data visualization, enabling comprehensive analysis of training
progress and model evaluation metrics such as accuracy, precision, and ROC curves. This configuration is
sufficient to handle the data processing, model training, and iterative optimization needed for effective heart
disease prediction.

The effectiveness of the proposed heart disease prediction model, which utilizes feature selection
and ensemble deep learning with optimized weights, is evaluated through a comprehensive set of perfor-
mance metrics, including precision, recall, accuracy, specificity, sensitivity, Matthews Correlation Coefficient
(MCC), and F1 score. Precision quantifies the proportion of true positive predictions among all positive
predictions, reflecting the model’s accuracy in identifying heart disease cases without misclassifying healthy
individuals. Recall, or sensitivity, measures the model’s capacity to correctly identify actual heart disease
cases, thereby minimizing false negatives. Accuracy provides an overall assessment of correctly classified
instances, encompassing both positive and negative cases. Specificity gauges the model’s effectiveness in
recognizing non-disease cases, reducing false positives. Sensitivity and specificity together ensure an accurate
distinction between heart disease and non-disease cases. The MCC further strengthens the evaluation
by considering all four confusion matrix categories, giving a balanced view of the model’s performance
even with class imbalance. The F1 score, as a harmonic mean of precision and recall, reflects the model’s
ability to balance accuracy in positive predictions and recall, particularly important in medical diagnosis.
Collectively, these metrics provide a robust assessment of the proposed model’s effectiveness in addressing
the complexities of heart disease prediction [1–4].

In optimizing the proposed heart disease prediction model, we employ a GA to identify the most
relevant features for accurate predictions. By carefully configuring GA parameters, we enhance the selection
of features that best contribute to the ensemble deep learning model’s performance, allowing for improved
accuracy and generalization. Table 2 details the GA configuration parameters that led to the most efficient
feature subset for our model. Furthermore, Table 3 lists the TSA’s configuration to effectively tune the weights
of the utilized ensemble learning model in the heart disease prediction task. These parameters aim to
maximize TSA’s efficiency in finding the optimal weight settings, leading to improved model performance.
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Table 2: GA’ configuration parameters

Parameter Configuration Description
Population size 50 The number of individual solutions in each generation,

balancing diversity with computational demand.
Number of
generations

100 The total number of generations to evolve, ensuring
sufficient exploration of the solution space.

Selection method Tournament
selection (size = 3)

Chooses the best individuals from random subsets,
promoting fitter solutions in the population.

Crossover rate 0.8 Controls the probability of crossover, allowing effective
recombination of features from parent solutions.

Mutation rate 0.05 Introduces random variations, maintaining genetic
diversity to avoid premature convergence.

Crossover type Uniform crossover Alternates genes from both parents, ensuring a
well-mixed feature selection in offspring.

Mutation type Bit flip mutation Randomly flips feature inclusion/exclusion to explore a
broader range of feature combinations.

Fitness function Model accuracy Evaluates each feature subset based on the accuracy
achieved by the ensemble model using selected features.

Table 3: TSA’ configuration parameters

Parameter Optimal
configuration

Description

Population size 30 Number of tunicate agents in the population, balancing
exploration with computational efficiency.

Max iterations 200 Ensures sufficient convergence by allowing the model to
explore various weight configurations.

Search space
bounds

[0, 1] for each
weight

Limits weight values between 0 and 1, ensuring valid and
interpretable ensemble weights.

Inertia weight (w) 0.5 Controls the influence of previous movements on the
current iteration, balancing exploration and exploitation.

Adaptive
coefficient (α)

0.7 Determines the adaptive rate of the tunicate positions,
allowing dynamic adjustments for optimal solutions.

Convergence
threshold

1 × 10−5 Sets a precision level for weight convergence to reduce
unnecessary iterations when optimal weights are found.

4.2 Experimental Results
To validate the proposed model, a series of experiments should be conducted. Each experiment serves

to assess different components of the model, ensuring its effectiveness and robustness. Below is a detailed
description of the experiments conducted, including their aims, expected outcomes, and justifications:
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4.2.1 Experiment 1: Feature Selection Efficiency Using GA
The aim is to assess the effectiveness of GA in selecting the most relevant features from the UCI

Heart Disease dataset, minimizing dimensionality while maintaining prediction accuracy. The results listed
in Table 4 show a notable improvement in the model’s performance after applying GA-optimized feature
selection. The accuracy increases from 90.00% to 92.30% suggesting that GA successfully identified the
most relevant features, allowing the model to make more accurate predictions by minimizing errors in
classification. The MCC improvement from 0.8047 to 0.8325 indicates a more balanced performance across
all classes, as MCC accounts for true positives, true negatives, false positives, and false negatives. This
means the model has become better at distinguishing between heart disease and non-heart disease cases.
Additionally, the F1 score improvement from 89.91% to 91.20% reflects a better trade-off between precision
and recall, ensuring that the model not only reduces false positives but also avoids missing true positive
cases of heart disease. Together, these results demonstrate that GA-based feature selection enhances the
model’s ability to make more reliable and balanced predictions, ultimately improving its overall performance
in heart disease detection. In general, High dimensionality and redundant features can lead to overfitting,
increased computation time, and decreased model generalization. GA provides an efficient mechanism for
feature selection, ensuring that only the most relevant features are retained, improving model efficiency
and accuracy.

Table 4: Impact of GA-based feature selection on model performance without TSA

Experiment Accuracy (%) MCC F1 Score (%)
Baseline (No GA) full features 90.00 0.8047 89.91

Recursive Feature Elimination (RFE) 90.50 0.8105 90.10
Mutual Information (MI) 90.70 0.8120 90.25

Feature Selection in Ref. [27] (single-objective fitness function) 91.00 0.8200 90.50
GA-Optimized Feature Selection (multi-objective fitness function) 92.30 0.8325 91.20

In addition, the results indicate that the proposed model relying on a multi-objective fitness func-
tion outperforms the alternative method based on a single-objective fitness function. The multi-objective
approach achieves higher accuracy (92.30% vs. 91.00%), MCC (0.8325 vs. 0.8200), and F1 score (91.20% vs.
90.50%). This improvement can be attributed to the multi-objective fitness function’s ability to optimize
multiple conflicting criteria simultaneously, such as accuracy, and feature relevance (number of selected
features in our case). In contrast, the single-objective method focuses on optimizing a single criterion, which
may lead to suboptimal trade-offs and reduced overall performance. The multi-objective approach ensures
a better balance between objectives, resulting in a more robust and effective feature selection process that
enhances the model’s predictive capability.

In general, the difference between single and multi-objective fitness functions lies in the number of
objectives they optimize. A single-objective fitness function evaluates and optimizes a single criterion,
producing a scalar value to measure solution quality, making it simpler and less computationally intensive.
In contrast, a multi-objective fitness function optimizes multiple, often conflicting objectives simultane-
ously, producing a vector of values or a Pareto front representing trade-offs between objectives. While
single-objective functions focus on one goal, multi-objective functions provide a range of solutions for
decision-makers to balance competing goals effectively.
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In addition, the GA outperforms simple feature selection methods like Recursive Feature Elimination
(RFE) and Mutual Information (MI) by providing a more global search strategy that avoids local optima.
While RFE iteratively removes the least important features based on model performance and MI selects
features based on their statistical dependency with the target variable, both approaches can be limited by
fixed selection criteria and may overlook complex feature interactions. In contrast, GA explores a broader
solution space by employing evolutionary principles such as selection, crossover, and mutation, allowing it to
identify an optimal subset of features that maximizes predictive performance while minimizing redundancy.
This adaptive search capability enables GA to capture non-linear relationships between features and the
target variable, making it particularly effective for high-dimensional datasets. Empirical results show that
GA-selected features lead to models with higher accuracy and robustness compared to those selected by RFE
or MI, demonstrating its superiority in both accuracy and clinical relevance in heart disease prediction.

4.2.2 Experiment 2: Comparison of Single Deep Learning Models
In this experiment, we aim to evaluate the performance of individual deep learning models, specifically

MLPs with different configurations, trained using feature subsets selected by a GA. The goal is to understand
how varying MLP configurations perform before combining them into an ensemble model without weight
tuning. By testing multiple configurations of MLP and then combining them into an ensemble, we aim
to determine if ensemble learning improves the overall performance of the heart disease prediction task.
The results shown in Table 5 demonstrate that the Boosting Ensemble Deep Learning model outperforms
the individual MLP configurations in all key metrics: accuracy, precision, recall, and F1 score. With an
accuracy of 93.30%, the Ensemble model surpasses the best individual configuration (Configure 2) by
1.20%, indicating improved overall classification performance. It also achieves the highest precision (92.40%)
and recall (93.10%), surpassing the individual models by significant margins, which shows its superior
ability to minimize both false positives and false negatives. Additionally, the Ensemble model’s F1 score of
92.75% further underscores its balanced and robust performance, combining the strengths of multiple MLP
configurations to deliver a more reliable and accurate classification, highlighting the effectiveness of boosting
techniques in enhancing deep learning model performance.

Table 5: Performance evaluation (%) of MLP configurations and ensemble model for heart disease prediction (without
TSA)

Model
configuration

Accuracy Precision Recall F1 Score Configuration details

MLP (Configure 1) 91.20 90.50 92.00 91.23 2 hidden layers with 64 neurons
each, ReLU activation, Adam

optimizer, and Dropout
regularization. A balanced,

moderate complexity
architecture was suitable for

heart disease prediction.

(Continued)
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Table 5 (continued)

Model
configuration

Accuracy Precision Recall F1 Score Configuration details

MLP (Configure 2) 92.10 91.00 92.30 91.64 3 hidden layers with 128
neurons each, ReLU activation,
Adam optimizer, and Dropout

regularization. A deeper
architecture to capture more
complex patterns and higher

performance.
MLP (Configure 3) 90.80 89.60 91.20 90.39 2 hidden layers with 80 neurons

each, ReLU activation, Adam
optimizer, and Dropout

regularization. A simpler model
with fewer neurons and layers

leads to lower performance but
more computationally efficient.

Ensemble (MLP
Configures 1, 2, 3)

93.30 92.40 93.10 92.75 Combines predictions from
Configure 1, Configure 2, and
Configure 3 using weighted

average. The ensemble method
improves classification accuracy
by combining the strengths of

all models.

The superiority of the boosting ensemble deep learning model over individual MLP configurations can
be attributed to several key factors. First, boosting methods combine multiple weak learners (in this case,
MLPs with different configurations), each contributing to the final decision, which helps to reduce bias and
variance in the model’s predictions. Second, boosting focuses on adjusting the model’s weights to correct
errors made by previous learners, thus refining the learning process and enhancing accuracy over time.
Third, by leveraging the diversity among various MLP configurations, the ensemble is less likely to overfit
the peculiarities of any single model and can generalize better across different data distributions. Finally,
ensemble methods tend to have better robustness, as they average out the individual model errors, leading to
higher precision and recall. These combined factors enable the boosting ensemble to outperform individual
models by effectively capitalizing on the strengths of each configuration while minimizing their weaknesses.

4.2.3 Experiment 3: Optimization of Ensemble Weights Using TSA
Table 6 compares the performance metrics of an ensemble model before and after optimizing its

weight using TSA. The Ensemble (Without TSA) configuration achieves an accuracy of 93.30%, precision of
92.40%, recall of 93.10%, and an F1 Score of 92.75%. Following TSA optimization, the Ensemble (With TSA
Optimization) configuration improves to 97.50% accuracy, 96.80% precision, 97.20% recall, and a 97.00%
F1 Score. These values represent performance increases of 4.20% in accuracy, 4.76% in precision, 4.40% in
recall, and 4.59% in F1 Score. These results demonstrate TSA’s effectiveness in fine-tuning ensemble model
weights, leading to a more balanced integration of individual model outputs. The accuracy improvement
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indicates a substantial reduction in misclassification, while increases in precision and recall highlight better
distinctions between positive and negative cases. By aligning each model’s contribution to the ensemble,
TSA optimization leverages their unique strengths and minimizes individual weaknesses, resulting in an
ensemble model that more effectively predicts heart disease cases.

Table 6: Performance comparison of ensemble model with different weight optimization techniques

Model configuration Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Computational
overhead (s)

Ensemble (Without TSA) 93.30 92.40 93.10 92.75 10
Ensemble (With TSA Optimization) 97.50 96.80 97.20 97.00 64
Ensemble (With PSO Optimization) 96.20 95.50 95.80 95.65 45
Ensemble (With GA Optimization) 95.80 94.90 95.30 95.10 60
Ensemble (With SA Optimization) 95.50 94.50 94.80 94.65 40

Ensemble (With L1/L2 Regularization) 94.80 94.00 94.30 94.15 20
Ensemble (With Pruning Technique) 94.50 93.80 94.00 93.90 25

Furthermore, the results show that TSA optimization achieves the highest accuracy (97.50%), outper-
forming other methods. However, it has the highest computational overhead (64 s), indicating a trade-off
between performance and efficiency. The Particle Swarm Optimization (PSO) and GA provide a balanced
approach, achieving accuracy levels of 96.20% and 95.80%, respectively, while maintaining moderate
computational costs (45 and 60 s). the Simulated Annealing (SA), being a simpler heuristic-based method,
results in slightly lower accuracy (95.50%) but reduces computational time to 40 s, making it more efficient
for real-time applications. L1/L2 regularization and pruning techniques offer lightweight solutions, achieving
94.80% and 94.50% accuracy, respectively, with significantly lower computational overhead (20 and 25 s),
making them ideal for resource-constrained environments.

While TSA optimization delivers the best accuracy, other methods have notable disadvantages. PSO and
GA require multiple iterations to converge, which increases computational time. SA can struggle with getting
stuck in local optima, leading to suboptimal solutions. Regularization and pruning, while computationally
efficient, may slightly reduce model accuracy by enforcing constraints on weight updates and removing
parameters. TSA, despite its high computational cost, stands out due to its ability to explore the search space
effectively, avoid local minima, and achieve superior performance. This makes it the most suitable method
for applications where accuracy is a priority over computational efficiency, such as medical diagnostics or
high-stakes decision-making systems.

In general, the computational cost of TSA optimization would not outweigh its marginal performance
benefits in practical applications because the performance improvements, particularly in fine-tuning the
weights of ensemble deep learning models, often result in a more reliable and stable model. In critical fields
like healthcare, where accuracy and generalization are paramount, even modest gains in performance can
have significant positive impacts, such as more accurate diagnoses or better treatment predictions. The
computational cost, while higher compared to simpler optimization methods, is justified by the enhanced
ability of TSA to avoid local minima and find optimal weight configurations, ensuring that the model
performs reliably across varied datasets. Given the importance of precision in practical applications, the
trade-off between computational cost and performance gain is often deemed worthwhile.
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4.2.4 Experiment 4: Model Performance Comparison with Traditional Classifiers
To assess the effectiveness of the proposed hybrid model (GA-based feature selection and TSA-

optimized ensemble), we compare its performance with traditional classification methods, including logistic
regression, Support Vector Machine (SVM), decision trees, and deep learning. Table 7 displays the results
for accuracy, precision, recall, and F1-score for each model, allowing us to evaluate how the hybrid model
performs relative to established classifiers. Table 7 provides a comparative analysis of the performance
metrics for each model configuration. The proposed hybrid model significantly outperforms traditional
classifiers across all metrics, achieving an accuracy of 97.5%, a precision of 96.8%, a recall of 97.2%, and an
F1-score of 97.0%. This superior performance can be attributed to the hybrid approach’s ability to use GA
for effective feature selection, isolating only the most predictive features, while TSA optimizes the ensemble
model by assigning optimal weights to individual models. These optimizations enhance the hybrid model’s
predictive capabilities, reduce misclassification, and improve its adaptability in complex classification tasks.
In contrast, traditional models like logistic regression, SVM, and decision trees lack this level of feature and
model optimization. As a result, they yield lower scores, particularly in recall and F1-score, reflecting more
limited sensitivity.

Table 7: Table performance comparison of proposed model vs. Traditional classification methods

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

Most common configuration
parameters

Logistic
regression

85.40 83.90 84.50 84.20 Regularization: L2, Solver:
‘lbfgs’, Max Iterations: 1000,

Penalty: ‘none’
Support
vector

machine
(SVM)

88.20 87.30 88.00 87.65 Kernel: RBF, C: 1.0, Gamma:
‘scale’, Class weight: None,

Decision function shape: ‘ovr’

Decision
trees

82.70 81.40 83.10 82.25 Max Depth: None, Min Samples
amSplit: 2, Min Sples Leaf: 1,

Criterion: ‘gini’
Deep

learning
94.80 94.30 94.50 94.40 CNN (Convolutional Neural

Network) with 3 convolutional
layers and 2 dense layers,

Activation: ReLU, Optimizer:
Adam, Learning Rate: 0.001,

Batch Size: 32, Epochs: 50, Loss
Function: Categorical

Cross-Entropy
Proposed

model (GA
+ TSA)

97.50 96.80 97.20 97.00 Feature Selection: GA-based,
Ensemble: TSA-optimized

weights, Models: multiple MLPs
with different configurations
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The proposed model outperforms the CNN-based deep learning model across all performance metrics:
accuracy (97.50% vs. 94.80%), precision (96.80% vs. 94.30%), recall (97.20% vs. 94.50%), and F1 score (97.00%
vs. 94.40%). This superior performance can be attributed to the incorporation of Genetic Algorithm (GA)-
based feature selection, which reduces the dimensionality of the input data, focusing on the most relevant
features and eliminating irrelevant ones. Additionally, the Tunicate Swarm Algorithm (TSA) optimizes the
ensemble model’s weights, enabling it to leverage the strengths of multiple MLPs with varying configurations.
Unlike CNN, which relies solely on its architecture to learn patterns, the proposed model benefits from
enhanced feature selection and adaptive weight optimization, making it more robust to variations and noise
in the data. These enhancements result in better generalization and improved accuracy compared to the
standalone CNN.

4.2.5 Experiment 5: Generalization and Robustness Assessment
To assess the model’s generalization capacity, an experimental setup is designed to evaluate the

performance of the proposed model on different dataset splits (e.g., 70–30, 60–40) and multiple cross-
validation folds (e.g., 5-fold, 10-fold). By testing these variations, we aim to ensure that the model can
generalize beyond specific data subsets, avoiding overfitting and achieving reliable performance on new,
unseen data. Table 8 presents the model’s performance across different dataset splits and cross-validation
configurations, measured by accuracy, precision, recall, and F1 score. The highest scores are observed with
the 70–30 split using 10-fold cross-validation, suggesting that a larger training set (70%) paired with more
varied validation folds (10-fold) enables the model to generalize better and achieve robust results, supporting
its adaptability to unseen data. Comparatively, the 60–40 split shows slightly lower performance, likely due
to the reduced training data available for model learning, which can limit generalizability.

Table 8: Model performance across dataset splits and cross-validation folds

Dataset split Cross-validation fold Accuracy (%) Precision (%) Recall (%) F1 Score (%)
70–30 5-fold 94.2 93.5 93.8 93.7
70–30 10-fold 97.5 96.8 97.2 97.0
60–40 5-fold 92.1 91.3 91.8 91.6
60–40 10-fold 93.5 92.7 93.1 92.9

The 70–30 split with 10-fold cross-validation yields the best results because it provides a balanced
approach between training data size and validation robustness. With the 70–30 split, a larger portion of
the dataset (70%) is available for training, allowing the model to learn more comprehensive patterns and
relationships in the data. This larger training set can lead to improved model performance, as it minimizes
underfitting and equips the model to generalize more effectively. Additionally, using 10-fold cross-validation
introduces greater diversity in the validation process, enabling the model to be evaluated on multiple subsets
of the data. This approach reduces the risk of overfitting to any single validation subset and provides a
more reliable assessment of the model’s performance. In comparison, the 60–40 split reduces the training
data size, which can limit the model’s ability to capture intricate patterns in the data, leading to slightly
lower performance.

Additionally, to showcase the generalizability of our model, we conducted a new set of experiments
to validate its performance using publicly available heart disease datasets beyond the UCI Cleveland Heart
Disease Dataset. The Framingham Heart Study Dataset is a long-term study initiated in 1948 in Framingham,
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Massachusetts, to investigate cardiovascular disease risk factors. It includes over 4000 records with features
such as age, gender, systolic and diastolic blood pressure, cholesterol levels Low-Density Lipoprotein (LDL),
and High-Density Lipoprotein (HDL), smoking status, diabetes, and physical activity. The target variable
is a binary classification indicating the presence of cardiovascular disease (0 = no, 1 = yes). The dataset is
publicly available through the UCI Machine Learning Repository and platforms like Kaggle. The Statlog
Heart Disease Dataset is a widely used dataset for heart disease classification tasks, often utilized in machine
learning competitions. It contains 270 instances with 13 clinical attributes, including age, sex, chest pain type,
resting blood pressure, serum cholesterol, electrocardiographic results, maximum heart rate, and exercise-
induced angina. The target variable is binary (1 = heart disease present, 0 = absent), and the dataset is available
through the UCI Machine Learning Repository.

The results in Table 9 indicate that the proposed model generalizes well across different heart disease
datasets, demonstrating high accuracy, precision, recall, and F1 scores. The model achieved 96% accuracy on
the Framingham Heart Study Dataset and 95% on the Statlog Heart Disease Dataset, suggesting its robustness
in handling diverse patient data and risk factors. The high precision (0.94 and 0.90, respectively) indicates
that the model effectively minimizes false positives, ensuring reliable predictions. Similarly, the recall values
(0.93 and 0.92, respectively) highlight the model’s capability to correctly identify heart disease cases, reducing
false negatives. The consistently high F1 scores (0.93 and 0.91) further confirm a balanced performance
between precision and recall, reinforcing the model’s reliability in detecting heart disease across different
datasets. These findings suggest that the model is well-generalized and not overly dependent on a single
dataset, making it suitable for broader clinical applications.

Table 9: Performance evaluation of the model on benchmark heart disease datasets

Dataset name Accuracy (%) Precision Recall F1 Score
Framingham heart study dataset 96 0.94 0.93 0.93

Statlog heart disease dataset 95 0.90 0.92 0.91

4.2.6 Experiment 6: Computational Efficiency and Training Time Analysis
To evaluate the computational efficiency of the model, an experiment will be conducted to measure

key performance factors such as training time, testing time, and resource utilization (including memory
and CPU usage). While achieving high predictive accuracy is essential, the model must also remain
computationally feasible, especially for real-world deployment where resource constraints and response
times are critical. This experiment assesses whether the model can balance high performance with efficient
use of resources, providing insights into its suitability for practical applications. Table 10 illustrates the
computational efficiency of the model across different dataset splits and cross-validation configurations,
showing key metrics: training and testing time, memory usage, and CPU usage. The 70–30 split with 10-
fold cross-validation has the highest training time (180 s) and resource usage, with memory at 1150 MB and
CPU usage at 90%. This is expected due to the larger training set size and increased number of validation
folds, which enhances generalization at the cost of higher computational demand. In comparison, the 60–
40 split with fewer folds (e.g., 5-fold cross-validation) shows reduced training time (90 s), lower memory
consumption (950 MB), and CPU usage (80%). This suggests that while larger dataset splits and more folds
improve model performance through better validation, they also require significantly more computational
resources, highlighting a trade-off between model generalization and computational efficiency. Herein, we
utilized psutil library in Python that provides system and process utilities, including memory usage and CPU
usage of a specific process.
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Table 10: Computational efficiency of model across different dataset splits and cross-validation folds

Dataset split Cross-validation
fold

Training
time (s)

Testing time
(s)

Memory
usage (MB)

CPU usage
(%)

70–30 5-fold 120 15 1024 85
70–30 10-fold 180 20 1150 90
60–40 5-fold 90 12 950 80
60–40 10-fold 140 18 1080 88

4.2.7 Experiment 7: Sensitivity and Specificity Evaluation
This experiment aims to assess the sensitivity (true positive rate) and specificity (true negative rate)

of various heart disease prediction models, including Logistic Regression, Support Vector Machine (SVM),
Decision Trees, and the proposed ensemble model. In medical diagnostics, minimizing false negatives
is crucial to avoid missed diagnoses, especially in identifying patients at risk of heart disease. Table 11
compares the sensitivity and specificity of various heart disease prediction models: Logistic Regression,
SVM, Decision Trees, and the proposed ensemble model. The proposed model demonstrates the highest
sensitivity (97.2%) and specificity (97.8%), significantly outperforming the other methods. This indicates that
the GA+TSA model is highly effective in both identifying true cases (high sensitivity) and correctly rejecting
non-cases (high specificity). In medical diagnostics, these metrics are essential, as they reflect the model’s
ability to minimize false negatives (missed diagnoses) and false positives (unnecessary alerts). The enhanced
performance of the GA + TSA model likely results from its integration of feature selection and optimization
techniques, which streamline the model by focusing on the most relevant attributes. Traditional models like
Logistic Regression, SVM, and Decision Trees perform reasonably well but lack tailored optimization, which
appears to be key in achieving the proposed model’s superior results.

Table 11: Sensitivity and specificity comparison of heart disease prediction models

Model Sensitivity (%) Specificity (%) AUC-ROC (%)
Logistic regression 88.5 89.3 90.1

Support Vector Machine (SVM) 91.2 90.5 92.0
Decision Trees 86.4 85.9 87.1

Proposed Model (GA + TSA) 97.2 97.8 98.0
Proposed Model (GA + TSA) with SMOTE 98.1 98.4 98.7

The AUC-ROC (%) values in the table indicate the overall discriminatory power of each model in
distinguishing between heart disease and non-heart disease cases. Higher AUC-ROC values suggest better
performance, with a score of 100% representing a perfect classifier. The Proposed Model (GA + TSA) with
SMOTE achieves the highest AUC-ROC at 98.7%, showing excellent classification capability. The Proposed
Model (GA + TSA) without SMOTE is slightly lower at 98.0%, suggesting that handling class imbalance
improves overall discrimination, albeit marginally. In contrast, traditional models like Logistic Regression
(90.1%), SVM (92.0%), and Decision Trees (87.1%) have noticeably lower AUC-ROC values, indicating
that they are less effective in capturing complex patterns within the dataset. The improvement in AUC-
ROC when using SMOTE highlights that balancing the class distribution enhances the model’s ability to
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differentiate between positive and negative cases, though the effect is limited since the original dataset was
only moderately imbalanced.

In general, The UCI Cleveland Heart Disease dataset is known for having an imbalanced class
distribution, where cases of heart disease (especially severe conditions) are underrepresented compared
to non-disease cases. Utilizing SMOTE (Synthetic Minority Over-sampling Technique) helps address this
imbalance by generating synthetic samples rather than duplicating existing ones. This technique works
by interpolating between minority class instances, effectively increasing their presence in the dataset and
preventing models from being biased toward the majority class. The table shows the sensitivity and specificity
of different models for classification, including the proposed model (GA + TSA) and a suggested model
incorporating SMOTE for class imbalance handling. The proposed model (GA + TSA) already achieves
high sensitivity (97.2%) and specificity (97.8%), indicating strong performance. When SMOTE is applied
(GA + TSA + SMOTE), there is a slight improvement to 98.1% sensitivity and 98.4% specificity. The modest
improvement suggests that the dataset may not have suffered from severe class imbalance, meaning GA
and TSA already optimized feature selection and model performance effectively. Since SMOTE artificially
balances classes by generating synthetic samples, its impact is more significant when the original dataset is
highly imbalanced. Here, the small gain implies that misclassifications due to class imbalance were already
minimal, and the optimization techniques used in GA + TSA were sufficient in handling the imbalance to a
large extent.

The specificity improvement of 97.8% achieved by the Proposed Model (GA+TSA) over baseline models
like SVM (90.5%) and Logistic Regression (89.3%) may seem marginal, but it remains highly significant,
particularly in the context of medical diagnosis where minimizing false positives is crucial. One key reason
for this seemingly small gain is that the baseline models already exhibit high specificity, meaning that they
are already effective at reducing false positives, leaving less room for dramatic improvements. Moreover,
advanced optimization techniques often result in a greater enhancement of sensitivity rather than specificity,
as the primary goal is to minimize false negatives, which is particularly important in heart disease prediction,
where missing a true positive case can have severe consequences. The GA for feature selection primarily
refines the feature set by removing redundant and less informative features, ensuring a well-generalized
model rather than directly boosting specificity. Additionally, the TSA for weight optimization fine-tunes
ensemble learning by adjusting model parameters to balance sensitivity and specificity while preventing
overfitting. While the 1%–2% improvement in specificity may appear minor in percentage terms, in real-
world medical applications, this translates into a significant reduction in misdiagnosed healthy individuals,
leading to fewer unnecessary medical tests, reduced anxiety, and better resource allocation.

Fig. 3 presents the False Positive Rate (FPR) values for different machine learning models applied
to the problem at hand. The FPR is a critical metric in classification tasks, particularly when evaluating
models for imbalanced datasets. The FPR measures the proportion of actual negatives that are incorrectly
classified as positives. A lower FPR indicates better model performance in distinguishing between the
positive and negative classes, minimizing the misclassification of negatives as positives. The results reveal
notable differences in their ability to minimize false positives. Logistic Regression, a simple linear model, has
an FPR of 0.107, indicating that approximately 10.7% of actual negatives are misclassified as positives, leaving
room for improvement. SVM performs better, with an FPR of 0.095, showing its strength in handling non-
linearity and better distinguishing between positive and negative classes. Decision Trees, however, have the
highest FPR at 0.141, suggesting sensitivity to data variations and potential overfitting, which leads to more
false positives. In contrast, the proposed model combining GA and TSA significantly improves performance,
reducing the FPR to 0.022, indicating only 2.2% of actual negatives are misclassified. The best-performing
model, combining GA + TSA with SMOTE achieves the lowest FPR of 0.016, effectively addressing class
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imbalance and further reducing false positives. This combination results in a highly accurate and balanced
model that outperforms the other models in minimizing misclassifications.
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Figure 3: False positive rate (FPR) for different models

4.2.8 Limitations
While the hybrid model for heart disease prediction offers promising improvements, it faces sev-

eral limitations. The integration of the GA and TSA, though beneficial for feature selection and model
optimization, introduces computational complexity that may hinder its application in real-time settings
or on devices with limited resources. Additionally, the model’s performance is highly dependent on the
quality and representativeness of the training dataset; unbalanced or non-representative data may affect
its generalizability to other populations. The ensemble deep learning approach also poses challenges for
interpretability, which can be a drawback in clinical contexts where understanding the rationale behind
predictions is essential. Although GA aids in feature reduction, the model’s complexity could still lead to
overfitting, especially on smaller datasets, reducing effectiveness on unseen data. Furthermore, the GA
and TSA require precise hyperparameter tuning, which can be challenging without domain expertise.
Furthermore, the model’s validation scope may be limited to specific datasets or populations, underscoring
the need for broader testing to confirm its robustness across various demographic and clinical settings.

In addition to the previously discussed limitations, the hybrid model’s reliance on advanced techniques
GA and TSA introduces concerns regarding dataset size and computational cost. The model’s performance
heavily depends on the amount and quality of data available for training. Small datasets, particularly
those with limited samples or imbalanced class distributions, may result in overfitting, as the model might
memorize the noise or specific patterns rather than generalize well to unseen data. This issue is compounded
when using techniques like GA, which require a large number of iterations to explore the solution space
thoroughly, making them computationally expensive. The time complexity involved in feature selection
and optimization can be prohibitive, particularly when applied to large datasets or when the model is
required to run in real-time scenarios. Additionally, these algorithms demand substantial computational
resources, including memory and processing power, which can be a significant drawback for deployment
on devices with limited hardware, such as mobile phones or edge devices. The high computational cost
also limits the scalability of the model, making it less feasible for use in environments where fast decision-
making is critical or when large-scale deployment is necessary. Therefore, addressing these concerns is crucial
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to ensure that the model remains both efficient and practical for real-world applications, particularly in
resource-constrained settings.

In addition, the suggested model does have certain limitations, particularly in the context of both
the potential overfitting of ensemble models and the complexity and explainability of deep learning in
healthcare settings. Ensemble models, by combining multiple learning algorithms, have the advantage of
increased predictive accuracy. However, this can also lead to overfitting, especially if the model is trained
on highly specific datasets or lacks sufficient diversity in the training samples, causing it to perform well
on training data but poorly on unseen data. This reduces the model’s generalizability to real-world, diverse
patient populations. Additionally, while deep learning models can provide high accuracy, their complexity
poses challenges in terms of interpretability and explainability, especially in healthcare applications where
clinicians need to understand and trust the model’s predictions. The “black box” nature of deep learning
models can make it difficult to pinpoint the reasons behind a particular decision, such as why a patient is
classified as high-risk, which can hinder the model’s adoption in clinical environments where transparency
and trust are crucial. These challenges underscore the need for continuous efforts to balance model
performance with interpretability and ensure that the model remains robust, understandable, and applicable
across different healthcare contexts.

5 Conclusion
This work concludes with a novel, hybrid model for heart disease prediction that shows clear advantages

in accuracy, efficiency, and generalization. By addressing key challenges such as high data dimensionality,
redundant features, and classification complexity, the model integrates feature selection through a GA and
utilizes the TSA to optimize an ensemble of deep learning models. GA identifies the most relevant features,
reducing data dimensionality and computational load, while the TSA optimally weighs each model in
the ensemble to enhance prediction accuracy. This approach achieved significantly improved results over
traditional methods, with accuracy at 97.5%, sensitivity at 97.2%, and specificity at 97.8%, underscoring its
effectiveness in accurately identifying heart disease risks. These findings suggest that this model offers a
robust and scalable solution for complex medical datasets. Future development could focus on validating its
applicability across diverse demographic datasets and further refining the model for real-time deployment
in clinical environments.

In future work, interpretability techniques such as SHAP (Shapley Additive Explanations) and LIME
(Local Interpretable Model-agnostic Explanations) will be explored to enhance the clinical relevance of
the predictions. SHAP will be utilized to provide both global and local insights into feature contributions,
enabling clinicians to assess the significance of key risk factors such as cholesterol levels, blood pressure, and
smoking status. LIME will be employed to generate locally interpretable models, offering explanations for
individual predictions and improving transparency in diagnosis. Additionally, feature importance analysis
through permutation importance or decision tree-based methods will be investigated to identify the most
influential clinical attributes. By integrating these interpretability techniques, the model aims to improve
trust among healthcare professionals and support personalized risk assessment and clinical decision-making.
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