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ABSTRACT: Hepatitis is an infection that affects the liver through contaminated foods or blood transfusions, and it has
many types, from normal to serious. Hepatitis is diagnosed through many blood tests and factors; Artificial Intelligence
(AI) techniques have played an important role in early diagnosis and help physicians make decisions. This study
evaluated the performance of Machine Learning (ML) algorithms on the hepatitis data set. The dataset contains missing
values that have been processed and outliers removed. The dataset was counterbalanced by the Synthetic Minority
Over-sampling Technique (SMOTE). The features of the data set were processed in two ways: first, the application of the
Recursive Feature Elimination (RFE) algorithm to arrange the percentage of contribution of each feature to the diagnosis
of hepatitis, then selection of important features using the t-distributed Stochastic Neighbor Embedding (t-SNE) and
Principal Component Analysis (PCA) algorithms. Second, the SelectKBest function was applied to give scores for each
attribute, followed by the t-SNE and PCA algorithms. Finally, the classification algorithms K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), Artificial Neural Network (ANN), Decision Tree (DT), and Random Forest (RF) were
fed by the dataset after processing the features in different methods are RFE with t-SNE and PCA and SelectKBest with
t-SNE and PCA). All algorithms yielded promising results for diagnosing hepatitis data sets. The RF with RFE and PCA
methods achieved accuracy, Precision, Recall, and AUC of 97.18%, 96.72%, 97.29%, and 94.2%, respectively, during the
training phase. During the testing phase, it reached accuracy, Precision, Recall, and AUC by 96.31%, 95.23%, 97.11%,
and 92.67%, respectively.
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1 Introduction
The liver is one of the largest internal organs in the human body. Also, it regulates many chemical

levels in the blood. All the blood that passes from the stomach and intestines passes through the liver to
be cleaned and filtered. The liver produces a bile product that helps to digest and break down fats [1]. It
also works to secrete cholesterol, drugs, and hormones. Also, a storage of vitamins, blood purification, and
detoxification [2]. Hepatitis is a global health affecting millions of people worldwide. It is a viral infection that
first affects the liver, potentially leading to severe liver damage if not detected and treated early [3]. Hepatitis
is a problem that hinders the liver from performing its functions, affecting all age groups. Viral hepatitis
has become a major global public health issue [4], which causes 1.5 million deaths worldwide [5]. Timely

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.062302
https://www.techscience.com/doi/10.32604/cmes.2025.062302
mailto:m.hazber@uoh.edu.sa


3230 Comput Model Eng Sci. 2025;142(3)

diagnosis is crucial for effective management and prevention of complications associated with hepatitis. The
hepatitis virus is considered communicable, and its types are Hepatitis A, B, C, D, and E virus [6]. Types
A and E are transmitted by eating contaminated foods and are cured without affecting the liver. The other
three types, B, C, and D are called chronic hepatitis, which is transmitted through blood transfusions and
causes cirrhosis if there is no early diagnosis [7]. The number of people infected with chronic hepatitis C
virus ranges from 130 to 150 million people all over the world, according to the statement of the World Health
Organization [8]. Hepatitis is diagnosed with a blood test. Diagnosing hepatitis is difficult, and a physician
must perform many tests and check many factors when diagnosing the disease. So, the development of
computer-aided diagnostics for accurate and early diagnosis of hepatitis to make and support a physician’s
decision [9]. The development of technology in computer science has contributed to many areas, including
medicine. AI technologies have played an important role in medicine, assisting physicians and saving many
lives through early diagnosis. Data mining techniques provide effective tools for diagnosing disease from a
large data set that is difficult for a clinician to interpret [10]. In recent years, the application of AI techniques
in healthcare has gained significant attention. AI offers a promising approach to improve the accuracy,
efficiency, and accessibility of hepatitis diagnosis. By harnessing the power of AI, detect the disease at its early
stages, enabling prompt intervention and better patient outcomes. AI techniques, particularly ML and deep
learning (DL), have appeared amazing capabilities in medical diagnostics [11]. Machine learning algorithms
can analyze medical data, laboratory results, imaging tests, genetic information, and other patient data with
high accuracy. It can identify patterns, biomarkers, and risk factors associated with liver infections, and also
predicts the development of the disease [12]. Firstly, it assists AI in accurately identifying patients at risk
of hepatitis [13]. Secondly, AI aids in interpreting medical data and provides additional insights to support
diagnostic decisions [14]. Thirdly, AI algorithms assist in risk stratification and personalized treatment
planning, ensuring patients receive the most appropriate care based on their characteristics [15]. Overall, data
mining for early diagnosis of hepatitis leverages computational techniques to analyze large datasets, uncover
patterns, and assist in the timely detection and management of the disease. It has the potential to improve
healthcare outcomes by enabling early intervention and personalized treatment strategies. In this paper, the
REF algorithm and SelectKBest function were applied to select the features and give a score and priority to
each feature. Then it is fed to the t-SNE and PCA algorithms to select the significant features. These features
were fed to SVM, KNN, ANN, DT, and RF classifiers to diagnose the selected features with high accuracy.

The main contributions to the study are as follows:

• Balancing the data set by the SMOTE technique.
• Applying the SelectKBest function to provide the degree of correlation of each feature with the target

feature and select the significant features that strongly correlate with the target features using the t-SNE
and PCA algorithms.

• Diagnosing the data set based on the priority ratio and the order of each feature associated with
the target feature through the RFE algorithm and selecting the significant features using t-SNE and
PCA algorithms.

• Adjusting the hyper-parameter of the classification algorithm to the best performance for predicting hep-
atitis.

• Highly efficient algorithms for diagnosing hepatitis generalize to help physicians make their diagnos-
tic decisions.

The remainder of the paper is organized as follows: Section 2 describes related works, and Section 3—
Background on data mining and classification algorithms. Section 4 describes the System Framework and
the subsections for features processing. Section 5 analyzes the results achieved by the systems and Section 6
compares them with relevant studies. Finally, Section 7 concludes the paper.
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2 Related Work
Related work in the early diagnosis of hepatitis plays an important role in identifying gaps in previous

studies because it provides a basis for understanding the current state of knowledge.
Kaya et al. [16] designed a novel decision-making system by integrating extreme ML. The system also

involved feature selection to enhance its performance and address the issue of missing values through
appropriate data handling methods. In their study, Sartakhti et al. [17] developed a novel hybrid system
by combining a support vector machine with simulated annealing to diagnose hepatitis. The dataset
was pruned to 80 records and underwent normalization. The resulting hybrid system demonstrated an
impressive diagnostic accuracy of 96.25%. Chen et al. [18] utilized a hybrid approach combining local Fisher
discriminant analysis (LFDA) with SVM for hepatitis diagnosis. The approach effectively managed missing
values, performed data normalization, and employed LFDA to reduce the dimensions from 19 features to a
concise set of 2 features. The study by Dogantekin et al. [19] employed PCA and least square SVM. Through
the application of PCA, the feature set was effectively reduced to 10 features. Dogantekin et al. [20] devised
a diagnostic system for hepatitis diseases that integrated linear discriminant analysis (LDA) with a network
based on a fuzzy inference method (NFIM). LDA was utilized to select eight features from the dataset
carefully. Subsequently, the dataset was partitioned into 60% for training and 40% for testing the developed
system. Feature selection is a key step in ML, where the aim is to recognize the most relevant features from
the dataset. By using the artificial bee colony method, Uzer et al. [21] sought to identify the cluster centers that
would lead to the most discriminative and representative features for the problem at hand. Once the optimal
cluster centers were determined through the artificial bee colony method, the selected features were fed into
an SVM classifier. Ozyilmaz et al. [22] used a cone section neural network (CSNN) to diagnose hepatitis.
Multilayer Perceptron (MLP) and Radial Basis Functions (RBF) algorithms were combined to form the
hybrid CSNN, resulting in the most effective diagnostic performance of hepatitis. Anter et al. [23] discussed
a hybrid feature selection approach that combines chaos and rookery search optimization techniques.
This approach shows the ability to achieve an optimal solution. The approach achieved 68% accuracy in
diagnosing hepatitis. Janghel et al. [24] discussed the performance of Backpropagation, Probabilistic Neural
Network, and Learning Vector Quantization (LVQ) methods for diagnosing hepatitis. The algorithms were
applied based on genetic algorithms (GA)-SVM methods which combine the strengths of genetic algorithms,
SVM, and simulation annealing. Derya et al. [25] presented GA and wavelet kernel (WK) systems, which
showed good results for hepatitis diagnosis. Madhu et al. [26] presented the XGBoost classifier for diagnosing
liver infections. The MLP classifier and the Levenberg-Marquardt method were used to predict the missing
features. Bascil et al. [27] presented an MLP method to get patterns in data in optimizing neural network
parameters for effective diagnostic performance. This method allows for accurate pattern recognition and
modeling, making it a promising approach to the diagnosis of hepatitis. Gong et al. [28] presented the
RHSBoost method to address classification problems associated with imbalanced datasets. The RHSBoost
method aims to reduce this problem by paying attention to the minority classes. Xiao et al. [29] presented
a classification method for a cost-specific maximum regularization learning machine (CCR-ELM) with
imbalanced data. The CCR-ELM includes a category-specific regulatory cost to achieve equilibrium. The
effectiveness of CCR-ELM has been demonstrated through datasets, and experimental results indicate that
CCR-ELM outperforms the original ELM. Demidova et al. [30] presented an artificial minority oversampling
technique to address the problems of imbalanced data sets. The technique provides a solution to address
class imbalance when classified by SVM. This technique provides a practical way to improve classification
performance on these challenging datasets.
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Previous studies have identified a gap in the ability to extract and select important features strongly
associated with the objective feature. This study will address this gap by developing a new feature extraction
and selection method.

3 Materials and Methods
Data mining is a technique that analyses and turns large useless data into valuable knowledge. It looks

for patterns, anomalies, and correlations among millions of records to find correlations between features
and predict accurate results. Data mining works to discover hidden correlations between features of future
predictions that are difficult to discover manually. The fundamentals of data mining consist of three terms:
statistics, AI, and ML. This section describes the materials and methods applied to analyze the features of
the data set for diagnosing hepatitis. The data was processed, cleaned of outliers and missing values, and the
data was normalized. Because the data set is unbalanced, the SMOTE method is applied to balance the data
set. The RFE algorithm was used to rank the features and the correlation between the features and the target
feature. The SelectKBest function was applied with the statistical function Chi-2 to find the correlation of
each feature with the target feature. The t-SNE algorithm was applied to reduce the dimensions of the data set.
Finally, the processed data set was classified by five classification algorithms to diagnose each inflammatory
condition as living or dead. Fig. 1 describes the study’s methodology for diagnosing the hepatitis data set.

Figure 1: Proposed system for diagnosing hepatitis

3.1 Dataset Description
The hepatitis dataset was obtained from the UCI of ML repository, which consists of 155 instances, each

instance containing 19 features except for some instances which have missing values. The dataset contains
167 values that are missing from several features. The target feature contains two options for the hepatitis
patient, either “Die” which contains 32 instances, or “Live” which contains 123 instances. Table 1 describes
the data set with the features and missing values of each feature [31].
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Table 1: Describes the hepatitis data set

Features name Domain values Missing values
Class DIE, LIVE 0
AGE 10, 20, 30, 40, 50, 60, 70, 80 0
SEX male, female 0

STEROID no, yes 1
ANTIVIRALS no, yes 0

FATIGUE no, yes 1
MALAISE no, yes 1

ANOREXIA no, yes 1
LIVER BIG no, yes 10

LIVER FIRM no, yes 11
SPLEEN PALPABLE no, yes 5

SPIDERS no, yes 5
ASCITES no, yes 5
VARICES no, yes 5

BILIRUBIN 0.39, 0.80, 1.20, 2.00, 3.00, 4.00 6
ALK PHOSPHATE 33, 80, 120, 160, 200, 250 29

SGOT 13, 100, 200, 300, 400, 500 4
ALBUMIN 2.1, 3.0, 3.8, 4.5, 5.0, 6.0 16
PROTIME 10, 20, 30, 40, 50, 60, 70, 80, 90 67

HISTOLOGY no, yes 0

3.2 Data Pre-Processing
3.2.1 Missing Values

Getting the missing values in a dataset is essential for several reasons: Missing values lead to incomplete
data, hindering accurate analysis and decision-making. Filling in missing values ensures the dataset is
complete and representative of the actual observations, allowing for more robust and reliable analyses.
Missing data introduce bias into analysis if the missing values are not handled properly [32]. This bias impacts
the validity of any conclusions drawn from the dataset. Ensuring that missing values are appropriately
handled helps reduce the risk of bias in the analysis. Many statistical methods and ML methods require
complete datasets to work effectively. In ML, missing values cause issues during model training and
evaluation. Some algorithms might struggle to handle missing data, leading to reduced performance [33].
Filling in missing values or using appropriate imputation techniques improves the chances of building a
more accurate and reliable predictive model. The dataset should contain accurate and complete attribute
values that allow predictive algorithms to obtain high diagnostic accuracy. The dataset contains missing
values due to some tests being ignored while the patient is undergoing the tests. Therefore, these problems
must be addressed to obtain high diagnostic accuracy. In this study, the data set contains 167 missing values.
Therefore, the missing values are calculated from the existing values using the statistical expressions mean
and mode. In the study, the mean method was used to calculate missing values for numeric attributes, and a
mode method was used to calculate missing values for nominal attributes. Table 1 describes the number of
missing attribute values in each attribute.
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3.2.2 Data Normalization
Data normalization is crucial in data mining, especially when dealing with datasets for early diagnosis

of hepatitis or any medical condition. It involves transforming data into a standardized format to bring it
within a specific range, usually between 0 and 1 or −1 and 1 [34]. The importance of data normalization in
this context is understood through the following points: In medical datasets, the attributes or features have
vastly different ranges. For example, age might range from 1 to 100, while certain blood parameters range
from 0.1 to 1000. The algorithms might prioritize features with larger ranges without normalization [35],
leading to biased results. Normalization helps in treating all features equally and prevents any single feature
from dominating the analysis. Normalizing the data ensures that the algorithms converge efficiently and
reach a stable solution more quickly. Normalization leads to better performance and accuracy of the model.
When data is normalized, the model more easily detects patterns and relationships within the data, leading
to more accurate predictions for early diagnosis of hepatitis. Normalization makes it easier to interpret the
importance and effect of each feature on the diagnosis. Since all features are on the same scale, comparing
the influence of different features in contributing to the diagnostic outcome becomes straightforward. Data
normalization also makes models more robust to outliers. When features are on a similar scale, extreme
values in one feature won’t overly influence the model’s decision-making process. In this study, min-
max normalization was applied to generate the data set between values of 0 and 1. Eq. (1) describes the
normalization process on the data set.

x′ = x −minA

maxA −minA
(newmaxA − newminA) + newminA (1)

where x′ is the resulting normalization value, x is the current attribute value, maxA and minA are the
maximum and minimum value in the data set respectively, and newmaxA and newminA are the maximum
and minimum values in the data set after normalization, respectively.

3.2.3 Removing Outliers
The significance of removing outliers in a data mining dataset for early diagnosis of hepatitis lies in

improving the accuracy and reliability of the predictive models used in the diagnosis process. Outliers are
data points that significantly deviate from most data and considerably impact the performance of data
mining algorithms and statistical models [36]. Here are some reasons removing outliers is important for
early diagnosis of hepatitis: Outliers distort statistical measures and negatively affect the performance of ML
methods. By removing outliers, the models focus on patterns and relationships more representative of most of
the data, leading to more accurate predictions. Outliers introduce bias into the model by disproportionately
influencing the model’s decision boundaries. Eliminating outliers helps build more consistent and unbiased
models that can be generalized to new data. By eliminating outliers, the model better captures these subtle
patterns, which is crucial for early diagnosis [37]. Outliers lead to false positives (incorrectly diagnosing
hepatitis when it is not present) or false negatives (failing to diagnose hepatitis when it is present). Removing
outliers helps reduce these errors, ensuring a more reliable diagnostic process. By visualizing and analyzing
data without outliers, AI gains a clearer and more accurate understanding of the distribution and features
of the data. This understanding guides them in selecting appropriate features and building better diagnostic
models. The hepatitis dataset contains outliers that do not represent the feature value and negatively affect
the diagnostic process. Table 2 describes outliers that were detected and removed from the dataset. Fig. 2
describes the distribution of outliers for each feature of the data set.
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Table 2: Describes all outliers that have been removed
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Figure 2: Distribution of outliers for the hepatitis data set



3236 Comput Model Eng Sci. 2025;142(3)

3.2.4 Dataset Balancing
Dataset balancing is crucial in data mining, especially for early diagnosis of hepatitis, because it ensures

that the model is trained on a representative and unbiased data set. Dataset balancing refers to adjusting
the class distribution within a dataset to avoid any significant imbalance between classes. In the context
of early diagnosis of hepatitis, the importance of dataset balancing is understood through the following
points: Imbalanced datasets lead to biased systems that are more accurate in predicting the majority class
but perform poorly in the minority class (i.e., the positive cases of hepatitis) [38]. By balancing the dataset,
the model becomes more capable of learning patterns and features from both positive and negative cases,
leading to better overall performance and more accurate early diagnosis. An imbalanced dataset causes the
model to tend to the majority class due to its higher prevalence. Overfitting means the model memorizes
the dominant class rather than learning the underlying patterns and generalizing them to new, unseen data.
Balancing the dataset assists stop overfitting and helps better generalization to new samples. In the context
of early diagnosis, correctly identifying positive cases (patients with hepatitis) is of utmost importance [39].
An imbalanced dataset results in a higher number of false negatives (incorrectly classifying a patient with
hepatitis as not having the disease), which have severe consequences for the patient’s health. Balancing
the dataset ensures that positive cases receive equal attention during model training. In healthcare, biased
models have ethical implications. Dataset imbalance leads to disparities in the accuracy of diagnosis and
treatment recommendations for different groups of patients. By balancing the dataset, we aim to minimize
these biases and ensure fairness in healthcare decision-making. Balancing the dataset is especially important
when the misclassification cost is significantly different for different classes. In the case of early diagnosis
of hepatitis, the cost of missing a positive case could be substantial in terms of delayed treatment and
potential complications. To achieve dataset balancing, various techniques are employed, such as the SMOTE
technique. The hepatitis dataset consists of 155 unbalanced records divided into two classes, Live containing
123 records (79.35%) and Die class containing 32 records (20.65%). Thus, the data set is unbalanced, which
leads to tendencies of the overall accuracy to the majority class. Therefore, it is necessary to balance the data
set to obtain superior results and represent all the data set classes. In this study, the SMOTE technique was
applied to balance the data set. The algorithm creates new records by searching for the values of the minority
class records according to the neighboring records during the training phase. The technique continues to
add new records until the number of the minority class records is equal to the number of the majority class
records. Table 3 describes the breakdown of the data set during the training and testing phase before and
after applying the SMOTE technique.

Table 3: Samples of the data set before and after the SMOTE

Phase Training 80% Testing 20%

Classes Live Die Live Die
Before SMOTE 98 26 25 6
After SMOTE 98 96 25 6

3.3 Correlation of Features
In data mining, the correlation of features in a dataset is a crucial aspect when it comes to early

diagnosis of hepatitis or any other medical condition. The significance of correlation lies in its ability to
identify relationships and dependencies between different variables, which provide valuable insights into the
disease’s early detection and understanding. Correlation analysis helps identify which features or attributes
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in the dataset are strongly associated with hepatitis [40]. These features include various blood tests, liver
enzyme levels, patient demographics, risk factors, etc. By finding the features most associated with hepatitis,
AI techniques learn the information most relevant to diagnosis. Correlated features contain redundant
information. If multiple features are highly correlated, it might be possible to reduce the dimensionality of
the dataset by keeping only one representative feature. This simplification leads to more efficient and accurate
diagnosis models. Correlation analysis reveals patterns that indicate early stages of hepatitis or potential risk
factors associated with the disease. This information is used to develop predictive models that flag patients
for further examination or monitoring, enabling early detection and intervention. Understanding feature
correlations enhances the performance of ML methods used for diagnosis [41]. Highly correlated features
lead to multicollinearity, negatively impacting the model’s stability and interpretability. By recognizing
and handling correlated features appropriately, the models provide more reliable and accurate predictions.
Biomarker discovery: Correlation analysis helps identify potential biomarkers or combinations of features
that strongly correlate with hepatitis. Biomarkers are specific indicators in the data used to distinguish
between different disease states. The discovery of relevant biomarkers aids in developing diagnostic tests that
are sensitive, specific, and reliable for early detection. Table 4 shows the correlation between each feature
with the other. Fig. 3 describes the correlation and contribution of each feature with the target feature (class).

Table 4: Correlation of each feature with other features

Class Steroid Fatigue Malaise Anorexia Liver_Big Liver_Firm Spleen_Palpable Spiders
Class 1 0.12114 0.292206 0.31597 0.110715 0.102151 0.154736 0.180894 0.330194
Age −0.21965 −0.06771 −0.26464 −0.09952 0.100589 −0.12636 −0.10098 −0.12726 −0.20655
Sex 0.173051 −0.03922 −0.06395 −0.0209 0.025186 0.023634 0.01575 −0.07841 −0.06559

Steroid 0.12114 1 0.146292 0.232041 0.084752 0.159877 0.09528 0.071401 0.029781
Antivirals −0.1302 0.101657 −0.06558 −0.0267 −0.05255 −0.06063 −0.01987 −0.18307 −0.17637

Fatigue 0.292206 0.146292 1 0.61766 0.419991 0.168796 0.254621 0.22685 0.380935
Malaise 0.31597 0.232041 0.61766 1 0.631662 0.192556 0.197903 0.145236 0.376666

Anorexia 0.110715 0.084752 0.419991 0.631662 1 0.185164 0.144556 0.185004 0.371874
Liver_big 0.102151 0.159877 0.168796 0.192556 0.185164 1 0.698517 0.338963 0.370229

Liver_firm 0.154736 0.09528 0.254621 0.197903 0.144556 0.698517 1 0.322955 0.407114
Spleen_palpable 0.180894 0.071401 0.22685 0.145236 0.185004 0.338963 0.322955 1 0.515462

Spiders 0.330194 0.029781 0.380935 0.376666 0.371874 0.370229 0.407114 0.515462 1
Ascites 0.332796 −0.00259 0.288877 0.376182 0.301514 0.339108 0.310338 0.495691 0.55365
Varices 0.24961 −0.02976 0.217311 0.267029 0.288883 0.238645 0.2951 0.574616 0.609491

Bilirubin −0.42452 −0.00584 −0.24396 −0.26991 −0.2441 −0.02886 −0.06935 −0.17836 −0.24177
Alk_phosphate −0.05081 −0.04225 −0.11051 −0.11481 0.035984 0.018895 −0.17998 −0.16021 −0.13623

Sgot −0.05668 −0.02103 −0.17548 −0.1773 −0.18818 −0.02629 −0.14988 −0.11644 −0.18049
Albumin 0.296489 0.203109 0.198983 0.224605 0.133743 0.105555 0.0597 0.196297 0.116063
Protime 0.154688 0.032994 0.073783 0.067186 0.108322 0.174677 0.083312 0.124451 0.204276

Histology −0.33786 −0.07014 −0.13118 −0.11696 −0.0497 −0.10476 −0.20663 −0.10084 −0.24608
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Figure 3: Correlation of each feature with the hepatitis feature

3.4 Feature Processing
3.4.1 Recursive Feature Elimination Algorithm

The RFE algorithm is an important tool in ML methods for feature selection. It identifies and retains
the relevant and informative features in a dataset while discarding less important ones. When applied to a
data mining dataset for the early diagnosis of hepatitis, RFE brings several benefits and improves the overall
performance of the predictive model: Hepatitis datasets contain many features (variables), some of which
might be irrelevant or redundant. High-dimensional datasets increase computational complexity, longer
training times, and a higher risk of overfitting the model [42]. RFE helps to reduce the number of features
while preserving the most valuable ones, simplifying the problem and improving the model’s efficiency.
RFE enhances the model’s predictive capabilities by focusing on the most informative features. Selecting
the right subset of features reduces noise and ensures that the model captures the essential patterns and
relationships in the data. As a result, the model’s predictive accuracy is likely to increase, leading to more
reliable and earlier diagnosis of hepatitis cases. In the context of hepatitis diagnosis, certain features or
biomarkers are critical indicators of the disease’s presence or progression. RFE helps identify these important
biomarkers. RFE selects features and ranks them based on their importance. This ranking allows for a
better interpretation of the model’s predictions. Classification techniques gain insights into which traits most
influence the diagnostic process, leading to a better understanding of the underlying factors of disease.
Removing irrelevant or redundant features through RFE reduces the risk of overfitting. By selecting only the
relevant features, RFE helps the model focus on the essential patterns likely to hold true for new, unseen cases,
thereby improving generalization. This study used the RFE algorithm to eliminate the features that have a
weak correlation with the target feature, extracting the important features and giving each feature a rank
based on its correlation with the target feature. Table 5 describes the important features extracted by the RFE
algorithm and notes that the prime feature has the highest rank of 12 as a correlation with the target feature,
followed by the sgot feature having a rank of 10 as a correlation with the target feature, etc. The algorithm
also distributes the ratio of the correlation of each feature with the target feature, where it noted that the
prime feature has the highest correlation with the target feature by 14.16%, followed by the sgot feature that
correlates with the target feature by 11.8%, etc.
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Table 5: The rank of features as correlated with the target feature

Features names Selected features Ranking features Priority ratio %
Age False 8 9.44%
Sex True 1 1.18%

Steroid False 5 5.9%
Antivirals False 9 10.62%

Fatigue True 1 1.18%
Malaise True 1 1.18%

Anorexia True 1 1.18%
Liver_big False 4 4.72%

Liver_firm False 6 7.08%
Spleen_palpable False 7 8.26%

Spiders True 1 1.18%
Ascites False 2 2.36%
Varices False 3 3.45%

Bilirubin True 1 1.18%
Alk_phosphate False 11 12.98%

Sgot False 10 11.8%
Albumin True 1 1.18%
Protime False 12 14.16%

Histology True 1 1.18%

3.4.2 SelectKBest Function
Feature selection using the SelectKBest function in data mining for the early diagnosis of hepatitis

is significant for several reasons: Medical datasets often contain many features or variables, leading to the
curse of dimensionality. This causes computational and memory inefficiencies and leads to overfitting.
SelectKBest helps in reducing the number of features by selecting the top K most informative features, where
K is a user-defined parameter. Selecting the most relevant features leads to a more focused and accurate
model. Irrelevant or redundant features introduce noise into the data, making it harder for the model to
discern meaningful patterns [43]. By eliminating these less important features, SelectKBest allows the model
to focus on the most discriminative attributes, leading to better performance. In the context of medical
diagnosis, interpretability is crucial. Using SelectKBest, the selected features are the ones that have shown
the strongest correlation with the target variable (hepatitis diagnosis), making AI understand and trust
the model’s predictions. Hepatitis diagnosis involves specific symptoms, biomarkers, or lab results highly
indicative of the disease. SelectKBest highlights these critical features, guiding classification algorithms to
focus on the most important factors during the classification process. However, it is essential to choose the
appropriate value of K carefully [44]. Selecting too few features results in a loss of information while selecting
too many features might lead to noise and less generalized models. The selection of K should be based on
careful analysis, domain knowledge, and validation through cross-validation techniques. In this study, the
SelectKBest function was applied with the statistical function Chi-2, considered a scoring rate of feature,
where Chi-2 works to compute the correlation of each feature with the target feature. Table 6 describes the
best features correlated with the target feature with appropriate scores, the higher the number, the more
critical the feature.
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Table 6: Feature Scores for each feature with the target feature

No. Features names Feature scores No. Features names Feature scores
1 Age 28.474819 11 Spiders 3.18940804
2 Sex 0.389483 12 Ascites 2.09639954
3 Steroid 0.399513 13 Varices 1.12812176
4 Antivirals 0.186342 14 Bilirubin 30.10247172
5 Fatigue 2.346432 15 Alk_phosphate 17.88270548
6 Malaise 2.46803203 16 Sgot 47.38820795
7 Anorexia 0.19648065 17 Albumin 6.87318606
8 Liver_big 0.31698209 18 Protime 130.1833246
9 Liver_firm 0.9867095 19 Histology 3.01854675
10 Spleen_palpable 0.74535155

3.5 Selecting Important Features
The significance of choosing highly relevant features exhibiting strong correlations with hepatitis is

enhancing accurate detection and understanding of the underlying factors influencing the disease. By
focusing on these crucial attributes, develop more effective diagnostic and predictive models, facilitating
early identification and targeted interventions for individuals at risk of or affected by hepatitis. By focusing
on fewer highly relevant features, it reduces the cost of diagnostic tests. Also, selecting features leads to
speeding up the diagnostic process by focusing on fewer highly relevant features. This is important because
early diagnosis and treatment of hepatitis help to prevent serious complications. In this study, the t-SNE and
PCA algorithms were applied to select the most important features and reduce the dimensions of the dataset.

3.5.1 t-Distributed Stochastic Neighbor Embedding Algorithms
The t-SNE is a popular dimensionality reduction method used in ML methods to visualize high-

dimensional data in a lower-dimensional space while preserving the relationships between data [45]. In the
context of early diagnosis of hepatitis using a data mining dataset, the significance of applying t-SNE lies
in its ability to provide insights and help classification algorithms in the following ways: Medical datasets,
including those for hepatitis diagnosis, often have numerous features or attributes that describe various
aspects of a patient’s health. These high-dimensional datasets were difficult to analyze and interpret directly.
t-SNE transforms the data into a lower-dimensional space (usually 2D or 3D) while preserving the local
structures and relationships among data points [46]. By visualizing the transformed data, it becomes easier
to observe clusters or patterns that could indicate different subgroups or classes of patients. The t-SNE
visualization reveals clusters of data points with similar features. In the context of hepatitis diagnosis, it
might uncover groups of patients with similar symptoms, lab test results, or other health-related attributes.
Such clusters could correspond to different stages or types of hepatitis, allowing for better understanding
and differentiation. t-SNE applied to different patient groups or datasets, allowing for comparisons between,
for example, healthy individuals and those with hepatitis or different stages of the disease. This comparison
reveals dissimilarities between the groups and contributes to the discovery of distinguishing features. This
study applied the t-SNE algorithm to select the most important features strongly correlated with hepatitis
disease. The algorithm uses gradient descent for the joint probability distribution in the low dimensions to
be similar to the high dimensions. The algorithm goes through three stages: The first stage is to calculate
the Euclidean distance for each point with the other points. The distance is converted into conditional
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probabilities to measure the similarity between every two points and how probability (P) the two points are
to be adjacent as in Eq. (2). The second stage is creating a new data set in a low-dimensional space and the
computation of the joint probability (Q) as in Eq. (3). The third stage, using Kullback-Leiber (KL) to make
the joint probability in a low dimensional space similar to the original data set. When the KL deviation value
is zero, the probability distribution in a low-dimensional space is identical to the original data set. Eq. (4)
describes the probability distribution of both P and Q. Thus, the dimensions of the data set are reduced while
preserving the essential features and removing the iterative features that do not affect the target feature.

P (xi/xj) =
S (xi, xj)

∑N
m≠i S (xi, xm)

(2)

Q (yi/yj) =
S (yi, yj)

∑N
m≠i S (yi, ym)

(3)

KL = ∑
i
∑

j
P (xi, xj) log

P (xi/xj)
Q (yi, yj)

(4)

3.5.2 Principal Component Analysis
PCA is the method used in orthogonal transformation to convert a set of data of possibly correlated

variables into values of linearly uncorrelated variables. PCA is used to select important features that strongly
correlate with hepatitis disease by first calculating the covariance matrix of the data. After computing the
covariance matrix, PCA identifies the eigenvectors and eigenvalues. The eigenvectors represent the directions
of maximum variance in the data, and the eigenvalues correspond to these variances. The features with the
largest eigenvalues are considered the most important, as they contribute the most to the data’s variance and
thus are most strongly correlated with hepatitis disease.

The covariance matrix for displaying the covariance between each pair of features in the dataset. The
covariance between two features means how much they vary together, as described in Eq. (5).

cov (X, Y) = E[(X − μx)(Y − μy)] (5)

where X means feature vector, Y means another feature vector, μx is mean of feature X, μy is the mean of
feature Y and E is the expectation operator.

The eigenvectors of the covariance matrix are the directions of maximum variance in the data. The
eigenvalues are the corresponding variances as Eq. (6).

A ∗ v = λ∗v (6)

where A means covariance matrix, v means eigenvector, and λ means eigenvalue.
The principal components are the linear combinations of the original features aligned with the covari-

ance matrix’s eigenvectors. The principal components with the largest eigenvalues are the most important
features as in Eq. (7).

z = Av (7)

where z is the principal component, A is the covariance matrix, and v is the eigenvector.
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PCA is a powerful tool that is used to select the most important features that strongly correlate with
hepatitis disease. By using PCA, we develop more accurate diagnostic and predictive models and provide
targeted interventions that help to prevent serious complications of hepatitis.

4 Training Models
Following the initial feature engineering stage, which involved feature prioritization through the RFE

and SelectKBest techniques, the subsequent step identified the most salient features via the t-SNE and
PCA methods. This resulted in the creation of four distinct processed datasets: RFE-t-SNE, SelectKBest-t-
SNE, RFE-PCA, and SelectKBest-PCA. These processed datasets were subsequently employed as input for
classification tasks utilizing classifiers: KNN, SVM, ANN, DTs, and RFs. As a notable outcome, utilizing these
advanced datasets with the mentioned classifiers led to robust and high-accuracy classification results.

4.1 K-Nearest Neighbor (KNN) Algorithm
The KNN algorithm is a popular ML method for classification tasks, including early diagnosis of diseases

like hepatitis. Here is a summary of the mechanism of action of the KNN algorithm for early diagnosis of
hepatitis: The algorithm requires a labeled dataset consisting of examples where each instance is associated
with a class label. In the case of hepatitis diagnosis, the dataset would include various attributes of patients
(e.g., age, sex, symptoms, blood test results) along with their corresponding hepatitis status (e.g., infected
or not infected) [47]. The KNN algorithm calculates the similarity between instances in the dataset based
on a chosen distance metric, such as Euclidean distance. This metric measures the dissimilarity between
two instances by considering the differences in their attribute values. The algorithm considers the K nearest
neighbors to a given test instance from the training dataset [48]. A smaller K value implies a more local
analysis, while a larger K value considers a broader range of instances. In the case of binary classification
like hepatitis diagnosis, a majority vote is often used. This approach makes it suitable for early diagnosis
of hepatitis.

4.2 Support Vector Machine (SVM) Algorithm
SVM is a popular ML method for classification tasks, applicable across various domains including

healthcare, while maintaining a consistent mechanism of action. SVM operates by establishing a decision
boundary between different classes of data points. In the early diagnosis of hepatitis, SVM is employed to
distinguish between individuals with hepatitis and those without, based on a set of features or variables [49].
During the training phase, the SVM algorithm learns from this preprocessed dataset, aiming to find an
optimal hyperplane that maximally separates the two classes in the feature space. This hyperplane serves
as the decision boundary between individuals with hepatitis and those without. The algorithm seeks to
maximize the margin, which is the distance between the hyperplane and the nearest data points from each
class [50]. In the testing phase, once the SVM model is trained, it is used to classify new, unseen instances.
The model takes an individual’s feature values as input and predicts whether the person has hepatitis based
on the learned decision boundary.

4.3 Artificial Neural Networks (ANN) Algorithm
ANNs are widely used for various applications, including medical diagnosis, such as the early detection

of hepatitis [51]. The input layer receives the initial data for diagnosis. In the case of hepatitis, relevant features
or attributes of patients are provided as input. These features could include demographic information,
blood test results, medical history, etc. The hidden layers form the core of the ANN and perform complex
computations on the input data. In this case, there are 15 hidden layers, meaning 15 layers are between
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the input and output layers. Each hidden layer consists of multiple artificial neurons, also known as nodes
or units. Each neuron in the hidden layer receives inputs from the previous layer, applies a mathematical
transformation to the inputs, and passes the transformed value to the next layer. This transformation typically
involves applying weights and biases to the inputs, followed by the activation function. Weights represent the
strength of the connections between neurons. During the training phase of the ANN, the weights are adjusted
to optimize the model’s performance. Biases are added to introduce an offset to the neuron’s activation,
allowing flexibility in learning. An activation function determines the output of a neuron based on its
weighted inputs. The choice of activation function depends on the specific problem and the nature of the
data. The output layers receive the transformed data from the final hidden layer and produce the output of
the ANN. In this case, there are two output layers, likely representing binary classification (e.g., presence
or absence of hepatitis). The activation function is used in the output layer to generate probabilities or a
step function for binary outputs [52]. To train the ANN, a dataset with known inputs and corresponding
outputs is required. The network weights and biases are adjusted iteratively using optimization techniques
like backpropagation. During training, the network learns to minimize the difference between its predicted
outputs and the true outputs in the training data. After training, the ANN was evaluated using a separate
test dataset to assess its performance. The trained ANN with 15 hidden layers and two output layers is used
for early diagnosis of hepatitis. By providing patient information as input, the network will process the data
through the hidden layers, and the output layers will produce the diagnosis prediction.

4.4 Decision Tree Algorithm
DT algorithm is a popular ML method used for classification tasks, including the diagnosis of hep-

atitis [53]. The process of selecting the best attribute and splitting the data is repeated recursively for each
subset created in the previous step. This recursive partitioning continues until a stopping criterion is met.
The stopping criterion is a predefined depth of the tree, a minimum number of samples required to split a
node, or other measures to prevent overfitting. As the tree grows, decision rules are formed based on the
attribute values that lead to different branches [54]. The rules represent a series of if-else conditions that
classify instances of hepatitis based on the values of specific attributes. After the tree is fully grown, it suffers
from overfitting, becoming too specific to the training data, and performing poorly on new, unseen data.
To address this, pruning techniques are applied to remove unnecessary branches or nodes from the tree.
This helps to generalize the model and improve its performance on unseen data. Once the DT is constructed
and pruned, it is used for making predictions. To diagnose hepatitis in a new patient, their information is
passed through the tree, and the decision rules are used. The patient’s features are evaluated at each node,
and based on the feature values, the corresponding branches are followed until a final prediction is reached
at a leaf node.

4.5 Random Forest Algorithm
After constructing multiple DTs, the RF algorithm combines their predictions to make a final prediction.

For each input sample (patient), the algorithm passes it through each DT and collects the individual
predictions. Voting for the final prediction [55]: The RF algorithm employs a majority voting scheme to
determine the final prediction. Each DT’s prediction contributes to the final decision, and the class with
the most votes is selected as the predicted class for the patient (whether they have hepatitis or not). The RF
algorithm tends to be robust and capable of handling complex datasets. By aggregating the predictions from
multiple DTs, it effectively reduces the impact of noisy or irrelevant features, improves generalization, and
provides reliable predictions for early diagnosis of hepatitis.



3244 Comput Model Eng Sci. 2025;142(3)

5 Experiment Results and Comparison Studies

5.1 Evaluation Measure
After the missing values were processed and outliers were removed. The important features were selected

and ranked that have a greater importance on the target feature. The selected features were fed into KNN,
SVM, ANN, DT, and RF classifiers to evaluate the hepatitis data set using four criteria: accuracy, precision,
Recall, and AUC as in Eqs. (8)–(11) [56].

Accuracy = TN + TP
TN + TP + FN + FP

* 100% (8)

Precision = TP
TP + FP

* 100% (9)

Recall = TP
TP + FN

* 100% (10)

AUC = True Positive Rate
False Positive Rate

(11)

where:
True Negative (TP) is the number of Hepatitis which Die and that are correctly classified.
True Positive (TN) is the number of Hepatitis that LIVE and that are correctly classified.
False Negative (FN) is the number of Hepatitis which Die and that are classified as LIVE.
False Positive (FP) is the number of Hepatitis that LIVE and that are classified as Die.

5.2 Results of Classifiers Based on RFE with t-SNE and PCA Methods
This section applied five ML methods to diagnose the hepatitis dataset. The hyper-parameters and

weights of all algorithms were tuned to reduce function loss and produce optimal networks capable of high
diagnostic performance. The classifiers were fed with the data set after arranging the most vital features,
and each feature provided its percentage of contribution to diagnosing hepatitis by the RFE algorithm.
The t-SNE and PCA algorithms reduced the data set dimensions by selecting important features. Applying
RFE with t-SNE algorithms and RFE with PCA algorithms in a dataset for early diagnosis of hepatitis is of
significant importance.

Using RFE with t-SNE and RFE with PCA in hepatitis diagnosis creates a comprehensive data mining
pipeline with the following benefits: The RFE prioritizes the features and their correlation with the inflam-
matory hepatitis disease features in the dataset. The t-SNE and PCA methods then reduced the feature of
irrelevant information, making it easier to identify patterns and clusters related to different hepatitis cases.
The combination of RFE with t-SNE and RFE with PCA helps classification algorithms make informed
decisions based on clear and interpretable insights from the data. Then the data set was divided into 80% for
training and 20% for testing. Table 7 describes the performance of the classifiers on the data set during the
training and testing phases.
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Table 7: Results of predicting hepatitis using classifiers based on RFE with t-SNE and PCA methods

Feature engineering RFE with t-SNE RFE with PCA

Classifiers Splitting of data Accuracy % Precision % Recall % AUC % Accuracy % Precision % Recall % AUC %

KNN Training 92.41 100 91.26 88.25 91.23 97.65 90.93 82.95
Testing 91.3 100 90.85 84.14 90.38 95.98 88.75 81.13

SVM Training 93.35 96.28 93.85 91.15 94.15 98.2 95.28 93.83
Testing 91.87 95.84 91.26 87.1 93.1 96.87 93.72 91.22

ANN Training 92.52 97.2 95 89.1 95.76 98.18 97.64 91.29
Testing 90.11 94.19 92.38 83.12 94.62 97.34 95.31 88.95

DT Training 92.85 94.64 96.29 92.8 94.96 97.36 96.47 90.91
Testing 91.56 91.37 94.1 87.15 93.86 95.1 94.88 89.74

RF Training 94.2 95.46 98.85 89.2 97.18 96.72 97.29 94.2
Testing 92.11 94.5 96.55 86.7 96.31 95.23 97.11 92.67

First, when feeding the classifiers with the engineering features of the RFE with the t-SNE method, the
classifiers during the training and testing phases reached the following results:

During the training phase, the classifiers KNN, SVM, ANN, DT, and RF obtained an accuracy of 92.41%,
93.35%, 92.52%, 92.85%, and 94.2%, respectively. Precision of 100%, 96.28%, 97.2%, 94.64%, and 95.46%,
respectively. Recall of 91.26%, 93.85%, 95%, 96.29%, and 98.85%, respectively. AUC of 88.25%, 91.15%, 89.1%,
92.8%, and 89.2%, respectively. While during the testing phase, the classifiers achieved an accuracy of 91.3%,
91.87%, 90.1%, 91.56% and 92.11%, respectively. Precision of 100%, 95.84%, 94.19%, 91.37% and 94.5%. Recall
of 90.85%, 91.26%, 92.38%, 94.1% and 96.55%, respectively. AUC of 84.14%, 87.1%, 83.12%, 87.15%, and
86.7%, respectively.

Second, when feeding the classifiers with the engineering features of the RFE with the PCA method, the
classifiers during the training and testing phases reached the following results:

During the training phase, the classifiers KNN, SVM, ANN, DT, and RF obtained an accuracy of 91.23%,
94.15%, 95.76%, 94.96%, and 97.18%, respectively. Precision of 97.65%, 98.2%, 98.18%, 97.36%, and 96.72%,
respectively. Recall of 90.93%, 95.28%, 97.64%, 96.47%, and 97.29%, respectively. AUC of 82.95%, 93.83%,
91.29%, 90.91%, and 94.2%, respectively. While during the testing phase, the classifiers achieved an accuracy
of 90.38%, 93.1%, 94.62%, 93.86% and 96.31%, respectively. Precision of 95.98%, 96.87%, 97.34%, 95.1% and
95.23%. Recall of 88.75%, 93.72%, 95.31%, 94.88% and 97.11%, respectively. AUC of 81.13%, 91.22%, 88.95%,
89.74%, and 92.67%, respectively.

Fig. 4 displays the visualization of the performance of the classifiers on the hepatitis data set during the
training and testing phases.

5.3 Results of Classifiers Based on SelectKBest with t-SNE and PCA Methods
This section applies the same classification algorithms as the previous section, with the same parameters

and hyper-weights tuning to reduce the loss of functionality. Thus, we have obtained perfect classifiers with
a superior ability to diagnose hepatitis. After processing, the classifiers were fed a dataset that estimated
the contribution percentage of each feature by the SelectKBest function with the statistical function Chi-2.
The t-SNE and PCA algorithms reduced the data set dimensions by selecting important features. Applying
SelectKBest with t-SNE algorithms and SelectKBest with PCA algorithms in a dataset for early diagnosis of
hepatitis is of significant importance.

Using SelectKBest with t-SNE and SelectKBest with PCA in hepatitis diagnosis creates a comprehensive
data mining pipeline with the following benefits: The SelectKBest prioritizes the features and their correlation
with the inflammatory hepatitis disease features in the dataset. The t-SNE and PCA methods then reduced
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the feature of irrelevant information, making it easier to identify patterns and clusters related to different
hepatitis cases. The combination of SelectKBest with t-SNE and SelectKBest with PCA helps classification
algorithms make informed decisions based on clear and interpretable insights from the data. Then the data
set was divided into 80% for training and 20% for testing. All classification algorithms achieved superior
results for diagnosing the hepatitis dataset. Table 8 shows the performance of the proposed algorithm during
the training and testing phases.

Figure 4: Displaying the performance using classifiers with RFE and t-SNE methods

Table 8: Results of predicting hepatitis using classifiers based on SelectKBest with t-SNE and PCA methods

Feature engineering SelectKBest with t-SNE SelectKBest with PCA

Classifiers Splitting of data Accuracy % Precision % Recall % AUC % Accuracy % Precision % Recall % AUC %

KNN Training 88.41 100 88.26 76.25 87.63 96.52 87.1 74.39
Testing 83.3 100 82.85 57.14 82.61 94.82 96.55 72.41

SVM Training 90.35 94.28 89.85 81.15 92.16 95.71 90.69 83.42
Testing 87.29 93.84 88.26 80.1 90.73 93.38 89.46 82.19

ANN Training 89.52 95.2 93 81.1 94.74 96.46 95.97 85.86
Testing 86.11 93.1 90 75.12 92.36 95.25 94.29 84.75

DT Training 91.85 92.64 96.29 76.8 93.66 94.49 95.11 83.58
Testing 80.56 84.37 93.1 68.15 92.58 91.83 94.37 82.41

RF Training 92.2 93.46 98.85 79.2 95.28 96.72 99.1 88.71
Testing 86.11 87.5 96.55 69.7 93.88 95.36 97.93 86.26

First, when feeding the classifiers with the engineering features of the SelectKBest with the t-SNE
method, the classifiers during the training and testing phases reached the following results:

During the training phase, the KNN, SVM, ANN, DT, and RF classifiers had an Accuracy of 88.41%,
90.35%, 89.52%, 91.85%, and 92.2%, respectively. Precision of 99.84%, 94.28%, 95.2%, 92.64%, and 93.46%,
respectively. Recall of 88.26%, 89.85%, 93%, 95.87%, and 98.51%, respectively. AUC of 76.25%, 81.15%, 81.1%,
76.8%, and 79.2%, respectively. At the same time, the classifiers during the testing phase achieved Accuracy
of 83.3%, 87.29%, 86.11%, 80.56%, and 86.11%, respectively. The precision of 99.52%, 93.84%, 93.1%, 84.37%
and 87.5%. Recall of 82.85%, 88.26%, 90%, 93.1%, and 96.22%, respectively. AUC of 57.14%, 80.1%, 75.12%,
68.15%, and 69.7%, respectively.

Second, when feeding the classifiers with the engineering features of the SelectKBest with PCA method,
the classifiers during the training and testing phases reached the following results:
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During the training phase, the KNN, SVM, ANN, DT, and RF classifiers had an Accuracy of 87.63%,
92.16%, 94.74%, 93.66%, and 95.28%, respectively. Precision of 96.52%, 95.71%, 96.46%, 94.49%, and 96.72%,
respectively. Recall of 87.1%, 90.69%, 95.97%, 95.11%, and 99.1%, respectively. AUC of 74.39%, 83.42%, 85.86%,
83.58%, and 88.71%, respectively. At the same time, the classifiers during the testing phase achieved Accuracy
of 82.61%, 90.73%, 92.36%, 92.58%, and 93.88%, respectively. The precision of 94.82%, 93.38%, 95.25%, 91.83%
and 95.36%. Recall of 96.55%, 89.46%, 94.29%, 94.37%, and 97.93%, respectively. AUC of 72.41%, 82.19%,
84.75%, 82.71%, and 86.26%, respectively.

Fig. 5 displays a visualization of the performance of the classifiers on the hepatitis data set during the
training and testing phases.

Figure 5: Displaying the performance using classifiers with SelectKBest and t-SNE methods

6 Discussion and Comparison of the Performance
In this section, we present the comprehensive evaluation of ML methods applied to the hepatitis dataset,

including comparing the proposed systems’ performance with existing systems. The dataset underwent
several preprocessing steps, starting with removing outliers and replacing missing values, followed by
normalization to ensure standardized features. Due to the class imbalance in the dataset, SMOTE was
employed to balance the data. To identify the most relevant features for diagnosing hepatitis, two feature
ranking methods were utilized: the RFE algorithm and the SelectKBest method with the statistical function
Chi-2.

The data set was fed to the t-SNE and PCA algorithms to select the most important features. Then it is
fed to five classifiers: KNN, SVM, ANN, DT, and RF. All classifiers were applied with two feature engineering
methods: (1) using the RFE method with t-SNE and PCA algorithms and (2) using the SelectKBest method
with t-SNE and PCA algorithms.

RFE method with t-SNE algorithm and RFE method with PCA algorithms: The RFE method is used to
evaluate features and their association with hepatitis. Then t-SNE or PCA algorithms are used to reduce the
dimensionality of the data. The refined features are then fed into the five classifiers to perform classification.
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SelectKBest method with t-SNE algorithm and SelectKBest method with PCA algorithms: SelectKBest
method is used to evaluate the features of the hepatitis dataset. Then t-SNE or PCA algorithms are used
to reduce the dimensionality of the data. The refined features are then fed into the five classifiers to
perform classification.

The results of the study showed that both methods perform accurately in diagnosing hepatitis. However,
the performance of the RFE method with the t-SNE algorithm is slightly better than the SelectKBest method
with the PCA algorithm. The RFE method with the t-SNE algorithm achieved an accuracy of 92.41% on the
training data and 91.3% on the test data, while the SelectKBest method with the PCA algorithm achieved an
accuracy of 91.23% on the training data and 90.38% on the test data.

The performance of classifiers using the RFE method with PCA was better than the performance
of classifiers using other feature engineering methods. The RF algorithm achieved an accuracy of 97.18%
and 96.31% during the training and testing phases, respectively. In addition to the accuracy, the paper
also reports the precision, recall, and AUC (area under the ROC curve) for each method. Precision, recall
and AUC measure how well a classifier distinguishes between positive and negative examples. The higher
the precision, recall, and AUC, the better the classifier performs. The paper results show that the RFE
method with t-SNE and PCA algorithms performs better than the SelectKBest method with PCA and t-SNE
algorithms. This supports the RFE in identifying the features most relevant to the classification task. The
results revealed that all algorithms demonstrated superior performance. Notably, the classifiers using the
dataset processed by RFE and PCA outperformed those with the dataset processed through SelectKBest with
t-SNE and SelectKBest with PCA. During the testing phase, the accuracy, precision, recall, and AUC scores
for each classifier.

When classifiers imputation was applied: The KNN achieved an accuracy of 85.3%, Precision of 93.8%,
recall of 83.9%, and AUC of 77.8%. The SVM achieved an accuracy of 86.8%, precision of 90.2%, recall of
87.6%, and AUC of 81.5%. Similarly, the ANN reached an accuracy of 85.1%, precision of 91.9%, recall of
88.6% and AUC of 77.5%. The RF accuracy of 88.4%, precision of 92.1%, recall of 92.1% and AUC of 81.6%.
These findings emphasize the classifiers’ sensitivity to variations in data imputation methods and highlight
the importance of selecting the most appropriate technique for handling missing values in medical datasets.

We applied the proposed systems to the Hepatitis C Dataset, and the results confirmed the systems’
capability to generalize effectively to new data (Hepatitis C dataset). The Hepatitis C dataset contains
demographic information (such as age and sex) and laboratory values of blood donors and patients diagnosed
with Hepatitis C. It is sourced from the UCI Machine Learning Repository. The results of all the proposed
systems applied to the hepatitis C data set agree well with those applied to the hepatitis data set, ensuring
consistency and demonstrating the reliability of the methods. Table 9 includes these results. These results
demonstrate the ability of the proposed systems to generalize effectively to diverse datasets and provide
further evidence of their reliability.

Table 10 describes the evaluation of the performance of the proposed classifiers with the performance
of the classifiers of previous studies through the criteria of accuracy, Precision, Recall, and AUC, while the
previous studies were evaluated by some criteria. We note the superiority of the proposed system over all
relevant studies. All the systems of the previous studies achieved an accuracy ranging between 66.2% and
89.58%, while our proposed system achieved an accuracy of 94.2% during the training phase and 92.11%
during the testing phase. As for Precision criteria, previous studies reached a rate of between 66.3% and
81.8%, while our system reached a rate of 95.46% during the training phase and 94.5% during the testing
phase. All previous studies achieved Recall (sensitivity) with a rate ranging between 68.7% and 85.71%, while
our system achieved a rate of 98.85% and 96.55% during the training and testing phases, respectively. Also
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note the superiority of our system about the standard AUC, as our system achieved a percentage of 89.2%
and 86.7% during the training and testing phases, respectively.

Table 9: Results of Hepatitis C dataset using classifiers based on RFE with t-SNE and PCA methods

Feature engineering Classifiers Data Split Accuracy (%) Precision (%) Recall (%) AUC (%)

RFE with t-SNE
KNN Training 92.1 98.3 90.9 87.9

Testing 91.4 97.6 89.8 84.7

SVM Training 93.5 96.7 94.2 90.1
Testing 92.2 95.1 91.7 88.9

RFE with PCA
ANN Training 95.5 98.5 97.3 93.5

Testing 94.4 97.6 95.8 92.3

RF Training 96.5 97.3 96.9 94.7
Testing 95.7 96.8 96.4 93.9

Table 10: Comparison of the performance of the proposed system with related studies

Previous Studies Accuracy % Precision % Recall % AUC %
Qureshi et al. [57] 66.2 66.3 – –
Bhargav et al. [58] 76.92 74 77 –
Yarasuri et al. [59] 89.58 80 85.71 –
Houby et al. [60] 76 61.11 68.7 74.1
Polat et al. [61] 80.64 81.8 80.6 69.4

Proposed model using RF for the training phase 94.2 95.46 98.85 89.2
Proposed model using RF for the testing phase 92.11 94.5 96.55 86.7

The literature review in Section 2 revealed a scientific gap concerning the processing of certain features.
This study aimed to address the limitations of previous research by considering the features in two distinct
ways: utilizing the RFE method with t-SNE and PCA algorithms and employing the SelectKBest method
with t-SNE and PCA algorithms. As a result, the proposed methods yielded superior outcomes compared to
the approaches used in previous studies.

From an ethical attitude, patient information, privateness, and knowledgeable consent are paramount.
The dataset used in this study was anonymized and sourced from public repositories to ensure compliance
with ethical requirements. In scientific settings, adopting such systems would require adherence to stringent
statistics protection regulations to protect sensitive affected person records. Integrating these structures into
practice could necessitate steady and obvious data managing protocols. Ethically, it’s critical to understand
that such systems are decision-support tools, no longer replacements for clinical judgment. The model
aims to enhance physician knowledge by identifying high-risk cases and important patterns that may
be overlooked.

Feature selection is critical in improving the accuracy and interpretability of ML models used for
hepatitis diagnosis. Several methods exist for selecting relevant features, including RFE and SelectKBest,
often combined with dimensionality reduction techniques such as t-SNE and PCA. This study compared
different feature selection approaches and evaluated their effectiveness based on multiple classification
algorithms. RFE with t-SNE and PCA: The RFE algorithm ranks features based on their importance in
hepatitis diagnosis. Subsequently, t-SNE and PCA were applied to reduce dimensionality while retaining
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important information. Classifiers such as KNN, SVM, ANN, DT, and RF demonstrated high performance,
with RF achieving the highest accuracies of 92.11% (testing) and 94.2% (training) using RFE with t-SNE. RFE
with PCA further improved the classification accuracy, particularly for the RF classifier (96.31% in testing and
97.18% in training). SelectKBest with t-SNE and PCA: SelectKBest (using Chi-2) prioritizes features based on
their statistical significance. The application of t-SNE and PCA further optimizes the feature representation.
RF again achieved the best performance (95.28% training and 86.11% testing) with SelectKBest + PCA.
However, the SelectKBest method generally showed lower AUC values than the RFE-based methods,
indicating a slightly weaker discriminatory power.

Challenges and Opportunities in Integrating AI-Based Diagnostic Tools into Clinical Practice for
Hepatitis Diagnosis.

Challenges:

1. Data Quality and Availability: AI models rely on high-quality datasets. However, clinical datasets often
contain lacking values, outliers, and imbalances, which affect the system’s overall performance. This
study addressed these problems by employing preprocessing steps, including outlier removal, missing
value imputation, and balancing dataset via SMOTE.

2. Feature Selection and Dimensionality Reduction: Selecting the essential features is crucial for system
performance. Our study compared RFE with t-SNE and PCA against SelectKBest with t-SNE and PCA,
thereby demonstrating the superiority of RFE in identifying discriminative features. However, in clinical
practice, ensuring the interpretability and medical relevance of the chosen features remains essential.

3. Ethical and Privacy Concerns: Patient privacy and data are vital in AI-driven diagnostics. This paper
used anonymized data from public repositories emphasizes the need for compliance with ethical
standards and statistics-safety regulations in medical settings.

4. Integration into Clinical Workflow: AI systems should integrate into existing healthcare systems without
disrupting workflows. This requires collaboration among AI researchers, clinicians, and IT experts.

Opportunities:

1. Improved Diagnostic Accuracy: Our proposed machine, particularly RF with RFE and PCA, achieved a
higher accuracy of 96.31% than previous studies (accuracy variety: 66.2%–89.58%). This demonstrates
AI’s capacity to improve the early and precise diagnosis of hepatitis.

2. Generalization Across Datasets: The study established its strategies on the Hepatitis dataset, reach-
ing regular effects. This highlights AI’s capacity to be applied across diverse datasets to improve
diagnostic reliability.

3. Early Detection and Decision Support: AI models can help physicians by selecting high-danger
instances, allowing for earlier intervention and better consequences for affected people.

7 Conclusion
The liver is one of the largest organs in the body and works to regulate the chemicals in the blood,

eliminate toxins in the blood, and perform many important functions. Hepatitis is one of the obstacles to
the normal functioning of the liver, so early diagnosis of hepatitis has an important role in recovery and
living. The diagnosis of the liver is made through a blood test and some factors and stored in electronic
records. ML methods play an important role in the early diagnosis of hepatitis. In this study, hepatitis was
diagnosed through the hepatitis data set; the data set was divided into 80% for training and 20% for testing.
The missing values in the data set were processed and replaced with the meaning of the neighboring values,
and outliers were removed. The data set was subjected to the RFE algorithm and the SelectKBest function
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with the statistical function Chi-2 for assigning the contribution of each feature with the target feature. The t-
SNE and PCA algorithms selected the important features that strongly correlate with inflammatory hepatitis
disease. The processed features were fed into five classification algorithms: KNN, SVM, ANN, DT, and RF.
All algorithms achieved superior results in the diagnosis of hepatitis. When using the dataset processed by
RFE and PCA methods, the RF achieved accuracy, Precision, Recall, and AUC of 97.18%, 96.72%, 97.29%,
and 94.2%, respectively, during the training phase. During the testing phase, it reached accuracy, Precision,
Recall, and AUC by 96.31%, 95.23%, 97.11%, and 92.67%, respectively.

Limitations were the ability of the proposed systems to generalize to external datasets. This limitation
was resolved by evaluating the proposed methods on the Hepatitis C dataset, demonstrating that the systems
can effectively generalize their performance beyond the original dataset.
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