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ABSTRACT: This paper proposes a novel cargo loading algorithm applicable to automated conveyor-type loading
systems. The algorithm offers improvements in computational efficiency and robustness by utilizing the concept of
discrete derivatives and introducing logistics-related constraints. Optional consideration of the rotation of the cargoes
was made to further enhance the optimality of the solutions, if possible to be physically implemented. Evaluation metrics
were developed for accurate evaluation and enhancement of the algorithm’s ability to efficiently utilize the loading space
and provide a high level of dynamic stability. Experimental results demonstrate the extensive robustness of the proposed
algorithm to the diversity of cargoes present in Business-to-Consumer environments. This study contributes practical
advancements in both cargo loading optimization and automation of the logistics industry, with potential applications
in last-mile delivery services, warehousing, and supply chain management.

KEYWORDS: 3-dimensional loading; automated loading system; B2C logistics; cargo loading algorithm; conveyor-
type loading

1 Introduction
The impact of the COVID-19 era has shifted the distribution market trends from an offline-centered to

an online-centered model, leading to rapid growth of the e-commerce market [1]. The scale and complexity
of the logistics industry in South Korea are also showing an increase proportional to the growth of the global
logistics sector. A domestic parcel volume statistics study conducted by GenstarMate in 2023 showed that
the annual parcel volume in 2022 surpassed 4 billion boxes, marking a growth rate of approximately 200%
compared to 2013 [2]. On the contrary, the economically active population trends of South Korea reflected
the impacts of low birth rate, social aging, and population decline, emphasizing the necessity of transition to
unmanned and automated logistics [3]. Additional institutional factors such as restrictions on working hours
and the increase in the minimum wage further highlight the necessity of automation in the logistics sector.

Logistics automation can offer various advantages such as enhanced safety and reduced operation
costs to the industry, with optimization of the space utilization being one of the primary effects of logistics
automation. While acquirement of logistics facilities and transportation has been the key objective required
for the expansion of the logistics industry, recent emphasis has shifted towards efficient utilization of existing
facilities and transportation [4]. According to the 2017 annual report conducted by the Ministry of Economy,
Trade and Industry in Japan, the average loading rate of trucks utilized in the Japanese logistics industry was
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only 41%, which required more efficient space utilization methods to compensate for the increasing volume
of the logistics sector [5].

Under these circumstances, the government and various domestic logistics companies are actively
promoting the development and deployment of automation robots for accurately and rapidly handling small
quantities of cargo and for maximizing the space utilization of vehicles. In 2023, the Ministry of Trade,
Industry, and Energy (MOTIE) and the Korea Railroad Research Institute (KRRI) developed a conveyor-type
cargo-loading robot that could automatically load cargo into the loading spaces of vehicles.

The loading process of the aforementioned conveyor-type cargo loading robot consists of three individ-
ual decision-making processes. The first process is cargo information recognition, where the robot utilizes
a LiDAR camera, an RGB camera, and a trigger sensor to acquire depth data of the cargo and to determine
whether the cargo is accessible. The volume, barcode, and damage information of the cargo are also gathered
in this process. The second process is analyzing the condition of the loading space of the vehicle, which
involves acquiring depth image-based loading space information via a camera and voxelating the loading
space. The presence of preloaded cargo in the loading space is detected. The third process is the calculation of
the loading position of individual cargoes. This process requires applications of multiple constraints which
are determined upon previously obtained cargo information and the voxelated loading status information.
The loading order of the automation robot and the optimal loading coordinates of the cargoes are determined.

This study proposes a cargo loading algorithm that supports the calculation of the loading position
during the third phase of the automation process of the conveyor-type cargo loading robot. The proposed
algorithm is designed to achieve the following objectives. The first objective is to develop an algorithm that
can flexibly respond to any arbitrary loading scenarios that could occur in real delivery sites. The second
objective is to minimize the damage taken by the cargo and the third objective is to reduce the calculation
time via utilizing heuristic algorithms that could consider multiple real-life variables such as the condition
of the loading vehicle, delivery routing order, cargo volume, and fragility. We aim to improve the efficiency,
reliability, and robustness of logistics systems by achieving the objectives.

The rest of the paper is organized as follows. Section 2 introduces related works on three-dimensional
loading algorithms. Section 3 defines the problem situation addressed in this study. Section 4 presents
the three-dimensional cargo loading algorithm developed for the problem situation. Section 5 presents
the experimental setup and evaluation metrics for verifying the performance of the algorithm. Section 6
organizes the results of the experiments conducted and Section 7 presents conclusions with further
research directions.

2 Related Works

2.1 Mathematical Programming Models
This study aims to address the problem of allocating (loading) 3-dimensional cargo into a 3-dimensional

rectangular object (container). This problem is commonly referred to as the 3-dimensional Container
Loading Problem (3D-CLP). Mathematical programming models for the 3D-CLP have been continuously
developed, with their major objectives being narrowing the gap between theoretical and real loading
situations. Variables, parameters, and constraints that describe various real-life conditions are utilized,
which increases the computational effort required for obtaining optimal solutions. This limits the size of
problems that can be solved with mathematical programming models, but mathematical programming
models are still powerful methods as they guarantee the optimality of the calculated solution, unlike other
approximation methods.
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Kilincci et al. [6] proposed a variant of the CLP model for loading stacks of plastic cups into containers.
A nonlinear integer programming model was developed, and a decision model for calculating priority
and volume expectations was also proposed to aid the mathematical programming model. Filella et al. [7]
proposed a mixed-integer linear programming model for the Multi-Drop Container Loading Problem
(MDCLP), which could prevent the need for rearranging of cargoes during the unloading process by
considering the delivery sequence while loading. The model was configured with relaxed constraints in the
form of penalty functions which penalize rearrangement of cargoes and considered the volume and the
weight of the cargoes by setting constraints. Rusdiansyah et al. [8] proposed a mathematical programming
model for the Refrigerated Container Loading Problem (RCLP) to minimize the cost of loading temperature-
sensitive items. The model contained constraints to maintain the freshness of goods effected by temperature
changes and considered the weight and stability of the loaded cargoes. The model minimized the combined
cost of temperature maintenance, quality degradation, and loading. Palacios et al. [9] proposed a integer
linear programming model for the Multi-container Loading Problem (MCLP). Conditions such as cargo
stability, weight distribution, and separate loading were formulated into constraints and the model presented
the effect of separate loading conditions on delivery costs. Simamora et al. [10] proposed a mixed-integer
nonlinear programming model for the Stochastic-Demand Cargo Container Loading Problem (SDCCLP).
The proposed nonlinear model put the stochasticity of demand volumes under consideration by setting
appropriate penalties.

2.2 Approximation Algorithms
The high complexity of loading problems limits the capacity of mathematical programming models in

real-life large-scale loading scenarios. Furthermore, additional limitations such as the need for commercial
optimization software licenses and long solution attainment times exist. The problems of mathematical
programming models have led to the development of approximation algorithms for attaining sub-optimal
solutions in a reasonable amount of time.

Huang et al. [11] proposed the Ternary Search Tree-Differential Evolution algorithm (TSTDE) by
combining a differential evolution algorithm with a ternary search tree model to solve the 3-Dimensional
Container Loading Problem (3D-CLP). This approximation algorithm is structured in a dual format, where
the Ternary Search Tree model first generates solutions that are used as initial values of the differential
evolution algorithm. Safak et al. [12] proposed a method to solve the container Loading Problem (CLP) for a
single container using the Large Neighborhood Search (LNS) algorithm. The LNS algorithm can effectively
resolve the local optima problem and broaden the exploration by setting a large variation magnitude during
the neighborhood search process. This allows the exploration of near-optimal solutions that reflect real-world
loading considerations such as load capacity, priorities, and stability. Phongmoo et al. [13] proposed a multi-
objective optimization model for the 3-dimensional Single Container Loading Problem (3D-SCLP), which
deals with item loading scenarios consisting of a single container, and suggested a variant of the Artificial
Bee Colony Algorithm (ABC). The proposed algorithm used the Bottom-Left-Fill (BLF) strategy, which fills
items from the bottom and leftmost space, along with the ABC algorithm’s approach. For the multi-objective
optimization, the Pareto method was incorporated during the algorithm’s execution. Jiao et al. [14] proposed a
novel mathematical programming model and an approximate algorithm for the Container Loading Problem
based on Robotic Loader System (CLP-RLS), where automated robots are utilized for the loading process.
Robot-related constraints were added to the ordinary loading problem’s formulation, and a search-tree based
algorithm was proposed for tackling the problem. Ryu et al. [15] proposed a 3-Dimensional Vehicle Loading
Algorithm (3D-VLA) for loading 3-dimensional cargoes onto delivery vehicles, considering the dynamic
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stability of the loaded structure and the space utilization efficiency. Real-world considerations such as cargo
packaging and delivery order were also formulated.

The proposed loading algorithm in this study considers the dynamic stability, space utilization, and
real-world transportation constraints, and is able to flexibly deal with dynamic loading scenarios that may
arise in the logistics sector.

• Height limitation regarding safety issues, the cargo weight distribution, and the vertical stability are
considered and formulated as hard constraints during the decision process. Consideration of these
dynamic stability factors allows for minimal cargo damaging during the transportation process and
prevents possible safety issues.

• Space utilization was maximized by considering the rotation of the cargo and the preoccupancy state
of the loading space. The loading positions of the cargoes are first initialized by the candidate point
initialization algorithm and are further processed for feasibility.

• Real-world delivery environments were considered by taking into account loading priorities, multi-drop
delivery routing orders, and fragility based on cargo packaging. The characteristics of Business-to-
Consumer environments not present in Business-to-Business environments can be considered by the
proposed algorithm. Deployment in systems with automated loading processes based on conveyor-type
robots is also possible.

Table 1 demonstrates the complete comparison between the approximation algorithms proposed in
related works.

Table 1: Comparison of different approximation algorithms

Dynamic stability Space utilization Transportation

Height
limitation

Weight
distribution

Vertical
stability

Cargo
rotation

Space
occupancy

Packaging
type

Delivery
sequence

Load
priority

Huang et al. X X X X X X X O
Safak et al. X O O O X X X O

Phongmoo et al. X X X O X X X O
Jiao et al. X O O O X X O X
Ryu et al. O O O X O O O O

This study O O O O O O O O
∗Note: Elements identified in the current study are shown in bold.

3 Problem Description
This study proposes a cargo-loading algorithm that supports the decision-making process of the

conveyor-type cargo-loading robot. The automated system is suitable for small and medium-sized distri-
bution centers, and Fig. 1 visualizes the overall procedure of the conveyor-type automatic cargo loading
system. As cargo C1 passes through the cargo information recognizer, cargo information is retrieved, and the
stacking order is determined. Cargo C2 is then loaded onto the vehicle via a conveyor loading system, and
the proposed algorithm aims to efficiently determine the optimal 3-dimensional stacking position that would
maximize the space utilization. The scope of this study covers Business-to-Consumer logistics environment
with multiple destinations, where the demands are composed of small quantities of different types of items.

We set several initial assumptions on the proposed loading algorithm. The first assumption is that the
cargo data obtained through the cargo information recognition process is available upon execution of the
algorithm. The algorithm could determine the delivery routing order based on the cargo’s volume, weight,
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and destination. The delivery routing order is necessary for the determination of the input sequence of the
cargo loading system. The second assumption is that the voxelated loading status of the container is available
upon execution of the algorithm. The information is used to formulate a flexible and practical loading plan
in arbitrary loading scenarios that may occur in real logistics environments. The third assumption is that
the container capacity is sufficiently large so that all cargo can be loaded without exception. The fourth
assumption is that the type of packaging material of the cargo only consists of box, styrofoam, and plastic,
with plastic being the most vulnerable packaging type. With the four initial assumptions, this study focuses
on the optimal use of the loading space and the optimization of the loading sequence.

Figure 1: Visualization of the automated cargo loading system

4 The Proposed Algorithm
The proposed loading algorithm uses cargo information and voxelated loading space information to

determine the optimal loading position of the cargo that is processed by the conveyor. The Cargo Loading
Algorithm for Conveyor-Type Loading System (CLA-CTLS) consists of two phases, each consisting of
two sub-processes. The first phase is the determination phase, which is divided into data preprocessing
and loading simulation processes. The second phase is the evaluation phase, which is divided into metric
evaluation and visualization. Fig. 2 visualizes the CLA-CTLS in the form of a flowchart.

Figure 2: Flowchart of the proposed CLA-CTLS loading algorithm

During the data pre-processing procedure, the loading order of the pending cargo is determined by
the delivery routing order and the packaging type. In the loading simulation process, the optimal loading
coordinate of the pending cargo is calculated based on the occupancy status of the loading space and the
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constraints. Upon termination of the simulation process, the quality of the solution is calculated using the
predetermined evaluation metrics. Lastly, a visualization of the algorithm solution is provided if required.
Through these processes, the proposed CLA-CTLS performs both efficient loading and quality verification,
also optionally providing visual results to improve the logistics process.

4.1 Data Preprocessing
The Data Preprocessing procedure determines the loading order of the pending cargo through two

calculations: First, the delivery routing order is derived from the cargo information. Second, the packaging
type of individual cargoes is considered to additionally adjust the determined loading order.

4.1.1 Derivation of the Optimal Routing Order
The delivery efficiency of cargo loading is largely affected by the loading order of the goods. Specifically,

the delivery efficiency can be maximized by loading the goods in the reverse order of the optimal delivery
sequence, which can be determined in advance.

The CLA-CTLS algorithm presented in this study utilizes optimization techniques for the Vehicle
Routing Problem (VRP) to derive the optimal delivery order and arrange the loading sequence of the cargo.
The VRP model used in this study involves a single depot, a single vehicle without capacity constraints, and
a single tour. This problem setup reflects the characteristics of the well-known Traveling Salesman Problem
(TSP), where a single vehicle leaves the origin, visits all locations, and returns to the origin to complete the
tour. Removal of some of the assumptions enables the extension of the problem situation to more general
scenarios, such as the Single-Depot Vehicle Routing Problem (SDVRP), or the Multiple Capacitated Vehicle
Routing Problem (MCVRP).

Fig. 3 visualizes an optimal delivery tour generated by the CLA-CTLS algorithm for eight example
delivery locations in the Gangnam district of Seoul, South Korea. The numbered points in the figure represent
the delivery locations that need to be visited, and the lines connecting them show the optimal sequence of
the tour. The tour begins and ends at the central depot location, marked as “Depot” on the figure.

Figure 3: Demonstration of an optimal tour generated by the CLA-CTLS
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The optimal delivery order generated by the CLA-CTLS algorithm is as follows: zone 6, zone 5, zone
3, zone 2, zone 1, zone 4, zone 8, and zone 7. The tour is also represented by directed lines in the figure. In
Business-to-Consumer logistics environments with multi-drop deliveries, the proposed loading algorithm
determines this optimal routing order. Since the cargo loading environment follows a Last-In, First-Out
(LIFO) scenario, the cargoes are then loaded in the reverse order of the delivery routing sequence. For the
example in Fig. 3, the loading priority would be: zone 7, zone 8, zone 4, zone 1, zone 2, zone 3, zone 5, and
zone 6.

This reversed loading order ensures that the cargoes are unloaded in the optimal sequence for delivery,
thereby maximizing the efficiency of the overall logistics operation. A detailed description of the Mixed
Integer-Linear Programming (MILP) model for the VRP used in the CLA-CTLS algorithm is provided
in Appendix A.

4.1.2 Packaging Type Separation
The packaging type of cargo consists of paper boxes, Styrofoam, and plastic vinyl. This study assumes

that cargo with vinyl packaging is more fragile than cargo with other types of packaging. There is a high
possibility of deformation or damage to vinyl-packed cargo if it is to be loaded under other cargo. Therefore,
while maintaining the assigned delivery routing order, the cargo is divided into two groups based on the
packaging type: the paper box and Styrofoam group, and the vinyl-packed group. Cargoes belonging to the
vinyl-packed group are loaded only if no more paper boxes or Styrofoam group cargoes are pending.

4.2 Loading Simulation
The loading simulation procedure follows the pseudo code presented in Algorithm 1. The initial status

of the loading space is analyzed to establish initial loading candidate points. If the loading space is empty,
the loading simulation process begins at the left-inner-bottom corner position. If the loading space is
preoccupied, the loading simulation process begins upon the calculated initial candidate coordinates.

The cargoes in the input sequence then undergo the loading simulation process where the cargoes
are placed at possible candidate points. A complete list of candidate points is referred to as L, and the
list of cargoes to be processed by the system is referred to as D. First, the cargoes are multiplexed to
enable consideration of rotation. Before the decision process on an individual cargo, a temporary list TL is
compromised for storing of feasible loading positions for the cargo. Loading constraints are applied to all
the multiplexed cargo dimensions and the points satisfying all the constraints referred to as EPs are stored
in TL. Upon testing of all candidate points, the coordinates stored in list TL are sorted in ascending order
of x, y, and z coordinates. The first item in the sorted list of coordinates is designated as the optimal loading
position of the cargo.

Next, new candidate points are generated along each of the three axes, and these points are adjusted
considering the current occupancy status of the loading space. After adjustment, the new candidate points
are added to the original candidate points list L. Upon adjustment and enlisting of such candidate points,
the candidate point list L is further optimized based on the relationships of the candidate points inside the
list. Any duplicate coordinates are deleted for the efficiency of the algorithm. The process described above
is executed for each cargo in D, and iterated over until the optimal loading position for all the cargoes
are determined.

The following section introduces the algorithms for candidate point initialization, cargo multiplexing,
application of the loading constraints, and generation/adjustment of new candidate points.
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Algorithm 1: CLA-CTLS
L← list of candidate points;
D← list of cargoes;
for each cargo in D do

for each candidate point in L do
Multiplex the cargo;
for each multiplexed cargo do

if meets loading constraints then
TL← EPs;

end
end

end
Sort TL in ascending order of x, y, and z;
Position← TL [0];
Generate new candidate points (Cx1 , Cy1 , Cz1);
Adjust new candidate points (Cx2, Cy2, Cz2);
L ← (Cx2, Cy2, Cz2);
Optimize L;

end

4.2.1 Candidate Point Initialization
In real-world logistic loading and unloading operations, it is common for the loading space of a

vehicle to be vacant upon request on delivery. It is also possible that the loading space be preoccupied by
necessary items or cargoes. To efficiently deal with both situations, this study utilizes the 3-dimensional
spatial recognition technique on the loading space. The 3-dimensional space is recognized in units of 1 cm3,
and the recognition results are provided in the form of Boolean point cloud data. Occupied voxels are marked
with True values and empty spaces are marked with False values. The CLA-CTLS interprets the Boolean data
and utilizes the occupancy information for loading simulation.

Fig. 4 presents a 3-dimensional example to illustrate the candidate point initialization algorithm. The
white cuboids represent the previously loaded cargo, and the red cube represents one of the search areas for
the generation of initial candidate points.

Figure 4: 3-Dimensional example of preloaded cargo
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A full description of the candidate point initialization algorithm in the form of a pseudocode is provided
in Algorithm 2. The candidate point initialization algorithm utilizes the discrete derivative of the simulated
loading space for searching initial candidate points. A list consisting of the candidate points to be considered,
L, is declared upon execution of the candidate point initialization algorithm, and a discrete derivative
function V is additionally generated to map each candidate points to their discrete derivative vectors. Two
determination sub-processes based on vector norms and entry values are utilized in finalizing the initial
candidate points list. First, the discrete derivatives in the direction of x, y, and z axes are calculated and
stored to dx, d y, dz, accordingly. Every point within the loading space is assigned a vector composed of the
discrete derivative values at the according location, (dx , d y, dz). Candidate points are then first determined
based on the L2 norm of the assigned vectors: points where the norm of the assigned vector equals to

√
3

are chosen as the initial candidate points. However, depending on the calculation direction of the discrete
derivative values, not all candidate points may be determined by the L2 norm. For points with assigned
discrete derivative vector [−1, 0,−1]T , the x-directional discrete derivative of the discrete derivative space
formed by the functionV is calculated and stored to dx′. Points satisfying the condition dx′ = 1 are then
added to the finalized candidate point list to form the full list of candidate points.

Algorithm 2: Candidate Point Initialization
Generate discrete derivative function V ;
Initialize candidate point list L;
for each coordinate c in the loading space do

Calculate dx;
Calculate dy;
Calculate dz;
V(c) ← (dx , d y, dz);
if ∥V(c)∥2 =

√
3 then

L ← c;
else if V(c) = (−1,−1,−1) then

L ← c;
else if V(c) = (−1, 0,−1) then

Calculate dx′;
if dx′ = 1 then

L ← c;
end

end
end

4.2.2 Cargo Multiplexing
The cargo multiplexing process manipulates the dimensional characteristics of individual cargoes and

puts the rotation of the cargo during the loading process under consideration. There exist six types of
rotations that keep the cargo orientation orthogonal to the loading space axes. However, the rotation
capabilities of different conveyor-type loading systems may differ and can be categorized into three different
types: systems not capable of rotating cargoes during the loading process, systems only capable of rotating
the cargoes horizontally, and systems fully capable of performing all possible 3-dimensional rotations.
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The CLA-CTLS is a robust loading algorithm with one of its primary objectives being the capability to
deal with any arbitrary real-world loading scenarios. Precisely, the CLA-CTLS can calculate optimal loading
positions of cargoes under different loading systems by adjusting the level of cargo multiplexing. Each cargo
may be multiplexed into 1, 2, or 6 candidates, and the multiplexing level can be set in accordance with the
capability of the loading system utilized.

Upon multiplexing, each candidate corresponds to a specific placement of the cargo considering the
orientation. Loading simulation assessments are made on candidate-level so that the best loading position
and the orientation of the cargoes can be determined, further enhancing the loading space utilization.

4.2.3 Constraint Application
In 3-dimensional loading algorithms, various loading constraints must be considered to ensure the

stability of the loaded cargo. Among the key determinants of loading quality, dynamic stability, static stability,
and fragility are utilized as constraints during the loading simulation process of the CLA-CTLS. To ensure
dynamic stability, a loading height constraint is considered, and a support area constraint is applied to
ensure static stability. Additionally, a weight constraint is applied to consider the durability of the cargo and
minimize the possible damage taken by the cargo during actual deliveries. Incorporating these constraints,
the CLA-CTLS supports safe loading and transportation.

• Height Constraint
The height constraint puts a limit on the maximum possible loading height to ensure the stable loading
of cargo and to prevent instability or tipping during actual transportation. The maximum loading height
cannot exceed the vehicle’s height specification, and any cargo cannot be loaded beyond this predefined
height limitation. In this study, the height limitation was set to 160 cm [16], but the specific value of
the height constraint can be adjusted in accordance with the loading sequence and the dimensional
characteristics of the loading space. Eq. (1) is the full statement of the equation for calculating the
height constraint. z refers to the height of the loading position and hi refers to the height of ith cargo
item. Eq. (1) ensures that the loaded cargo does not exceed the predefined height limitation.

z + hi ≤ height limit (1)

• Supported Area Constraint
The supported area constraint ensures that the loaded items receive a minimum level of side support
from other vertically adjacent items or the bottom of the loading space. This prevents items from falling
onto the floor or other items beneath them upon transportation. Gajda et al. [17] implied that the
supported area should be over a certain proportion(r) of the area of the surface area of the box placed
above it, and in this study, the value of the proportion parameter r is set to 0.8. Eq. (2) is the full statement
of the equation required to calculate the supported area constraint. S2 refers to the surface area of
the stacked cargo, and the equation implies that the sum of the supported area must be greater than
proportion r of S2.

Supported_Area ≥ S2 × r (2)

• Weight Constraint
The term fragility refers to the ability of cargo to support and withstand weight under certain conditions,
representing an important characteristic of weight stability. By considering the fragility of the cargoes,
the CLA-CTLS can calculate appropriate loading positions that prevent damaging of items during
loading and transportation. Specifically, the CLA-CTLS limits the weight of the cargo loaded on top
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of another cargo so that it does not exceed the Maxload value of the cargo below. The concept of
Maxload proposed by Olsson et al. [18] is utilized in this context and Eq. (3) demonstrates the formula
for calculating the weight constraint and the Maxload value of an item. Wi refers to the weight of the
ith item placed on top of the current cargo. The term on the right side is the formula of the Maxload
value, where ECT implies the Edge Crush Test value of the item. Thickness and Perimeter refer to
the thickness and the perimeter of the packaging of the current item, respectively. EnvirFactor is the
environmental factor introduced in [18] required for calculating the Maxload. By applying Eq. (3) on
the cargoes, the pressure applied to individual cargoes in the loading space is observed and maintained
under a level that does not disturb the dynamic stability of the loaded structure.

ΣWi ≤
5.87 × ECT ×

√
Thickness × Perimeter

EnvirFactor
(3)

4.2.4 Candidate Point Generation
In the stage of generating new candidate points which occurs after determination of loading position,

three new candidate points are formed upon the Extreme Points of the cargo. For a specific item n with
dimensions (ln , wn , hn) being placed at position (x , y, z), the EPs are generated by projection onto the
orthogonal axes of the truck. The EPs calculated sequentially along the x, y, and z axes are (x + ln , y, z),
(x , y +wn , z), and (x , y, z + hn), respectively.

4.2.5 Candidate Point Adjustment
There are situations where it may be unlikely that the generated candidate points be utilized in further

loading simulation iterations. Fig. 5 illustrates various scenarios that can occur during the candidate point
generation process. Adjusting the generated candidate points to make them more suitable for cargo loading
helps enhance the algorithm’s performance and reduces the solving time while enhancing the solution quality.

Figure 5: Potential issues regarding candidate point generation

As shown on points P1 and P2 in Fig. 5, some candidate points generated by the candidate point
generation process may be infeasible. To adjust these points, it is necessary to verify whether there exists any
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cargo loaded below the candidate point or if the vehicle floor exists. If there is vacant space present between
the candidate point position and the underlying cargo or vehicle floor, the height of the candidate point is
adjusted accordingly.

When there is cargo loaded above the generated candidate point or when the height constraint is not
met, as illustrated in point P3 of Fig. 5, the candidate point becomes infeasible and has no effect on the result
of the next iteration of the loading simulation process. To adjust such points, it needs to be determined
whether there exists any cargo above the generated candidate points or whether the height constraint is met.
Candidates’ points not satisfying any one of the criteria can be immediately discarded for efficiency.

The pseudocode of the adjustment algorithm which consists of both the height adjustment and
the elimination sub-process demonstrated via the visual representation is presented in Algorithm 3. The
candidate point adjustment algorithm takes a list of 3 candidate points generated upon the decision of the
position of the cargo item concerned. If the height of the candidate point, z, is 0, the candidate point is
on the floor of the loading space and does not require any vertical adjustments. For candidate points not
positioned on the floor of the loading space, their validity are determined by comparing the dimension of the
loading space and their x and y coordinates. Then, the loading space below the candidate points are examined
to make adjustments on the height of the candidate point and ensure that the candidate point be located over
some object that can provide support, which would be either the floor of the loading space or the top surface
of some other cargo.

Algorithm 3: Candidate point adjustment
C ← {Cx1 , Cy1 , Cz1};
for each candidate point in C do

if z = 0 then
Retain the initial candidate point;
break;

if not satisfy vehicle dimensions then
Remove the candidate point;
break;

else
for i = 1 to z do

if loading space is occupied then
z ← z − i + 1;
Break;

end
end

end
end

4.2.6 Candidate List Optimization
After calculation of the optimal loading position of a cargo, the newly generated and previously

accumulated candidate points may encounter situations shown in Fig. 6. Point P1 in Fig. 6 is one of the
candidate points for Box 2. When Box 4 is additionally loaded on top of Box 3, as shown on the right
side, P1 becomes infeasible due to Box 4, necessitating an adjustment to P2. Therefore, a verification and
adjustment process are conducted for all the previously accumulated candidate points. Presence of objects
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above candidate points is recognized and the candidate point’s coordinates are adjusted so that there is no
object above it making it infeasible.

Figure 6: Demonstration of the candidate list optimization process

The pseudocode of the candidate list optimization algorithm is presented in Algorithm 4. For individual
points in the updated candidate point list L, the space above the candidate point is examined. i stands for the
current scanning point of the space above the candidate point, where i ranges from 1 to the difference between
the height of the loading space, H, and the height of the candidate point, z. Continuous occupancy is detected
and upon detection of discontinuity, the location of the candidate point is updated to the discontinuity point
and returned.

Algorithm 4: Candidate List Optimization
L← Candidate Points List;
for each point c in L do

for i = 1 to (H - z) do
if (x , y, z + i) is occupied then

Continue;
else

z ← z + i;
Break;

end
end

end

5 Experimental Setup
Experiments based on 300 virtually generated cargo items and 6 real-world loading scenarios were con-

ducted for evaluation of the proposed CLA-CTLS. The CLA-CTLS was compared against the 3-Dimensional
Vehicle Loading Algorithm [15]. The 3D Vehicle Loading Algorithm is a loading algorithm applicable to
conveyor-type loading systems, and proceeds the loading optimization based on logic trees, without the
cargo multiplexing and discrete derivative-based candidate initialization features provided in the CLA-
CTLS. Mathematical programming models were not implemented in the experiments due to the limitation
of their capabilities to deal with real-world, large-scale instances. Different evaluation metrics for both
space utilization assessment and dynamic stability assessment were used to quantify the performance of the
algorithms under different scenarios.
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5.1 Equipment
The algorithm and the experiments were implemented using Python 3.10. The device utilized during

the experiment consisted of an AMD Ryzen 7 7800X3D central processing unit and an NVIDIA RTX 3060
12 GB graphic processing unit.

5.2 Evaluation
The numerical evaluation process of the CLA-CTLS involves assessment of the quality of the loading

solution calculated by the algorithm. The metrics involved evaluate the spatial efficiency and the dynamic
stability of the loading solution. Evaluation of the spatial efficiency helps ensure that the loaded cargo utilizes
the loading space effectively and minimizes wasted space. Evaluation of the dynamic stability quantifies the
stability of the loaded structure of the cargoes during the actual transportation process.

5.2.1 Space Utilization Evaluation
This study introduced three distinct metrics for evaluating space utilization. Among these, the space

utilization rate stands out as a crucial indicator of spatial efficiency, playing a vital role in optimizing loading
plans within the logistics and transportation sectors. By quantifying how efficiently the available loading
space is being used, the space utilization rate allows us to numerically assess the performance of various
loading algorithms. This quantitative assessment is essential for identifying areas of improvement and for
making meaningful comparisons between different algorithms. Ultimately, enhancing the space utilization
rate can lead to more efficient use of resources, cost savings, and improved operational performance in
logistics and transportation.

• Volume Utilization
The fundamental evaluation metric for assessing the efficiency of a loading solution is Volume Uti-
lization. Volume Utilization is defined as the ratio between the actual volume of the loaded cargo and
the total capacity of the loading space. This metric provides a clear and quantitative measure of how
effectively the available space is being used, which is crucial for optimizing loading plans and achieving
higher operational efficiency. Various studies on loading optimization have adopted volume utilization
as a key performance indicator to evaluate the effectiveness of their proposed algorithms. By examining
volume utilization, researchers can gain valuable insights into the performance of different loading
strategies and identify areas for improvement. In Eq. (4), which is the mathematical expression of volume
utilization metrics, li , wi , and hi , represent the length, width, and height of cargo i, respectively. L, W,
and H represent the length, width, and height of the loading space, respectively.
Due to the unique problem situation addressed in this study, modifications were necessary to ensure
precise evaluation and comparison of the proposed algorithm under various loading scenarios. The
algorithm proposed in this study operates under the assumption that all cargo can be accommodated
within the loading space, as it is presumed to have sufficient capacity. As a result, when applying the
traditional space utilization metric, the same value will consistently be derived regardless of the actual
positions of the loaded cargo. This limitation stems from the assumption that the total volume of the
loading space is always fully utilized.
To address the limitations of the volume utilization metric and to provide a more accurate assessment of
loading efficiency, a new space utilization metric is introduced. This new metric takes into account the
specific arrangement and positioning of the cargo within the loading space, providing a more nuanced
evaluation of how effectively the space is being used. By incorporating these modifications, the study
aims to offer a more comprehensive and precise evaluation of the proposed algorithm’s performance
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across different loading scenarios, ultimately leading to more efficient and optimized loading solutions.

VU = Σ i(li ×wi × hi)
L ×W ×H

(4)

• EP-Based Volume Utilization
When considering a conveyor belt-type loading system, any empty spaces between different cargoes are
regarded as dead space that cannot be utilized. Consequently, a correction process to mark the dead
space is required to accurately assess loading efficiency. The modified space utilization rate is defined as
the ratio between the space occupied by the cargo plus the dead space volume and the net capacity of
the loading space, considering the maximum loading height limit.
As presented in Eq. (5), lmax , wmax , and hmax represent the maximum values of the x, y, and z
coordinates of the loaded structure of the cargo, respectively. L and W represent the length and width
of the vehicle, and Hmax represents the maximum loading height constraint value.
This approach ensures a comprehensive evaluation of loading efficiency, enabling better optimization of
loading plans and improved utilization of available space. It addresses the limitations of traditional vol-
ume utilization metrics by considering the actual spatial arrangement and constraints within the loading
environment, thereby offering a more precise and meaningful assessment of loading performance.

EVU = lmax × wmax × hmax

L × W × Hmax
(5)

• Volume Projection Rate
The concept of dead space allows for an efficient quantification of space utilization while taking into
account the characteristics of conveyor-type loading systems. However, the net volume of dead space
does not always match the volume of the loading space that can be utilized by the loading system. For
a more accurate calculation of the actual dead space that cannot be used for loading actions, a novel
projection-based volume utilization metric was developed.
The newly developed Volume Projection Rate metric quantifies the dead volume of the loading space
based on the projection of the loaded cargo structure onto the yz-plane. Extreme points for the projected
area are determined and utilized during the Volume Projection Rate calculation process. Eq. (6)
demonstrates the full statement of the formula for calculating the Volume Projection Rate of a target
loading solution. Here, the term xEP

yz represents the corresponding maximum value of the x-coordinate
in the original cargo loading space, for each point formed by a projection onto the yz-plane. By summing
the xEP

yz values over different y and z coordinates, the effective amount of occupied volume within the
cargo space regarding the conveyor-type loading system can be determined precisely.L andW stand for
the length and the width of the loading space, respectively, and Hmax represents the maximum loading
height constraint value.
This approach enables a more accurate assessment of dead space by considering the actual spatial
constraints and characteristics of conveyor-type loading systems. By quantifying the dead space more
precisely, the Volume Projection Rate metric provides a better understanding of the space utilization
efficiency and helps identify opportunities for optimization in loading plans.

V PR =
Σy Σz xEP

yz

L ×W ×Hmax
(6)
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5.2.2 Dynamic Stability Evaluation
Two different types of dynamic stability evaluation metrics were introduced in this study. Dynamic

Stability evaluates the stability of the cargoes during the transportation process and ensures that the cargoes
are fixed to their positions.

Touching area is the net surface area of a cargo adjacent to other cargoes or the boundaries of the
loading space defined. Larger touching area minimizes the movement caused by transportation activities
and contributes to prevention of cargo damaging and safety issues. Since the touching area of a cargo is
directly correlated to the dynamic stability of a loading system, evaluation metrics based on touching area
are developed to properly quantify the level of dynamic stability a loading system can offer.

Previous works on evaluation of the dynamic stability of loading systems directly utilized the touching
area of the loaded cargoes. Junqueira et al. [19] formulated the vertical stability and the amount of support
present between vertically adjacent cargoes. Zhu et al. [20] proposed a loading algorithm considering the
touching area of the cargoes for the 3-dimensional Cargo Loading Problem. The objective of the algorithms
was to minimize the transportation cost while maximizing the net touching area. Increased touching area
increased the amount of support present between vertically adjacent cargoes and lowered the amount of
pressure applied to the top surface of the stacked cargo.

• M2
The dynamic stability of a cargo is directly correlated to the number of sides supported by other structure.
For prevention of cargo movement during transportation processes, three or more out of four sides of a
cargo should be supported by other cargoes or the boundaries of the loading space [21]. The M2 metric
quantifies the dynamic stability of a loading system based on the proposed concept of side support.
A mathematical expression of the calculation process of the M2 metric is provided in Eq. (7). Referring
to the set of items as I, xi stands for a binary decision variable indicating whether 3 or more sides of item
i have been supported by other cargoes or the boundaries of the loading space. The summation of xi
values over different items is then divided by the cardinality of set I to represent the M2 metric.

M2 = Σ i∈I xi

∣I∣ (7)

• Direct Side Contact
Potential issues regarding the implementation of the aforementioned M2 metric under real-world
loading scenarios are present. Additional conditions are introduced to further enhance the M2 metric
and to develop a dynamic stability metric more suitable to real loading scenarios. The proposed Direct
Side Contact evaluation metric considers not only the number of the sides of a cargo being support but
also the proportion of the side area being supported by other structures. The ratio of the cargoes receiving
sufficient amount of support to the total number of cargoes is given as the quantification value of dynamic
stability. In this study, the proportion value of 0.75 was used for calculation of Direct Side Contact.
Eq. (8) represents the formulation of the Direct Side Contact metric. Being similar to the mathematical
expression of the M2 metric, the set of items is referred to as I and yi stands for a binary decision variable
indicating whether more than 75% of the side area of item i is being supported by other cargoes or the
boundaries of the loading space. Again, the summation of yi values over different items is divided by
the cardinality of set I to represent the Direct Side Contact metric.

DSC = Σ i∈I yi

∣I∣ (8)
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5.3 Data
The cargo dataset generated for the experiments consists of 300 individual cargoes. 6 separate delivery

zones were introduced and the optimal delivery routing order was determined using the mathematical
programming model introduced in Appendix A. Specific volumetric information of the cargo dataset are
listed in Appendix B.

5.4 Scenarios
Six real loading environment-based scenarios were utilized for the experiments, with the first scenario

representing a scenario where cargoes are loaded into an empty loading space. The rest of the scenarios con-
sist of preloaded cargoes, and numerical evaluation results of the proposed loading algorithm’s performance
on the scenarios were compared against a baseline loading algorithm. The original loading space of the test
scenarios are demonstrated in Fig. 7. The state information of the loading space was converted into voxelated
data with the conveyor-type cargo loading system. The voxelated information of the original loading space
were set as the test scenarios, which were utilized as the input data of the proposed CLA-CTLS.

Figure 7: The original loading space of the test scenarios

6 Results
Numerical evaluation results on the performance of the two loading algorithms are provided. The

numerical comparison was conducted with only the 3D-VLA proposed by Ryu et al. [15], due to the limita-
tions of the research scope of related works and their incapability to deal with the automated conveyor-type
loading system, or even ordinary multi-drop delivery scenarios. As described in Section 2: Related Works,
studies conducted by Huang et al., Safak and Erdogan, Phongmoo et al., and Jiao et al. have not considered
the cargo packaging, which may lead to severe damaging of cargoes packed with fragile material [11–14]. The
algorithm proposed by Jiao et al. is capable of determining appropriate delivery routing orders required in
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multi-drop scenarios, but the study assumes that individual cargoes are packed in advanced onto pallets.
Consequently, the loading decisions and order determinations made by the algorithm lacks the ability to
make decisions on the loading priorities of individual cargoes, not being suitable for Business-to-Consumer
logistics environments with small quantities of high variety of items [14]. All the others are capable of making
priority decisions during the loading sequence determination process but assumes single drop scenarios only,
again making them unsuitable for Business-to-Consumer logistics environments.

6.1 Algorithm Runtime
The time consumption of a loading algorithm is a critical characteristic that must be considered in the

deployment of an algorithmic solution in real-world logistics operations. In high-pressure environments best
noted by distribution centers, where efficiency of the logistics operation is paramount, the time complexity
of an algorithmic solution may significantly impact the overall performance of the system. Table 2 provides a
detailed comparison of the runtime performance of different algorithms across various experiment scenarios.

Table 2: Runtime performance of the algorithms under the experiment scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
3D-VLA 171.98 262.19 264.17 228.00 211.31 251.86

CLA-CTLS (1) 9.86 9.90 9.73 9.98 9.99 9.71
CLA-CTLS (2) 11.39 12.36 11.67 11.62 11.93 11.22
CLA-CTLS (6) 12.92 14.08 14.10 13.83 13.49 13.54

*Note: The results are in units of seconds.

The proposed CLA-CTLS demonstrated a remarkable improvement in time complexity and was able to
find the loading solution of the given scenarios in under 15 s, providing a speedup of over 160 s across all
scenarios when compared to the 3-Dimensional Vehicle Loading Algorithm (3D-VLA).

The 3D-VLA required over 210 s of computation time for the five scenarios involving preoccupied
loading spaces where the complexity of the loading problem is higher. The extended computation time
demonstrated in the experiment may introduce intolerable delays in logistics operations, potentially
resulting in increased net idle time of the system, delayed deliveries and insufficient exploitation of the
available resources.

On the other hand, the computation time of the CLA-CTLS is not limited to the introduced baseline
performance. A trade-off between time complexity and multiplexing level exists, and the computation time
could further be reduced by adjusting the level of cargo multiplexing applied during the loading simulation
process. The flexibility present in the cargo multiplexing process of the CLA-CTLS enables tailoring of
the algorithm’s performance to specific needs, allowing for shifts in the focus of the operation between
latency and optimality. Compared to the 15 s baseline performance demonstrated under full level of cargo
multiplexing, the CLA-CTLS required no more than 10 s of computation time if the multiplexing process was
bypassed, loading the cargoes without considering any rotations just as the 3-dimensional Vehicle Loading
Algorithm would.

6.2 The Candidate Point Initialization Algorithms
The runtime comparison of the candidate point initialization algorithms employed by the two different

loading algorithms is presented in Table 3. The table provides computational performance metrics with two
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key measurements: (1) the computation time (in seconds) required to identify initial candidate points, and (2)
the total number of initial candidate points generated by each algorithm. Both algorithms yielded identical
candidate point configurations, underscoring their algorithmic consistency. The primary distinguishing
factor is computational efficiency, a critical consideration in logistics operations where time optimization
is paramount.

Table 3: Calculation time and generated points of the Candidate Point Initialization Algorithms

Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
3D-VLA 22.75 (12) 22.59 (12) 22.44 (12) 22.10 (4) 22.49 (8)

CLA-CTLS 5.42 (12) 5.33 (12) 5.40 (12) 5.38 (4) 5.36 (8)
∗Note: The results are in units of seconds, and the brackets indicate the number of
candidate points generated.

The first scenario was excluded from the experiment as it involved an empty loading space, a trivial case
where both algorithms would immediately return the origin coordinate (0, 0, 0) as the sole initial candidate
point without requiring complex computational procedures. By omitting this scenario, the analysis focuses
on more substantive and informative loading configurations that meaningfully demonstrate the algorithms’
performance characteristics.

In the remaining five experimental scenarios, the logic tree-based candidate point initialization algo-
rithm consistently required more than 20 s to complete its calculations. This extended runtime stems from
the algorithm’s structural inefficiency, which mandates executing an identical decision process for every
voxelized point present in the loading space. While this approach ensures a comprehensive scanning of the
space with no risk of overlooking potential regions, it proves computationally expensive compared to the
discrete derivative-based candidate point search method employed in the CLA-CTLS.

In contrast, the proposed discrete derivative-based candidate point search method demonstrated a
remarkable improvement in time complexity, completing the search process in less than 6 s across all
scenarios. This method leverages the mathematical properties of discrete derivatives to identify spatial
characteristics of the loading space, enabling rapid candidate point identification. By strategically utilizing
derivative-based calculations, the algorithm drastically reduces the number of logical decision processes
required to identify candidate points.

Consequently, the transition from a logic tree-based search to a discrete derivative-based search
represents a substantial advancement in candidate point initialization algorithm performance. This method-
ological shift dramatically reduced the computation time for the initialization process, with a reduction of
approximately 70%–75% in processing time. Critically, this performance improvement occurred without any
compromise to the accuracy or quality of the algorithmic solutions. The discrete derivative-based search
method efficiently identified all candidate points that the logic tree-based search method could detect,
ensuring solution equivalence while significantly enhancing computational efficiency.

The notable reduction in algorithm runtime has significant implications for real-world logistics opera-
tions. By enabling the candidate point initialization process to be completed in under 6 s, the overall loading
algorithm also benefits from the reduced computation time and the perfectly preserved solution quality
ensures that the CLA-CTLS does not compromise the ultimate loading quality represented by the dynamic
stability and space utilization for faster processing.
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6.3 Space Utilization Evaluation
Space Utilization of the loading solutions generated by the two algorithms was evaluated based on the

introduced space utilization metrics. Volume Utilization was intentionally discarded in this study due to the
specific problem situation. Given the constraints regarding the scenarios considered, the volume utilization
metric would not be able to provide any distinction between different algorithmic results under equivalent
loading space.

Table 4 presents a detailed comparison of the EP-Based Volume Utilization and Volume Projection Rate
achieved by the loading solutions generated by the 3D-VLA and the CLA-CTLS. The comparative analysis
between the 3D-VLA and the CLA-CTLS without multiplexing revealed that the solutions generated by
the two algorithms produced almost identical space utilization except in Scenario 5, where the CLA-CTLS
outperformed the 3D-VLA by an impressive margin of 8 percentage points.

Table 4: Evaluation of the space utilization of the loading algorithms

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

EVU VPR EVU VPR EVU VPR EVU VPR EVU VPR EVU VPR
3D-VLA 0.24 0.11 0.29 0.16 0.30 0.14 0.31 0.15 0.31 0.13 0.31 0.13

CLA-CTLS (1) 0.24 0.11 0.29 0.15 0.30 0.15 0.31 0.15 0.23 0.14 0.31 0.13
CLA-CTLS (2) 0.21 0.11 0.25 0.15 0.27 0.14 0.26 0.14 0.26 0.13 0.25 0.15
CLA-CTLS (6) 0.19 0.10 0.22 0.14 0.23 0.14 0.24 0.14 0.22 0.12 0.22 0.13

The impact of the multiplexing procedure on the space utilization efficiency of the CLA-CTLS algorithm
was further examined. The multiplexing procedure, which involves consideration of multiple orientations
and rotations of cargo items during the loading process, was shown to significantly enhance the algorithm’s
ability to make better utilization of the available loading space.

The numerical effect of the multiplexing procedure on the space utilization efficiency of the loading
algorithm was shown in all experiment scenarios. A higher level of multiplexing, in general, allowed the
CLA-CTLS to achieve superior space exploitation by ensuring that each cargo item was optimally oriented
and placed within the available space with the least amount of consequent dead space generated. This
was evident across all experimental scenarios, where the application of multiplexing generally improved
the performance of the CLA-CTLS. The CLA-CTLS with the highest level of multiplexing (6 rotations
considered) outperformed all other loading algorithms across all scenarios.

6.4 Dynamic Stability Evaluation
The dynamic stability of the two loading algorithms was compared using the introduced M2 and

Direct Side Contact metrics, both of which were introduced to provide a comprehensive evaluation of the
algorithm’s performance under dynamic conditions. Validation of the effectiveness of the proposed Direct
Side Contact metric in real-world loading scenarios was also an objective. By employing both M2 and Direct
Side Contact metrics, this study aimed to numerically express the capabilities of the loading algorithms to
keep the cargoes undamaged under stresses and movements encountered during transportation.

Table 5 presents the quantified values of dynamic stability for the loading solutions generated by
the algorithms across six distinct experimental scenarios. The comparison includes four types of loading
algorithms implemented, evaluating the dynamic stability each can achieve. Algorithms with lower dynamic
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stability can come with unstable loads which lead to cargo damage, increased safety risks, and higher logistics
operational costs.

Table 5: Evaluation of the dynamic stability of the loading algorithms

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

M2 DSC M2 DSC M2 DSC M2 DSC M2 DSC M2 DSC
3D-VLA 0.21 0.26 0.49 0.13 0.31 0.15 0.36 0.13 0.27 0.24 0.34 0.16

CLA-CTLS (1) 0.30 0.24 0.35 0.18 0.28 0.10 0.29 0.26 0.25 0.18 0.35 0.23
CLA-CTLS (2) 0.52 0.33 0.33 0.23 0.40 0.25 0.48 0.17 0.46 0.23 0.58 0.33
CLA-CTLS (6) 0.85 0.55 0.79 0.36 0.75 0.32 0.77 0.30 0.74 0.40 0.75 0.35

Among the loading algorithms implemented, the loading solutions generated by the CLA-CTLS with
the highest level of multiplexing (6 rotations considered) consistently delivered the highest dynamic stability
across all experimental scenarios. This superior performance can be attributed to the algorithm’s ability to
optimize the loading position of the cargo not only in terms of space utilization efficiency but also in terms of
their stability during transportation. By examining multiple orientations and making selections based on the
calculation results minimizes the likelihood of movement of cargoes, ensuring that the cargoes are securely
positioned throughout the transportation process.

7 Conclusion
This study proposes a novel automatic loading optimization algorithm to support the unmanned

operation of conveyor-type loading systems based on automation robots. Our primary aim was to enhance
the adaptability, flexibility, and robustness of the loading optimization method, yielding positive effects in
complex and dynamic logistics environments.

The Business-to-Consumer logistics environment, particularly in South Korea, is highly sophisticated
compared to Business-to-Business logistics. Small quantities of diverse goods are demanded, with each item
varying in type, size, and weight. This variability complicates the problem and limits the capabilities of
conventional optimization methods to resolve loading-related issues in a reasonable amount of time. Given
that latency is critical in the logistics industry, our proposed algorithm significantly reduces calculation
time by utilizing the concept of discrete derivatives. Replacing the decision tree-based search process, the
algorithm is capable of processing cargo swiftly while maintaining solution quality.

We introduced variables that represent real-world logistics conditions and formulated constraints to
enhance the algorithm’s capability to handle arbitrary, rapidly changing real-world loading scenarios. By
considering the uncertainty present in loading scenarios and the occupancy status of the loading space, we
ensured a consistent loading process. For dynamic stability, we introduced height constraints and determined
the optimal loading order based on cargo packaging types.

We also proposed novel quality evaluation metrics for better assessment of the algorithm’s performance.
The Volume Projection rate and Direct Side Contact metrics allow for a quantitative assessment of space
utilization efficiency and dynamic stability. Our approach significantly enhances efficiency, stability, and
transportation safety in the automated logistics industry.

Moreover, our proposed algorithm addresses a critical challenge in the South Korean Business-to-
Consumer logistics sector, which heavily depends on labor expertise for loading processes. This reliance
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results in high variability in loading quality, increased risk of errors, and potential delays, affecting customer
satisfaction. Our automated optimization standardizes the loading process, reducing human error and
variability. By providing consistent, scientifically-optimized loading strategies, we can increase overall
operational efficiency, achieve more predictable loading performance, reduce training overhead, and realize
cost savings through optimized space utilization.

The algorithm offers an automated loading scheme that adapts to diverse scenarios, improving the
overall quality and reliability of logistics operations. It serves as a decision support tool that complements
human expertise rather than replacing it. Our experiments demonstrate the algorithm’s robustness across
varied conditions, indicating its potential for widespread application in dynamic Business-to-Consumer
logistics environments.

In conclusion, the loading algorithm developed in this study is capable of flexibly addressing various
types of cargo and loading vehicles in real-world logistics systems. Although our algorithm considers
mechanical characteristics to enhance solution quality, unforeseen scenarios may still arise. We recommend
further studies to include additional considerations for worst-case scenarios and other uncertainties or
disturbances to enhance the robustness of the automated loading system.
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Appendix A MILP Formulation of the VRP

Notation Description
0 Index of the depot node

i , j Index of the demand node
J Set of all demand nodes, does not include the depot node

Di j Length of the arc connecting nodes i and j
Xi j Binary decision variables; 1 if arc connecting nodes i and j is chosen as a part of the vehicle

route; otherwise 0
yi Integer variables for the subtour elimination constraint
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min Σ i∈0∪J Σ j∈0∪J Di j Xi j (A1)
s.t. Σ j∈0∪J Xi j = 1, ∀ j ∈ J (A2)

Σ j∈0∪J Xi j = 1, ∀i ∈ J (A3)
Σ i∈0∪J Xi h − Σ j∈0∪J Xh j = 0, ∀h ∈ J (A4)
Σ j∈J X0 j = 1 (A5)
Σ i∈J Xi0 = 1 (A6)
yi − y j + (1 + J)xi j ≤ J , 1 ≤ i ≠ j ≤ J (A7)
Xi j ∈ {0, 1}, ∀i , j ∈ J (A8)
yi ∈ Z+, ∀i ∈ J (A9)

The objective of the MILP model for the vehicle routing problem is to minimize the total distance
traveled by the vehicle. Eqs. (A2) and (A3) ensure that every demand node has exactly one incoming arc and
one outgoing arc. Eq. (A4) is the flow conservation constraint regarding the vehicle’s tour. Eqs. (A5) and (A6)
ensure that the tour of the vehicle begins at the depot and ends at the depot. Eq. (A7) contributes to subtour
elimination, and Eqs. (A8) and (A7) restrict the domain of the decision variables.

Appendix B Volumetric Information of the Cargo Dataset

Index Length Width Height Weight Routing order
1 20 15 10 2 3
2 27 21 6 8 4
3 55 10 10 30 1
4 30 20 8 30 1
5 20 15 10 29 5
6 34 10 10 12 5
7 45 30 25 22 1
8 30 20 8 13 6
9 55 10 10 13 2
10 32 8 8 26 6
11 18 16 7 7 3
12 44 30 25 11 3
13 44 36 15 24 6
14 32 8 8 27 4
15 27 21 6 8 1
16 45 30 25 5 3
17 44 30 25 18 3
18 32 8 8 6 4
19 20 15 10 6 6
20 44 30 25 24 2
21 32 8 8 25 6
22 20 15 10 18 1
23 55 10 10 15 4

(Continued)
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(continued)

Index Length Width Height Weight Routing order
24 34 10 10 12 6
25 30 20 8 24 5
26 20 15 10 22 3
27 34 10 10 24 1
28 18 16 7 8 2
29 20 15 10 2 5
30 18 16 7 8 1
31 55 10 10 7 5
32 32 8 8 13 6
33 28 22 7 1 5
34 20 15 10 17 5
35 34 10 10 26 1
36 34 10 10 2 5
37 55 10 10 12 3
38 18 16 7 30 2
39 18 16 7 4 1
40 44 30 25 26 2
41 20 15 10 4 5
42 25 23 10 6 3
43 32 8 8 28 3
44 34 10 10 7 2
45 45 30 25 28 1
46 45 30 25 26 3
47 32 8 8 11 4
48 44 30 25 21 1
49 28 22 7 1 4
50 20 15 10 3 3
51 28 22 7 8 4
52 28 22 7 5 3
53 18 16 7 19 4
54 44 36 15 13 1
55 44 36 15 5 6
56 30 20 8 6 5
57 44 36 15 25 1
58 44 30 25 11 1
59 18 16 7 15 3
60 45 30 25 18 4
61 27 21 6 2 6
62 27 21 6 8 6
63 25 23 10 3 2
64 45 30 25 1 5

(Continued)
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(continued)

Index Length Width Height Weight Routing order
65 30 20 8 10 6
66 30 20 8 18 2
67 25 23 10 2 3
68 25 23 10 10 6
69 55 10 10 1 3
70 28 22 7 10 1
71 32 8 8 11 3
72 44 36 15 11 3
73 20 15 10 17 4
74 44 30 25 26 2
75 34 10 10 8 5
76 55 10 10 21 4
77 32 8 8 23 5
78 28 22 7 7 3
79 34 10 10 17 3
80 45 30 25 16 1
81 44 30 25 4 1
82 30 20 8 14 3
83 55 10 10 21 4
84 44 30 25 20 4
85 34 10 10 23 4
86 34 10 10 16 5
87 55 10 10 13 3
88 18 16 7 13 6
89 34 10 10 14 2
90 25 23 10 10 6
91 25 23 10 6 3
92 27 21 6 1 4
93 18 16 7 23 5
94 44 30 25 29 6
95 55 10 10 24 4
96 45 30 25 6 2
97 44 36 15 15 1
98 44 30 25 7 4
99 44 36 15 30 3
100 45 30 25 24 6
101 18 16 7 13 2
102 44 36 15 1 2
103 27 21 6 7 3
104 44 36 15 13 2
105 18 16 7 21 6

(Continued)
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(continued)

Index Length Width Height Weight Routing order
106 20 15 10 30 1
107 34 10 10 18 6
108 30 20 8 9 5
109 32 8 8 23 4
110 27 21 6 2 4
111 27 21 6 5 2
112 30 20 8 5 1
113 32 8 8 1 3
114 30 20 8 21 6
115 18 16 7 12 2
116 34 10 10 22 2
117 20 15 10 26 3
118 45 30 25 25 4
119 25 23 10 1 2
120 18 16 7 29 6
121 18 16 7 22 6
122 30 20 8 14 2
123 34 10 10 5 3
124 44 36 15 23 4
125 27 21 6 3 1
126 30 20 8 28 2
127 25 23 10 3 3
128 55 10 10 30 6
129 32 8 8 3 2
130 32 8 8 9 6
131 55 10 10 26 3
132 25 23 10 2 6
133 25 23 10 3 1
134 25 23 10 1 4
135 32 8 8 4 5
136 45 30 25 9 5
137 44 36 15 17 4
138 44 30 25 21 4
139 55 10 10 14 4
140 20 15 10 10 3
141 45 30 25 28 5
142 55 10 10 11 4
143 44 36 15 9 1
144 28 22 7 3 1
145 30 20 8 22 5
146 44 36 15 19 1

(Continued)
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(continued)

Index Length Width Height Weight Routing order
147 27 21 6 7 5
148 28 22 7 2 5
149 45 30 25 26 2
150 32 8 8 7 5
151 32 8 8 8 5
152 27 21 6 9 1
153 30 20 8 29 1
154 30 20 8 3 2
155 34 10 10 3 1
156 45 30 25 29 4
157 28 22 7 4 2
158 20 15 10 28 1
159 32 8 8 30 1
160 20 15 10 21 1
161 30 20 8 4 3
162 28 22 7 4 1
163 30 20 8 28 6
164 27 21 6 3 5
165 30 20 8 11 2
166 30 20 8 24 6
167 44 30 25 14 2
168 28 22 7 10 3
169 45 30 25 11 4
170 44 30 25 9 6
171 55 10 10 14 3
172 28 22 7 9 5
173 45 30 25 5 6
174 20 15 10 1 1
175 25 23 10 3 3
176 45 30 25 27 2
177 32 8 8 29 6
178 44 36 15 6 6
179 44 36 15 9 2
180 55 10 10 7 5
181 55 10 10 5 4
182 25 23 10 1 1
183 44 36 15 20 2
184 32 8 8 15 3
185 44 36 15 27 5
186 55 10 10 26 2
187 28 22 7 4 1

(Continued)
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(continued)

Index Length Width Height Weight Routing order
188 30 20 8 5 5
189 20 15 10 22 4
190 32 8 8 10 4
191 55 10 10 13 4
192 55 10 10 2 6
193 44 36 15 25 6
194 44 30 25 13 5
195 30 20 8 14 3
196 27 21 6 8 6
197 44 36 15 12 3
198 44 30 25 14 2
199 20 15 10 23 2
200 44 30 25 11 5
201 44 36 15 22 1
202 28 22 7 9 3
203 45 30 25 24 1
204 20 15 10 6 5
205 34 10 10 12 3
206 32 8 8 29 5
207 27 21 6 3 5
208 44 30 25 24 6
209 30 20 8 21 6
210 25 23 10 4 5
211 44 30 25 19 5
212 55 10 10 26 1
213 25 23 10 1 2
214 32 8 8 15 6
215 20 15 10 14 1
216 18 16 7 19 3
217 25 23 10 8 5
218 44 30 25 11 4
219 20 15 10 5 2
220 20 15 10 14 2
221 55 10 10 30 2
222 18 16 7 10 1
223 34 10 10 9 2
224 34 10 10 1 1
225 44 30 25 9 4
226 34 10 10 8 4
227 30 20 8 1 4
228 28 22 7 5 1

(Continued)
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(continued)

Index Length Width Height Weight Routing order
229 27 21 6 8 2
230 18 16 7 2 4
231 45 30 25 13 5
232 55 10 10 30 6
233 18 16 7 5 5
234 18 16 7 23 2
235 44 30 25 7 4
236 44 36 15 19 5
237 44 30 25 15 6
238 20 15 10 15 2
239 25 23 10 2 5
240 28 22 7 3 5
241 30 20 8 13 5
242 32 8 8 7 1
243 28 22 7 5 6
244 27 21 6 6 2
245 34 10 10 30 4
246 18 16 7 28 4
247 34 10 10 9 5
248 28 22 7 6 6
249 18 16 7 8 3
250 34 10 10 16 2
251 30 20 8 5 6
252 32 8 8 12 6
253 27 21 6 2 6
254 55 10 10 3 6
255 20 15 10 3 3
256 30 20 8 26 5
257 44 36 15 17 4
258 32 8 8 25 5
259 20 15 10 15 4
260 28 22 7 8 1
261 45 30 25 1 4
262 45 30 25 9 4
263 30 20 8 22 3
264 27 21 6 2 4
265 55 10 10 3 3
266 20 15 10 8 3
267 25 23 10 9 2
268 18 16 7 8 1
269 45 30 25 15 1

(Continued)
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(continued)

Index Length Width Height Weight Routing order
270 44 36 15 12 4
271 18 16 7 2 5
272 28 22 7 10 2
273 27 21 6 5 6
274 44 36 15 1 3
275 55 10 10 21 3
276 34 10 10 12 2
277 44 36 15 19 2
278 20 15 10 13 5
279 25 23 10 4 6
280 27 21 6 6 3
281 45 30 25 27 4
282 34 10 10 24 6
283 18 16 7 21 6
284 45 30 25 30 2
285 44 30 25 4 2
286 25 23 10 7 6
287 18 16 7 19 4
288 44 36 15 2 1
289 44 30 25 16 3
290 45 30 25 9 2
291 34 10 10 28 5
292 55 10 10 13 4
293 45 30 25 27 5
294 18 16 7 3 1
295 32 8 8 10 4
296 18 16 7 17 6
297 45 30 25 1 3
298 32 8 8 28 1
299 44 30 25 29 1
300 44 30 25 14 2
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