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ABSTRACT: Response analysis of structures involving non-probabilistic uncertain parameters can be closely related
to optimization. This paper provides a review on optimization-based methods for uncertainty analysis, with focusing
attention on specific properties of adopted numerical optimization approaches. We collect and discuss the methods
based on nonlinear programming, semidefinite programming, mixed-integer programming, mathematical program-
ming with complementarity constraints, difference-of-convex programming, optimization methods using surrogate
models and machine learning techniques, and metaheuristics. As a closely related topic, we also overview the methods
for assessing structural robustness using non-probabilistic uncertainty modeling. We conclude the paper by drawing
several remarks through this review.
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1 Introduction

1.1 Motivation
The significance of consideration of various uncertainties in the analysis and design of structural

systems has been extensively recognized. Accordingly, many review articles are available on uncertainty
analysis of structures as well as structural design under uncertainty, as referred to in Section 1.2. Moreover,
a handbook [1], as well as monographs [2,3], have recently been published to comprehensively describe
uncertainty quantification methods.

Roughly speaking, uncertainty modeling is categorized into probabilistic and non-probabilistic ones.
Employing a non-probabilistic model of uncertainty, we usually attempt to find a bound for the structural
response, to which uncertainty is propagated from the assumed non-probabilistic uncertainty in the
parameters of a structural system. This attempt is naturally identified with solving a pair of optimization
problems, each of which either maximizes or minimizes the structural response.

To the best of the authors’ knowledge, the present literature lacks a review of uncertainty structural
analysis using non-probabilistic modeling from the perspective of numerical optimization. This paper
aims to present an intensive review of this research area, where existing methods are categorized and
surveyed by focusing on characteristics and differences of numerical optimization approaches employed in
those methods.
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1.2 Methods Covered by This Review
Suppose that a structural system involves some uncertain parameters, where a non-probabilistic model

is adopted for the uncertain parameters. Consider a set of all possible values that the uncertain parameters
can take. This set, usually supposed to be compact, is called the uncertainty set. An uncertainty model assumes
only the hypothesis that the uncertainty parameters can be any element of the uncertainty set is sometimes
called the unknown-but-bounded (or, uncertain-but-bounded) model. With this uncertainty model, we can
formulate problems for finding upper and lower bounds for the uncertain structural response as a pair of
two optimization problems; see Section 2.2 for the details. This paper provides a review on the methods that
apply some optimization approaches to these optimization problems. As a closely related topic, the methods
for quantitatively assessing the structural robustness are also reviewed.

Interval analysis has been developed to find a bound for solutions of linear and nonlinear problems with
computational rounding errors as well as data uncertainties [4,5]. Interval arithmetic, which is a fundamental
tool of interval analysis, is the arithmetic of compact intervals. There is a vast literature on applications
of interval arithmetic to uncertainty analysis of structures, where each of the uncertain parameters is
usually supposed to take any value in a given compact interval. These methods do not employ optimization
methods to find bounds for the structural response, and are thereby out of the scope of this paper. For
interval arithmetic-based methods as well as interval finite element methods, the reader is referred to the
comprehensive reviews by references [6–9].

In this paper, we restrict ourselves to the case where the uncertainty set is a conventional set, and do
not consider a fuzzy set. This is because we attempt to limit our discussion to optimization problems whose
feasible sets are conventional. Reviews on uncertainty treatment using the fuzzy set theory can be found in
references [6–12].

In probabilistic uncertainty modeling, the uncertain parameters are usually considered random vari-
ables. This paper does not treat models involving random variables. The reader is referred to Brevault
et al. [13], Der Kiureghian [14] and Lemaire [15] for structural reliability, Acar et al. [11], Choi et al. [16],
Hu [17], Hu et al. [18] and Valdebenito and Schueller [19] for reliability-based design optimization, Moens
and Vandepitte [9] and Stefanou [20] for stochastic finite element methods, Faes et al. [21] for uncertainty
analysis methods using probability boxes (p-boxes), Jiang et al. [22] for probability–interval hybrid models
of uncertainty, Peherstorfer et al. [23] and Helton et al. [24] for multi-fidelity methods and sampling-based
methods, respectively, for uncertainty analysis using probabilistic uncertainty modeling, and Xu et al. [25]
for physics-informed machine learning approaches to reliability and system safety.

Uncertainty modeling based on the evidence theory is also out of scope of this paper; see Acar et al. [11]
and Li et al. [10] for applications of the evidence theory to uncertainty analysis.

1.3 Organization
The remainder of this paper is organized as follows: In Section 2, we summarize the fundamentals of

non-probabilistic modeling of uncertainty and analysis of uncertain structural responses, with clarifying
their relations to optimization. In the subsequent sections, we provide reviews of the literature from the
viewpoint of optimization methods adopted in numerical solutions: Nonlinear programming approaches
are collected in Section 3, semidefinite programming approaches in Section 4, mixed-integer programming
approaches in Section 5, MPCC (mathematical programming with complementarity constraints) approaches
in Section 6, DC (difference-of-convex) algorithms in Section 7, robust optimization algorithms in Section 8,
optimization methods using surrogate models and machine learning techniques in Section 9, and meta-
heuristics in Section 10. Section 11 presents a review of quantitative evaluation methods of robustness
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of structures under uncertainty. Section 12 collects applications of uncertainty analysis to data-driven
computation in elasticity. Finally, several conclusions are drawn in Section 13.

2 Fundamental Formulations
This section briefly describes the fundamentals of uncertainty analysis using non-probabilistic uncer-

tainty modeling. Section 2.1 introduces several concrete uncertainty models that are popularly used in the
literature. Section 2.2 defines the bound for uncertain structural response, and discusses its relations to
optimization formulations and algorithms.

2.1 Uncertainty Set
Consider a structural system involving uncertainty. We use d ∈ Rb to represent the structural design

specification, where b is the number of design variables.
Let s ∈ Rk denote the uncertain parameter vector, where k is its dimension. Suppose that true s is

unknown and that only a set of possible realizations of s is known. This set, denoted by S ⊂ R
k , is called the

uncertainty set of s, and thereby our uncertainty model is described as s ∈ S. An uncertainty set is usually
assumed to be compact. The following uncertainty sets are popular in the literature:

• A set defined by some box constraints

S = {s ∈ Rk ∣ l ≤ s ≤ u}, (1)

where l , u ∈ Rk are constant vectors (see Fig. 1). Uncertain parameter s ∈ S is sometimes referred to as
the interval variable.

Figure 1: Uncertainty set defined by box constraints

• A polyhedron

S = {s ∈ Rk ∣ As ≤ b}, (2)

where A ∈ Rm×k is a constant matrix, and b ∈ Rm is a constant vector (see Fig. 2). It is easy to see that (1)
is a special case of (2) with

A = [−I
I ] , b = [−l

u ] , m = 2k.

Another special case of (2) is

{s ∈ Rk ∣ l 1 ≤ s ≤ u1 , l 2 ≤ Q(s − r) ≤ u2},
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where l 1, l 2, u1, u2, r ∈ Rk are constant vectors and Q ∈ Rk×k is a constant matrix. This model can be
viewed as a generalization of (1) [26].

Figure 2: Polyhedral uncertainty set

• An ellipsoid

S = {s ∈ Rk ∣ (s − s̃)⊺Ω(s − s̃) ≤ α}, (3)

where Ω ∈ Rk×k is a constant symmetric positive definite matrix, s̃ ∈ Rk is a constant vector, and α ≥ 0
is a constant (see Fig. 3). It is worth noting that α is considered a parameter representing the magnitude
of uncertainty; namely, a large value of α means that s can take values in a wide range, and α = 0 means
that s (= s̃) is no longer uncertain. The center of the ellipsoid, s̃, is regarded as the best estimate of s, and
is sometimes called the nominal value of s.
A slightly generalized ellipsoidal uncertainty model is

S′ = {s̃ + Fz ∣ ∥z∥ ≤ β}, (4)

where F ∈ Rk×h is a constant matrix with h ≤ k, β ≥ 0 is a constant representing the magnitude of
uncertainty, and ∥z∥ is the Euclidean norm of unknown vector z ∈ Rh , i.e., ∥z∥ =

√
z⊺z (see Fig. 4). If

h = k and F is regular, then (4) can be rewritten equivalently as

S′ = {s ∈ Rk ∣ (s − s̃)⊺F−⊺F−1(s − s̃) ≤ β2},

which coincides with the expression in (3) by putting

Ω = F−⊺F−1 , α = β2.

Figure 3: Ellipsoidal uncertainty set
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Figure 4: Ellipsoidal uncertainty set in a degenerated space

• Using the �p-norm (1 ≤ p ≤ ∞), we can generalize (4) as

Sp = {s̃ + Fz ∣ ∥z∥p ≤ β}. (5)

Here, the �p-norm of z ∈ Rh is defined by

∥z∥p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
h
∑
j=1

∣z j∣p)
1/p

if 1 ≤ p < ∞,

max{∣z1∣, . . . , ∣zh ∣} if p = ∞.

Note that (4) corresponds to the case with p = 2. When p = 1 or p = ∞, Sp can be rewritten in the form
of (2). Moreover, when p = ∞ and F = diag( f ) with h = k (i.e., F is a diagonal matrix, the vector of
whose diagonal entries is f ∈ Rk), we have

S∞ = {s ∈ Rk ∣ s̃ − β f ≤ s ≤ s̃ + β f };

namely, in this case S∞ can be identified with (1).
• A multi-ellipsoid model defined by

s i ∈ {s i ∈ Rki ∣ (s i − s̃ i)⊺Ω i(s i − s̃ i) ≤ αi}, i = 1, . . . , r,

where s i ∈ Rki (i = 1, . . . , r) are subvectors forming s as

s =
⎡⎢⎢⎢⎢⎢⎣

s1
⋮

sr

⎤⎥⎥⎥⎥⎥⎦
.

Obviously, r = 1 corresponds to the single ellipsoid model in (3). A special case with ni = 1 (i = 1, . . . , r)
coincides with (1).

It is noteworthy that all the uncertainty sets collected above are closed convex sets.

2.2 Bound for Uncertain Structural Response
For given structural design d and uncertain parameter s, let

q(d; s),
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denote the quantity of interest (QoI), i.e., the structural response on which we focus attention. Uncertainty
analysis using non-probabilistic modeling aims to find a bound for QoI when s takes any possible value in
the uncertainty set. Typically, we attempt to find q, q ∈ R satisfying

q(d; s) ∈ [q, q], ∀s ∈ S , (6)

where q and q are upper and lower bounds for QoI, respectively.
Exploring q and q is essentially linked to solving the following optimization problems:

qmax ∶= max
s

{q(d; s) ∣ s ∈ S}, (7)

qmin ∶= min
s

{q(d; s) ∣ s ∈ S}, (8)

where, qmax and qmin correspond to the minimum value of q and the maximum value of q, respectively.
Namely, global optimal solutions of problems (7) and (8) provide the exact bound for QoI. A guarantee of
global optimality can be obtained if problems (7) and (8) are convex optimization problems1 (see Table 1).
Alternatively, if we can recast these two problems as mixed-integer (linear) programming problems, then
the branch-and-bound method can find their global optimal solutions. Section 5 provides a review on the
latter case.

Table 1: Properties of bounds for QoI obtained by optimization approaches. We use q∗ and q∗ to denote the objective
values obtained by applying each method to problems (7) and (8), respectively

Framework Guarantee of obtained bound Typical methods
Local optimization q∗ ≤ qmax, q∗ ≥ qmin (underestimated bound) NLP (Section 3)

MPCC (Section 6)
DC programming (Section 7)

Global optimization q∗ = qmax, q∗ = qmin (exact bound) Convex optimization
MIP (Section 5)

Relaxation q∗ ≥ qmax, q∗ ≤ qmin (confidence bound) SDP relaxation (Section 4)
Heuristic q∗ ≤ qmax, q∗ ≥ qmin (underestimated bound) Metaheuristics (Section 10)

If problems (7) and (8) are not convex optimization problems, a standard numerical optimization
approach (i.e., the nonlinear programming) finds local optimal solutions. The literature on uncertainty anal-
ysis methods based on the nonlinear programming are collected in Section 3. It should be emphasized that
the objective values of local optimal solutions (which are not globally optimal) do not satisfy (6) (see Fig. 5a).
This is a crucially challenging issue in uncertainty analysis using non-probabilistic uncertainty modeling.

A remedy is, instead of a direct application of the nonlinear programming approach, to make use of the
specific problem structure in the process of optimization modeling and algorithm selection. Then one can
often expect to obtain a high-quality local optimal solution, the objective value of which is sufficiently close to
the global optimal value. As for specific optimization models, this paper covers mathematical programming
with complementarity constraints in Section 6, difference-of-convex programming in Section 7, and robust
optimization in Section 8.

1This is one of the reasons why all the uncertainty sets introduced in Section 2.1 are convex. It is also worth noting that the classical convex model
approaches [27,28] often approximate q(d; ⋅ ) as a linear function and adopt an ellipsoid in (3) as S, so that problems (7) and (8) can be solved explicitly.
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Figure 5: Underestimated and confidence upper bounds for QoI. (a) q1 and q2 are underestimated bounds
obtained by the local optimization; (b) q3 is a confidence bound obtained by a convex relaxation of q(d; ⋅)

Depending on the problem setting, the objective function q(d; ⋅ ) of problems (7) and (8) is neither
given as an explicit function nor represented by using (rather simple) governing equations, but for a
given s ∈ S the value of q(d; s) can be evaluated only after numerical simulation. The maximum response
displacement of an elastoplastic structure under the seismic load is an example. In such a case, the derivatives
of q(d; ⋅ ) are not directly available. Moreover, evaluation of q(d; s) itself is sometimes computationally
expensive. A surrogate model constructed by a machine learning technique can be substituted for the
objective function of problems (7) and (8). Section 9 reviews such methods.2 An alternative remedy is to use
metaheuristics, e.g., evolutionary algorithms, which do not require the derivatives of the objective function.
Use of metaheuristics can also be motivated by the purpose of avoiding convergence to a low-quality local
optimal solution. Section 10 collects the literature using metaheuristics.

Another strategy is to construct tractable (often convex) optimization problems, the optimal values of
which satisfy (6). For example, let U(d) ⊆ R ×R

k be a convex set satisfying

{(t, s) ∈ R ×R
k ∣ t ≤ q(d; s), s ∈ S} ⊆ U(d),

and consider the following convex optimization problem in variables t ∈ R and s ∈ Rk :

Maximize t, (9a)
subject to (t, s) ∈ U(d). (9b)

Solving this problem instead of problem (7), we obtain an upper bound for QoI, q, as its optimal value. We call
problem (9) a relaxation problem of problem (7). A convex relaxation problem of problem (8) is constructed
similarly. These two convex relaxation problems can be solved globally, which guarantees (6). In this sense,
we refer to the bound obtained by such a method to as a confidence bound (see Table 1 and Fig. 5b). Section 4
reviews methods for finding confidence bounds.

As briefly viewed throughout this section, it is crucial to select an optimization model as well as an algo-
rithm, depending on specific features of the setting of problems (7) and (8). In Sections 3–10, we classify the
existing methods for uncertainty analysis according to differences in the employed optimization methods.

2Prediction of QoI via a surrogate model or a machine learning method can both underestimate and overestimate the true value of QoI. This is
because surrogate-based methods and machine-learning methods are not listed in Table 1.
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3 Nonlinear Programming Approaches

3.1 Overview
Nonlinear programming (NLP) basically attempts to find a local optimal solution of a (usually non-

convex) constrained or unconstrained optimization problem [29,30]. Therefore, when we apply an NLP
approach to problems (7) and (8), the obtained solution may possibly correspond to underestimate of the
exact bound of QoI; in other words, there exists no guarantee that the obtained bound includes [qmin, qmax];
see Table 1. It is worth noting that, in some of the literature reviewed below, the authors demonstrate the
results of numerical experiments verifying that the solutions obtained by NLP approaches are sufficiently
close to global optimal solutions by, e.g., performing the Monte Carlo simulation.

3.2 Methods
Tangaramvong et al. [31] consider the static equilibrium analysis of linear elastic skeletal structures,

where the applied external forces, elastic modulus, and dimensions of the member cross-sections are
supposed to be uncertain. They directly treat problems (7) and (8) as NLP problems.

Wu et al. [32] deal with functionally graded frame structures with interval uncertainties in the material
constants, dimensions of the cross-sections of beams, and external forces. They treat a problem finding the
maximum value of a nodal displacement or an internal member action in the linear elastic equilibrium
analysis as an NLP problem. Similarly, Wu et al. [33] address frame structures consisting of a functionally
graded porous material.

Wu et al. [34] perform uncertainty analysis in the linear elastic equilibrium analysis and the linear
buckling analysis. They treat the problems finding the upper and lower bounds of a nodal displacement and
linear buckling load factor as NLP problems, which were solved with a standard NLP solver. Wu et al. [35]
also consider the problem finding the worst-case linear buckling load factor.

Fujita and Takewaki [36] perform robustness analysis of shear building models with passive viscous
dampers by computing the extreme values of dynamic structural response. They construct the optimization
problems that approximate problems (7) and (8) by using the second-order Taylor expansion, and solve the
approximated problems with an NLP approach.

In the framework of plastic limit analysis, Tangaramvong et al. [37] suppose that the external forces and
the yield limit of each structural component possess uncertainties following the interval model in (1).3 They
first present a mixed-integer NLP formulation (more concretely, an NLP problem with 0–1 variables and
continuous variables) for finding the worst-case limit load factor, and then solve its continuous relaxation
which is in the form of NLP. Tangaramvong et al. [38] address the same uncertainty analysis problem with
the scaled boundary finite method. They derive another NLP formulation from the upper bound theorem of
limit analysis, where the inner product of the unknown nodal displacement vector and the uncertain nodal
force vector appears as a nonconvex term.

3.3 Remarks and Future Perspectives
Although quality of the obtained solution cannot be evaluated in general, the NLP approach is

sometimes adopted in structural uncertainty analysis. This is because NLP is a quite versatile framework,
and formulating problems (7) and (8) as NLP problems is very often straightforward. Therefore, the NLP
approach might continue to be used as a practical tool for structural uncertainty analysis.

3It is obvious that, in this problem setting, the worst case of the the limit load factor corresponds to the case that every yield limit takes its lower bound.
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It is also worth noting that all the literature cited in Section 3.2 adopt the interval uncertainty model (1),
although the framework of NLP can deal with a more general uncertainty model involving nonlinear
constraints. Other uncertainty models can possibly be used in future study.

4 Semidefinite Programming Approaches

4.1 Overview
Semidefinite programming (SDP) refers to a class of optimization problems which can be formulated in

the following form:

Minimize
n
∑
j=1

b jx j , (10a)

subject to C −
n
∑
j=1

x jA j ⪰ 0, (10b)

where b1 , . . . , bn ∈ R are constants, A1 , . . . , An , C ∈ Rm×m are constant symmetric matrices, and for sym-
metric matrix Z we write Z ⪰ 0 to denote that Z is positive semidefinite (i.e., all the eigenvalues of Z are
nonnegative).

SDP is convex optimization, which includes linear programming, (convex) quadratic programming,
second-order cone programming, etc., as its special cases. We can obtain a global optimal solution of an
SDP problem efficiently with a primal-dual interior-point method. The reader is referred to [39,40] for more
details of SDP.

4.2 Uncertainty Analysis Using Semidefinite Programming
Guo et al. [41] deal with truss structures subjected to the uncertain static load, where the ellipsoidal

uncertainty model in (3) is adopted. As for QoI, they consider the Euclidean norm of the displacement vector
at a node or the compliance (i.e., the external work done by the static load). Finding the worst-case value (i.e.,
the maximum value) of QoI corresponds to maximizing a convex function over a convex set, which is difficult
to solve globally. To overcome this difficulty, they derive an SDP relaxation by using the Lagrange duality.

Observe that problems (7) and (8) can be recast equivalently as follows:

Minimize
l ,u∈R

u − l , (11a)

subject to q(d; s) ∈ [l , u], ∀s ∈ S . (11b)

In fact, at an optimal solution of this problem, u and l coincide with qmax and qmin, respectively. If we replace
constraint (11b) with its sufficient condition, then by solving the reduced optimization problem we obtain
upper and lower bounds for qmax and qmin, respectively (see Table 1). Moreover, if the sufficient condition
corresponds to a convex constraint, then the reduced optimization problem can be solved efficiently and
globally. This methodology can be extended from finding an interval to finding an ellipsoid, where an
interval is regarded as an ellipsoid in R. Suppose that QoI is a vector, denoted by q(d; s) ∈ Rv , where v is
its dimension. For instance, when QoI is the displacement vector at a node of a space truss, we have v = 3.
Let E(p) ⊂ R

v denote an ellipsoid, where p ∈ Rt is a parameter that determines the ellipsoid. Finding an
ellipsoid representing a set of realizations of QoI is formally stated as follows:

Minimize
p∈Rt

�(p), (12a)
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subject to q(d; s) ∈ E(p), ∀s ∈ S , (12b)

where �(p) is a measure of the size of an ellipsoid. Again, if we replace constraint (12b) with a sufficient
condition that is easy to handle from the view point of numerical optimization, then by solving the resulting
optimization problem we can obtain a confidence ellipsoid, which is guaranteed to include all possible
realizations of QoI. This is the fundamental idea for developing the methods in [42–47] cited below, where
a sufficient condition for (12b) is derived by using (a trivial part of) the S-lemma [48] (a.k.a. the S-procedure;
see Appendix B in [40]).

For linear truss structures, Kanno and Takewaki [42,43] deal with uncertainty in the member stiffnesses
and static load. They formulate an SDP problem for finding a confidence ellipsoid of the structural response.

Using the idea in [42,43], Du et al. [44] formulate an SDP problem for finding a bound for the
sensitivity of QoI with respect to a member cross-section area. They use the obtained bound for reducing
the computational cost of the mixed-integer programming (MIP) approach [49] to uncertainty analysis.
See Section 5 for more details of Du et al. [44].

Kanno and Takewaki [45] apply the method in [42,43] developed for trusses to braced frames with
uncertainty in brace stiffnesses. Moreover, Kanno and Takewaki [46] extend the method so that elastic
structures in any structural forms can be dealt with, and perform numerical experiments on frame structures
with uncertainty in beam stiffnesses. Kanno and Takewaki [47] present an extension to a dynamic problem.
They handle steady-state responses of a damped structure subjected to uncertain harmonic driving load, and
propose a method finding confidence bounds for the modulus and phase angle of the complex amplitude.
The numerical experiments presented in [42,43,45–47] illustrate that the bounds obtained by these methods
are sufficiently tight compared with the results of numerical simulation using many randomly generated
uncertain parameter values.

In contrast, apart from the idea explained by using problem (12), Kang and Zhang [50] focus on
construction of an ellipsoidal uncertainty set (3), where a set of observed samples of the uncertain parameters
is supposed to be available. They use an SDP formulation for finding the minimum volume ellipsoid that
include all the samples. As a preprocessing of this procedure, Bai et al. [51] propose an automatic method for
detecting outliers from a given sample set.

Example 1. Consider the static equilibrium analysis of a linear elastic truss shown in Fig. 6. The lengths
of horizontal and vertical members are 0.5 m. The elastic modulus and nominal cross-sectional area of each
member is 200 GPa and 1000 mm2, respectively. As the nominal load, a vertical external force of 1000 kN is
applied at the rightmost bottom node.

Figure 6: Planar truss used in Example 1
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Both of the external forces and member stiffnesses possess uncertainty. Suppose that an uncertain
external force vector, the norm of which is no greater than 100 kN, is applied at each node, as depicted
by the dotted circles in Fig. 6. The member cross-sectional area of each member is supposed to be in
[900, 1100]mm2.

Kanno and Takewaki [43] formulate an SDP problem for finding an ellipsoidal confidence bound. Fig. 7
shows the obtained bound for the displacement of each node, as well as the results of equilibrium analysis
using randomly generated external forces and member cross-sectional areas. It is observed in Fig. 7 that the
obtained ellipsoids provide quite tight bounds. ∎

Figure 7: Ellipsoidal confidence bounds for the nodal displacements obtained by the SDP approach proposed by Kanno
and Takewaki [43] (The displacements are amplified 10 times)

4.3 Robust Structural Optimization Using Semidefinite Programming
SDP and its extensions have also been applied to various worst-case robust optimization problems of

structures.4

4.3.1 Linear Semidefinite Programming Approaches
Ben-Tal and Nemirovski [53] present an SDP formulation for the worst-case compliance minimization

of trusses against uncertainty in the static load, where the ellipsoidal uncertainty set in (4) with s̃ = 0 is
employed. Calafiore and Dabbene [54] extend this SDP formulation to the case including s̃ /= 0; see also eq.
(8.2.15) in [55]. Variants of this formulation, in which the dependence of the uncertainty set on the truss
design is taken into account, can be found in [56,57].

Hashimoto and Kanno [58] suppose that the nodal locations of trusses are uncertain, and formu-
late the worst-case compliance minimization. They propose a conservative SDP approximation for this
optimization problem.

4There exist some different concepts, and accordingly diverse formulations, in robust design optimization in engineering, see [12,52]. Among others,
we restrict ourselves to the concept based on the worst case, which optimizes the worst value of the objective function when the uncertainty parameters
vary in a given uncertainty set.
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4.3.2 Nonlinear Semidefinite Programming Approaches
In problem (10), the left-side of constraint (10b) is an affine function of x1 , . . . , xn . In contrast, when the

left-side is a nonlinear (symmetric matrix-valued) function, the optimization problem is called a nonlinear
SDP problem. To distinguish these two cases, problem (10) is sometimes called a linear SDP problem. It
should be clear that nonlinear SDP is in general nonconvex optimization. Various solution methods, as well
as diverse applications, have been proposed for nonlinear SDP [59].

For continuum topology optimization, it has been known that the worst-case compliance minimization
against uncertainty in the static load can be formulated as the minimization of the maximum eigenvalue of
a generalized eigenvalue problem [60,61] or a standard eigenvalue problem [62]. However, these maximum
eigenvalue formulations are nonsmooth functions of the design variables. Especially, it is often that an
optimal solution of minimization of the maximum eigenvalue has multiple eigenvalue, and the maximum
eigenvalue at such an optimal solution is not differentiable [63]. Then standard nonlinear programming
approaches are likely to fail to find an optimal solution, as actually observed in Thore [64].

Holmberg et al. [65] formulate this problem as a nonlinear SDP problem. Based on the Cholesky
factorization of a symmetric positive semidefinite matrix, they recast the problem as a form of standard
NLP. This avoids nonsmoothness in the maximum eigenvalue, and makes a standard NLP solver applicable.
Thore [64] considers uncertainty in the boundary displacement, and formulate the worst-case compliance
minimization as minimization of the maximum eigenvalue of a symmetric matrix. The nonlinear SDP
approach in [65] is applicable to this optimization problem.

Aroztegui et al. [66] present a feasible direction interior-point method for solving nonlinear SDP
problems, and apply it to the robust truss optimization problem in [53].

Kanno and Takewaki [67] consider truss optimization under the stress constraints, where the static
load is supposed to be uncertain. Using the S-lemma [48], they show that this optimization problem can be
reformulated as a nonlinear SDP problem, which is solved with a sequential SDP method; see Section 11.1 for
more details.

Guo et al. [68] consider robust optimization of trusses against uncertainty in the member stiffnesses and
the external forces. The method proposed in [68] can handle structural performance constraints that can be
written in the form of quadratic inequalities of the nodal displacements. In a manner similar to [43] etc., they
use (a trivial part of) the S-lemma [48] to obtain a tractable sufficient condition for the robust constraint,
which yields a nonlinear SDP formulation of the worst-case robust optimization. Guo et al. [69] propose an
augmented Lagrangian method for solving this nonlinear SDP problem.

Example 2. This example discusses the robust truss topology optimization against uncertainty in the
static external load.

Consider the initial trusses shown in Fig. 8. As the nominal external load, a vertical downward force
of 100 kN is applied at the rightmost bottom node. The elastic modulus of the truss members is 20 GPa.
We minimize the compliance under the upper bound constraint on the structural volume, where the
upper bounds for the problem settings in Fig. 8a,b are 4.2 × 106 mm3 and 3.2 × 106 mm3, respectively. Fig. 9
collects the optimal solutions, where the width of each member in the figures is proportional to its
cross-sectional area.
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Figure 8: Problem settings used in Example 2. (a) 7 × 3 example; and (b) 8 × 2 example

Figure 9: Optimal solutions of the compliance minimization for the nominal external load (Example 2). (a) 7 × 3
example; and (b) 8 × 2 example

As mentioned in Section 4.3.1, Ben-Tal and Nemirovski [53] formulate an SDP formulation to minimize
the worst-case compliance (i.e., the maximum compliance) when the ellipsoidal uncertainty set is employed
for the uncertain external load. In this formulation, it is required to specify a priori the nodes at which
uncertain external forces are possibly applied. To enhance robustness of the solution, it may be natural to
suppose that uncertain external forces can be applied at all the existing nodes at a solution. However, it is
difficult to estimate the nodes that exist in a solution. For example, if we specify the nodes in Fig. 8 as the
ones at which uncertain external forces are possibly applied, then all the nodes in the problem setting remain
at the obtained solution, which is much different from the truss design in Fig. 9.

Another difficulty in robust truss topology optimization stems from treatment of a chain, which is a
sequence of parallel members that are connected by nodes supported only in the direction of those members.
As observed in Fig. 9, an optimal solution often has chains. When only the compliance is considered as the
structural performance, the intermediate nodes in a chain can be removed as shown in Fig. 10. This procedure
is called the hinge cancellation [70,71]. Note that the intermediate nodes in a chain are unstable. Therefore, if
we suppose that uncertain external forces are applied at all the existing nodes in Fig. 9, then many thin bars
are added to stabilize the intermediate nodes. In contrast, if we suppose that uncertain external forces are
applied at all the existing nodes in Fig. 10, then such additional thin members are not needed.

Accordingly, to optimize the truss topology against uncertainty in the external load, it is necessary to
consider a topology-dependent uncertainty set. Namely, the nodes at which uncertainty external forces are
applied are the ones that exist in a solution and are not on a chain, although the robust optimal topology
is not known a priori. Kanno [56] proposes an SDP with complementarity constraints to deal with this
situation. Fig. 11 collects the robust optimal solutions obtained by the method proposed in [56]. It is worth
noting that each solution in Fig. 11 has a different topology from the one in Fig. 10. ∎
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Figure 10: Final optimal designs obtained by applying the hinge cancellation to the solutions in Fig. 9 (Example 2). (a)
7 × 3 example; and (b) 8 × 2 example

Figure 11: Optimal solutions of robust topology optimization obtained with the method proposed by Kanno [56]
(Example 2). (a) 7 × 3 example; and (b) 8 × 2 example

4.4 Remarks and Future Perspectives
In general, SDP is a powerful optimization framework that can deal with quite strongly nonlinear

constraints with guarantee of global optimality. Regarding structural uncertainty analysis, guarantee of con-
servativeness provided by the methods cited in Section 4.2 is attractive and unique. In contrast, formulating
such a useful SDP problem is often not very straightforward; S-lemma [48] mentioned above, as well as the
Rayleigh quotient theorem on eigenvalues [72], can be the key to the formulation. Once these mathematical
tools are recognized by the community of structural uncertainty analysis, SDP approaches can possibly
become more popular in this field.

Nonlinear SDP has various applications in structural optimization, other than robust optimization
reviewed in Section 4.3. These include design optimization under the frequency constraint [73] and buckling
constraint [74–76]. Future development of efficient algorithms for large-scale nonlinear SDP problems will
expand the capability of nonlinear SDP approaches to structural uncertainty analysis as well as various
structural optimization problems.

The moment-sum-of-squares hierarchy [77] is a successive SDP relaxations to solve a polynomial
optimization problem globally, and has successfully been applied to structural optimization [78,79]. This
method can possibly be applied to structural uncertainty analysis in future.

5 Mixed-Integer Programming Approaches

5.1 Overview
Mixed-integer programming (MIP) is a framework of global optimization, where some of the decision

variables in an optimization problem can take only integer values while the others are treated as continuous
variables [80,81]. This section deals with the following form of MIP:

Minimize c⊺x , (13a)
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subject to Ax ≤ b, (13b)
x j ∈ {0, 1}, j = 1, . . . , l , (13c)
x j ∈ R, j = l + 1, . . . , n. (13d)

Here, A ∈ Rm×n is a constant matrix, b ∈ Rm and c ∈ Rn are constant vectors, and l is a constant integer.
Relaxing constraint (13c) as x j ∈ [0, 1] ( j = 1, . . . , l) we obtain a linear programming problem, which can
be solved globally. This guarantees that a global optimization of problem (13) is found by a branch-and-
bound method. Practically, well-established solvers implementing branch-and-cut methods are available,
e.g., CPLEX [82], SCIP [83], and Gurobi Optimizer [84]. Global optimality guaranteed by high-performance
solvers is the key to the application of MIP to uncertainty analysis; namely, by recasting problems (7) and (8)
as MIP problems, we can find qmax and qmin exactly (see Table 1).

5.2 Methods
Guo et al. [49] consider the static response (concretely, the nodal displacements and the member

stresses) of a truss, where Young’s modulus of each member follows the interval uncertainty model in (1).
It is shown that the structural response attains extreme value when every Young’s modulus takes either its
upper or lower bound. By using this fact, Guo et al. [49] reformulate problems (7) and (8) as MIP problems,
where the reformulation is based on the idea found in Stolpe and Svanberg [85].

The method proposed in [49] applies a standard MIP solver based on the branch-and-cut method to
the MIP problem. Therefore, the size of problems that can be dealt with is limited, and large-scale problems
cannot be solved from the practical point of view. To reduce the number of 0-1 variables in the MIP problem,
Du et al. [44] make the following observation: If the sensitivity of QoI concerning a member cross-section
area has the same sign for any element belonging to the uncertainty set, then the value of the cross-section
area of that member at a globally optimal solution can be fixed (i.e., one can find whether the member cross-
section area takes its lower or upper bound at a global optimal solution). To check the sign of the sensitivity,
Du et al. [44] formulate an SDP problem providing a confidence bound of the sensitivity, based on the idea
found in [42,43]. With this method, the number of unknown 0-1 variables is substantially reduced. In the
numerical experiments, truss examples with up to 108 members were solved.

Kanno and Takewaki [86] consider uncertainty in the load in the plastic limit analyses of a truss, and
attempt to find the worst-case load corresponding to the minimum limit load factor. They present an MIP
formulation for this purpose and propose an algorithm combining the branch-and-bound method using
the linear programming relaxation and the cutting plane method generating the disjunctive cuts. Similarly,
the worst-case load detection for the limit analysis of frame structures can also be formulated as a MIP
problem [87]. In [87], a standard MIP solver (CPLEX [82]) was used for solving the MIP problem.

Kanno [88] considers the plastic limit analysis of trusses under the unpredictable failure of some truss
members. When only the number of deficient members is given, a MIP problem is formulated to detect the
worst-case structural deficiency corresponding to the minimum limit load factor. In that formulation, 0-1
variables are used to represent whether each member is undamaged or damaged.

In the static equilibrium analysis of elastic skeletal structures, Kanno [89] focuses on uncertainty in
the material behavior (i.e., the stress–strain relation). By using the result of the segmented least squares,
an uncertainty set is determined as a set, the boundary of which is described by a pair of piecewise-linear
inequalities. Then Kanno [89] presents MIP formulations for finding the maximum and minimum values
of QoI.
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Tangaramvong and Tin-Loi [90] consider the holonomic elastoplastic analysis of a structure under the
multiple load case, and propose an optimization-based approach to finding the worst load combination
corresponding to the maximum and minimum structural responses. The problem of finding the worst
case is formulated as an MPCC problem with some continuous and 0-1 decision variables, where 0-1
variables are used to represent the load combination. By using a penalty approach to the complementarity
constraints, Tangaramvong and Tin-Loi [90] reformulate this optimization problem as a mixed-integer
nonlinear programming (MINLP) problem. Note that DICOPT, which is the solver used for solving this
MINLP problem does not necessarily obtain a global optimal solution [91].

5.3 Remarks and Future Perspectives
MIP is a very attractive framework that can provide guarantee of the exactness of the obtained bound

for QoI. The problem size that can be solved with a standard MIP solver within reasonable computational
time has constantly been increasing. In contrast, reformulating a problem of interest into a MIP problem
usually requires some know-hows. Some hints for the reformulation may be found in the literature on discrete
structural optimization [92].

The MIP model in (13) has a linear objective function and linear constraints (other than the integrality
constrtaints). This restriction limits the class of problems that can be handled. Nevertheless, MIP approaches
are appreciated as it can provide benchmark examples for structural uncertainty analysis. Besides, in this
decade, it has been recognized that mixed-integer second-order cone programming (MISOCP), which involves
nonlinear constraints in a specific form is effective in some problems in structural optimization [93,94].
Attempt to apply MISOCP might shed new light on uncertainty analysis.

As seen in Section 5.2, MINLP is sometimes used for structural uncertainty analysis. Since guaranteeing
global optimality for a MINLP problem is difficult, it is important to select an algorithm that can often
find a feasible solution with a good objective value within reasonable computational time. Recent devel-
opement of MINLP algorithms, e.g., references [95–99], might extend applications of MILP to structural
uncertainty analysis.

6 Mathematical Programming with Complementarity Constraints Approaches

6.1 Overview
Mathematical programming with complementarity constraints (MPCC) [100,101], or, more generally,

mathematical programming with equilibrium constraints (MPEC) [102], is a special class of optimization
problems. Since any feasible solution of an MPEC problem does not satisfy standard constraint qualifications,
a (local) optimal solution of an MPEC problem does not necessarily satisfy the Karush–Kuhn–Tucker (KKT)
condition. Therefore, conventional NLP approaches, which are designed to find a solution satisfying the KKT
condition, are likely fail to find an optimal solution. Several special treatments for MPEC, including the
regularization method, the reformulation and smoothing method, and the exact penalty method [102], have
been proposed for application of a conventional NLP approach.

In uncertainty analysis, MPCC naturally arises when the governing equation of the structural response
is formulated as a complementarity problem; the reader is referred to Facchinei and Pang [103] for the
details of complementarity problems. Plasticity, contact, and friction are typical examples from which
complementarity problems stem.
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6.2 Methods
Tangaramvong et al. [104] consider a semi-rigid frame with uncertainty in the moment–rotation

relation, and present an MPCC formulation finding a bound for the structural response.
For a holonomic (i.e., path-independent) elastoplastic analysis of a structure taking the second-order

geometrical nonlinearity into account, Tangaramvong and Tin-Loi [90] formulate an MPCC problem with
continuous and 0-1 decision variables to find the worst-case load combination. Similarly, Yang et al. [105]
consider uncertainty in both the applied external forces and yield stresses.

Wu et al. [106] study the plastic limit analysis, where the external forces are supposed to be interval
variables. Based on the upper bound theorem, they formulate the problem of finding the minimum limit
load factor as an MPCC problem. The penalty for the complementarity constraints is adopted to transform
the MPCC problem into a standard NLP problem.

6.3 Remarks and Future Perspectives
MPCC approaches can deal with uncertainty analysis of structures with nonsmoothness properties in

the governing equations, e.g., plasticity, contact, and friction. Although a conventional NLP approach can be
applied to an appropriately modified (i.e., regularized, reformulated and smoothened, penalized, etc.) MPCC
problem, it is worth noting that the global optimality is not guaranteed. Therefore, the solution obtained by
the approaches cited above can generally underestimate the structural response, i.e., it does not necessarily
include the exact (i.e., tight) bound for QoI (see Table 1).

A remedy to obtain a high-quality solution of an MPCC problem is to use DC programming
approaches [107–109], which, however, have not yet been adopted in structural uncertainty analysis to the
authors’ knowledge. Moreover, it is known that a class of MPCC problems can be solved globally with
MIP [110] or a branch-and-cut method [111]. Such a global optimization approach might be pursued in
structural uncertainty analysis.

7 Difference-of-Convex Programming Approaches

7.1 Overview
In these two decades, difference-of-convex (DC) algorithm has been attracted significant attention in

machine learning and data science [112,113]. A function is called a DC function if it can be expressed as a
difference of two convex functions. A DC programming problem is a minimization problem of a DC function
under constraints that some DC functions are no greater than zero. The DC algorithm is an algorithm
proposed for DC programming, and is based on the affine minorization of the concave part of a DC function.
It is known that the DC algorithm quite often converges to a global optimal solution of a DC programming
problem [114,115].

7.2 Methods
To find a bound for the static response of an elastic structure with uncertainty, Li et al. [116] approximate

g(x; s) in (7) and (8) as a quadratic function in terms of s by using the Taylor expansion, where S is defined
by (1) (i.e., s is an interval variable). They apply the DC algorithm for solving the obtained optimization
problem. It is worth noting that since the method is based on the Taylor expansion, it is not guaranteed that
the actual structural response is included in the obtained bound, even if the DC algorithm finds a global
optimal solution.

Li et al. [117] apply the same idea to the eigenvalue of free vibration of a structure with uncertainty.
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7.3 Remarks and Future Perspectives
It is well known that a wide class of optimization problems can be treated with the DC programming,

and the DC algorithm can often find a high-quality solution of a DC programming problem. Accordingly,
there exists room to increase DC programming approaches to structural uncertainty analysis.

8 Robust Optimization Approaches
In the research field of mathematical optimization, robust optimization [55] is a methodology handling

optimization problems involving non-probabilistic uncertainty, and has been studied extensively.
In the framework of limit analysis, Bleyer and Leclère [118] consider uncertainty in the yield surface,

and apply the robust optimization methodology to the problem finding the worst-case limit load factor.
For the interval model updating, Callens et al. [119] adopt the scenario approach [120] proposed for

robust optimization problems.

9 Surrogate Modeling-, Neural Network-, and Machine Learning-Based Optimization Approaches
When we analyze a complex system, it is often that the objective function q in problems (7) and (8)

is not given in an explicit form, but the value of q(d; s) for fixed d and s can be evaluated only after
numerical simulation or experiments. In such a case, surrogate models, neural networks, and other machine
learning techniques are sometimes useful in predicting the objective function value in the course of
optimization. Section 9.1 overviews surrogate models for uncertainty analysis, and Section 9.2 summarizes
other machine learning techniques including neural networks. Although we divide these methods into
two categories in accordance with the convention, from one point of view, both of them can be regarded
essentially as approximation techniques of a function.

9.1 Surrogate Model
Suppose that the design variable d is fixed, and QoI q(d; ⋅ ) is not given as an explicit function. We

generate samples of the uncertain parameter s, a set of which is denoted by {š1 , . . . , šr}, where r is the
number of generated samples. At each sample point, we can evaluate the value of QoI by, e.g., numerical
simulation. Thus we obtain a pair of a sample point and a value of QoI. A set of those pairs, denoted
by {(š1 , q(d; š1)), . . . , (šr , q(d; šr))}, is called the training data. An approximation function of q(d; ⋅ )
generated from the training data is called a response surface or surrogate model [121,122].

9.1.1 Polynomial Approximation
Polynomial approximation is one of the simplest surrogate model. Design of experiments is often used

to generate a set of sample points [121].
Bai et al. [123] and Li et al. [124] (independently) adopt a quadratic polynomial without cross

terms as a surrogate of the performance constraint function, and perform the robustness assessment (see
also Section 11.2).

9.1.2 Radial Basis Function Network
Radial basis function (RBF) network [125] is a widely and successfully used surrogate model in, e.g.,

sequential approximate optimization [126].
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Liu et al. [127] use the RBF network to approximate a static response of a linear elastic structure, where
the material constants and applied load are uncertain. They obtain upper and lower bounds for the static
response by maximizing and minimizing the output of the RBF network, respectively.

Xu et al. [128] consider the interval analysis of structures, where the so-called Taylor interval expansion
model, i.e., the Taylor expansion of QoI concerning the interval variables, is employed. They use the RBF
network to estimate the gradient and Hessian in the Taylor interval expansion model, and obtain upper and
lower bounds for the natural frequency, displacement, and the stress of complex vehicle structures. A similar
approach is described for the static structural response by Yao et al. [129].

Fang et al. [130] consider an inverse problem with uncertainty, where the system responses are
given as interval variables and the unknown system internal parameters are estimated as interval vari-
ables. They present a double-loop optimization approach, and incorporate the RBF network to reduce its
computational cost.

9.1.3 Kriging
Kriging (a.k.a. Gaussian process prediction) [131] is a probabilistic surrogate model that not only provides

an estimate of QoI but also quantifies the uncertainty of the provided estimate.
Liu et al. [132] present a bidirectional sequential sampling approach for updating the Kriging model

sequentially. They apply this approach to finding upper and lower bounds for dynamic response of structures
with interval uncertainty.

Wang et al. [133] use a Kriging model as a surrogate of the performance constraint function to perform
the robustness assessment (see also Section 11.2).

Li et al. [134] apply an adaptive Kriging method for solving a multi-objective optimization problem with
interval uncertainty. An interval bound for each constraint function value is computed with the sequential
quadratic programming (SQP).

Huang et al. [135] treat a situation in which an optimization problem involves uncertain interval
parameters, and formulate a bi-objective optimization problem that minimizes the middle value and the
width (or the radius) of the objective function. They use a Kinging model to solve this bi-objective
optimization problem. Kriging is applied to a similar bi-objective optimization problem also by Cheng
et al. [136].

9.1.4 Other Surrogate Models
Xu et al. [137] employ a surrogate model using the Chebyshev polynomials for optimization with interval

design variables. Wang et al. [138] develop a Legendre polynomial expansion method for interval functions
to solve optimization problems involving uncertain interval parameters. Wei et al. [139] use the Lagrange
interpolation to analyze dynamic characteristics of a nonlinear oscillator with uncertain interval parameters.

9.2 Neural Network and Machine Learning
Machine learning techniques [140,141] have recently been utilized almost ubiquitously in science

and engineering. Among others, deep learning, initiated by Hinton et al. [142], has attracted considerable
attention. In uncertainty analysis, these techniques are often used to reduce the computational cost when the
numerical simulation for evaluating QoI is computationally expensive.
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9.2.1 Neural Network
Ma et al. [143] adopt a back-propagation neural network as a surrogate model for the ultimate strength

of a laminated structure, and find upper and lower bounds of the surrogate model response with respect to
uncertain interval parameters.

Wang et al. [144] train a feedforward neural network for predicting the structural response to uncertain
interval parameters. They derive the gradient and Hessian from the neural network to obtain a sharp bound
of the structural response under relatively large uncertainty. Wang et al. [145] compute the gradient of the
structural response with a back-propagation neural network for efficient solution of an optimization problem
involving uncertain interval parameters.

9.2.2 Deep Learning
Cui et al. [146] deal with the identification of the dynamic load applied to a structure involving uncertain

interval parameters. They use the convolutional neural network (CNN) to reconstruct a bound for the
unknown dynamic load.

Shi and Beer [147] use the deep neural network (DNN) as a surrogate model of the response of an
aeronautical structure involving interval variables. They consider maximization and minimization of the
output of DNN to predict upper and lower bounds for the structural response.

9.2.3 Bayesian Optimization
Cicirello and Giunta [148] employ the Bayesian optimization for evaluating upper and lower bounds for

the QoI of an engineering system with interval uncertainty. The use of the acquisition function in Bayesian
optimization can reduce the number of numerical simulations required to update the surrogate model, which
is the Gaussian process regression.

Similarly, Dang et al. [149] utilize the Bayesian optimization, in combination with parallel computing,
to further reduce the computational cost.

9.3 Remarks and Future Perspectives
To address complex structural systems, the importance of surrogate-based methods and machine

learning techniques in structural uncertainty analysis inevitably continues to increase. Quality of the solution
obtained by a surrogate-based method can highly depend on the sampling strategy. Similarly, the quality of
the solution obtained by a machine-learning technique can highly depend on the training data, as well as the
values of hyperparameters. Therefore, using these methods as black-boxes may yield inadequate result from
the engineering point of view.

Most of machine learning methods for uncertainty analysis assume that sufficient data are available for
training. Methods that are efficient when only limited data are available can be further explored.

10 Metaheuristics

10.1 Overview
The optimization problems (7) and (8), for finding the extreme values of QoI can be hard to solve, due

to, e.g., some combinatorial property and/or difficulty in the computation of the derivatives of the objective
and/or constraint functions. Metaheuristics are sometimes adopted in such a situation. Metaheuristics
are a family of algorithmic strategies for finding quality solutions of non-specific difficult optimization
problems [150–152], and often use nature-inspired ideas to explore diverse solutions different from the ones
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that are once obtained during the solution process. Application of metaheuristics often avoids convergence to
a poor local optimal solution, but in general, does not give a guarantee on the optimality of obtained solutions.

10.2 Methods
Ma et al. [153] consider an interval uncertainty model in the microstructure of a material, and use the

particle swarm optimization (PSO) to find effective quantities of the material.
Zhao et al. [154] deal with an identification problem, where the upper and lower bounds for the

distributed load applied to a structure involving uncertainty are to be found. They employ the genetic
algorithm (GA) with the Latin hypercube sampling.

Ma et al. [143] use a back-propagation neural network to construct a surrogate model for the ultimate
strength of a laminated structure. Then the upper and lower bounds of the surrogate model response
concerning uncertain intervals, parameters are explored by GA.

Jiang et al. [155] consider an optimization problem involving uncertain parameters in the objective
and constraint functions, which can be viewed as a general form of (7) and (8). They use the Latin
hypercube sampling and the quadratic polynomial responses surface approximation to construct an approx-
imation optimization problem, and apply the intergeneration projection genetic algorithm (IP-GA) to solve
the problem.

Shi and Beer [147] adopt DNN as a surrogate model for the response of an aeronautical structure with
interval variables, and apply several metaheuristics, i.e., GA, PSO, the differential evolution (DE), and the
simulated annealing (SA).

10.3 Remarks and Future Perspectives
Most advantage of metaheuristics is versability. One can use a software package without particular opti-

mization modeling techniques. Moreover, metaheuristics can be applied to problems where the derivatives
of objective and constraint functions are not available. However, the practical performance of metaheuristics
in general depends on the values of the algorithmic parameters. Particular attention should be paid to
this aspect.

One of the advantages of metaheuristics that has not been leveraged in uncertainty analysis is the
potential to explore the Pareto frontier in a multi-objective optimization problem. Particularly, NSGA II
(non-dominated sorting genetic algorithm II) [156] is a seminal method. Such an algorithm might be applied
to an uncertainty analysis problem with multiple performance functions.

11 Robustness Quantification
This section collects the methods for quantitatively assessing the structural robustness by using a non-

probabilistic uncertainty model. Section 11.1 provides a review on the approaches using the concept of
robustness established in the info-gap theory [157]. Section 11.2 discuses some closely related concepts. Other
robustness measures are outlined in Section 11.3.

11.1 Info-Gap Model and Robustness Function
Robustness function, which plays a pivotal role in the info-gap theory [157], is one of measures that can

systematically quantify the robustness of a system possessing uncertainty. When we compare two system
designs, a larger value of the robustness function means greater robustness.

The info-gap theory is a methodology for supporting decision making under uncertainty. It introduces
a parameter, denoted by α (≥0), to represent the (unknown) magnitude of uncertainty. The uncertainty set,
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denoted by Ŝ(α), is supposed to depend on α so that the uncertainty level increases as α increases. This
model is called the info-gap uncertainty model, which is a family of sets satisfying the following two conditions
(see Fig. 12):

(i) α1 > α2 (≥ 0) implies Ŝ(α1) ⊇ Ŝ(α2).
(ii) Ŝ(0) = {s̃}, where s̃ ∈ Rk is the nominal value (or the best estimate) of uncertain parameter s.

Figure 12: Info-gap uncertainty model

For structural design d ∈ Rb , we use g(d; s) to denote its performance, where a small value of g(d; s) is
supposed to be preferred over a large value. For given s ∈ S, the performance requirement (or the constraint)
is written in the form

g(d; s) ≤ gc , (14)

where gc ∈ R is a critical value. For fixed α, s can take any value in Ẑ(α). The robust constraint requires that
the performance requirement is satisfied for any realization of s, i.e.,

g(d; s) ≤ gc (∀s ∈ Ŝ(α)). (15)

The robustness function, denoted by α̂(d; gc) for given d and gc, is defined as the maximum value of α (≥0)
such that the robust constraint is satisfied, i.e.,5

α̂(d; gc) = max
α

{α∣g(d; s) ≤ gc (∀s ∈ Ŝ(α))} . (16)

For two different designs d 1, d2 ∈ Rb , if we have α̂(d 1; gc) > α̂(d2; gc), then we can conclude that d 1 is
more robust than d2. In this sense, the robustness function is defined by (16) serves as a quantitative measure
of structural robustness. It is noteworthy that the robustness superiority between the given two designs can
possibly reverse depending on the value of gc, which is known as the crossing of robustness curves [157].

Jaboviste et al. [158] compare the damping performance and robustness of two specific viscoelastic
materials involved in a damper made of a steel frame and polymer inclusions. One material can show

5If g(d; s̃) > gc, then we define α̂(d; gc) = 0.
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a very good damping performance, but the performance varies drastically depending on frequency and
temperature. The other material has a less damping performance, and less frequency- and temperature-
dependence. Robustness analysis based on the info-gap theory shows that the best choice can change
depending on the critical performance.

Based on the info-gap theory, Kanno et al. [159] present a framework for evaluating seismic resilience of
structures. They compare seismic-resistant structures and base-isolated structures, and illustrate that reversal
of preference between these two structural systems can occur depending on the performance requirement.

Kuczkowiak et al. [160] present a method assessing the robustness of dynamic responses of a structure,
against uncertainty in the identified modal model. As a performance requirement, the maximum response
level at a certain frequency is required to be no greater than a critical value.

Conventionally, the calibration of a computer model adjusts model parameters so that the fidelity
to measurements is maximized. Atamturktur et al. [161] formulate the model calibration as a bi-objective
optimization problem that maximizes both the fidelity to measurements and the robustness to uncertainty
in the model parameters.

Takewaki and Ben-Haim [162] consider a shear building model subjected to a stationary random
base acceleration. They deal with uncertainties in both the load and structural model parameters, where
uncertainty in the latter is represented with the info-gap model. They observe a trade-off relation between
the functional performance of a structure and robustness to uncertainties.

The double impulse has widely been used to evaluate the critical response of an elastoplastic structure
due to near-fault earthquake ground motions. Kanno and Takewaki [163] perform robustness assessment
of an elastoplastic single-degree-of-freedom (SDOF) structure subjected to the double impulse input. The
robustness function is evaluated analytically. Kanno et al. [164] further investigate the situation that the
yield deformation and stiffness of a structure are supposed to be uncertain simultaneously. Fujita et al. [165]
consider an SDOF elastic–perfectly plastic structure that is equivalent to an elastoplastic base-isolated high-
rise building, and provide an analytic expression of the robustness function concerning the critical response
against a near-fault ground motion.

Kanno and Takewaki [42] present a numerical method for computing a lower bound for the robustness
function value of a truss structure, where the member stiffnesses and static external forces are supposed to
be uncertain. They formulate the problem of finding a lower bound as the minimization of a quasi-convex
function under convex constraints, and present a bi-section method using SDP. The stress constraints for the
truss members are adopted as the performance requirement in the numerical examples.

Kanno and Takewaki [67] formulate the robustness maximization problem of structures, and propose
an algorithm for solving it. They consider trusses with uncertain external load, and the stress constraints are
chosen as the performance requirement. The robustness maximization problem is formulated as follows:

Maximize α̂(d; gc),
subject to d ∈ D,

where D ⊆ R
b is the set of admissible structural designs. By using (16), we can rewrite this problem as

Maximize α, (17a)
subject to g(d; s) ≤ gc (∀s ∈ Ŝ(α)), (17b)

d ∈ D, (17c)
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where d ∈ Rb and α ∈ R are variables to be optimized. Kanno and Takewaki [67] show that constraint (17b)
can be reduced to a nonlinear matrix inequality, and present a sequential SDP method for solving the
reduced problem.

Matsuda and Kanno [166] treat the limit analysis of trusses and frames, where uncertainty in the
external forces is considered. A lower bound constraint on the limit load factor is chosen as the performance
constraint. They show that the robustness function value can be computed by solving a linear programming
(LP) problem. They also formulate a robust design optimization problem as a minimization problem of the
structural volume under the performance requirement above, and show that this problem can be recast as
an LP problem.

Tang et al. [167] formulate a reliability-based robust design optimization problem taking the epistemic
uncertainty of design variables into account by using the info-gap theory, in conjunction with the reliability
constraints involving random uncertainty.

11.2 Measures Closely Related to Info-Gap Robustness
Kang and Bai [168] define the robustness index as follows. Consider the performance requirement in (14),

where we assume that g(d; ⋅ ) is a continuous function. Suppose that uncertain parameter s belongs to the
ellipsoidal model in (3). Then the corresponding info-gap uncertainty model is naturally defined by

Ŝ(α) = {s ∈ Rk ∣ (s − s̃)⊺Ω(s − s̃) ≤ α2},

where α (≥ 0) in (3) is replaced by α2 without loss of generality. We introduce variable v ∈ Rk through the
variable transformation

s = s̃ + Ω−1/2v , (18)

where Ω−1/2 = (Ω1/2)−1, and Ω1/2 is a symmetric matrix satisfying Ω1/2Ω1/2 = Ω1/2. Define the info-gap
uncertainty model of v by

V̂(α) = {v ∈ Rk ∣ ∥v∥ ≤ α},

to obtain the following equivalence relation:

s ∈ Ŝ(α) ⇔ v ∈ V̂(α). (19)

Moreover, following the variable transformation of (18), define ḡ ∶ Rb ×R
k → R by

ḡ(d; v) = g(d; s̃ + Ω−1/2v) − gc ,

which yields

g(d; s) ≤ gc ⇔ ḡ(d; v) ≤ 0. (20)

Then Kang and Bai [168] define the robustness index by

ξ∗ ∶= min
v

{∥v∥ ∣ ḡ(d; v) ≥ 0}. (21)
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We can see the direct link between the robustness function in (16) and the robustness index in (21) as
follows:

ξ∗ = min
v , ξ

{ξ ∣ ḡ(d; v) ≥ 0, ∥v∥ ≤ ξ}

= min
v , ξ

{ξ ∣ g(d; s̃ + Ω−1/2v) ≥ gc , v ∈ V̂(ξ)}

= min
s , ξ

{ξ ∣ g(d; s) ≥ gc , s ∈ Ŝ(ξ)}

= max
ξ

{ξ ∣ g(d; s) ≤ gc (∀s ∈ Ŝ(ξ))} = α̂(d; gc), (22)

where the first equality follows from the fact that minimizing ∥v∥ is equivalent to minimizing ξ under
constraint ∥v∥ ≤ ξ, the second equality is obtained by using (18) and (20), the third equality is obtained by
using (19), the forth inequality follows from the continuity of g(d; ⋅ ) and the fact that only one of the two
assertions “∃s ∈ Ŝ(ξ): g(d; s) ≥ gc” and “g(d; s) < gc (∀s ∈ Ŝ(ξ))” can hold. Thus, Eq. (22) shows that the
robustness index can essentially be identified with the robustness function. Similar treatments of robustness
assessment can be found also in [50,123,169–171].

Kang and Bai [168] formulate a robust truss optimization problem based on the robustness index. It
is worth noting that the optimization problem in the form of the right-side of (21) is dealt with in the
performance measure approach (PMA) for reliability-based design optimization; see, for PMA, Hu et al. [18]
and the references therein. Given this fact, Kang et al. [168] present an algorithm for solving their robust
optimization problem.

The scale factor theory due to Li et al. [124] and Wang et al. [133] is also essentially identical to the
info-gap theory.

11.3 Other Robustness Measures
Jiang et al. [172] define the following measure to quantify the robustness of structures. Consider the

ellipsoidal uncertainty model in (3), where we put k = 2. The performance constraint required for the
structure is given by (14). For a compact set C ⊂ R

2, we use ∣C∣ to denote its area (more precisely, its
cardinality). Define ξ ∈ [0, 1] by

ξ = ∣S ∩ {s ∈ R2 ∣ g(d; s) ≤ gc}∣
∣S∣ ,

which is the measure introduced by Jiang et al. [172]. In other words, ξ is the ratio of the area of the set of
s with which the performance constraint is satisfied with the area of the set of all possible realizations of s.
Note that Jiang et al. [172] call ξ the reliability with a non-probabilistic uncertainty model.

In finance, the conditional value-at-risk (CVaR) [173] is extensively used as a risk measure, which
can compare the probability that an extreme event surpasses the critical value occurs, by taking the tail
of the failure probability into account. Bleyer [174] adopts CVaR to estimate the effective properties of a
heterogeneous elastic material with random microscopic properties. Optimization methods of structures
considering CVaR can be found in Byun et al. [175], Byun and Royset [176], Chaudhuri et al. [177], and
Rockafellar and Royset [178].

Considering uncertainty in feature degradation of a structure, Kanno and Ben-Haim [179] propose
two measures of structural redundancy, called the strong redundancy and weak redundancy. Particularly, the
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strong redundancy is defined as the largest level of deficiency that can be tolerated at any place in a structure
without violating the performance constraint.

11.4 Remarks and Future Perspectives
The framework of robustness assessment using the robustness function has been well established.

However, evaluation of the robustness function value is in general not easy, and algorithmic aspects can
further be studied. The difficulty arises from the fact that the robustness function value is defined essentially
as the optimal value of a bi-level optimization problem, because Eq. (16) can be rewritten equivalently as

α̂(d; gc) = max
α

{α∣max{g(d; s) ∣ s ∈ Ŝ(α)} ≤ gc} .

It would be beneficial to identify some problem settings with which this bi-level optimization problem can
be solved globally.

Study of direct maximization of the robustness of structures is very limited. Algorithmic developments
of this issue are still in demand.

12 Uncertainty Analysis-Based Data-Driven Computational Mechanics

12.1 Overview
As one of the emerging topics in computational engineering, data-driven computational mechanics

has received considerable attention. Consider the static equilibrium analysis of structures. The governing
equations consist of (i) the compatibility relation between the strains and displacements, (ii) the force-
balance equation between the stresses and external forces, and (iii) the constitutive law relating the stress
to the strain. Among these three ingredients, (i) is determined from the geometric configuration of the
structure, while (ii) is given as a physical law (derived from Newton’s law of motion). In contrast, (iii) is
an empirical modeling of the material response, where usually the function form is firstly chosen and then
the values of its parameters are calibrated to data of material experiments. Thus, (iii) possesses somewhat
arbitrariness in nature. In this view, the seminal work of Kirchdoerfer and Ortiz [180] proposes a concept
of data-driven computing in mechanics, which uses data of material response (i.e., pairs of observed stress
and strain values) directly to predict the structural response, instead of using an empirically modeled
conventional material constitutive law.

This section provides a review of applications of uncertainty analysis to data-driven computing
in elasticity.

12.2 Methods
Guo et al. [181] initiated the data-driven computing using uncertainty analysis. Given a material data set,

their method constructs an ellipsoidal uncertain set (3) that includes all the data points. Then they compute
upper and lower bounds for QoI under the constraints that element stresses and strains satisfy (i) and (ii) and
are included in the uncertainty set. Under the assumption of small deformation, the optimization problems
for finding upper and lower bounds are formulated as convex optimization problems.

Kanno [182] attempts to give a physical interpretation to the bound obtained by this method. By using
a fundamental property of the order statistics of the material data set, one can guarantee that, at least with
a given confidence level, the probability that the structural response is included in the obtained bound is
no smaller than a specified target reliability. It is worth noting that the notion of confidence level for the
target reliability can be found in the reliability-based design optimization with an uncertain input probability
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distribution; see [183–186] and the references therein. Kanno [182] formulate LP problems for finding upper
and lower bounds of QoI, where almost linear material response is considered. Kanno [187] applies this
method for truss optimization with the guaranteed confidence level for a lower bound constraint on the
probability that the compliance is no larger than the specified value, where the strong duality of LP is used
to transform a bi-level optimization formulation into a single-level NLP problem. Kanno [89] extends the
method in [182] to piecewise-linear material response, where MIP formulations for finding bounds for QoI
are presented.

As mentioned above, Guo et al. [181] consider an uncertainty set including all the data points. This is
reasonable when the material response is almost linear. If the material response is much different from a
linear form and/or the given data set includes outliers, the bound obtained by their method can be very
loose. To obtain a tight bound, Huang et al. [188] propose a method that constructs a polyhedral uncertainty
set in (2) locally for each numerical integration point of the finite element method. They solve problems for
finding upper and lower bounds for QoI with a sequential linear programming approach.

Example 3. Consider the pin-jointed structure shown in Fig. 13. The structure consists of 12 cables
(depicted as thin lines) and 3 struts (depicted as thick lines) with 2.4863 m in length. The top and bottom
layers are triangles consisting of cables with

√
3 m in length. The distance between these layers is 1.5 m. The

cross-sectional areas of the cables and struts are 500 and 1000 mm2, respectively. To prevent the rigid-body
motion, we fix 6 degrees of freedom of the nodal displacements of the bottom nodes. The vertical downward
forces of λ kN are applied at the top nodes, where λ is the load factor. Each cable and each strut has the initial
strains 2 × 10−3 and −0.4 × 10−3, respectively.

Figure 13: Cable–strut structure used in Example 3

Fig. 14 shows the stress-strain data sets for cables and struts. Each data set consists of 150 data points.
Data-driven computational mechanics aims to predict the structural response directly from these data
sets. Particularly, an uncertainty analysis-based method provides a bound for the structural response. The
method proposed by Kanno [89] guarantees that, at least a specified confidence level, the probability that the
structural response is in the obtained bound is no smaller than a specified target reliability.

Fig. 15 shows the bounds for the vertical displacement of a top node, where the target reliability and
specified confidence level are 1 − ε = 0.9 and 1 − δ = 0.95, respectively. ∎
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(a) (b)

Figure 14: Data sets for Example 3. (a) Data set for cables; and (b) data set for struts

Figure 15: Bounds for the nodal displacement of the cable–strut structure of Example 3. “◁” and “▷” denote the upper
and lower bounds obtained by the method proposed by Kanno [89], respectively. “◻” denotes the reference solution

12.3 Remarks and Future Perspectives
Uncertainty analysis for data-driven computational mechanics is an emerging research topic. Many

possibilities remain to be studied. For example, the existing methods are restricted to static equilibrium
analysis of elastic structures. Extensions to dynamic problems, as well as inelastic structures, can be
explored. Moreover, extensions to robustness assessment can be considered. Design optimization methods
of structures other than trusses also remain as future research topics.

13 Conclusion
Attention to the analysis of structural systems involving uncertainty has increased dramatically in

recent decades. Among others, uncertainty analysis using nonprobabilistic modeling has a close link
to optimization. This paper has provided a comprehensive review of this field from the viewpoints of
optimization modeling and algorithms. We can draw the following conclusions from this review:
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• Nonlinear programming approaches are popularly employed due to their ease of use and versatility,
although they cannot guarantee the exactness/conservativeness of the obtained bound. The quality of
the obtained bound may be examined by comparison with, e.g., results of the Monte Carlo simulation.
However, such a direct comparison is usually possible only for small-scale problems, due to the
computational cost of the compared methods.

• Linear and nonlinear semidefinite programming approaches to find a conservative/exact bound were
actively studied particularly in the late 2000s. Until today, these approaches have often been employed
for worst-case robust optimization of structures. Moreover, they are crucial to structural uncertainty
analysis as they provide confidence bounds for QoI.

• The moment-sum-of-squares hierarchy is a successive of SDP relaxations to solve a polynomial opti-
mization problem globally. Although its global optimal guarantee is attractive for structural uncertainty
analysis, it has not yet been employed in this field to the best of the author’s knowledge.

• Modeling with mixed-integer programming is attractive due to its guarantee of the exactness of the
obtained bound. It can also provide benchmark examples for evaluating the other approaches. However,
the problem settings for which mixed-integer programming is available are limited. Although, to the
best of the authors’ knowledge, only mixed-integer programming with linear objectives and constraint
functions have been used for uncertainty analysis, in general (nonlinear) convex optimization problems
with discrete and continuous variables can now be dealt with by standard mixed-integer programming
solver with reasonable computational cost. As a future direction of research, the application of such
formulations to uncertainty analysis might expand a class of problems for which the exactness of the
obtained bounds is guaranteed.

• Other optimization models have also been used by emphasizing a focus on specific mathematical struc-
tures stemming from respective problem settings. This paper has presented reviews of the approaches
based on mathematical programming with complementarity constraints (MPCC), difference-of-convex
(DC) programming, and robust optimization.

• The present literature lacks applications of global optimization approaches and DC programming
approaches to MPCC-based structural uncertainty analysis.

• Recently, surrogate models-based, neural networks-based, and machine learning techniques-based
optimization approaches have widely spread in uncertainty analysis. They attempt to enhance the
efficiency and accuracy of uncertainty analysis of complex systems. This trend of research will probably
continue for a while.

• The info-gap theory provides a systematic way to assess the robustness of structures. There exist non-
probabilistic robustness measures inspired by reliability engineering, many of which can be essentially
identified with the robustness function defined in the info-gap theory. This may suggest that the notion of
robustness function is intuitively clear and natural from the engineering point of view. Existing methods
for evaluating the robustness function values include explicit computations, nonlinear semidefinite
programming approaches, optimization methods inspired by the performance measure approach in
reliability engineering, etc.

• Applying uncertainty analysis techniques to data-driven computing in mechanics is considered natural
as material behavior inevitably and intrinsically possesses aleatory uncertainty (a.k.a. natural variability).

It should be clear again that this paper does not deal with the diverse methods for uncertainty analysis,
overviewed in Section 1.2, other than optimization-based methods using non-probabilistic uncertainty
modeling. Moreover, we have focused on optimization modeling of uncertainty analysis problems as well as
solution algorithms, and thereby issues of uncertainty modeling have not been thoroughly discussed.
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76. Kočvara M, Stingl M. Solving nonconvex SDP problems of structural optimization with stability control. Optim

Methods Softw. 2004;19:595–609. doi:10.1080/10556780410001682844.
77. Lasserre JB. The moment-SOS hierarchy: applications and related topics. Acta Numerica. 2024;33:841–908. doi:10.

1017/S0962492923000053.
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