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ABSTRACT: Recent research on adversarial attacks has primarily focused on white-box attack techniques, with limited
exploration of black-box attack methods. Furthermore, in many black-box research scenarios, it is assumed that the
output label and probability distribution can be observed without imposing any constraints on the number of attack
attempts. Unfortunately, this disregard for the real-world practicality of attacks, particularly their potential for human
detectability, has left a gap in the research landscape. Considering these limitations, our study focuses on using a similar
color attack method, assuming access only to the output label, limiting the number of attack attempts to 100, and
subjecting the attacks to human perceptibility testing. Through this approach, we demonstrated the effectiveness of
black box attack techniques in deceiving models and achieved a success rate of 82.68% in deceiving humans. This study
emphasizes the significance of research that addresses the challenge of deceiving both humans and models, highlighting
the importance of real-world applicability.
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1 Introduction
Machine learning models, particularly deep learning models, have been extensively applied in domains

such as object detection in computer vision, automatic speech recognition, machine translation, and
autonomous driving systems [1]. They have achieved remarkable success, often surpassing human-level
performance. However, despite the transformative potential of these models, they exhibit vulnerability to
adversarial attacks, which exploit weaknesses in the model to manipulate input data and produce incorrect
or undesired outputs [2,3]. Such vulnerabilities pose critical risks, particularly in applications where safety
and reliability are paramount, such as medical diagnostics and self-driving vehicles. For instance, altering a
stop sign could mislead autonomous vehicles, which would have severe consequences [4,5].

Adversarial attacks have been a major research focus, primarily concentrating on white-box attacks,
wherein the attacker assumes full access to the architecture and parameters of the model. Despite the
high success rates of these models, they are less practical in real-world scenarios owing to their unrealistic
assumptions. In contrast, black-box attacks, which operate without internal knowledge of the target model,
are considered more practical. However, most existing black-box approaches assume access to both the
output labels of the model and also the probability distribution, and they often involve thousands of attack
attempts. These assumptions limit their applicability in real-world settings, wherein such extensive access
and repeated attacks are infeasible.
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This study addressed the aforementioned gaps by developing a novel black-box attack method, the
similar color attack, which introduces several innovations to enhance realism and practicality. First, the
method assumes access only to the output labels of the model, making it more aligned with real-world
constraints. Second, the inefficiencies and impracticality of previous methods that rely on thousands of
iterations are addressed by limiting the number of attack attempts to 100. Finally, most importantly, this
study evaluated the human perceptibility of adversarial examples, a factor that has been often overlooked
in existing research. While many adversarial attacks deceive machine learning models, their effectiveness
against human observation remains unexamined. To this end, we surveyed with 107 participants to assess
the detectability of adversarial examples generated using the proposed method.

The similar color attack method effectively deceives machine learning models by subtly modifying
image colors within a predefined range, ensuring that the changes remain imperceptible to human observers.
Experimental results demonstrate the high success rate of the method, achieving a 40.94% model deception
rate and an 82.68% human deception rate, significantly outperforming existing techniques, such as one-pixel
attacks and semantic adversarial examples. These findings highlight the potential of similar color attacks as
a practical and effective adversarial technique.

By addressing both model and human vulnerabilities, this study contributes to the development of
robust defense mechanisms and provides valuable insights into adversarial attack methodologies. The
remainder of this paper is organized as follows. Section 2 reviews related research. Section 3 details the
proposed method and its algorithm. Section 4 presents experimental results, while Section 5 discusses the
implications of these findings and suggests directions for future research. Finally, Section 6 summarizes
the conclusions drawn from this study.

2 Related Work
Adversarial attacks refer to techniques that deceive or confuse deep learning and machine learning

models to improve their performance, induce misclassification, or produce unintended outputs. It is
predominantly used in fields such as computer vision and natural language processing. Adversarial examples
generated because of adversarial attacks serve as input data that manipulate the targeted model to produce
incorrect results; thus, being employed to identify vulnerabilities and enhance stability.

Goodfellow, the creator of generative adversarial networks (GANs) [6], defined adversarial attacks and
proposed methods to identify vulnerabilities and countermeasures for models. In particular, he introduced
the fast gradient sign method (FGSM), which attacks models by adding small perturbations in opposite
directions while searching for an optimal solution using gradient descent [3]. This suggests that the neural
networks are vulnerable to small changes. FGSM is a technique that induces misclassification of models by
adding small-scale noise to images. Noise is generated by applying a sign function to move the image away
from the global minimum in the opposite direction. Fig. 1 shows an instance of FGSM. When the noise
generated by the sign function was synthesized into an image correctly classified as a panda at a very small
scale of 0.007, the image underwent a minimal change; however, the model misclassified it as a gibbon.

Subsequently, DeepFool was proposed, which iteratively queries the input vector to project it onto the
decision boundary and estimates the minimum size of small changes [7], and the Carlini-Wagner (CW)
attack was proposed to optimize the size of small changes and the success rate of attacks to generate the
optimal adversarial examples [8]. Numerous studies on adversarial attacks are ongoing [9–11].

Various modification methods based on these attack techniques were investigated. Unlike conventional
adversarial attacks that seek modifications suitable for specific images, universal adversarial perturbations
operate by exploiting a network’s vulnerabilities or weaknesses in a more general manner [12]. Although the
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FGSM modifies input data by utilizing gradient information, the iterative fast gradient sign method (iFGSM)
generates adversarial examples by iteratively accumulating small changes [13].

Figure 1: FGSM’s process

Research has suggested two main reasons for the existence of adversarial examples: the linearity of the
learning process and statistical reasons for the high dimensionality of input images [3], and the presence of
non-robust features in images [14]. It has been suggested that if the model is trained to separate the robust
and no robust features of the image, the model performs normal classification.

Techniques for defending against adversarial attacks are being actively investigated. A typical defense
mechanism is adversarial learning, which uses adversarial examples as training data to make a model more
robust. However, this approach has limitations because it is a heuristic method and cannot defend against
more powerful adversarial examples. To overcome this problem, certified adversarial robustness techniques
have been proposed that mathematically guarantee that adversarial examples cannot be created within a
certain boundary size. Furthermore, techniques such as randomized smoothing have been proposed, which
involve training with images mixed with noise following a Gaussian distribution, ensuring that the decision
boundary does not move beyond a certain boundary regardless of the direction within that boundary [15].

Adversarial attacks are categorized into white-box, black-box, and no-box attacks, based on the
information available to the attacker regarding the model. White-box attacks utilize internal information
such as the architecture, weights, loss functions, and training data of the target model when the attacker
has full knowledge of them [2]. FGSM falls under white-box attacks [3]. White-box attacks leverage all
information about the model, resulting in high attack success rates; however, they are unrealistic because
it is improbable that the attacker will possess all the model information. Black-box attacks are methods
in which an attacker performs an attack without knowing the internal information of the target model.
The attacker provides input to the target model and observes only the results, collecting and analyzing the
model’s predictions to conduct the attack. There are two assumptions: one that the attacker knows both the
output labels and probabilities and the other that the attacker knows only the output labels. This method
is considered more realistic than white-box attacks. No-box attacks assume an environment in which the
attacker cannot query a target model. Typically, an attacker creates a similar model using only a subset of the
data used to train the model and attempts attacks using transferability [16]. Therefore, it can be considered
the most realistic but challenging attack method to implement.
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Several studies have been conducted proposing black-box attacks, which are considered more realistic
than white-box attacks [17–19]. In this study, we selected the one-pixel attack [20], which is known to achieve
high attack success rates while minimizing changes to the image by modifying only a single pixel, and
semantic adversarial examples [21], which aim to produce adversarial examples that represent the same object
as the original image, as the primary comparison targets.

The one-pixel attack is a black-box attack method in which the output labels and probabilities can be
observed. It generates an initial population of 400 solutions by uniformly sampling each pixel coordinate
(x, y) and pixel color (R, G, B) from the uniform and Gaussian distributions. A heuristic algorithm called
differential evolution was then applied to perform 40,000 attacks per image to find the optimal attack
solution. Fig. 2 shows examples of one-pixel attacks. While the original image labels were ship, horse, and
deer, after the one-pixel attack, the model misclassified the images as car, frog, and airplane, with very high
misclassification probabilities of 99.7%, 99.9%, and 85.3%, respectively.

Figure 2: Examples of the one-pixel attack

Semantic adversarial examples are black box attack methods in which only output labels can be
observed. The RGB color space of the image is transformed into the hue, saturation, and value (HSV) space,
and the color and saturation components are then randomly shifted while keeping the brightness component
unchanged to create adversarial examples. Fig. 3 shows examples of semantic adversarial attacks. While the
original image labels were airplane, automobile, bird, cat, and deer, the model misclassified the images as
dog, frog, ship, bird, and cat, respectively, after transformation into semantic adversarial examples.

Figure 3: Examples of semantic adversarial examples
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3 Proposed Method
In this section, we define similar colors that are used for a new type of attack and propose an algorithm

for similar color attacks.

3.1 Similar Color Space
In this study, “similar color” refers to colors that do not show significant differences in RGB channel

values compared to an existing color. The range of differences in the RGB channel values was specified based
on the criterion that the colors did not show significant visual differences. The range of U1, representing the
range within which pixels in the image change, and U2, representing the maximum changed color value, are
specified to change colors within a specific range. Due to these properties, it is suitable for deceiving both
models and humans.

3.2 Similar Color Attack Algorithm
The algorithm proposed for a realistic and feasible adversarial attack, called a similar color attack, is as

follows (see Algorithm 1):

Algorithm 1: Similar color attack
Input: initial image I, image size w, maximum RGB value difference U1, maximum RGB value difference
U2, maximum number of iterations N
Output: Adversarial image Iadv
1: Initialize n = 1
2: Pass Iadv through the model M to obtain the initial predicted label L∈
3: While n ≤ N do
4: Initialize Iadv = I
5: Randomly select a pixel P in Iadv
6: Save each of the RGB channel values of the selected pixel: C∈ = Iadv (P)
7: Find all pixel positions in Iadv where the RGB difference from C∈ is within U1:

S = {p∣ p is a position in Iadv and ∣Iadv (p) − C∈∣ ≤ U1}

8: For p ∈ S do
9: Randomly set a new RGB values Cnew such that ∣Cnew − C∈∣ ≤ U2
10: Update the RGB values of pixel p in Iadv to Cnew
11: through the model M to obtain the new predicted label Lnew
12: Pass the modified image Iadv through the model M to obtain the new predicted

label Lnew
13: if Lnew ≠ L∈ then
14: return the adversarial image
15: end if
16: Increment n by 1
17: end while

The algorithm begins by passing the input image I into the model M to obtain the initial predicted label
L∈. The adversarial image Iadv is then initialized to be identical to I. A random pixel P is selected from Iadv ,
and its RGB values are stored as C∈. RGB values refer to the individual values of the red, green, and blue
components of the RGB color channel. Next, all pixel positions in Iadv with RGB values differing from C∈ by
at most U1 are identified and collected into a set S. For each pixel position p in S, a new RGB value Cnew is
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randomly generated such that the difference between Cnew and C∈ does not exceed U2. The RGB values of
the pixel at p are then updated to Cnew .

After modifying Iadv (p), the updated image is passed into the model M, which outputs a new predicted
label Lnew . If Lnew differs from the initial label L∈, the algorithm terminates, and Iadv is returned as the
adversarial image. If Lnew matches L∈, the process is repeated, incrementing the iteration count n. The
algorithm continues until either a successful adversarial image is generated or the maximum iteration limit
N is reached.

Fig. 4 shows an example of similar color attacks. A random pixel P is selected from the image recognized
by the model as a cat, and all pixels whose RGB values differ from P by a maximum U1 are found and stored
in S. A random value Cnew is selected within a maximum range of U2 from the RGB value of P, and the RGB
values of the pixels stored in S are uniformly changed to Cnew . The model recognizes the modified image as
that of an automobile.

Figure 4: Example of similar color attack

Owing to the property of a similar color attack, even when repeating the generation of adversarial
examples with the same U1 and U2 values, the same image is not produced. This is because, with each
repetition of the attack, the criterion pixel P and the new RGB value Cnew to be changed are randomly
selected within a maximum range of U2.

4 Experiments
In this section, we introduce experimental methods and results of adversarial attacks using the proposed

similar color attack. We introduce the model attack experiments, followed by the human attack experiments.
We chose the one-pixel attack [20] and semantic adversarial examples [21] as comparison targets.
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4.1 Attacking Models
This method is used to experiment with how well adversarial examples are generated by similar color

attack-deceiving models. The target model is a convolutional neural network, the structure of which is shown
in Fig. 5. The CIFAR-10 dataset [22] was used to train and test the proposed model. The model was trained
with 50,000 images and used early stopping during the training process. The CIFAR-10 dataset was used for
image classification problems, consisting of 10 classes: airplanes, automobiles, birds, cats, deer, dogs, frogs,
horses, ships, and trucks, with each image having a 32 × 32 resolution with three channels (RGB). The model
test accuracy for 875 random images from the CIFAR-10 images not used for training was 80.11%.

Figure 5: Structure of the target model

Model attack experiments were conducted as follows: For model attacks, we randomly selected 500
images from those unused in training that had the same correct label and model output label, that is, images
that the model successfully classified. The maximum number of attacks was limited to 100 using a non-
targeted attack method. Through multiple experiments, it was confirmed that if U1, the range of pixel changes,
and U2, the maximum change in color values exceeds 30, significant visual distortion occurs in the original
image. Therefore, within the range of 30, we selected 10, 15, 20, 25, and 30 to perform a total of 25 types of
model attacks.

In this experiment, we conducted attacks using the same method and settings as those presented by the
original authors of the comparison targets, one-pixel attack, and semantic adversarial example techniques.
The only difference was that we adjusted the number of attacks from a maximum of 40,000 and 1000 to 100
in batches.

Fig. 6 shows examples of successful attacks using this method. “Original” means the original images,
“SC” means the similar color attack, “SA” means semantic adversarial examples, and “OP” means the one-
pixel attack. Whereas the original images represented a cat, airplane, frog, bird, and deer, the model perceived
each adversarial example as a different image.
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Figure 6: Examples of successful attacks by attack type

4.2 Attacking Humans
This method was used to test how well adversarial examples generated by similar color attacks deceive

humans. We randomly selected four of the 25 types of similar color attacks used in the model attack
experiments described in Section 4.1 for human attack experiments. The comparison was the same as that
used in the model attack experiments. The experiment was conducted using Google Forms in a survey format
and involved 107 randomly selected participants who were not associated with this research. All survey
participants were guaranteed anonymity and provided informed consent for the study. Participants were
given a basic introduction to adversarial attacks and were then presented with each image, followed by the
question: “Does the image you are currently viewing appear to be an adversarial example?”.

A total of 105 images were used in the survey, including 60 images, with 15 images for each of the four
types of adversarial attacks, 15 images for one-pixel attacks, 15 images for semantic adversarial examples, and
15 normal images to verify the reliability of the experimental results. None of the images overlap. Fig. 7 shows
examples of the types of images used in the surveys.

The inclusion of normal images was aimed at testing the reliability of the survey. If the accuracy
of classifying normal images as normal is low, it can be inferred that the respondents either lacked an
understanding of adversarial attacks or responded insincerely. The accuracy of correctly classifying normal
images as normal in the human-attack experiment was 88.54%. This indicated that the results of the human
attack experiments were reliable. The results of the human attack experiments on images subjected to
adversarial attacks are presented in the following subsection.
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Figure 7: Examples of images by attack type. (a) Original; (b) One-pixel attack; (c) Semantic adversarial examples. (d)
U1 and U2 values of similar color attack

4.3 Results
The model attack success rates for similar color attacks based on the values of U1 and U2 are listed

in Table 1.

Table 1: Model attack success rate by similar color attacks

U 1

U 2 10 15 20 25 30
10 7.60% 11.80% 16.00% 19.80% 22.80%
15 11.20% 14.60% 18.00% 22.20% 26.00%
20 13.40% 17.80% 21.80% 26.00% 30.20%
25 16.20% 20.00% 24.40% 28.40% 34.40%
30 18.80% 24.00% 27.20% 32.40% 40.94%

As the values of U1 and U2 increase, we observe an increasing trend in the model attack success rates.
This is because, as adversarial examples deviate more from the original images, the model tends to classify
them as different images. The upper-right area of the table shows higher attack success rates than the lower-
left area, indicating that higher values of U1 are more efficient in generating adversarial examples than U2. In
other words, when generating adversarial examples, it is more efficient to make fewer changes in many areas
than to make extensive changes in a few areas. When comparing adversarial examples successfully generated
by a similar color attack algorithm with the original images using the structural similarity index (SSIM) and
conducting an independent sample t-test to determine whether there were any significant differences, no
significant differences were observed between groups. In other words, images generated by a similar color-
attack algorithm can be considered difficult to predict.

The model attack success rates for each attack type according to the maximum attack count N are shown
in Fig. 8. The x-axis represents the maximum attack count N , and the y-axis represents the attack success
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rate. For comparison, a similar color attack used U1 and U2 values of 30. Comparing the results based on N
count, it can be observed that a similar color attack has the highest attack success rate at N = 100 compared
to other attack types.

Figure 8: Attack success rate by number of attacks for each attack type

The experimental results for both the model and human attacks for each attack type are listed in Table 2.
The attack types refer to one-pixel attacks, semantic adversarial examinations, and U1 and U2 values for
similar color attacks. The maximum attack count N was set to 100 for all cases. The numerical results
indicate how effectively each attack type deceived the target, with higher numbers indicating higher attack
success rates.

Table 2: Model and human attack success rates

Methods Attack target

Model Human
OP 21.80% 57.26%
SA 39.79% 60.27%

SC (U1 = 30, U2 = 30) 40.94% 75.08%
SC (U1 = 30, U2 = 10) 22.80% 72.34%
SC (U1 = 20, U2 = 15) 18.00% 72.52%
SC (U1 = 10, U2 = 15) 11.20% 82.68%

The experimental results showed that the success rate of human attacks with similar colors ranged from
82.68% to 72.34%. However, the success rate of human attacks is expected to increase as the values of U1 and
U2 increase, mirroring the trend observed in model attack success rates. The experimental results did not
reveal a proportional relationship between U1 and U2 values and human attack success rates. This suggests
the importance of appropriately considering the optimal success rates of both the model and human attacks
when determining U1 and U2 values.
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Finally, a comparison of the experimental results with the comparison targets, one-pixel attack, and
semantic adversarial examples shows that the model attack success rate of the one-pixel attack is 11.40%, with
a human attack success rate of 57.26%, and the model attack success rate of semantic adversarial examples is
39.79%, with a human attack success rate of 60.27%. The success rate of similar color attacks was higher than
that of semantic adversarial examples and one-pixel attacks. Furthermore, it is evident that the human attack
success rate for a similar color attack technique significantly surpasses that of all the others. Therefore, it can
be concluded that the similar color attack method proposed in this paper has proven to be highly effective
not only in model attacks but also in human attacks.

5 Discussion
Through this study, it is evident that a similar color attack utilizing similar colors is feasible. However,

this study had some limitations. The limitations of this study include the assumption of black-box attacks,
allowing access to the model’s output labels, and restricting attackers to 100 attempts. Therefore, several
potential areas for future research are suggested:

First, research on the defense mechanisms against attack techniques that deceive both models and
humans is required. Additionally, as new adversarial attack methods continue to emerge, research on their
defense mechanisms is anticipated to become essential.

Second, it is essential to devise attack methods where nothing is known about the model. Some
researchers have proposed no-box attack methods that utilize transferability by training new models using
only a subset of the training data used during the training process. However, this assumes the availability of a
portion of the data used during training and thus lacks realism. Therefore, ongoing research assuming most
real-world scenarios where nothing is known about the model is necessary.

Third, although the 100 attack iterations proposed in this study are significantly fewer compared to
existing studies that do not limit attack iterations, attackers need to further reduce the number of attack
iterations by assuming extreme scenarios. In reality, there may be situations in which human intervention
prevents attacks after detecting only a few anomalies, and objects moving rapidly, such as autonomous
vehicles, may require attacks to be successful within a few seconds. Therefore, further research is required to
enable successful attacks using only one attack, even in extreme cases.

Fourth, the CIFAR-10 images used in this study consist of a small number of pixels (32 × 32). Small
images can easily succeed in attacks with minimal changes to a few pixels, compared to larger images.
Additionally, resolution can influence not only the performance of the model but also the visual judgment
of humans. Consequently, research on datasets with larger image pixel values is needed.

Future research should include comparisons not only with the attack methods examined in this study
but also with various black-box attack techniques such as Natural Evolutionary Strategy (NES) attack [23],
Square attack [24], and HopSkipJump attack (HSJA) [25]. These methods demonstrate high success rates
in black-box scenarios and warrant experiments evaluating human detectability. Furthermore, utilizing
advanced standard models like ResNet or VGG-16 could demonstrate the broader applicability of the
proposed method across different architectures.

In this study, RGB channel values were used to define similar color spaces. While this approach is fast
and straightforward, it has limitations in accurately calculating the differences between two colors. Future
research is expected to utilize color spaces such as CIELAB to define similar color spaces with greater
precision and detail.
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6 Conclusion
In this study, we propose a similar color attack method and conduct experiments considering several

realistic attack components. First, we considered black-box attacks, in which the attacker does not have
knowledge of the model’s architecture and can only access the output labels. Second, the number of attacks
was limited to 100 iterations. Finally, to verify whether the modified image results from the attacks can evade
human detection, we conducted experiments involving humans.

The experimental results demonstrate the effectiveness of the proposed method compared to existing
attack techniques. Specifically, similar color attacks achieved a higher model attack success rate than one-
pixel attacks and semantic adversarial examples, even under black-box constraints. Moreover, the proposed
method only requires output labels rather than probability values, making it more realistic in practical
attack scenarios.

Furthermore, the results of human evaluation indicate that adversarial examples generated by similar
color attacks are more challenging to detect compared to those from other methods. This suggests that
similar color attacks not only deceive machine learning models but also effectively evade human perception,
highlighting their potential applicability in real-world adversarial settings.

In conclusion, a similar color attack method utilizing similar colors has proven to be a realistically
achievable attack method, demonstrating its potential applicability in real-life scenarios.
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