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ABSTRACT: The rapid evolution of wireless technologies and the advent of 6G networks present new challenges
and opportunities for Internet of Things (IoT) applications, particularly in terms of ultra-reliable, secure, and energy-
efficient communication. This study explores the integration of Reconfigurable Intelligent Surfaces (RIS) into IoT
networks to enhance communication performance. Unlike traditional passive reflector-based approaches, RIS is
leveraged as an active optimization tool to improve both backscatter and direct communication modes, addressing
critical IoT challenges such as energy efficiency, limited communication range, and double-fading effects in backscatter
communication. We propose a novel computational framework that combines RIS functionality with Physical Layer
Security (PLS) mechanisms, optimized through the algorithm known as Deep Deterministic Policy Gradient (DDPG).
This framework adaptively adapts RIS configurations and transmitter beamforming to reduce key challenges, including
imperfect channel state information (CSI) and hardware limitations like quantized RIS phase shifts. By optimizing
both RIS settings and beamforming in real-time, our approach outperforms traditional methods by significantly
increasing secrecy rates, improving spectral efficiency, and enhancing energy efficiency. Notably, this framework
adapts more effectively to the dynamic nature of wireless channels compared to conventional optimization techniques,
providing scalable solutions for large-scale RIS deployments. Our results demonstrate substantial improvements in
communication performance setting a new benchmark for secure, efficient and scalable 6G communication. This work
offers valuable insights for the future of IoT networks, with a focus on computational optimization, high spectral
efficiency and energy-aware operations.

KEYWORDS: Computational optimization; reconfigurable intelligent surfaces (RIS); 6G networks; IoT and DDPG;
physical layer security (PLS); backscatter communication
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1 Introduction
The dynamic advancement in wireless technology is driving the transition toward sixth-generation

(6G) networks which aim to meet the demands of revolutionary data rates with minimal latency and secure
communication for emerging Internet of Things (IoT) applications. With IoT devices proliferating across
diverse industries, the networks face critical challenges in scalability, bandwidth efficiency and security [1,2].
Addressing these difficulties requires innovative communication frameworks that can efficiently manage
resources while safeguarding against security threats.

BackCom is increasingly recognized as a groundbreaking energy efficient solution by reflecting incident
signals from a carrier emitter without generating new radio waves [3,4]. This technique is particularly
attractive for resource constrained IoT devices, as it significantly reduces power consumption. However,
BackCom suffers from inherent limitations such as signal degradation caused by double-fading effects
and restricted communication range, which hinder its scalability and practical deployment in dense IoT
networks [5]. Overcoming these drawbacks requires advanced technologies capable of optimizing signal
propagation and enhancing communication reliability.

Reconfigurable Intelligent Surface (RIS) have recently emerged as a transformative technology in
wireless networks [6]. RIS is composed of an extensive array of passive reflective elements. capable of
adaptively manipulating the phase and magnitude of approaching electromagnetic waves. This ability makes
RIS a powerful enabler for enhancing both backscatter and direct communication by improving signal
propagation, mitigating interference and boosting spectral efficiency in complex IoT environments [7].
Unlike conventional systems that treat the environment as a passive channel, RIS-enabled systems actively
shape the propagation environment enabling intelligent signal control and reducing the impact of path
loss [8].

To fully exploit the transformative potential of RIS, this study introduces an innovative RIS-aided
Joint Backscattering and Communication (JBAC) system setting a new benchmark for 6G networks. The
proposed system seamlessly integrates RIS with traditional backscatter communication, addressing inherent
limitations by enhancing transmission efficiency and optimizing spectral utilization [9]. Beyond boosting
communication performance, the study prioritizes data privacy and security by embedding PLS mecha-
nisms [10]. By leveraging the inherent randomness of wireless channels, the PLS provides robust protection
against eavesdropping serving as a lightweight, energy efficient alternative to conventional encryption
techniques [11,12].

To achieve real-time optimization the system employs the DDPG algorithm a reinforcement learning
method well-suited for continuous action spaces [13]. DDPG dynamically optimizes RIS phase shifts and
transmitter beamforming, enabling adaptive responses to changing channel conditions. By seamlessly
coordinating RIS configurations and power allocation at the transmitter, the proposed framework enhances
communication performance while strengthening security measures [14]. Furthermore, the integration of
reinforcement learning ensures robust operation in the context of practical issues like incomplete channel
state information (CSI) and RIS phase shift quantization

This work combines RIS, PLS and reinforcement learning to address the critical challenges of security
and efficiency in IoT networks. By synergizing these advanced technologies the proposed framework sets
new benchmarks for 6G communication protocols. It achieves significant improvements in secrecy rate
and transmission efficiency, enabling the development of interconnected, secure and energy-conscious IoT
ecosystems. The results of this research contribute substantially to the growing body of knowledge around
RIS-enabled systems providing a foundation for high-performance IoT networks in the 6G era.
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1.1 Related Work
The emergence of RIS technology has redefined the concept of wireless communication by enabling the

control of electromagnetic waves through programmable surfaces, as summarized in Table 1, which dynami-
cally manipulate phase shifts and amplitudes [15,16]. RIS technology is increasingly being integrated into 6G
communication systems to meet the demands of high transmission rates, incredibly low latency and ubiq-
uitous connectivity especially for IoT applications [17]. Through RIS, communication systems can reduce
interference, improve spectral efficiency, and mitigate fading effects, thereby extending the operational range
and robustness of both backscatter communication (BackCom) and direct transmissions [18,19].

Backscatter communication has gained prominence for its energy-efficient data transmission capa-
bilities by using passive reflection of continuous carrier waves. This makes it particularly suitable for IoT
devices with constrained energy resources [3]. However, BackCom faces key challenges such as the double-
fading effect, which severely impacts the quality of transmission and limits communication range [20,21].
To overcome these limitations, researchers have proposed RIS-aided BackCom systems that enhance trans-
mission efficiency by optimizing signal paths through intelligent reflections [22]. By introducing additional
propagation channels, RIS helps mitigate path loss and extend coverage, facilitating seamless communication
in dense IoT environments [23,24].

In parallel, the rise of PLS has been motivated by the growing need for lightweight security solutions
in IoT and wireless systems. PLS takes advantage of the inherent randomness in wireless channels to secure
data transmission without the computational overhead associated with cryptographic methods [25,12].
RIS-assisted PLS frameworks have demonstrated the ability to boost secrecy capacity by tailoring phase
shifts to steer reflected signals toward legitimate users while weakening signals received by potential
eavesdroppers [13,26]. This has led to the development of RIS-aided wiretap communication models
where beamforming strategies are optimized to maximize secrecy rates [27,28]. These models ensure that
confidential data remains protected even in highly dynamic network environments.

The adoption of machine learning (ML) algorithms for managing RIS configurations is another
significant advancement. Reinforcement learning techniques, such as the DDPG algorithm, have been used
to dynamically adjust RIS parameters and optimize beamforming patterns [29,12]. These algorithms are
particularly effective in continuous action spaces such as those encountered in RIS systems where precise
phase shifts are required to optimize both signal strength and security [30]. DDPG-based frameworks
enhance the adaptability of RIS-aided communication systems by enabling real-time optimization in
response to changing environmental conditions [31].

Further research has focused on the development of bistatic BackCom systems integrated with RIS.
In these systems, the carrier emitter and receiver are spatially separated enabling more flexible network
deployments [24]. RIS enhances these setups by introducing controllable propagation paths leading to
better signal quality and reduced interference [20]. Resource allocation and beamforming optimization are
critical research areas that empower RIS to achieve an effective balance between power distribution and the
fulfillment of secrecy constraints [32].

As the number of RIS elements increases in advanced 6G communication systems, the computational
complexity of optimization algorithms like DDPG becomes a critical consideration. This paper investigates
how the complexity of DDPG scales with the number of RIS elements and demonstrates that the proposed
approach remains efficient and scalable, even for large-scale RIS configurations.
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Table 1: Comparison of related work

Study Focus area Strengths Limitations Proposed
framework
advantage

Pan et al. [15] RIS for spectral
efficiency

High spectral
efficiency and

reduced fading

No focus on
security or
BackCom

integration

Joint
optimization of

RIS and
BackCom

Jiang et al. [3] BackCom for
IoT

Energy efficiency
for IoT devices

Double-fading
effects reduce

reliability

Mitigates
double-fading via

RIS
Nguyen et al. [26] RIS-aided PLS Improved secrecy

capacity using
RIS

Assumes perfect
CSI and

continuous
phases

Robust to
imperfect CSI
and quantized

phases
Puspitasari et al. [29] ML for RIS

optimization
Effective
real-time

optimization

Limited
scalability to

large-scale RIS

Scalable to large
RIS

configurations
Liang et al. [20] Bistatic

BackCom with
RIS

Enhanced signal
propagation and

coverage

No integration
with security
mechanisms

Integrates PLS
with RIS and

BackCom
Proposed work Joint RIS,

BackCom, and
PLS

Comprehensive
optimization,

real-time learning

– Dynamic,
scalable, and

secure solution

Recent studies highlight the effectiveness of Deep Reinforcement Learning (DRL) in optimizing RIS-
assisted networks, reference [33] proposed a HAP-based integrated satellite-aerial-terrestrial relay network
using a DRL-based Long Short-Term Memory - Double Deep Q-Network (LSTM-DDQN) framework to
maximize ergodic rate under Unmanned Aerial Vehicle (UAV) energy constraints. Similarly, reference [34]
explored multi-RIS-assisted satellite-UAV-terrestrial networks, addressing dynamic environments and spec-
trum scarcity with a multi-objective deep deterministic policy gradient (MO-DDPG) algorithm to optimize
achievable rate and energy efficiency. These works demonstrate DRL’s potential for efficient RIS-enabled
integrated networks.

As the role of RIS expands in the realm of 6G networks, several works have established new benchmarks
for secrecy rate, spectral efficiency, and power management by integrating RIS, PLS, and advanced ML
techniques. This study builds upon these foundations, proposing a novel Joint Backscattering and Commu-
nication (JBAC) system that leverages DDPG to dynamically optimize RIS configurations. The framework
ensures efficient and secure communication by enhancing legitimate signal paths while suppressing those
accessible to eavesdroppers, thereby aligning with the key goals of future 6G-enabled IoT networks.

1.2 Motivation and Contributions
The rapid evolution of wireless communication systems and the advent of 6G networks bring unprece-

dented opportunities for hyper-connected environments, primarily driven by the proliferation of IoT
devices. However, these advancements also pose significant challenges: ensuring secure, efficient, and reliable
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communication under stringent resource constraints, addressing the limitations of imperfect CSI, and
managing quantized RIS phase shifts.

BackCom emerges as a promising solution for energy-efficient data transfer in IoT networks, yet it
suffers from double-fading effects, limited communication range, and security vulnerabilities. Moreover, the
dense connectivity envisioned for 6G networks amplifies the risks of eavesdropping, necessitating advanced
security strategies that align with resource-efficient operation.

RIS offer a paradigm shift by transforming wireless environments with their ability to manipulate
electromagnetic waves. While traditional research treats RIS as a passive signal reflector, this work explores its
potential as an active optimization component. By strategically configuring RIS, the limitations of backscatter
communication can be mitigated, and both communication performance and security can be enhanced.
Furthermore, the integration of advanced reinforcement learning techniques, such as the DDPG algorithm,
provides a pathway for real-time adaptability in dynamic wireless environments.

This study offers the following distinctive contributions:

1. Novel RIS-Enabled Joint Backscatter and Communication (JBAC) System with Imperfect CSI Man-
agement: We present a groundbreaking framework that seamlessly integrates RIS into IoT networks,
revolutionizing both backscatter and direct communication modes. Unlike traditional approaches, our
model tackles the challenge of imperfect CSI through an adaptive, learning-based strategy, ensuring
robust system performance even in the face of channel estimation inaccuracies. By reimagining RIS as
an active optimization component rather than a passive reflector, the framework dynamically optimizes
signal paths, unlocking new levels of efficiency and reliability for next-generation IoT communication.

2. Integration of PLS with Quantized RIS Phase Shifts: While existing PLS frameworks rely on idealized
RIS setups, our study incorporates quantized RIS phase shifts a practical constraint in hardware
implementations. We demonstrate how RIS selectively enhances signals toward legitimate users while
degrading signals directed toward eavesdroppers, effectively mitigating eavesdropping risks even under
quantization constraints.

3. Dynamic Optimization via DDPG Algorithm in Continuous Action Spaces: To overcome challenges
posed by continuous and high-dimensional action spaces, this work leverages the DDPG algorithm for
real-time optimization of RIS configurations and power distribution. This approach not only adapts to
environmental dynamics but also ensures the joint optimization of beamforming and RIS phase shifts,
outperforming conventional optimization techniques.

4. Addressing Backscatter-Specific Limitations: Double-Fading Effects and Coverage Range: Our
innovative approach revolutionizes backscatter communication by overcoming critical challenges like
double fading effects and limited coverage. By seamlessly integrating RIS-assisted signal propagation
our framework unlocks new possibilities leveraging RIS to establish additional propagation paths. This
not only enhances spectral efficiency but also effectively mitigates fading delivering robust performance
in dense IoT environments and paving the way for next-generation connectivity solutions

5. Benchmarking for Secure 6G Communication Protocols: By combining RIS functionality with
advanced algorithmic methods and addressing practical constraints like imperfect CSI and quantized
RIS phases this study establishes new benchmarks for secure and efficient 6G communication protocols.
The results provide actionable insights for designing future ready IoT networks that prioritize both
operational efficiency and data security.
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2 System Model and Problem Formulation

2.1 System Model
We propose an integrated framework that utilizes BackCom with PLS in an RIS-aided environment

as shown in Fig. 1. This model incorporates elements from both the bistatic BackCom system and the RIS-
assisted wiretap communication system, providing a comprehensive approach to secure communication.

Figure 1: System model of RIS-aided IoT network for 6G communication, enhancing both backscatter and direct
modes

The system involves several components. A base station (BS) equipped along M antennas functions as
both a Carrier Emitter (CE) for BackCom and a transmitter for direct communication. The setup involves two
single-antenna devices: a Backscatter Device (BD) and a legitimate user referred to as Bob. An Eavesdropper
(Eve), equipped with M′ antennas, aims to intercept communications. Additionally, an RIS with N reflecting
elements is employed to enhance signal propagation through adjustable phase shifts.

In this system, the Carrier Emitter (CE) broadcasts a continuous wave signal s(t) with power P and a
beamforming vector w ∈ CL×1. The power of the transmitted signal is subject to the constraint:

P = ∥w∥2, (1)

where w represents the beamforming vector.
The Base Station (BS) also performs direct communication with Bob by transmitting a signal s, which

satisfies the power condition E{∣s∣2} = 1. The beamforming vector w is constrained by:

∥w∥2 ≤ Pmax. (2)

The communication channels between different components are represented as follows: the link from
the CE/BS to the RIS is denoted as HCI ∈ CN×L and HTI ∈ CN×M ; the channel from the CE/BS to Bob
and Eve are denoted as hCB ∈ CM×1 and HCE ∈ CM×M′ , respectively. Similarly, the RIS-to-receiver channels
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are represented by hIB ∈ CN×1 for Bob and HIE ∈ CN×M′ for Eve. Additionally, the direct channel from the
Backscatter Device (BD) to Bob is given by hTB ∈ C.

The RIS reflects incoming signals by applying phase shifts. These phase shifts are described by the matrix:

Φ = diag (e jΨ1 , e jΨ2 , . . . , e jΨN) , (3)

where Ψi ∈ [0, 2π] represents the phase shift of the ith reflecting element. These phase shifts influence both
the backscatter communication and direct transmission, adding a degree of control to the signal propagation.

The received signal at Bob incorporates contributions from both direct communication and backscatter
communication. It is given by:

yB = (hH
IBΦHTI + hH

TB)ws + nB , (4)

where nB ∼ C N (0, σ 2
B) is the additive noise at Bob. Similarly, the signal received by Eve is expressed as:

yE = (HH
IE ΦHTI +HH

TE)ws + nE , (5)

where nE ∼ C N (0, σ 2
E I) represents the additive noise at Eve.

The RIS enhances communication quality and secrecy by intelligently adjusting the phase shifts to
strengthen the desired signals toward the legitimate user and reduce the signals leaking to the eavesdropper.
This dual capability ensures efficient communication while mitigating the risk of eavesdropping.

CSI Acquisition in the Proposed System
Acquiring accurate CSI is essential for optimizing RIS configurations and ensuring secure communica-

tion. However, achieving perfect CSI in backscatter communication systems presents significant challenges
due to double-fading effects, weaker received signals, and environmental dynamics. To address these issues,
we adopt the following CSI acquisition strategies:

1. Direct Links: CSI for direct links (e.g., BS-to-Bob and BS-to-Eve) is obtained through traditional pilot-
based channel estimation. The BS transmits known pilot sequences to Bob, who estimates the channel
response and provides feedback. For Eve, the system assumes partial CSI knowledge via statistical
models or worst-case approximations to ensure robust optimization.

2. Backscatter Links: - Active Probing: The BS sends probing signals that the BD modulates. The received
composite signal at the BS is used to estimate the backscatter channel through advanced signal pro-
cessing techniques such as sparse recovery. - RIS-Assisted Refinement: RIS configurations are adjusted
iteratively to enhance the backscatter signal during estimation, enabling more accurate CSI acquisition.

3. RIS-Specific Channels: - Cascaded Channel Estimation: The BS transmits pilots while the RIS adjusts its
phase shifts sequentially. The BS estimates the combined BS-to-RIS and RIS-to-receiver channels using
a cascaded model:

Ĥcascade = HBS−RIS ΦHRIS−User + E,

where E captures the estimation error. - Decomposition via Sparse Recovery: Techniques like compressive
sensing separate the individual components of the cascaded channel.

4. Handling CSI Imperfections: To account for imperfect CSI, the system incorporates the following
strategies:
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• Robust optimization techniques consider probabilistic CSI error bounds, optimizing beamforming
vectors and RIS phase shifts for worst-case scenarios. The error model is represented as:

Ĥ = H + E, ∥E∥ ≤ ε.

• The DDPG algorithm dynamically adapts to CSI imperfections, leveraging real-time learning to
adjust configurations based on observed system performance.

• A trade-off is maintained between the pilot overhead for CSI acquisition and system performance,
ensuring a balance between accuracy and efficiency.

2.2 Problem Formulation
The optimization problem for the RIS-aided 6G communication system seeks to maximize the

secrecy rate RS , defined as the difference between the achievable rates at Bob (legitimate user) and Eve
(eavesdropper):

RS = [RB(w, Φ) − RE(w, Φ)]+ . (6)

The goal is to increase RS by jointly enhancing the beamforming vector w and RIS phase shift matrix Φ:

max
w,Φ

RS(w, Φ), (7)

subject to the following practical constraints:
Constraints 1. Transmit Power Constraint: Overall power of the beamforming vector must not exceed

the set maximum limit:

∥w∥2 ≤ Pmax. (8)

2. RIS Phase Shift Constraints: Each RIS element’s phase shift must be within the feasible range:

Ψi ∈ [0, 2π], ∀i ∈ {1, 2, . . . , N}, (9)

and for quantized phase shifts:

Ψi ∈ {0, Δ, 2Δ, . . . , 2π − Δ}, Δ = 2π
Q

. (10)

3. Imperfect CSI: Robustness to CSI estimation errors is incorporated as:

Pr (∥h − ĥ∥ ≤ ε) ≥ δ, (11)

where ĥ is the estimated channel, ε the error tolerance, and δ the confidence level.
4. Energy Efficiency Constraint: The system ensures minimum energy efficiency:

η = RB(w, Φ)
∥w∥2 ≥ ηmin, (12)

where ηmin is the threshold.
5. Multi-Objective Trade-Off: A balance between secrecy and communication quality is captured as:

λ1RS(w, Φ) + λ2RB(w, Φ), (13)
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where λ1 and λ2 control the relative importance of secrecy and quality.
Problem Statement: Incorporating these constraints, the extended optimization problem is

expressed as:

max
w,Φ

λ1 ⋅ [RB(w, Φ) − RE(w, Φ)]+ + λ2 ⋅ RB(w, Φ), (14)

subject to the transmit power constraint (8), RIS phase shift constraints (9) and (10), imperfect CSI
robustness (11), and energy efficiency requirements (12).

This optimization framework integrates practical considerations, ensuring efficient and secure RIS-
aided operation under real-world conditions while addressing performance and hardware limitations.

3 DRL Based Methodology for Secure Communication
DRL combines principles from reinforcement learning and deep learning to tackle complex decision-

making challenges. By exploiting the analytical potential of deep neural networks, DRL empowers agents to
navigate and adapt within intricate and dynamic environments, enabling effective decision-making based on
vast and diverse datasets. This approach offers a robust framework for addressing tasks requiring adaptive
and data-driven solutions in secure communication systems [35].

The foundation of DRL lies in training agents to determine optimal decisions by learning from
iterative process experiences. Actors interact with their surroundings by observing its state, executing actions
and receiving responses through rewards which guide their learning process. The goal is to formulate a
policy that ensures the maximum total reward accumulated over time [36]. What distinguishes DRL from
traditional reinforcement learning approaches is its utilization of deep learning. This integration enables the
direct processing of raw sensory inputs, such as visual content or sensory information, excluding relying
on physically engineered attributes. Deep neural networks act as powerful estimators, either for policies
that identify optimal actions in given situations or for value functions that estimate expected rewards
derived from current states and actions [37]. DRL offers notable benefits: Well-suited for managing intricate
environments with extensive, high-dimensional state spaces, it is ideal for real-world use cases.

Additionally, agents using DRL leverage the generalization ability of neural networks to apply learned
knowledge effectively in novel and unseen scenarios.

The capability for end-to-end learning from raw data to actions simplifies the overall learning process.
It has ability to adapt and scale according to problem size and complexity enables its application across

a wide range of tasks, including mastering complex games and controlling autonomous vehicles.
Its ability to adapt and scale according to problem size and complexity enables its application across a

wide range of tasks, including mastering complex games and controlling autonomous vehicles.
Nonetheless, challenges exist within DRL. DRL often requires substantial amounts of training data and

can be susceptible to overfitting. It may also encounter challenges related to stability and reliability during
the learning process, particularly in scenarios where rewards are rare or come with a delay. Despite these
challenges, DRL marks a transformative advancement in artificial intelligence, providing a robust toolkit for
addressing diverse decision-making problems in complex and ever-changing scenarios.

3.1 MDP
A Markov Decision Process (MDP) serves as a mathematical framework to model decision-making in

situations where outcomes are influenced by both the decision-maker’s actions and elements of randomness.
The key elements of an MDP, along with their mathematical formulations, are described as follows:
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• State Space (S): The state space S defines the collection of all possible states within the environment. Each
state s ∈ S represents the condition or configuration of the environment at a specific moment in time.

• Action Set (A): The action set A includes all the actions that the agent is able to take. For a particular
state s the available actions are denoted as a ∈ A(s). The action set may vary depending on the state as
indicated by the notation A(s).

• Transition Dynamics (P): The transition dynamics are characterized by the probability function
P(s′ ∣ s, a), which specifies the likelihood of transitioning to state s′ from state s after performing action
a. This function captures both deterministic and stochastic elements of the system dynamics:

P(s′ ∣ s, a) = Pr(St+1 = s′ ∣ St = s, At = a), (15)

where s′ represents the state at time t + 1, s is the state at time t, and a is the action taken.
• Reward Function (R): The reward function R(s, a, s′) or R(s, a) defines the immediate reward obtained

after transitioning from state s to state s′ as a result of action a. It reflects the benefit or cost linked to the
transition:

R(s, a, s′) = E[Rt+1 ∣ St = s, At = a, St+1 = s′], (16)

where Rt+1 is the reward received at time t + 1.
• Discount Factor (γ): The discount factor γ ∈ [0, 1] determines the weight given to future rewards. A

higher value of γ (close to 1) means the agent prioritizes long-term rewards, while a lower value favors
immediate rewards. The discount factor ensures convergence of the total reward and accounts for the
uncertainty in future outcomes.

MDP is formally represented by (S , A, P, R, γ). The agent goal is to determine an optimal policy π∗
that maximizes the expected sum of discounted future rewards. A policy π maps states to actions and is
denoted as:

π(a ∣ s) = Pr(At = a ∣ St = s).

The objective is to find the optimal policy π∗ that maximizes the anticipated cumulative reward Gt
beginning from a given state:

π∗ = arg max
π

E[Gt ∣ St = s, π], (17)

where the total discounted reward Gt from time t onward is defined as:

Gt =
∞

∑
k=0

γk Rt+k+1 . (18)

Solving an MDP involves identifying the optimal policy π∗ that optimizes the expected cumula-
tive rewards. Common approaches for solving MDPs, such as Q-Learning, Policy Iteration and Value
Iteration, work by iteratively improving the policy or updating state and action values using the MDP’s
defined components.

3.2 Proposed DDPG Model
We apply the Markov Decision Process (MDP) framework to tackle the optimization hurdles in ensuring

secure wireless communication systems, including both direct and backscatter communication. MDPs are
well-suited for scenarios where current decisions–such as selecting the beamforming vector and RIS phase
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shifts–impact future states and rewards. This approach considers long-term consequences for the system’s
performance and secrecy, unlike straightforward optimization approaches that prioritize immediate results.

To ensure scalability in large-scale RIS deployments, we utilize DDPG, a RL-based framework that
excels in managing large action spaces, such as those present in RIS systems with a high number of
reflecting elements. DDPG efficiently adapts the system to dynamically fine-tune the phase shift of RIS and
beamforming vectors, balancing the trade-off between communication quality and secrecy. It also leverages
actor-critic networks, where the actor determines the optimal actions based on the current state, while the
critic evaluates these actions by estimating their Q-values, representing the expected rewards.

This reinforcement learning-based approach enables the system to learn and adjust configurations
in real-time, making it computationally feasible for large-scale environments, especially an increase in
the number of RIS elements. Moreover, parallelization and distributed learning techniques can further
enhance the scalability and computational efficiency, allowing the system to handle complex, large-scale RIS
deployments in real-world scenarios.

Actor Network: In our secure communication framework, the actor network defines the policy by
linking the current environmental state st to a group of actions at , which includes the RIS phase shifts and
beamforming vector elements. The policy is given as:

at = π(st ∣θπ), (19)

where at is the action vector at time t, st represents the current environmental state information along with
the current vector for beamforming and θπ represents the actor network variables.

The action vector at is structured such that the first N elements correspond to the RIS phase shifts
Φt = diag (e jΨ1 , . . . , e jΨN). These Phase shifts are normalized to fall within the specified range. [−π, π] to
ensure valid values:

Ψi ∈ [−π, π], ∀i ∈ {1, 2, . . . , N}. (20)

The remaining elements of at correspond actual and virtual elements associated with the vector
components of beamforming wt , which must satisfy the transmit power constraint:

∥wt∥2 ≤ Pmax. (21)

To ensure compliance, the beamforming vector is normalized as:

wt ←
wt

max(1, ∥wt∥/
√

Pmax)
. (22)

By leveraging this approach, the agent can flexibly fine-tune the RIS phase adjustments and beam-
forming configuration according to the environment, optimizing transmission efficiency and ensuring
secure communication.

Critic Network: The role of the critic network is to evaluate the actions generated by the actor network
by estimating their Q-values. A Q-value signifies the expected cumulative reward for executing an action at
in the state st and continuing to follow the policy π. The Q-value function is given as:

Q(st , at ∣θQ) = E [rt + γQ(st+1 , π(st+1∣θπ)∣θQ′) ∣ st , at], (23)
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where θQ defines the parameters of the critic network, while θQ′ represents the targeted critic network
characteristics. The target critic network improves training stability by providing a consistent reference for
updating Q-values.

The state st consists of the CSI HTI , hIB , HIE , HCE , hTB , along with the current beamforming vector
wt and RIS phase shifts Φt . The action at encompasses the phase adjustments of RIS and beamforming
vector elements.

Reward Function: The immediate reward at time t, denoted by rt , indicates the system, s secrecy
performance, RIS phase stability, and energy efficiency. It is defined as:

rt = α ⋅ [RB(wt , Φt) − RE(wt , Φt)]+ − β ⋅ ∥Φt∥2
variation + η ⋅ RB(wt , Φt)

Pused
, (24)

where

• RB(wt , Φt) and RE(wt , Φt) are the achievable rates at Bob (legitimate user) and Eve (eavesdrop-
per), respectively.

• ∥t∥2
variation penalizes large variations in RIS phase shifts, ensuring stable configuration updates.

• Pused = ∥wt∥2 denotes the total power used.
• α, β, η are weighting parameters that balance the trade-offs between secrecy, stability, and efficiency.

Training Process: The DDPG algorithm iteratively trains the actor and critic networks using experience
replay and target networks to ensure stable learning.

Transitions (st , at , rt , st+1) are stored in a replay buffer B. During training, a minibatch of transitions
is sampled from B to break correlations between consecutive steps and improve learning stability.

The critic network is optimized by minimizing the following loss function:

L = 1
N ∑i

(yi − Q(si , ai ∣θQ))2 , (25)

where yi = ri + γQ′(si+1 , π′(si+1∣θπ′)∣θQ′) represents the target Q-value, calculated with the help of the
target networks.

The actor network is updated using the policy gradient:

∇θ π J ≈ 1
N ∑i

∇a Q(s, a∣θQ)∣
s=s i ,a=π(s i)

∇θ π π(s∣θπ)∣
s i

. (26)

Target networks are updated slowly to ensure stability:

θπ′ ← τθπ + (1 − τ)θπ′ , (27)

θQ′ ← τθQ + (1 − τ)θQ′ , (28)

where τ ∈ (0, 1) is the soft update coefficient.

3.3 Computational Complexity Analysis
The computational cost of the DDPG algorithm in RIS optimization is dictated by the architecture of

the actor and critic networks, the scale of the state and action spaces (which are proportional to the number
of RIS elements N), and the minibatch size B during the training process.
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The actor network maps the current state st , which includes the channel state information (CSI) and
RIS configuration states, to an action at , representing the adjustments in RIS phases (N elements) and vector
components of beamforming. The critic network evaluates the Q-value of the selected action, providing
feedback for policy improvement.

The total complexity for one training iteration can be expressed as:

O(B ⋅ l ⋅ h2) +O(B ⋅ N), (29)

where l is the number of layers in the neural networks, h is the number of neurons per layer, B is the minibatch
size, and N is the number of RIS reflective elements.

Scalability with N: The complexity grows linearly with N because the action space dimension is
proportional to N. The phase shifts of each RIS element must be optimized, increasing the input size of
the networks and the number of optimization variables. Despite this linear scaling, the use of parallelized
computations in GPUs and efficient sampling in DDPG ensures scalability for practical deployments with
RIS sizes of up to 200–300 elements.

Practical Considerations: Compact neural network designs with fewer layers and neurons (l , h) reduce
overhead while maintaining performance. Feature engineering or clustering techniques can also group RIS
elements to simplify control in large-scale scenarios.

The scalability of the DDPG algorithm makes it suitable for RIS-aided 6G networks, even as the number
of reflective elements increases.

3.4 Adaptive Learning for Enhanced Communication
To enhance security DDPG approach is used by the system for communication that iteratively

updates the actor, critic networks influenced by the feedback from the environment, enabling continuous
improvement of the policy.

The parameters of critic network’s θQ improved by minimizing loss function L, which measures the
error in the target Q-values and predicted Q-values computed from rewards and the target critic network’s
output:

L = 1
N ∑i

(yi − Q(si , ai ∣θQ))2 . (30)

Here, yi is the Q-value of target, defined as the reward plus the discounted Q-value of the subsequent
state-action combination as estimated by the target critic network.

The actor network updates its parameters θπ to select actions that yield larger Q-values as evaluated by
the network of critic. The actor’s objective function J gradient is approximated through:

∇θ π J ≈ 1
N ∑i

∇aQ(s, a∣θQ)∣
s=s i

a=π(s i)

⋅ ∇θ π π(s∣θπ)∣
s i

. (31)

This iterative training process aligns the actor’s policy with the objective of maximizing rewards,
improving both the efficiency and security of wireless communication.
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3.5 State Space, Action
In the proposed framework for secure data transmission utilizing RIS-assisted backscatter technology,

the Markov Decision Process (MDP) is modeled to optimize both transmission efficiency and security.
The components of the MDP, namely the state space, action space, and reward mechanism, are described
as follows:

State Space: The state at time t, denoted as st , encapsulates the real-time conditions of the environment,
including channel state information (CSI) for all relevant communication links. It is formally represented as:

st = {HCI , HTI , hCB , hIB , HIE , HCE , hTB}, (32)

where HCI ∈ CN×L represents the CSI from the Base Station (BS) to the RIS, HTI ∈ CN×M denotes the CSI
from the transmitter to the RIS, and hCB ∈ CM×1 represents the CSI for the direct link between the BS and
Bob (the legitimate user). The CSI for the RIS to Bob link is denoted by hIB ∈ CN×1, while HIE ∈ CN×M′

represents the RIS to Eve (eavesdropper) link. Additionally, HCE ∈ CM×M′ describes the direct channel
from the BS to Eve, and hTB ∈ C captures the direct link from the Backscatter Device (BD) to Bob. These
parameters collectively define the current state of the network, enabling informed decision-making for
secure communication.

Action Space: The action at is the decision variable at time t and consists of two components: the
beamforming vector wt and the RIS phase shift matrix Φt . The action is determined as:

at = (wt , Φt) = π(st ∣θπ) +Nt , (33)

where π(st ∣θπ) represents the actor network’s policy function, mapping the current state from st to action
at and Nt is the introduced during training to promote diverse actions.

The action space is subject to the following constraints. The beamforming vector must satisfy the
transmit power constraint:

∥wt∥2 ≤ Pmax, (34)

where Pmax denotes the maximum allowable transmit power. The RIS phase shifts are constrained as:

Ψi ∈ [0, 2π], ∀i ∈ {1, 2, . . . , N}, (35)

where Ψi represents the phase shift of the i-th RIS element. These constraints ensure that the actions taken
are both physically feasible and compliant with the system’s hardware limitations.

4 Results
In Fig. 2, the “Episode Rewards Over Time” graph illustrates the progression of the DDPG algorithm in

optimizing RIS configurations for secure communication in a 6G IoT network (Algorithm 1). Initially, during
the exploration phase (0 to 250 episodes), rewards remain low as the algorithm evaluates diverse strategies.
This is followed by a significant increase in rewards (250 to 750 episodes), signaling the identification and
exploitation of effective actions for improving security. Finally, the rewards stabilize (750 to 2000 episodes),
indicating policy convergence and consistent performance. The results highlight the DDPG algorithm, s
ability to dynamically adapt and optimize RIS configurations, reinforcing its utility in enhancing secure
communication within the 6G IoT environment.
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Algorithm 1: DDPG for joint beamforming and RIS phase shift optimization in secure communication
Data: Input: Channel matrices HTI , hIB , HIE , hTB , HCE , maximum power Pmax, phase shift constraints

Ψi ∈ [0, 2π]
Data: Parameters: Learning rates απ , αQ , discount factor γ, soft update coefficient τ, replay buffer size

N, exploration noise Nt
Initialization:
Initialize actor network π(s∣θπ) and critic network Q(s, a∣θQ) with random weights;
Initialize target networks: π′(s∣θπ′) ← π(s∣θπ), Q′(s, a∣θQ′) ← Q(s, a∣θQ);
Initialize replay buffer B;
foreach episode do

Initialize exploration noise Nt (e.g., Ornstein-Uhlenbeck or Gaussian noise);
Receive initial state s1 (e.g., channel states and initial beamforming vector and RIS phase shifts);
foreach step in episode do

Action Selection: Select action at = (wt , Φt):
at = π(st ∣θπ) +Nt
Execute action at and observe:

• New state st+1(e.g., updated CSI, beamforming, and RIS settings)
• Immediate reward:

rt = α ⋅ [RB(wt , Φt) − RE(wt , Φt)]+ − β ⋅ ∥Φt∥2
variation + η ⋅ RB(wt ,Φ t)

∥wt∥2 ;
Store transition (st , at , rt , st+1) in B;
Minibatch Sampling: Sample N transitions (si , ai , ri , si+1) from B;
Compute target Q-value for each transition:
yi = ri + γQ′(si+1 , π′(si+1∣θπ′)∣θQ′).
Critic Update: Update critic network θQ by minimizing the loss:
L = 1

N ∑i
(yi − Q(si , ai ∣θQ))2.

Actor Update: Update actor network θπ using policy gradient:
∇θ π J ≈ 1

N ∑i
∇a Q(s, a∣θQ)∣s=s i ,a=π(s i)

∇θ π π(s∣θπ)∣s i
.

Target Network Update: Softly update target networks:
θπ′ ← τθπ + (1 − τ)θπ′ ;
θQ′ ← τθQ + (1 − τ)θQ′ .
Ensure Action Constraints:

• Beamforming Power Constraint: Normalize wt :

wt ←
wt

max(1, ∥wt∥/
√

Pmax)

• RIS Phase Shift Range: Clamp RIS phases:
Ψi ←mod(Ψi , 2π), ∀i ∈ {1, 2, . . . , N}.

end
Decay exploration noise Nt for next episode;

end

In Fig. 3, the “Secrecy Rate vs. Transmit Power” graph compares the proposed DDPG-based approach
with the Alternate Optimization method and a system excluded RIS. The results demonstrate that the
DDPG approach consistently delivers the high secrecy rate, with a steeper improvement as transmit power
increases, highlighting its efficiency in optimizing RIS configurations for secure communication. In contrast,
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the AO method delivers moderate performance, while the system without RIS performs poorly due to its
inability to enhance signal security. This demonstrates the DDPG approach’s superiority in achieving higher
secrecy rates, particularly at higher transmit powers, reinforcing its applicability for secure and efficient 6G
IoT networks.

Figure 2: Episode vs. rewards

Figure 3: Secrecy rate vs. transmit power

In Fig. 4, the impact of different learning rates on the DDPG algorithm, s performance in optimizing
RIS configurations for secure communication is illustrated. A learning rate of 0.0001 achieves the highest
average reward (17 to 18) with stable convergence, showcasing its effectiveness in balancing exploration and
exploitation. Conversely, a learning rate of 0.001 stabilizes at a moderate reward level (12 to 14), while 0.00001
exhibits the lowest rewards (9 to 10) and higher variability, indicating slower and less reliable learning. These
results emphasize the critical role of learning rate selection in enhancing the stability and efficiency of the
DDPG algorithm for RIS-aided secure communication in 6G IoT networks. Further exploration of learning
rates could refine these insights, enabling more robust algorithm design for secure communication systems.

Fig. 5 evaluates the scalability of the proposed DDPG algorithm by analyzing the secrecy rate dependent
on the number of reflective elements of RIS. The results indicate a consistent increase in secrecy rate with
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more RIS elements, demonstrating the method, s effectiveness in optimizing larger RIS configurations. The
DDPG algorithm outperforms the Alternate Optimization (AO) and Deep Q-Network (DQN) methods,
showcasing superior handling of the expanded action space introduced by larger RIS arrays. As the
number of elements increases, the DDPG framework dynamically adjusts RIS phase shifts and beamforming
parameters, achieving higher secrecy rates and enhanced communication security. Notably, even with 120
RIS elements, the algorithm maintains computational efficiency, emphasizing its practicality for large-
scale 6G IoT deployments. These findings highlight the DDPG algorithm’s scalability and its suitability for
real-world RIS-aided secure communication systems.

Figure 4: Learning performance for different rates

Figure 5: Secrecy rate vs. RIS elements over different techniques

Fig. 6 illustrates the critical role of RIS phase optimization in enhancing secrecy rates as the number
of reflective elements increases. With optimized RIS phases the secrecy rate consistently improves, reaching
approximately 7 bps/Hz for 100 elements. In contrast, non-optimized RIS phases show slower improvements
achieving only around 3.5 bps/Hz. This stark contrast underscores the importance of phase optimization
in maximizing system security and performance in RIS-aided networks. As the number of elements grows,
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phase optimization becomes indispensable for achieving secure and efficient communication, particularly
in advanced 6G IoT applications.

Figure 6: RIS phase optimization vs. non-optimized RIS

5 Conclusion

This study illuminates the transformative potential of RIS in revolutionizing 6G communication for
IoT networks. By redefining participant R a passive IS as an active than reflector, we unlock pathways f new
or c optimizing communication efficiency and spectral utilization rather ion in both backscatter and direct
communication modes. A standout achievement of this research is the innovative integration of PLS with the
DDPG algorithm, a powerful combination that enhances security and operational efficacy. Through meticu-
lous strategic configurations of RIS and optimized power distribution, we achieve remarkable improvements
in transmission efficiency while effectively addressing critical security challenges. Ultimately, this research
sets pioneering benchmarks for the future of 6G communication protocols, laying a robust foundation for
the creation of secure, interconnected, and highly efficient wireless systems. This study also addresses the
computational complexity of the DDPG algorithm in the context of RIS optimization. By demonstrating
that the algorithm’s complexity scales linearly with the number of RIS elements, we establish its feasibility
for real-world 6G deployments. The results validate that the performance gains outweigh the computational
costs, ensuring scalability and efficiency for large-scale RIS-assisted networks. As we advance toward the next
generation of networks, the methodologies and insights presented here will serve as a guiding light, shaping
the future landscape of secure IoT communications.
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