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ABSTRACT: Thyroid nodules, a common disorder in the endocrine system, require accurate segmentation in
ultrasound images for effective diagnosis and treatment. However, achieving precise segmentation remains a challenge
due to various factors, including scattering noise, low contrast, and limited resolution in ultrasound images. Although
existing segmentation models have made progress, they still suffer from several limitations, such as high error rates,
low generalizability, overfitting, limited feature learning capability, etc. To address these challenges, this paper proposes
a Multi-level Relation Transformer-based U-Net (MLRT-UNet) to improve thyroid nodule segmentation. The MLRT-
UNet leverages a novel Relation Transformer, which processes images at multiple scales, overcoming the limitations
of traditional encoding methods. This transformer integrates both local and global features effectively through self-
attention and cross-attention units, capturing intricate relationships within the data. The approach also introduces
a Co-operative Transformer Fusion (CTF) module to combine multi-scale features from different encoding layers,
enhancing the model’s ability to capture complex patterns in the data. Furthermore, the Relation Transformer block
enhances long-distance dependencies during the decoding process, improving segmentation accuracy. Experimental
results show that the MLRT-UNet achieves high segmentation accuracy, reaching 98.2% on the Digital Database Thyroid
Image (DDT) dataset, 97.8% on the Thyroid Nodule 3493 (TG3K) dataset, and 98.2% on the Thyroid Nodule3K (TN3K)
dataset. These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule
segmentation, addressing the limitations of existing models.

KEYWORDS: Thyroid nodules; endocrine system; multi-level relation transformer; U-Net; self-attention; external
attention; co-operative transformer fusion; thyroid nodules segmentation

1 Introduction
A thyroid gland produces hormones that help control the body’s metabolism. The thyroid gland is

a little butterfly-shaped organ found in the front of the neck. The gland consists of two lobes on either
side of the trachea that connect the midline tissues. Thyroid syndrome has three types: hyperthyroidism,
hypothyroidism, and thyroid nodules. Hyperthyroidism occurs when the thyroid gland produces an exces-
sive amount of hormones. A thyroid nodule is the abnormal growth of tissues in the thyroid gland that
results in a lump [1–3]. Some thyroid nodules have a regular shape, whereas others are irregular. They can
also be solid, cystic, or a combination of both types of nodules. Studies have shown that thyroid nodules
occur in 4%–7% of the population and are classed as hypoechoic, isoechoic, or hyperechoic. Hypoechoic
nodules are malignant and have irregular boundaries; they occur in 0.1% to 0.2% of the population. The
imaging methods used to diagnose this condition include computed tomography (CT), magnetic resonance
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imaging (MRI), ultrasound imaging (USG), and radionuclide imaging (RNI) [4]. The USG is the most widely
used imaging technique due to its inexpensiveness, real-time, non-invasive and non-radioactivity [5]. The
presence of noises and low quality of USG images makes the tissues appear inhomogeneous and fuzzy [6].
The most essential parameters for thyroid nodule diagnosis are classified into five categories: composition,
echogenicity, shape, margin, and echogenic foci. Shapes and borders of thyroid nodules are assumed to be
crucial features for differentiating between benign and malignant nodules [7]. Thus, segmentation plays an
important role in detecting the nodules. Inaccurate segmentation can result in an incorrect diagnosis; also,
segmentation is required for estimating thyroid volume [8]. The thyroid hormone secretion rate and thyroid
anomalies are assessed while calculating thyroid volume. However, it is difficult for clinicians to assess these
traits without the assistance of computers [9]. As a result, thyroid gland segmentation and thyroid nodule
segmentation methods are necessary to promote the study of thyroid disease diagnoses. It provides valuable
information for clinicians to make the best possible diagnostic decisions [10].

Moreover, modern methods are available for the examination of ultrasound images on thyroid cancer
analysis. A CAD system was designed to use only direction-independent structures [11]. Also, machine
learning models (ML) such as Support Vector Machine (SVM) and Random Forest (RF) classifiers were
applied to differentiate nodules within malignant as well as benign classes [12]. Also, feature extraction, pre-
processing, and segmentation are employed to improve the categorization accuracy of the nodules and get
accurate analysis [13]. The CA approaches for diagnosing thyroid cancer have advanced, allowing radiologists
to investigate crucial aspects of Ultra Sound Sonography (USG) images. It depends on digital image-
producing techniques such as image improvement, segmentation, and feature extraction [14]. The survey was
conducted by categorizing each characteristic using multi-layer perception Multi-Layer Perceptron (MLP)
and Support Vector Machine (SVM) however, identifying some risk of malignancy in USG thyroid images
is crucial [15].

Thus, the Thyroid Imaging Reporting Based Data System (TI-RADS) is recommended for stratifying
the predictable risk of cancer in thyroid nodes. The understanding of USG imaging is still exciting and
depends wholly on the knowledge of radiologists [16,17]. Finally, CAD schemes are essential to diagnosis.
The most widely used ML method is deep learning (DL) models. DL has seen success within the area
of image prediction through the development of varied neural networks. DL models made important
advances in interpretation, segmentation, localization and classification, including thyroid nodules [18,19].
DL approaches affect developments in graphics processing components’ calculating capacity, allowing for
the development of larger and composite neural networks capable of segmenting ultrasound images over
many anatomies. Recently, convolutional neural network (CNN) [20], graph neural network (GNN) [21],
transformer networks [22], multi-view deep learning [23] and UNet [24] models are widely used for thyroid
nodule segmentation and detection. Real-time application is possible with DL approaches since they do
not require a kernel model for extrapolation time in the range of milliseconds [25]. The DL approaches
are not only suitable for thyroid nodule segmentation, which can also be utilized for lung and liver
nodule segmentation [26–29]. The Deep dual-patch attention mechanism (D2PAM) for classifying the pre-
ictal signal of people with Epilepsy based on the brain signals which was developed for Epileptic seizure
prediction. An innovative multi-modal fusion-based approach named Dual-3DM3-AD was developed for
classifying the early multi-class Alzheimer’s diagnosis These are the deep learning used from other domain
for efficient classification process.

1.1 Motivation
Thyroid cancer is currently considered the wildest rising malignancy in the world. Ultrasound is

the main tool for evaluating thyroid nodules. However, due to the overlapping features of malignant and
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benign thyroid nodules, the ultrasound images are complex and vary. Many CAD systems have recently
been introduced to assist clinicians in diagnosing conditions, particularly preliminary cutting and nodule
discernment. Furthermore, advanced methods for determining whether a thyroid nodule is benign or
malignant have been enabled by precise medical instruments. However, because of its low cost and high
sensitivity, ultrasonography has been widely employed in biomedical imaging for a variety of applications
such as diagnosis, nodule detection, post-operative evaluation, and so on. This paper presents a novel multi-
scale vision transformer-based approach, MLRT-UNet that introduces significant advancements in feature
extraction, multi-scale fusion, and context modeling for image segmentation tasks. The key contributions of
this work are as follows:

• This paper introduces a new Relation transformer to replace the traditional encoder structures in U-Net.
It captures both local and global features at multiple scales using self and cross attention mechanisms,
overcoming the limitations of conventional methods that struggle with long-range dependencies.

• The model uses a multi-scale patching strategy. The input image is pre-processed with a Fast Bilateral
Filter (FBF) to preserve details, then split into patches at both large and small scales. These patches
are processed simultaneously by the Relation transformer, allowing the model to handle both fine local
details and broader global context, improving performance on tasks with varied object sizes.

• The paper introduces Co-operative Transformer Fusion (CTF), a new method to combine features from
different scales. The Co-operative Transformer Fusion (CTF) module allows these multi-scale features
to interact and merge effectively, helping the model learn strong, context-rich features that improve
segmentation performance, especially in complex scenarios.

• The Relation transformer is also used in the decoder to preserve global context during upsampling.
This ensures that the long-range dependencies learned in the encoder are maintained, leading to better
pixel-level predictions and higher-quality segmentation, even in complex areas.

• To evaluate the performance of the proposed model in terms of different evaluation metrics and
determine the superiority against existing methods.

1.2 Paper Organization
The remainder of the paper is organized as follows: Section 2 includes of existing approaches. Section 3

contains the proposed methods used in this study. Section 4 contains performance measures and evaluation
metrics used in this proposed work are mentioned in this part. Section 5 provides the conclusion and
future study.

2 Related Works
Gong et al. [30] presented Thyroid Region prior guided Feature Enhancement network (TRFE) or the

segmentation of thyroid nodules. A multi-task learning-based network segments the regions of the thyroid
gland and nodules. A prediction task was performed using an encoder to avoid over-fitting and thus be aware
of nodule size. Feature enhancement was done to build a relation between nodule and gland feature maps.
After that, the normalization of features to alleviate variations in training and testing data collected from
different sources. Finally, the performances in terms of accuracy, precision, recall, F-score, etc.

Abdolali et al. [31] adopted deep convolutional neural network-based thyroid nodule detection from
ultrasound imaging. This model was used to regularize the loss functions and hyperparameters in order
to address the issues of detecting nodules from USG scans. Training and testing on datasets with high
variability. Thus, the created model regularizes the loss function and prioritizes detection over-segmentation.
The different types of thyroid nodules are predicted using the model, and the performances in terms of
accuracy, precision, and recall are evaluated, respectively.
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Shahroudnejad et al. [32] introduced rule-based and Deep Convolutional Neural Network (DCNN)-
based methods to segment and categorize thyroid nodules. Thyroid node ordering necessitated an exact
description of the node border, which was both difficult and time-consuming. Thus, involuntary nodule
boundary subdivision was required, which was intriguing given the wide range of nodule arrivals, shapes,
and sizes. This method uses a residual dilated UNet algorithm to separate nodules. The model’s output is sent
into a rule-based categorizer, which classifies the composition and echogenicity of the segmented nodes.

Nie et al. [33] utilized an N-Net model for the segmentation of thyroid glands. The model N-shaped
dense, fully convolutional neural network is made up of three mechanisms: a multi-scale inner block that
constructs the image pyramid, an attention-based management component for filtering the features, and a
stackable dilated convolution block that serves as the backbone network to capture deep semantic features.
The model was evaluated using the TNUI-2021 dataset as well as the Digital Database Thyroid Image (DDTI)
database, and performance was measured in terms of accuracy, precision, and recall.

Abbasian Ardakani et al. [34] presented a hybrid multi-layer filtering approach for thyroid nodule
segmentation using ultrasound images. The speckle noise was the main component that affected the USG
image contrast. The use of appropriate filters reduces noise and improves performance. Twelve filters
were selected from the best filter utilized for accurately segmenting the nodules. The Receiver Operating
Characteristic Curve (RoC) properties were examined, and ten morphological parameters were measured
from the segmented regions to assess the performance.

Xiang et al. [35] developed a multi-attention guided UNet (MAUNet) for thyroid nodule segmentation
to overcome the issues of varying sizes and position of nodules. In this technique, a multi-scale cross attention
(MSCA) module for the initial image for feature extraction. The impact of thyroid nodule size and shape on
segmentation was obtained by integrating the interaction between features at various sizes. Finally, a dual
attention (DA) module incorporated into the skip-connection step of UNet network, which enhance the
fusion between encoder and decoder.

Yan et al. [36] developed the Cold SegDiffusion for general medical image segmentation based on
the diffusion-model. In this technique, the contrast enhancement module was used to translate feature
into frequency domain and the conditional cross-attention module utilized the conditional encoder. The
cross attentional weights were used to enhance the essential features of segmentation encoder output. This
technique achieves higher IoU for Thyroid Nodule as 75.35%.

Liu et al. [37] developed a shape-margin knowledge augmented network (SkaNet) for thyroid nodule
segmentation and diagnosis. This technique shared visual features in feature extraction stage due to the
similarity in visual features between segmentation and diagnosis. Then, a dual branch architecture was used
to perform thyroid nodule segmentation and diagnosis tasks. An exponential mixture module was devised
to enhance the effective discriminative features. A knowledge-augmented multi-task loss function with a
constraint penalty term was used to optimize the SkaNet model by integrating the shape and margin features
through numerical computation.

In recent years, deep learning methods have made remarkable breakthroughs and achievements in the
field of computer vision. Inspired by the widely used deep learning techniques, many scholars applied deep
learning to segment the thyroid nodules. For example, Lin proposed a new two-stage framework based on
super-resolution reconstruction to suppress noise and improve image quality, and added a new parallel atrous
convolutional module to the proposed N-shape network to extract multi-scale semantic feature maps to
improve the segmentation accuracy of thyroid nodules [38].

Ma et al. [39] presented TNSeg, a novel framework created especially for the segmentation of thyroid
nodules. A segmentation block and a discriminative block are two essential parts of TNSeg, which also
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makes use of adversarial training. Specifically, a fully convolutional decoder with skip connections is used by
the discriminator to effectively distinguish between simulated and genuine data. Additionally, a new multi-
scale joint loss function was presented for adversarial training using a balanced sampling approach, which
successfully addresses the challenges of computational redundancy and foreground-background distinction.
The segmentation performance of TNSeg is impacted by the use of adversarial training, which can be
challenging to stable and result in mode collapse or disappearing gradients.

Lin et al. [40] designed a new Dual Swin Transformer U-Net (DS-TransUNet) model for performing
image segmentation process using medical images. The developed model involved the benefits of hierarchical
swin transformer with U-Net structure in which semantic segmentation is performed. Because of adopting
dual-scale encoder sub-networks, the utilized model fetched fine-grained feature information with multiple
semantic scales. Also, the global dependencies among features with multiple scales are attained with the aid
of a self-attention layer. Finally, the long range contextual information are obtained in the up-sampling stage.
Thus, the utilized model effectively segments the given medical images. The experimental results show the
strength of developed model however computational complexity is the major issue faced by this study.

The automatic segmentation of thyroid nodules [41] developed a STU3Net model. The model employs a
modified swin transformer combined CNN with an encoder and three-layer U-Net network. The STU3Net
performance evaluation using two datasets such as N3K and BUSI datasets achieved higher Dice scores of
0.8368 and 0.7416, respectively. However, the limitation of STU3Net model was reliance on high-quality
annotated datasets for training and validation. Table 1 shows the comparison of existing approaches.

Table 1: Existing comparison

Authors Techniques Datasets Parameters Limitations
Gong et al. [30] TRFE+ DDTI Dice—75.37% Limits

generalizability
Abdolali et al. [31] DCNN ImageNet dataset Mean average

precision—82%
High error

Shahroudnejad
et al. [32]

ResDUnet Ultrasound image
dataset

Dice score—82% High model
complexity

Nie et al. [33] N-Net model DDTI dataset and
TNUI-2021 dataset

Dice—91% for the
TNUI-2021 dataset
and Dice—93% for
the DDTI dataset

High loss obtained

Abbasian Ardakani
et al. [34]

Chan-Vese model Ultrasound image AUC—68.5% Low scalability

Xiang et al. [35] MAUNet Ultrasound image Dice score—91.2% Less efficient in
single-center

datasets
Yan et al. [36] Cold SegDeffusion Ultrasound image

from lung thyroid
dataset

IoU—75.35% Low performance
of thyroid

segmentation

(Continued)
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Table 1 (continued)

Authors Techniques Datasets Parameters Limitations
Liu et al. [37] SkaNet DDTI image IoU—73.88% Diagnosis of this

model was difficult
to required
additional

information
Xiang et al. [38] MAUNet Ultrasound image Dice scores—e

0.908
The model may

overfit to the
training data

Ma et al. [39] TNSeg – Dice coefficient of
92.06%, Hd95 of

13.35, Jaccard index
of 90.02%, and

Precision of 94.01%

Challenging to
stable and result in
mode collapse or

disappearing
gradients

Lin et al. [40] DS-TransUNet Kvasi dataset F1-score-94.22,
mIoU-89.39

Faced higher
computational

complexity
problem

Deng et al. [41] STU3Net N3K and BUSI
datasets

Dice scores of
83.68% and 74.16%

Reliance on
high-quality

annotated datasets
for training and

validation

2.1 Problem Statement
Numerous neural networks based on ultrasound images are constantly emerging and have made

great advances in the field of thyroid nodule segmentation as a result of the rapid expansion of DL.
However, the structure of malignant thyroid nodes is inherently complicated, posing extra challenges for
existing networks. By surveying several existing methods like DCNN, ResDUnet, DSRUNet and STU3Net,
it clear that segmenting thyroid nodule is becoming more critical because of the requirement of large
annotated dataset, higher resource demands, reduced generalizability, overfitting issues, etc. Furthermore,
the inherent limits of CNN-based networks prevent the creation of relationships between distant pixels.
Because of issues like inherent complex structures or confusion with surrounding tissues, malignant thyroid
nodule segmentation remains a challenging task even though significant progress in recent years. Thus,
it is important to design a novel technique by adopting attention mechanism along with deep learning
for handling complex features and reducing memory overhead. Thereby, the proposed work focuses on a
novel deep learning-based transformed technique to help clinicians for diagnosing thyroid diseases without
any complexities.

3 Proposed Methodology
Convolutional Neural Networks (CNNs) have expanded their popularity within a number of applica-

tions related to medical image subdivision during the past few decades. Convolution layer stacking and down
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sampling increase local interaction and enhance the receptive field, but they also complicate the model and
increase its vulnerability to overfitting, making it a suboptimal choice. Although CNN-based algorithms have
significantly improved the effectiveness of thyroid nodule segmentation, they are not as better at uncovering
the long-range contextual information concealed in ultrasound images that is required to fully recognize
thyroid nodules. Later on, a number of efficient transformer-based models were proposed to determine the
contextual relationships of local information. Fig. 1 shows the architecture of the proposed method.

Input Image Fast Bilateral Filter 

(FBF) 

Pre-processing

Segmentation

Self-

attention

lf

Cross-

attention
C

Segmented
Image

Relation Transformer Block

Co-operative

Transformer Fusion

ti

Figure 1: Block diagram of the proposed method

Normally, the multi-scale feature performances could improve the presentation of vision modifiers;
however, they were infrequently employed within image segmentation tasks. In this work, pre-processing is
done using an adaptive filter, and it will split into large and small overlapping patches. After pre-processing,
features are segmented using a Relation transformer. Relation transformers contain self and cross-attention
modules for segmentation. The segmented images are then supplied into the concatenation component,
which fuses self and cross-attention and produces the segmented image.

3.1 Pre-processing Using Fast Bilateral Filter
Unlike Gaussian filtering, which smoothens uniformly, FBF respects edges in the image by weighting

the influence of neighboring pixels based on both spatial and intensity similarity. This property is crucial in
segmentation tasks where preserving boundary details is essential. On the other hand, anisotropic filtering
reduces noise while preserving edges by iteratively diffusing the image guided by local gradients. However,
this filter is computationally intensive and requires careful tuning of parameters to avoid over-smoothing or
under-smoothing. But, the utilized FBF is well-suited for real-time or large-scale segmentation tasks with
complex textures. FBF effectively reduces noise in homogeneous regions while keeping important structural
details intact, leading to cleaner segmentation results. FBF preserves image edges while smoothing them,
which is useful for pre-processing tasks such as texture retention and noise reduction. The conventional
bilateral filter [42] uses a Gaussian kernel for range and domain filtering and is represented in generalized
form as follows:

Hσ t (y) = exp(−y2

2σ 2
t
) (1)
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In order to reduce the computing complexity, numerous academics have proposed improving bilateral
filters, as the above equation takes U (V) operations per pixel.

Hσ t (y − 2) = exp(−22

2σ 2
t
) exp(−y2

2σ 2
t
) exp(−2y

2σ 2
t
) (2)

After removing the higher-order terms and expanding the exponential terms with a Taylor series, the
preceding statement can be broadly expressed as follows:

exp(−2y

2σ 2
t
) = ∑M−1

m=0
1

m!
( 2y

2σ 2
t
)

m

+Higher order terms (3)

The fast bilateral filter performs better than the bilateral filter, which concerns performance metrics and
the computing complexity of the aforementioned formula is U (1) per pixel. Table 2 contains the original
image and pre-processed image for three datasets.

Table 2: Comparison of original and pre-processed images

Datasets Original image Pre-processed image

DDTI dataset

TG3K dataset

TN3K dataset

3.2 Segmentation Using Relation Transformer
The proposed network is built on the well-established U-Net architecture, which is widely used for

medical image segmentation tasks. To improve the feature representation capabilities beyond the original
U-Net, the model integrates a Relation Transformer block and a novel combination of Co-operative
Transformer Fusion (CTF) within the system. The Relation Transformer block is incorporated into the
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decoder to enhance feature extraction and allow the model to capture both local and global features. To better
bridge the semantic gap between the encoder and decoder, a gated attention module is introduced in the skip
connections. This module helps the model efficiently use feature representations from various levels of the
network. After upsampling in the decoder, another CTF module is applied to further refine and fuse feature
maps, improving the quality of the segmentation output. The core building block of the decoder is the MLRT-
UNet, which serves to increase the receptive field and generate more precise, dense predictions. Specifically,
for thyroid nodule segmentation, the proposed model employs a multi-level relation transformer-based U-
Net, which combines the Relation Transformer module with the CTF mechanism to enhance the feature
learning process and optimize the segmentation performance.

When compared to traditional models like TransUNet and other transformer-based U-Net models,
the proposed multi-level relation transformer-based U-Net (MLRT-UNet) demonstrates higher efficiency
and performance. The two attention blocks within the Relation Transformer module allow the model to
effectively capture both local and global features, thus reducing the overall complexity of the network
while improving feature representation. In contrast, the TransUNet struggles to learn rich, meaningful
features due to its complex architecture, making it less suitable for handling the variability present in thyroid
nodule images. Additionally, the multi-level relation transformer-based U-Net can better learn and integrate
relationships between features at various levels in the network. Previous transformer-based U-Net models
often fail to bridge feature gaps effectively due to their inherent complexity and the inability to integrate
multi-level features seamlessly. The CTF mechanism in the proposed model not only helps in aggregating
multi-level features but also mitigates computational complexity issues, all while maintaining the ability to
model global relationships efficiently.

3.2.1 Relation Transformer Block
The Relation Transformer Block (RTB), which is used to capture intra-class addictions between lesions

as well as inter-class interactions between lesions and blood vessels, is designed with both a cross-attention
head and a self-attention head. RTB effectively combines local and global attention to detect objects of
varying sizes across scales. Hierarchical self-and cross attention allows detailed refinement of image regions
while maintaining global coherence. Three trainable linear embeddings are used as the query, key, and value
generators H j , L j , Wj , j ∈ {p, z}, in each head. The embeddings are implemented by a 3× 3 Conv and reshape
procedure. The pairwise query and key calculations within the self-attention and external-attention heads
are described below:

Ep (Ek) = Lp (Ek)R Sp (Ek) (4)

Ez (Ek , Eu) = Lz (Eu)R Sz (Ek) (5)

where the self-attention as well as external-attention heads are indicated by the subscripts p and z,
respectively. Ek signifies every key feature from the input lesion, the vessel features were fed into the cross-
attention head to generate the key Eu which incorporates vascular data. Here, the self-attention is used to
capture the fine-grained relationships within the lesion feature space and the cross-attention utilizes the
contextual data to integrate the external vascular data for improved feature representation. The relationship
of the two attention heads highlights how self-attention captures intra-class interdependence (such as among
lesions) and cross-attention model interactions between classes (such as between blood arteries and lesions).
The RTB structure includes the adoption of residual connections to maintain training and increase feature
learning efficiency. It also utilizes 3 × 3 convolutions for embedding generations to optimize local feature
extraction. These alterations will ensure that the part is more accurate and accessible. However, the two heads’
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separate attentive features are calculated as follows:

Hp (Ek) =Wp (Ek) so f t max (Ep (Ek)) (6)

The term Wp (Ek) represents the value vector for the self-attention mechanism using inputs from the
vascular features Ek . Specifically, Wp is a linear transformation applied to Ek , allowing the model to focus
on different parts of the input when producing the output.

Hp(Ek , Eu) =Wz(Eu)so f t max (Ez(Ek , Eu)) (7)

here, Wz (Eu) is a linear transformation applied to the vascular features Eu , which computes the values used
in the cross-attention process. (Ez (Ek , Eu)) is denotes the features being combined from the input features
Ek and the vascular features Eu . Wz is crucial to determine how the model attends to information from the
vascular features when computing the cross-attended output as shown in Fig. 2.

Figure 2: Block diagram of relation transformer

3.3 Fusion Using Co-Operative Transformer Fusion (CTF) Module
To combine both self and cross-attention output features by combining the co-operative Transformer

Fusion technique.
The Transformer Co-operative Fusion (TCF) module aims to enhance communication between multi-

scale features, significantly improving segmentation performance. Fig. 3 shows the block diagram of the
Transformer Co-operative Fusion module.

The suggested TCF can incorporate features from self-affection and cross-attention features. The
procedure is the same for both self and cross-attention features; choose the CFT for the pro-
posed study in the section below. More specifically, E j = ⌊e j

1 , e j
2, . . . e j

g×v⌋ ∈ T Z×(g×v) (self-attention) and

H j = [h j
1 , h j

2, . . . h j
g
2×

v
2
] ∈ Tz×( g

2×
v
2 ) (cross attention) is the outcome of two branches with similar stage
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j ( j = 1, 2, 3, 4). Then, the transformation production H j is given by:

ĥ j = Fl atten (avg pool (H j)) (8)

where ĥ j ∈ T Z×1, avgpool was a 1-dimensional normal pooling level, and flatten process comes next. The
global abstract data used by H j to interrelate with E j at pixel level was represented by the token ĥ j. In the
meantime, ĥ j and E j are concatenated to create an order of 1 + g × v tokens that were passed within the
Transformer layer to calculate global self-attention:

Ê j = trans f ormer (⌊ĥ j , e j
1 , e j

2, . . . e j
g×v⌋)

= [ê j
0, e j

1 , . . . ê j
g×v] ∈ T Z×(1+g×v) (9)

E j
out = [ê

j
1 , ê j

2, . . . ê j
g×v] ∈ T Z×(g×v)

where E j
out represent the small-scale branch’s ultimate output in TCF. As a result, the TCF module may

effectively fuse features from many scale branches, improving segmentation performance. The proposed
model, MLRT-UNet, can utilize a Dice loss to balance pixel-wise classification accuracy and the overlap
between predicted and ground truth segmentations. The Dice loss is particularly effective for imbalanced
datasets, which is common in medical imaging where the area of interest (e.g., thyroid nodules) is much
smaller than the background. The Dice loss (L-{Dice}) can be formulated as:

L_{Dice} = 1 − D = 1

f rac {2 ∣ X
cap Y

∣} {∣X∣ + ∣Y ∣}
(10)

here, X is the set of predicted pixels, and Y is the set of ground truth pixels. This approach helps to
ensure that the model not only learns to classify pixels accurately but also focuses on achieving a good
overlap with the ground truth segmentation, which is critical in medical imaging tasks. Finally, the MLRT-
UNet effectively and accurately segments the thyroid. The model improved accuracy using hyper-parameter
selection methodology in the osprey optimization algorithm, this algorithm selects the efficient parameter
in the segmentation model. Table 3 shows the comparison of pre-processed and segmented images.

Figure 3: Transformer co-operative fusion
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Table 3: Comparison of the pre-processed and segmented image

Datasets Pre-processed image Segmented image

DDTI dataset

TG3K dataset

TN3K dataset

4 Result and Discussion
The performance evaluation of the proposed study is mentioned in the result and discussion part.

The proposed technique was performed in the Python platform and 16.0 GB memory. Here the proposed
technique utilized 1 GB of memory to perform the proposed technique across three datasets. Usually, the
dataset is split into training and testing an 80:20 ratio. Here, 80% of the data from three datasets was used
to train the model and 20% data was used for the testing process. Table 4 shows the system configuration
and Table 5 represents hyperparameters details.

Table 4: System configuration

Device name SMG117
Full device name SMG117.smg.local

Processor Intel(R) Core(TM) i5-4670 CPU @ 3.40 GHz 3.40 GHz
Installed ram 16.0 GB (15.9 GB usable)

Device ID 65E77AA3-FBB4-43A3-B94F-4B2624BCCEF6
Product ID 00330-80000-00000-AA696
System type x64-based processor

Pen and touch No pen or touch input is available for this display
Platform Python 3.10.14 version
Packages NLTK, NumPy, TensorFlow, Keras, Sklearn, Tweepy, Scikit-learn and so on
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Table 5: Hyperparameter details

Methods Hyperparameters Values

FBF
D (Diameter of each pixel neighborhood) 9

sigma_color (Filter sigma in the color space) 75
sigma_space (Filter sigma in the coordinate space) 75

cross attention
conv 4 layers

Batch normalization 4 layers
Activation ReLU

self-attention

conv 4 layers
Batch normalization 4 layers

Activation ReLU
Concatenate 2

Sofmax 1
Loss Binary_crossentropy

Optimizer Adam
Activation function Sigmoid

Batch size 64
Epochs 300

Learning rate 0.001

4.1 Dataset Description
The proposed dataset have utilized three datasets like DDT1, TG3K and TN3K, which are collected from

same source https://github.com/xianlin7/SAMUS (accessed on 6 February 2025). These dataset includes two
classes, here class 0 represents as benign and class 1 represents malignant.

DDTI—The thyroid nodule dataset includes 637 ultrasound images that have been annotated pixel by
pixel. Here, 573 samples are obtained for training and 64 for testing.

TG3K—The database collection contains 3585 ultrasound images from Zhujiang Hospital, South
Medical University, that have been carefully annotated for thyroid nodules. The technique divides the TG3K
dataset into subsets of 3226 and 359 images for training and testing, respectively.

TN3K—The dataset contains 2879 original images; from that, 2591 were taken for training, and 288
were taken for testing.

4.2 Evaluation Metrics
Some of the evaluation criteria employed for the proposed method include accuracy, precision, recall,

Dice score, intersection over union (IoU), specificity, and so on. Table 6 shows the evaluation metrics. Where
in Table 5, TP is denoted as the true positive, TN is denoted as the true negative, FP is denoted as the false
negative, and FN is denoted as the false negative.

https://github.com/xianlin7/SAMUS
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Table 6: Evaluation metrics

Metrics Formula

Accuracy Acc = TP + TN
TP + TN + FP + FN

Precision Pr ec = TP
TP + FP

Recall rec = TP
TP + FN

F1-score f 1 = 2 × pre × rec
pre + rec

Specificity spec = TN
TN + FP

Dice Dice = 2 × TP
2 × TP + FP + FN

IoU IoU = TP
TP + FP + FN

4.3 Performance Evaluation and Comparison Analysis
The performance evaluation and comparison analysis of the proposed technique with other current

techniques like U-Net, TransU-Net, Transfuse and Self fuseU-Net are used in this section. Fig. 4 shows the
comparison graph of the proposed along with the existing technique.

Figure 4: (Continued)
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Figure 4: Comparison examination of existing with the proposed approach. (a) Accuracy; (b) Precision; (c) Recall; (d)
F1-score; (e) Specificity

4.3.1 DDTI Dataset
Fig. 4a shows the accuracy performance comparison of proposed and varied existing methods like

UNet, TransU-Net, Transfuse and Self fuseU-Net. Accuracy is used to assess the effectiveness of deep
learning fundamental applications. As compared with other existing methods, the accuracy range attained
by the proposed technique is increased as 98.2%. Similarly, the proposed technique has attained a precision
range of 98.3% and is shown in Fig. 4b. Because of the reduced efficiency of existing models, the precision
performance is get reduced. On the other hand, the recall performance comparison is illustrated in Fig. 4c.
By comparing with other existing methods, the proposed model have attained an improved recall of 98.1%.
The recall performance attained by other existing methods are reduced and clearly shows the inability of
existing methods. Fig. 4d shows the F1-score comparison, which clearly shows that the proposed F1-score
is increased as compared with other existing methods. The proposed model have obtained an increased F1-
score value of 98.2%. However, the existing methods have achieved reduced F1-score values. Similarly, the
specificity value attained by the proposed and existing models are displayed in Fig. 4e. As compared with
other existing methods, the proposed model attained an improved specificity of 98.2%. Thus, this result
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analysis proves the strength of proposed study. Table 7 shows the comparison analysis of existing with the
proposed method. Fig. 5 shows the Dice and IoU comparison analysis.

Figure 5: Comparison analysis of Dice and IoU. (a) Dice; (b) IoU

Table 7: Comparison analysis

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Accuracy 98.27 96.07 94.5 94.03 92.92
Precision 98.3704 96 93.9 92.9 92

Recall 98.1704 94.0692 92.4969 92.0252 90.9245
F1-score 98.2703 98.2703 98.2703 98.2703 98.2703

Specificity 98.2704 96.5 96.2 96 95.7

Fig. 5a shows the Dice score comparison of proposed and existing models. The Dice score can be used to
compare the similarity of a predicted segmentation mask to the ground truth segmentation mask. The Dice
score attained by the proposed model is enhanced as 98.3% but the existing methods have attained reduced
Dice score due to higher complexities. Similarly, the IoU comparison of proposed and existing methods are
shown in Fig. 5b. IoU metric shows the quality of segmentation in each methods. The range of IoU in the
proposed technique is 96.5%. Table 8 shows the comparison value of Dice and IoU. Fig. 6 shows the training
and testing accuracy.

Table 8: Comparison analysis of Dice as well as IoU

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Dice 98.3704 92.5692 90.6969 90.0252 88.6245
IoU 96.5 96.5 96.2 96 95.7
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Figure 6: Training and testing accuracy

From Fig. 7, the ability of proposed study is revealed by attaining improved accuracy during training
and testing. When the number of epochs is 0, the training accuracy begins to rise, and when it reaches 50,
it rapidly increases and remains constant for the remaining epochs. In testing, when the epoch value is 0,
the accuracy begins to rise and then remains constant. Both training and testing accuracy start relatively low
(~60%) and increase rapidly, indicating that the model is learning effectively. There will be some differences
in training and texting accuracy values. Fig. 7 shows the training and testing loss.

Figure 7: Training and testing loss

Fig. 7 shows the training and testing loss of a model over 300 epochs, with the training loss represented
in red and testing loss in blue. The loss is a measure of the error or difference between the model’s predictions
and the true labels, and the trends in this graph provide insights into the model’s performance. When the
epoch value in training loss is 0, the loss reduces and remains constant until 50. In testing loss, when the epoch
value is 0 to 50 the testing loss falls down and remains stable for all further epoch values. Fig. 8 indicates the
batch size of the proposed along with the existing approach.
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Figure 8: Batch-size

Fig. 8 shows the accuracy performance comparison by varying batch sizes. The batch size refers to the
total number of data samples handled during each training cycle. Here, the batch size is varied into 8 to 128
and accuracy value is calculated for each models. Table 9 shows the comparison analysis of batch size. Fig. 9
shows the learning rate of both proposed and existing approaches.

Table 9: Batch-size comparison

8 16 32 64 128
Proposed 30.3445 40.4545 60.2676 95.677 84.5656

U-Net 25.7568 35.7567 55.3468 85.7463 74.5343
TransU-Net 23.7647 28.5765 53.6535 80.76 67.2334

Transfuse 15.4511 25.2311 45.0985 78.0844 62.534
Self_FuseU-Net 10.5435 20.7674 40.7646 73.4356 52.4344

Figure 9: Learning rate
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The accuracy rate in varied learning rates of the proposed technique will always be high as compared
with other techniques. By varying the learning rate, accuracy is determined. Here, the learning rate is varied
from 0.0001 to 0.005. Table 10 indicates the value of the learning rate achieved. Fig. 10 shows the processing
time of the existing and proposed technique.

Table 10: Learning rate comparison

Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
0.0001 98.27 96.07 94.5 94.03 92.92
0.0005 89.0445 81.435 77.3545 71.5145 64.3463
0.001 86.0343 76.3434 73.543 63.9768 59.6455
0.005 80.3445 72.3457 67.3563 58.6746 53.9476

Figure 10: Processing time

The amount of time it takes a computer to complete an operation or execute a set of instructions is known
as processing time. The processing time for the proposed method is 16.45 s. Table 11 shows the processing
time comparison. Fig. 11 shows the ROC curve of the proposed and existing technique.

Table 11: Processing time comparison

Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
16.4545 48.5665 70.5346 93.67676 118.456

The ROC curve describes the performance of a classification technique as a function of threshold value.
The ROC curve for the proposed technique is extremely high, while other techniques have low values. Fig. 12
shows the comparison analysis training as well as testing accuracy of the TG3K dataset.
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Figure 11: ROC curve

Figure 12: Training and testing accuracy

4.3.2 TG3K Dataset
The accuracy of training is calculated by varying epoch values. When the epoch value is 0 to 50,

the training accuracy starts rising and remains stable for other epochs. The slight oscillations suggest
some variability in performance due to updates during training, which is common in the early stages of
optimization. In testing accuracy, if the epoch value is 0 to 50, the accuracy starts to rise and remains constant
for other epoch values. Fig. 13 indicates the training as well as testing loss.

When the epoch value ranges from 0 to 50, the training loss decreases significantly. During testing
loss, the epoch value is lowered and remains constant for other epochs. The loss continues to decrease for
both training and testing datasets, although at a slower rate compared to the early epochs. Fig. 14 shows the
comparison analysis of the TG3K dataset for proposed and existing models.
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Figure 13: Training as well as testing loss

Figure 14: (Continued)
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Figure 14: Comparison analysis of the proposed and existing model for the TGK dataset

Fig. 14a mentions the accuracy performance comparison of different models. The accuracy range of
the proposed technique is 97.8%, and existing techniques are 95.6%, 94.03%, 93.5%, and 92.4%, respec-
tively. Fig. 14b shows the precision performance comparison in which the proposed model have attained
the precision of 97.8%. Fig. 14c shows the recall performance comparison. The proposed model obtained
the recall value of 97.69% but the existing methods have attained reduced recall performance. Fig. 14d
shows the F1-score comparison analysis, where the proposed model have attained 97.79% of perfor-
mance. Fig. 14e represents the specificity comparison of proposed and existing methods. The proposed model
attained the specificity comparison of different methods and the proposed model attained the specificity of
97.69%. Table 12 indicates the comparison values of the TG3K dataset. Fig. 15 shows the comparison of Dice
and IoU ranges.

Table 12: Comparison analysis of proposed with existing approaches

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Accuracy 97.8 95.6 94.03 93.55 92.45
Precision 97.8987 95 93.3 92.1 90.6

Recall 97.6987 93.5975 92.0252 91.5535 90.4528
F1-score 97.7986 97.7986 97.7986 97.7986 97.7986

Specificity 97.6987 96.1 95.8 95.2 95.1

The dice score of the proposed method is 97.89%, and other existing techniques are 91.6%, 89.8%,
88.7%, and 87.5%. Then, the IoU score of the proposed approach is 96.1%, and the values of other existing
techniques are lower than those of the proposed method. Table 13 indicates the comparison values of Dice
and IoU. Fig. 16 shows the batch size comparison of both proposed and existing models.

Here, the accuracy value is measured by varying batch size. The value obtained for the proposed
technique is 81.56%, and existing studies contain lower values. Table 14 indicates the batch-size compari-
son. Fig. 17 shows the learning rate comparison.
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Figure 15: (a, b) Dice and IoU comparison of TG3K database. (a) Dice; (b) IoU

Table 13: Comparison analysis of IoU and Dice for the TG3K database

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Dice 97.8987 91.6975 89.8252 88.7535 87.5528
IoU 96.1 96.1 95.8 95.2 95.1

Figure 16: Batch-size

Table 14: Batch-size comparison table

Metrics (%) 8 16 32 64 128
Proposed 27.3445 37.4545 57.2676 92.677 81.5656

U-Net 22.7568 32.7567 52.3468 82.7463 71.5343
TransU-Net 20.7647 25.5765 50.6535 77.76 64.2334

Transfuse 12.4511 22.2311 42.0985 75.0844 59.534
Self_fuseU-Net 7.54354 17.7674 37.7646 70.4356 49.4344
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Figure 17: Learning rate

By varying the learning rate, accuracy is determined. The accuracy obtained for the proposed approach
in 0.001 learning rate is 97.8%. When the learning rate is 0.005, then the accuracy is 80.34%. Table 15 indicates
the learning rate comparison of the proposed and the existing approaches. Fig. 18 shows the processing time
of the TG3K dataset.

Table 15: Comparison table of learning rate

Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
0.0001 0.978 0.956 0.9403 0.9355 0.9245
0.0005 0.880445 0.80435 0.763545 0.705145 0.633463
0.001 0.850343 0.753434 0.72543 0.629768 0.586455
0.005 0.801445 0.713457 0.663563 0.576746 0.529476

Figure 18: Processing time of TG3K database
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The processing time evaluated for the proposed technique is 19.45 s and for existing approaches,
52.56, 75.53, 97.67 and 125.45 s. When the number of input images increases, the processing time also
increases. Fig. 19 shows the ROC curve of the TG3K dataset.

Figure 19: ROC curve

The final ROC curve shows the overall performance of the proposed approach. So, the value obtained
for the proposed work was high, as compared with other studies. Fig. 20 indicates the training and testing
accuracy of the proposed model.

Figure 20: Training as well as testing accuracy

4.3.3 TN3K Dataset
By changing the epoch value, the training accuracy is determined. When the epoch value is 0 to 50, then

the training accuracy is increased and remains stable. Testing accuracy is also the same as that of training, but
there will be slight changes in epoch values. Testing accuracy follows closely, indicating good generalization.
This suggests that the model is not overfitting at this stage, as the training and testing accuracies are closely
aligned. Fig. 21 shows the training and testing loss.

When the epoch value is 0 to 50, then the training loss decreases and remains constant for other epoch
values. Testing loss is also the same as that of training, but there will be slight changes in epoch values.
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The losses decrease significantly as the model learns, showing that it is effectively optimizing its parameters
during training. The fluctuations in loss during this stage are expected as the model updates its weights and
adjusts its predictions. Fig. 22 shows the comparison examination of the TN3K database.

Figure 21: Training as well as testing loss

Figure 22: (Continued)
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Figure 22: Comparison analysis of the proposed along with the existing approach (a–e)

Fig. 22a illustrates the accuracy comparison analysis of proposed and varied existing methods like UNet,
TransU-Net, Transfuse and Self fuseU-Net. As compared with other existing methods, the proposed study
obtained an enhanced accuracy range of 98.26%. On the other hand, the existing models have attained
reduced accuracy because of several limitations. Fig. 22b shows the precision metric comparison in which
the proposed model have achieved an increased precision of 98.3%. But the existing models have attained
reduced precision value. The recall performance comparison of proposed and existing models are illustrated
in Fig. 22c. By comparing with other existing methods, the proposed model produced 98.17% of recall value.
The recall performance obtained by other existing methods are limited due to the inefficiencies of existing
methods. Fig. 22d shows the F1-score comparison, where the proposed model has obtained an increased F1-
score value of 98.2%. Similarly, the specificity value of proposed and existing models is displayed in Fig. 22e.
The graphical representation clearly shows that the proposed model attained an improved specificity of
92.4%. Thus, the analysis proves the robustness of proposed study. Table 16 shows the comparison table
of existing and proposed techniques for the TN3K dataset. Fig. 23 shows the comparison of Dice and
IoU ranges.

Table 16: Comparison table

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Accuracy 98.26 95.6 94.03 93.55 92.45
precision 98.3704 93 93.4 92.4 91

recall 98.1704 93.5975 92.0252 91.5535 90.4528
F1-score 98.2703 98.2703 98.2703 98.2703 98.2703

Specificity 97.7704 96 95.5 95.2 95.1

The Dice score obtained for the proposed work is 98.3%, and for existing approaches, it is 91.5%, 89.5%,
88.7%, and 87.5%. The IoU value obtained for the proposed model is 96.2%, and other existing techniques are
96%, 95.5%, 95.2%, and 95.1%. Table 17 shows the comparison table of Dice as well as IoU. Fig. 24 indicates
the comparison of accuracy by varying batch size.
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Figure 23: Comparison analysis of Dice as well as IoU. (a) Dice; (b) IoU

Table 17: Batch-size comparison

Metrics (%) Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
Dice 98.3704 91.5975 89.5252 88.7535 87.5528
IoU 96.2 96 95.5 95.2 95.1

Figure 24: Accuracy with batch-size

Accuracy can be calculated by varying the batch size. When the batch size was 8, the suggested technique
had an accuracy of 28.3%, whereas when the batch size was 128, the accuracy was 82.56%. When compared
with other existing works, the proposed achieves good results. Table 18 indicates the comparison of batch
size with accuracy. Fig. 25 shows the accuracy with varying learning rates.

When the learning rate is 0.0001, then the accuracy range of the proposed approach is 98.27%. When
the learning rate is 0.005, then the accuracy of the proposed technique is 79.45%. Table 19 clearly mentions
the values obtained for the learning rate. Fig. 26 mentions the processing time of the proposed and existing
technique for the TN3K database.



Comput Model Eng Sci. 2025;143(1) 441

Table 18: Comparison of accuracy by varying batch size

8 16 32 64 128
Metrics (%) 28.3445 38.4545 58.2676 93.677 82.5656

Proposed 23.7568 33.7567 53.3468 83.7463 72.5343
U-Net 21.7647 26.5765 51.6535 78.76 65.2334

TransU-Net 13.4511 23.2311 43.0985 76.0844 60.534
Transfuse 8.54354 18.7674 38.7646 71.4356 50.4344

Figure 25: Learning rate

Table 19: Comparison of accuracy by varying learning rate

Proposed U-Net TransU-Net Transfuse Self_fuseU-Net
0.0001 98.27 95.6 94.03 93.55 92.45
0.0005 88.0445 79.4643 75.3838 70.9743 62.3463
0.001 84.7667 74.7577 71.7483 61.7439 57.6455
0.005 79.4563 70.4643 65.372 56.6746 51.9476

Figure 26: Processing time
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In the TN3K dataset, the processing time of the proposed model is 17.24 s and for existing approaches
are 47.44, 69.66, 92.6, and 110.4 s. Here, the processing time of the proposed model performs better than
other techniques. Fig. 27 indicates the ROC curve of the TN3K database.

Figure 27: ROC curve

In the ROC curve, the x-axis represents the false positive rate, and the y-axis represents the true positive
rate. Here, the proposed method achieves the highest accuracy rate when compared with other techniques.

4.4 Visualization of Sample Output
The sample input and output of original image, pre-processed image, segmentation image and Heatmap

image are represented in Table 20.

Table 20: Visualization of sample images

Datasets Original
image

Pre-
processed

image

Heatmap
image

Segmented
image

(Proposed)

Self_FuseU-
Net

Transfuse TransU-
Net

U-Net

DDTI
dataset

TG3K
dataset

TN3K
dataset

The sample images of input image, pre-processed image, Heatmap image and output segmented image
for three datasets are represented in Table 20. It clearly determines the efficient of proposed techniques by
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obtaining clear result. As compared with other existing techniques like Self fuse U-Net, Transfuse, TransU-
Net and UNet, the proposed model effectively segments the thyroid nodules which is clearly exhibited
in Table 20. Thus, it shows the superiority of proposed work as compared with other existing methods.

4.5 Discussion
Segmenting thyroid nodules from ultrasound images is a crucial first step in the early detection of

thyroid disorders. In this study, a novel MLRT-UNet that mainly integrates the benefits of various multi-scale
vision transformers. Here, pre-processing is carried out using FBF. Fast bilateral filters aim to accomplish
similar results to the regular filter at a computationally significantly lower cost. They provide crisper images
by effectively removing noise while keeping edges. After pre-processing, a Relation transformer is used
for extracting the relevant features in the image. Relation transformers are an effective tool for feature
extraction from data, especially in situations where relationships between entities are involved. Relation
transformers are capable of detecting long-range relationships and interactions between data points, in
contrast to conventional approaches. Then, the relation transformer is divided into two steps: self and
external attention.

Both self and external attention are effective methods for extracting features, each having its own
advantages and uses. Self-attention will capture long-range dependencies, identify significant local character-
istics, and enhance interpretability by emphasizing important connections. External focus provides relevant
extra knowledge and enhances performance on tasks requiring a larger perspective. Then, Co-operative
Transformer Fusion will concatenate the multi-scale features in relation to the transformer. Research on
transformer-based self-supervised feature fusion for text, audio, and video-based emotion recognition may
be referred to as a co-operative transformer. Table 21 indicates the comparison of base paper, proposed and
existing techniques.

Table 21: Existing comparison

Authors Techniques Datasets Parameters
Proposed MLRT-UNet DDTI, TG3K and

TN3K
Accuracy for DDTI is

98.2%, for TG3K dataset
is 97.8% and for TN3K

dataset is 98.2%
Gong et al. [30] TRFE+ DDTI Accuracy—97%

Abdolali et al. [31] DCNN ImageNet dataset Accuracy—84%
Shahroudnejad

et al. [32]
ResDUnet Ultrasound image

dataset
Dice score—82%

Nie et al. [33] N-Net model TNUI-2021 dataset
and DDTI dataset

Dice—91% for
TNUI-2021 dataset as
well as Dice—93% for

DDTI database
Abbasian Ardakani

et al. [34]
Chan-Vese model Ultra sound image Accuracy—94%

Lin et al. [40] DS-TransUNet KVASIR dataset Accuracy—91.6%
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4.6 Statistical Analysis
In this Section, the statistical analysis is performed to evaluate the efficiency of proposed methodology.

Here, the P-test, t-test and Friedman test are conducted to evaluate the segmentation performance of
proposed technique

• P-test

The accuracy of the acquired results from a hypothesis test is examined in the proposed study using the
P-test. The p-value measures the probability of finding evidence against the null hypothesis which should be
less than 0.05. The proposed model assists the robustness of the obtained results by achieving a p-value of
0.038 for DDTI dataset, 0.046 for TG3K dataset, and 0.027 for TN3K dataset.

• t-test

The mean values of two groups are compared using the t-test. To evaluate the relevance of two different
hypotheses, the proposed study used a t-test on the dataset that was used. The initial assumption that the
true mean and the obtained results are comparable is known as the null hypothesis. The second assumption
is an alternate hypothesis, which speculates that differences between the actual mean and the obtained values
are exhibited. In this study, Welch’s t-test is the preferred method used mainly for t-test analysis. A different
variance will result in a different number. The method used in the dataset yielded a p-value of 0.0213 for
DDTI dataset, 0.0332 for TG3K dataset and 0.0201 for TN3K dataset. Although the obtained p-value is less
than 0.05, the Welch t-test analysis demonstrates the robustness of the proposed model.

• Friedman test

The Friedman test analysis is conducted for three datasets which are described in Table 22.

Table 22: Comparison of signifies efficient difference over several models across for TN3K dataset

Dataset used Technique used

U-Net Attn_UNet Proposed

t-test P-test SD t-test P-test SD t-test P-test SD
DDTI 0.0427 0.0422 2.34 0.039 0.0414 1.90 0.038 0.0213 1.65
TG3K 0.0765 0.345 2.56 0.054 0.0323 2.12 0.046 0.0332 1.82
TN3K 0.0523 0.546 2.91 0.049 0.0432 2.43 0.027 0.0201 1.25

Table 22 illustrate that the p-value is less than 0.05 signifies efficient difference over several models across
the dataset. Here, the proposed technique for TN3K dataset has a lower standard deviation which determines
the consistent performance of the proposed technique across datasets.

4.7 Ablation Study
In this section, ablation study is conducted to evaluate the performance of proposed and existing

techniques for three datasets which is described in Table 23. Here, module 1 performs the model without
using the pre-processing technique and module 2 performed both pre-processing and segmentation process.

Table 22 illustrate the proposed segmentation technique by performing the pre-processing and with
performing the pre-processing technique across three datasets. By comparing to module 1, the module 2
attains efficient results.
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Table 23: Ablation study of proposed technique for three dataset

Dataset used Module 1 Module 2
DDTI dataset 96.24% accuracy 98.27% accuracy
TG3K dataset 95.32% accuracy 97.8% accuracy
TN3K dataset 96.01% accuracy 98.26% accuracy

4.8 Analysis of Cross-Data Validation, Error Metrics and Complexity
The performance of cross data validation is performed by analyzing the K-fold data analysis which is

described in Table 24.

Table 24: Comparison of K-fold validation analysis of proposed technique

Dataset used K-folds

5 10 15 20 25
DDTI dataset 0.895454 0.917864579 0.948827 0.953243 0.97546424
TG3K dataset 0.88545 0.9064564 0.93857865 0.9427838 0.964245
TN3G dataset 0.890345 0.91489688 0.94298987 0.950543 0.97165475

Table 24 illustrates the accuracy of proposed technique for varying numbers of folds across three
datasets for thyroid segmentation process. The K-fold analysis is conducted for 5 folds, 10 folds, 15 folds, 20
folds and 25 folds to determine the efficient performance of proposed technique for three datasets. The error
metrics and complexity analysis for the proposed technique are described Table 25.

Table 25: Comparative analysis of error and memory requirement analysis

Metrics used Technique used

Proposed U-Net TransU-Net Transfuse Self_FuseU-Net
DDTI dataset

MAE 0.015437393 0.044596913 0.07890223 0.10806175 0.153434
MSE 0.003993049 0.007475701 0.012356907 0.014939428 0.0183705

TG3K dataset
MAE 0.034987 0.064945 0.099454 0.1498796 0.195476
MSE 0.007466 0.009965 0.015909 0.01873445 0.02386971

TN3K dataset
MAE 0.016445 0.058344 0.087546 0.120645565 0.169435443
MSE 0.005934 0.008646 0.013989 0.016425938 0.019045375

5 Conclusion and Future Study
This study presented an efficient thyroid nodule segmentation using a novel transformer-based U-Net

mechanism. Initially, each input image is pre-processed using the FBF method. Then, these pre-processed
images are separated into large and small overlapping patch scales. After nodule segmentation, the relation
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transformer plays an important role in feature extraction. This relation transformer model involves two
attention phases, such as self and cross-attention. The Co-operative Transformer Fusion module is used
to aggregate multi-scale characteristics from two encoders. Finally, fused features are reconstructed using
the input images to perform pixel-level calculations, and segmentation is effectively performed. The higher
accuracy of 98.2% in the DDTI dataset, 97.8% in the TG3K dataset, and 98.2% in the TN3K dataset
established the experimental analysis’s outstanding efficiency for thyroid nodule segmentation. However, the
experimentation is limited because only thyroid nodule images were used for lung nodule analysis. It will
be considered in the future by using varied images like lung nodules, liver nodules, etc. Future research will
concentrate on reducing processing time without compromising the accuracy of segmentation. In the future,
a more thorough examination of the model’s generalization abilities with various datasets will be conducted.
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