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ABSTRACT: The Internet of Things (IoT) is extensively applied across various industrial domains, such as smart
homes, factories, and intelligent transportation, becoming integral to daily life. Establishing robust policies for
managing and governing IoT devices is imperative. Secure authentication for IoT devices in resource-constrained
environments remains challenging due to the limitations of conventional complex protocols. Prior methodologies
enhanced mutual authentication through key exchange protocols or complex operations, which are impractical for
lightweight devices. To address this, our study introduces the privacy-preserving software-defined range proof (SDRP)
model, which achieves secure authentication with low complexity. SDRP minimizes the overhead of confidentiality and
authentication processes by utilizing range proof to verify whether the attribute information of a user falls within a
specific range. Since authentication is performed using a digital ID sequence generated from indirect personal data,
it can avoid the disclosure of actual individual attributes. Experimental results demonstrate that SDRP significantly
improves security efficiency, increasing it by an average of 93.02% compared to conventional methods. It mitigates the
trade-off between security and efficiency by reducing leakage risk by an average of 98.7%.
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1 Introduction
The Internet of Things (IoT) encompasses wirelessly connected devices that interface with Internet

networks [1]. These devices are employed in various domains, including smart grids, homes, cities, and
energy management. The proliferation of IoT devices in localized contexts, including campuses, healthcare,
and logistics, is projected to increase significantly, rapidly expanding their applications [2–6]. Consequently,
organizations must establish robust policies for governing and managing these devices within the com-
prehensive Internet environment. Software-defined technology, crucial for efficient network management
and control [7], is hardware-independent and facilitates the rapid establishment of flexible IT infrastructure
by defining and controlling resources through software. The concept of “software-defined” originated with
software-defined networking (SDN) and has expanded to include software-defined storage (SDS), software-
defined data centers (SDDC), and the broader notion of software-defined everything (SDx) [8]. Notably,
smart data exchange is gaining prominence as a core method for IoT management, offering an effective
approach to managing and optimizing large-scale data flows between IoT devices. This method significantly
enhances the flexibility of network resource management and ensures real-time data communication within
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IoT networks [9,10]. Recent studies have reported improvements in the safety and efficiency of data exchange
in IoT environments through the application of SDx technology [11,12].

Despite diverse and valuable applications of IoT technologies, several critical challenges persist.
Securing IoT networks against advanced cyberattacks remains a significant concern [13]. The increasing
proliferation of connected IoT devices raises significant issues regarding personal information leakage and
privacy breaches [14]. Additionally, data from wearable devices that directly collect individual sensor data are
stored in the cloud. However, the general access policy of the ciphertext-policy attribute-based encryption
(CP-ABE) system, designed for information protection and efficient control, may compromise privacy and
integrity [15]. Hence, robust authentication mechanisms are essential for ensuring trust among networked
devices within IoT technology [16].

Extensive research has investigated secure authentication for IoT-enabled devices [17–19]. Sureshkumar
et al. [17] implemented mutual authentication using standardized Burrows–Abadi–Needham (BAN) logic,
enhancing mutual authentication and key exchange protocols for chaotic map-based medical information
systems. However, this method incurs high computational costs and remains vulnerable to asynchronous
attacks. Vinoth et al. [18] proposed a secure authentication protocol for IoT devices, employing hash
functions, exclusive OR (XOR) operations, and symmetric encryption, enabling trusted users to access
sensing devices remotely. While suitable for resource-limited IoT environments, this protocol incurs sig-
nificant power consumption and presents considerable cryptographic complexity. Conventional protocols,
such as Rivest-Shamir-Adleman (RSA)-based public key infrastructure (PKI) and elliptic curve cryptog-
raphy (ECC), widely used for secure authentication in traditional networks, are often impractical for IoT
devices due to high computational overhead and energy consumption. These protocols require substantial
processing power and memory, which resource-constrained IoT devices generally lack. Consequently, the
implementation of advanced security features, such as robust authentication protocols, strong encryption
algorithms, and real-time intrusion detection systems, becomes impractical in many real-world scenarios.
These limitations render such devices vulnerable to security breaches [20]. Furthermore, existing IoT security
mechanisms are difficult to apply in real-world environments due to their high computational costs and
energy requirements, which are critical considerations for IoT devices with limited battery life and low
processing capacity [18,19,21,22]. Given the increasing cyberattacks on IoT devices, the development of
lightweight and secure authentication techniques is essential [23].

This study introduces the software-defined range proof (SDRP) technique for secure, low-complexity
authentication, addressing the trade-off between security and efficiency. SDRP minimizes the overhead of
confidentiality and authentication processes by utilizing range proof [24] to verify whether the attribute
information of a user falls within a specific range. The authentication (auth) node determines authentication
and transmits de-identified random rules to the user node based on the purpose of authentication. The
user generates a digital ID sequence and authenticates it using indirect personal information, avoiding
the disclosure of actual individual attributes. Consequently, SDRP generates and authenticates a digital ID
that prevents personal information inference, ensuring secure and accurate authentication even if the ID
is compromised.

The contributions of this study are as follows:
• SDRP mitigates leakage risk and enhances efficiency by generating an untraceable digital ID using user

attribute information in a ruleset of elementary operations.
• We propose a framework to evaluate authentication methods, considering both privacy and efficiency.
• To evaluate the performance of SDRP, we created a practical authentication environment using a

user information dataset. The proposed model demonstrated superior performance compared to the
conventional zero-knowledge proof model, a standard privacy-preserving authentication method.
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The structure of this study is as follows: Section 2 reviews prior research, Section 3 introduces
SDRP, Section 4 evaluates conventional models and SDRP, and Section 5 concludes the study.

2 Related Work
This section reviews prior research on conventional authentication methods, categorizing them into

privacy-focused and lightweight techniques. Table 1 offers a comparative analysis of these methods.

Table 1: Previous studies of conventional authentication methods

Features Previous studies Method Limitation
Privacy-

preserving
authentication

Shah
et al. [24]

• Proposing a multi-key-based
mutual
authentication mechanism

• The password set for secure
storage is updated after each
successful
communication session

• Frequent updates and
sharing of key values
introduce limitations,
increasing complexity
and latency

Lightweight
authentication

Santos
et al. [21]

• Proposing an IoT-exclusive
FIdM protocol that
substitutes for complex
technologies with
streamlined, user-friendly
alternatives within
conventional FIdM

• Insufficient
experimentation
compromises the reliability
of the results

Li et al. [20] • A novel lightweight
authentication protocol,
designed to satisfy privacy
requirements using hash
functions and XOR
operations, is introduced

• Previous studies lacked
performance comparison,
thereby impeding the
evaluation of computational
cost and
performance enhancement

(Continued)
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Table 1 (continued)

Features Previous studies Method Limitation
Rana

et al. [25]
• Optimized computational

processes by implementing
lightweight XOR operations
alongside symmetric
key-based encryption

• Optimized network
bandwidth usage by
developing an authentication
mechanism that requires
only a single
request-response exchange

• Engineered to store only
essential security parameters,
thereby minimizing the data
size retained on the
smart card.

• Substantial computational
power required presents
challenges for operation on
IoT devices with severely
constrained resources

Privacy-
preserving
lightweight

authentication

Gaba
et al. [26]

• A novel lightweight
authentication protocol,
designed to satisfy privacy
requirements using hash
functions and XOR
operations, is introduced

• Determining the precise
computational cost is
challenging, as
performance assessments
have primarily relied on
mathematical analysis

Chistousov
et al. [27]

• Implement zero-knowledge
proof with session keys to
streamline authentica-
tion processes

• In a specific context, it can
enhance authentication
speed by lowering
confidentiality levels

• A trade-off exists:
increasing speed
necessitates reducing
confidentiality levels, while
the strength of the
authentication protocol
relies on the computational
cost of solving the
Diffie-Hellman problem.

Shah et al. [24] analyzed the security vulnerabilities of password-based authentication methods in
IoT systems, focusing on side-channel and dictionary attacks. They proposed a multikey-based mutual
authentication mechanism to enhance security between IoT devices and servers. This mechanism securely
manages secret keys within an encrypted vault, ensuring that servers and IoT devices share equal-sized keys.
A significant advantage of the proposed method is the dynamic updating of securely stored password content
with each successful communication session, thereby eliminating reliance on a single key value. However,
they did not address the increased latency due to frequent key-value updates and sharing.

Conventional authentication methods are unsuitable for resource-constrained IoT environments,
prompting the exploration of lightweight alternatives. Santos et al. [21] identified the shortcomings of
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traditional identity management (IdM) for lightweight IoT devices and introduced a federated identity man-
agement (FIdM) protocol tailored to IoT specifications. Although this protocol simplifies conventional FIdM,
it lacks performance comparisons with existing FIdM technologies, leaving its relative efficacy undetermined.

Li et al. [20] addressed security challenges in data transmission within vehicular ad hoc networks
(VANET) by identifying inefficiencies in conventional authentication methods characterized by exces-
sive computation and security flaws. They introduced a lightweight authentication protocol utilizing
hash functions and XOR operations to enhance privacy protection and secure authentication. While
their approach preserves vehicle information anonymity and ensures secure authentication, the lack of a
comparative analysis with existing research leaves the claimed improvements in computational cost and
performance unverified.

Rana et al. [25] proposed a lightweight authentication mechanism tailored for IoT environments. This
study introduces a technique leveraging a hash function and symmetric encryption to achieve mutual
authentication between users and servers. The implementation of symmetric encryption and a non-collision
hash function effectively reduces computational overhead, minimizes communication instances, and
decreases the data storage requirements on smart cards. Nevertheless, this mechanism faces challenges with
IoT devices with extremely severe resource constraints attributed to relatively high computational demands.

Gaba et al. [26] identified significant security vulnerabilities in wearable IoT devices, which can be
exploited to alter medical reports, thereby leading to inaccurate diagnoses and treatments. They proposed
various cybersecurity solutions, such as fog, edge, cloud, blockchain, password, biometrics, hash, and elliptic
curve cryptography. However, these solutions are prone to cyberattacks and entail high computational and
communication costs, rendering them unsuitable for IoT environments. Consequently, the authors intro-
duced a zero-knowledge proof (ZKP)-based authenticated key agreement protocol for Internet of Healthcare
Applications (IoHA). This protocol prevents unauthorized access and ensures secure authentication while
minimizing computational and communication overhead. Despite ensuring confidentiality, integrity, and
availability, its performance evaluation relies solely on mathematical proofs, complicating cost assessment.

Chistousov et al. [27] demonstrated that while encryption systems ensure robust confidentiality for
vehicle authentication in VANETs, they require extensive key management infrastructure. Moreover, the
compromise of a cryptographic key can significantly weaken the protection of transmitted data within
VANETs. To mitigate this issue, a ZKP protocol was proposed, offering strong confidentiality without relying
on encryption. This method leverages session-key-based ZKP to streamline the authentication process,
allowing for adjustable confidentiality levels to enhance authentication speed. Furthermore, they increased
the complexity of ZKPs, proposing a more secure authentication method. Nonetheless, the inherent trade-
off remains unresolved: reducing confidentiality to improve authentication speed while considering the
computational overhead of Diffie–Hellman operations, which impacts both efficiency and security.

Numerous studies aimed at enhancing conventional authentication technologies have often overlooked
key factors such as latency, computational cost, and the balance between security and performance metrics.
Furthermore, conventional security research frequently relies on complex mathematical models and algo-
rithms, thereby increasing computational overhead. Conversely, studies prioritizing authentication speed
have emphasized efficiency at the expense of security, resulting in a trade-off. Despite considering both
evaluation metrics, previous research has often compromised confidentiality for efficiency gains or accepted
higher computational costs to maintain privacy. Consequently, the trade-off between efficiency and security
remains unresolved.
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In this study, we present novel metrics for assessing privacy and efficiency in IoT environments,
addressing the limitations of prior research. We also introduce a lightweight authentication method that
balances these metrics, ensuring high reliability and efficiency.

3 Software Defined Range Proof (SDRP)
This section presents SDRP, a methodology for generating digital ID sequences using a ruleset to ensure

secure and efficient authentication.

3.1 Anonymous Credential
Self-sovereign identity (SSI) introduces a novel identity management systems (IMS) paradigm, offering

a privacy-preserving mechanism for identity verification [28]. SSI adheres to ten fundamental principles:
existence, control, access, transparency, persistence, portability, interoperability, consent, minimization, and
protection [29]. Existence denotes the independent status of users, and control refers to their ability to
manage their identity. Access enables data retrieval, transparency ensures algorithmic and infrastructural
clarity, and persistence guarantees long-term ID maintenance. Portability supports the transfer of identity-
related information, while interoperability ensures broad usability. Consent signifies user agreement for
identity use, minimization reduces data disclosure, and protection safeguards users’ rights.

Conventional authentication methods frequently employ sensitive personal identifiers encapsulated
in encrypted tokens, which are vulnerable to information leakage if intercepted during transmission.
Consequently, research on anonymous credential authentication—which verifies user eligibility without
disclosing personal identities—has become increasingly prominent. Recent SSI techniques utilize anony-
mous credentials to protect personal information. These credentials enable users to authenticate themselves
without unnecessary identity disclosure [28]. Generating anonymous credentials involves inputting the
public key, message, proposition information, credential, and attribute proof signing key of the system. The
attributes linked to the credential are identified based on the proposition details, and appropriate proof
values are generated for each attribute. Upon receiving the anonymous credential, the server separates the
attribute information according to the proposition details and conducts primary verification. Finally, the
server authenticates the anonymous credentials by verifying the information of each attribute separately.

3.2 Operation Method of SDRP
Fig. 1 illustrates the operation of SDRP through a flowchart. SDRP interacts with the authorization node

(auth node) for identity verification, evaluates authentication permissions, and requests authentication from
the user node. Initially, SDRP establishes rules to generate a digital ID that conceals personal information.
Within this framework, a rule comprising all de-identification or specific identifiable operations related to
the required attribute is stochastically generated and transmitted to the user node based on the authentication
purpose. Certain de-identification rules permit the specification of attributes verifiable as sequences, such as
age, gender, and affiliation. Upon receiving the rule, the user node computes a digital ID from its personal
information and forwards it to the auth node. Subsequently, the auth node verifies whether the user falls
within the authorized group range using the received digital ID. If the user node has an invalid ID outside the
specified group range, the authentication process is flagged as abnormal, leading to authentication failure.
Extending the auth request interval when the user node re-initiates authentication can prevent an infinite
authentication loop caused by an abnormal node. Conversely, duplicate users are verified and authorized
for authentication if the user node is identified as a legacy ID within the group range under verification.
The duplicate user undergoes re-authentication considering the potential derivation of the same digital
ID, despite the application of different rulesets. Unlike encrypting and transmitting personal identification
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information over the network, SDRP generates indirect personal information by performing operations on
the attributes’ characteristics in the received rule set to derive a digital ID. Consequently, even if an attacker
intercepts a digital ID through a side-channel attack, identifying an individual remains impossible, thus
mitigating privacy infringement risks. Furthermore, SDRP achieves lightweight performance by employing
simple arithmetic operations for digital ID generation.

Figure 1: Flowchart for SDRP operation method

Fig. 2 presents the system architecture of the auth and user nodes.

Figure 2: System architecture of auth node and user node

In this architecture, the auth node employs the ruleset generator to create rules that can be fully or
partially identifiable, depending on specific authentication requirements. A fully identifiable rule is applied
when attributes requiring authentication contain personally sensitive information that needs protection and
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belong to rule types where sequences undergo specific transformations. Conversely, partially identifiable
rules are used for low-sensitivity attributes, posing no significant disclosure issues. This rule permits
attributes such as age and gender to be directly identified through a digital ID sequence without additional
operations. Fig. 3 provides an example of the SDRP digital ID generation process.

Figure 3: Example of SDRP’s digital ID generation process

As illustrated in Fig. 3, rules are generated based on the required attributes to formulate an operation-
based ruleset that ensures the anonymity of personal information. For instance, if the attribute is a string, a
ruleset such as “Replace the spelling order of ‘name’ with numbers, then offset it at the sequence start” can
function by substituting the alphabetical order with numbers. After the ruleset is created, it is transmitted
to the user node via the sender. The user node applies the personal information stored in the personal
information database (DB) to the ruleset within the digital ID generator to produce a digital ID, which is
then transmitted to the auth node. The communication protocol between the auth node and the user node
is depicted in Fig. 4.

Fig. 4 illustrates that the auth node manages authentication performance by incorporating the ruleset
field into the communication packet format. Concurrently, the user node initiates authentication using the
digital ID field. Upon receiving the digital ID from the user node, the discriminator assesses its validity and
checks for duplicate IDs in the authentication history DB before making a decision.

Algorithm 1 outlines the pseudocode for SDRP encompassing rule generation, ruleset transmission
to the user node, digital ID creation and return to the auth node, legitimacy assessment of the user node,
and verification of duplicate digital IDs in the DB. In Step 1, fully or partially unidentifiable rules are
generated and transmitted to the user node. In Step 2, upon receiving the ruleset, the user node applies



Comput Model Eng Sci. 2025;142(3) 3221

a personal attribute to generate a digital ID, which is then returned to the auth node. In Step 3, the auth
node calculates the ID condition to verify the authenticity of the user node. The calculated ID is compared
with the digital ID received from the user node to determine authentication eligibility. In Step 4, if the ID is
authorized for authentication, it undergoes a duplication check by comparing it with the digital ID stored in
the authenticated history DB.

Figure 4: Communication format between auth node and user node

Algorithm 1: Pseudo-code for SDRP evaluation
Input: Personal attribute
Output: Leakage risk, Efficiency, Computational cost
Step 1: Generate the ruleset and send it to user node
Ruleset = ruleset_generation(full_unidentifiable, partial identifiable) ▷ Generate the full unidentifiable or

partially identifiable ruleset
Transmit (Ruleset)
Step 2: Calculate the digital ID and return it to auth node
User_node_data = Received(Ruleset)
User_digital_ID = Ruleset(personal_attribute) ▷ Calculate the digital ID based on the ruleset
Step 3: Discriminate user node, whether legitimate node or not
Legitimate_ID_condition = Ruleset(legitimate_attribute) ▷ Derive the legitimate ID condition to

compare with the user node ID
if Legitimate_ID_condition == User_digital_ID: ▷ Compare with legitimate ID and user node

digital ID
Auth_result = ‘success’

else if Legitimate_ID_condition != User_digital_ID:
Auth_result = ‘fail’

Step 4: Check the duplicated digital ID in the DB
if Auth_result = ‘success’:

compare_DB (auth_history, User_digital_ID) ▷ Compare whether the User digital ID
is duplicated with another user node
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4 Performance Evaluation

4.1 Evaluation Environment
This section describes the experimental setup used to evaluate the performance of SDRP. The evaluation

framework, depicted in Fig. 5, was implemented to compare and assess the performances of conventional
and SDRP-based authentication methods.

Figure 5: Evaluation framework of digital ID-based authentication techniques

The auth node of SDRP generates a ruleset for the required attributes and transmits it to the user node.
The user node then computes the digital ID based on this ruleset, which the auth node subsequently uses
to determine authentication permission. In this experiment, the parameter α, representing the number of
required attributes, was varied to evaluate leakage risk, efficiency, and computational cost.

User data were obtained from the company–employee dataset [30], which includes information from
5000 users. Table 2 details the features of the data utilized in this experiment.

Table 2: Configuration of user information datasets

Features Type Contents
ID int64 0~4999

Company str Glasses, Cheerper, Pear
Department str Bigdata, AI, Support, Design, Search Engine, Sales

Age int64 30~49
Gender str Female, male

SocialNumber int64 6-digit number

Personal information attributes of the user node, including ID, company, department, age, gender, and
social number, were extracted from the total features. Only integer (int) and string (str) data types were
employed. This dataset served as authentication data to simulate the authentication environment.

In this study, we benchmarked the zero-knowledge proof model (ZKPM) [31] and the identifiable
attribute model (IAM) [27] to evaluate the performance of SDRP. ZKPM model employs an AES-based
zero-knowledge proof technique for range proof. Here, the user node calculates y = gx (mod p) to transmit
y as an unidentifiable secret value x to the auth node. Subsequently, the user node generates a random
number r and calculates C = gr(mod p) to transmit C to the auth node. Upon receiving this, the auth node
iterates the process N times, requesting either r or (x + r) (mod (p − 1)) from the user node to estimate x
and perform authentication. Parameters were set with g = 2, and N = 3. The random value r was chosen
between 1 and 20, while p was selected from prime numbers between 100 and 200. User attributes from the
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company-employee dataset [30] served as the secret value x. Conversely, IAM [27] leverages lightweight
zero-knowledge authentication protocols (ZKAP) with a session key for encrypting communication sessions,
thereby reducing the number of authentication steps and ensuring confidentiality. IAM is designed for
lightweight performance by dynamically adjusting the level of confidentiality. In this study, we compared the
IAM environment at the lowest level of confidentiality.

To evaluate the performance of SDRP, we employed computational cost, leakage risk, and security
efficiency as metrics. Computational complexity was assessed using Big-O notation.

Leakage risk denotes the potential for ID leakage by an attacker when utilizing SDRP, calculated as
described in Eq. (1).

Leakage risk = It

RIt × Ot (N)
(1)

where RIt denotes the request interval at time t, Ot (N) represents the computational cost of the ruleset
at time t, and It indicates the importance of the required attributes at time t. In this experiment, upon
authentication failure, RIt increased by 10 s. Ot (N) is the computation cost based on Big-O notation, and It
is determined by assigning importance to each attribute. Given that Social Number corresponds to sensitive
personal information, its importance was set to 5, age and gender were set to 3, and company and department
were set to 1 [32].

Security efficiency was calculated using Eq. (2) as a metric for evaluating the security efficiency of the
authentication model.

Security E f f icienc y = Privac y preserv ing capabil it y
Ot (N)

(2)

Security efficiency is inversely proportional to the latency and computational cost of authentication, and
directly proportional to privacy-preserving capability, quantified as the proportion of preserved privacy, as
calculated by Eq. (3).

Privac y preserv ing capabil it y = 1
Leakage risk

=
RIt × Ot (N)

It
(3)

SDRP presents an efficient authentication mechanism designed for lightweight devices to enhance
security and minimize data leakage risk—a key security metric. The performance across three evaluation
metrics was analyzed by progressively increasing the number of required attributes. To ensure experimental
reliability, the average results from 10,000 simulation repetitions were calculated.

4.2 Evaluation Results and Analysis
This section analyzes the performance of SDRP relative to conventional models, ZKPM and IAM,

concerning computational cost, leakage risk, and security efficiency. Fig. 6 illustrates the comparative leakage
risk between SDRP and conventional models.

As the number of required attributes increased, the probability of incorporating critical attributes also
rose. Consequently, the risk of information leakage to potential attackers escalated, with the highest risk
observed in the IAM model, followed by SDRP and ZKPM. The IAM model, which transmits and receives
personal information at the lowest confidentiality level, exhibited the highest privacy leakage risk. In contrast,
SDRP, which uses digital IDs containing only indirect personal information characteristics, and ZKPM,
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which relies on complex knowledge proof equations, demonstrated a maximum privacy leakage risk that was
102 times lower than that of IAM.

Figure 6: Leakage risk of SDRP by the number of required attributes

Fig. 7 illustrates the comparative results of SDRP and the conventional model regarding computa-
tional cost.

Figure 7: Computational cost of SDRP by the number of required attributes

As the number of required attributes increased, the computational burden for de-identification esca-
lated, consistently increasing overall computational costs. Among the methods, ZKPM, a zero-knowledge
proof-based technique, exhibited inefficiencies due to the repeated exchange of complex operational for-
mulas during secret-value de-identification. Conversely, SDRP, which computes a simple ruleset, reduced
computational cost by up to 10 times compared to conventional ZKPM. Additionally, the IAM model, which
bypasses de-identification processing, demonstrated optimal efficiency by avoiding separate operations.
However, the most critical evaluation index for safe authentication, leakage risk, revealed a significant
limitation: confidentiality cannot be guaranteed, as it presented the most inefficient results.

Fig. 8 illustrates the comparative security efficiency of SDRP vs. the conventional model.
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Figure 8: Security efficiency of SDRP by the number of required attributes

Overall, an increase in the number of required attributes correspondingly elevated the computational
cost of authentication, diminishing security efficiency. The SDRP model demonstrated up to five times
higher security efficiency compared to conventional models. This enhanced efficiency is due to the superior
leakage risk performance of SDRP relative to IAM, coupled with its lower computational cost compared to
ZKPM. Conversely, while ZKPM achieved optimal leakage risk outcomes, its overall security performance
was hindered by significantly higher computational costs.

In summarizing the experimental findings, this study assessed IAM, ZKPM, and the proposed SDRP
method across three metrics: leakage risk, computational cost, and security efficiency. For leakage risk, the
ranking was ZKPM, SDRP, and IAM, suggesting that more complex techniques offer stronger security. The
evaluation of computational cost revealed the ranking as IAM, SDRP, and ZKPM, indicating a trade-off
between security and efficiency. Therefore, security efficiency was the final metric, identifying the model that
best balanced security and efficiency. In this metric, SDRP, ZKPM, and IAM were ranked accordingly. Since
security efficiency is inversely proportional to authentication latency and computational cost while directly
proportional to privacy preservation performance, it can be concluded that SDRP achieves the optimal
balance between security and efficiency among the three models.

5 Conclusion
Various technologies have been developed to protect IoT networks from increasing cyber threats

targeting IoT devices. However, due to the resource constraints of these devices, implementing secure
and sophisticated algorithms becomes challenging. Consequently, secure and lightweight authentication
methods are essential to balance complexity and security in conventional research. This study proposed the
SDRP model, which securely generates a digital ID sequence based on a ruleset without directly transmitting
user attribute information over the network. In SDRP, the auth node generates random rulesets that are
either fully or partially de-identified. These rulesets are then transmitted to the user node, which generates a
digital ID sequence for authentication using indirect personal information rather than actual user attributes.
Therefore, even if advanced attacks such as side-channel attacks or timing attacks occur, the attacker cannot
identify personal information solely based on the digital ID transmitted over the network. Furthermore, by
minimizing the computational load and the number of communication exchanges, the proposed method
achieves lightweight authentication, making it efficient regarding energy consumption—a critical factor for
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IoT devices. The experimental results indicate that SDRP enhances security efficiency by an average of
93.02% over conventional methods and reduces the risk of information leakage by an average of 98.7%.
This balance between security and efficiency demonstrates the efficacy of SDRP. The primary limitation
of this study is its focus on a simulated authentication environment. Future research will address this by
incorporating advanced attacker nodes in realistic settings and optimizing the request interval of the SDRP
to establish an optimal defense environment and validate its performance. Additionally, we will model
network environments with varying traffic loads and analyze energy consumption, a critical metric in IoT
environments, to demonstrate the scalability and reliability of the SDRP.
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IoT Internet of Things
SDN Software-defined networking
SDS Software-defined storage
SDDC Software-defined data centers
SDx Software-defined everything
CP-ABE Ciphertext-policy attribute-based encryption
BAN Burrows–Abadi–Needham
XOR Exclusive OR
SDRP Software-defined range proof
VANET Vehicular ad hoc networks
IdM Identity management
FIdM Federated identity management
ZKP Zero-knowledge proof
IoHA Internet of Healthcare Applications
SSI Self-sovereign identity
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DB Database
ZKPM Zero-knowledge proof model
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ZKAP Zero-knowledge authentication protocols
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