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ABSTRACT: Due to the intense data flow in expanding Internet of Things (IoT) applications, a heavy processing cost
and workload on the fog-cloud side become inevitable. One of the most critical challenges is optimal task scheduling.
Since this is an NP-hard problem type, a metaheuristic approach can be a good option. This study introduces a
novel enhancement to the Artificial Rabbits Optimization (ARO) algorithm by integrating Chaotic maps and Levy
flight strategies (CLARO). This dual approach addresses the limitations of standard ARO in terms of population
diversity and convergence speed. It is designed for task scheduling in fog-cloud environments, optimizing energy
consumption, makespan, and execution time simultaneously three critical parameters often treated individually in
prior works. Unlike conventional single-objective methods, the proposed approach incorporates a multi-objective
fitness function that dynamically adjusts the weight of each parameter, resulting in better resource allocation and load
balancing. In analysis, a real-world dataset, the Open-source Google Cloud Jobs Dataset (GoCJ_Dataset), is used for
performance measurement, and analyses are performed on three considered parameters. Comparisons are applied with
well-known algorithms: GWO, SCSO, PSO, WOA, and ARO to indicate the reliability of the proposed method. In this
regard, performance evaluation is performed by assigning these tasks to Virtual Machines (VMs) in the resource pool.
Simulations are performed on 90 base cases and 30 scenarios for each evaluation parameter. The results indicated that
the proposed algorithm achieved the best makespan performance in 80% of cases, ranked first in execution time in 61%
of cases, and performed best in the final parameter in 69% of cases. In addition, according to the obtained results based
on the defined fitness function, the proposed method (CLARO) is 2.52% better than ARO, 3.95% better than SCSO,
5.06% better than GWO, 8.15% better than PSO, and 9.41% better than WOA.

KEYWORDS: Improved ARO; fog computing; task scheduling; GoCJ_Dataset; chaotic map; levy flight

1 Introduction
The application areas of Internet of Things (IoT) systems are increasing daily [1,2]. These systems have a

network side where devices collect data and communicate with other devices, and another layer is the server
(cloud) side for processing this collected data [3]. Since these systems usually work with different devices
that do not have many resources in a distributed architecture, efficient and effective management has become
more important. This is among the topics researchers focus on both the network and the server sides. In
addition, since processing large volumes of data increases costs on a single cloud, researchers are directed to
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fog-cloud solutions. Therefore, one of the critical issues in fog and cloud-based environments is the efficient
use of available resources with optimum task distribution [4]. In addition, task scheduling in these systems
affects resource usage, operating costs, and end-user experience. So, in IoT-based systems, it is important to
plan well to figure out which resources will be used, the order in which tasks will be done, and the times at
which they will be done [5]. A general schema of an IoT system in a fog-cloud environment is represented
in Fig. 1.

Figure 1: A General schema of fog-cloud computing

Tasks in the IoT system are generally assigned to Virtual Machines (VMs) on the server (cloud) side, and
the efficiency of running times and resource consumption is ensured [6]. Although the proposed solutions
and algorithms vary based on the planning criteria and the structure of the cloud system, efficiently matching
these assignments and scheduling tasks is a complex Non-deterministic Polynomial-time (NP) hard problem
type [7]. Especially as the number of tasks and VMs increases, the problem becomes more complex and
difficult. Therefore, classical algorithms such as First-Come-First-Served (FCFS) and round-robin (RR)
cannot provide very optimal results, and in this regard, the approach frequently used by researchers for such
problems is Meta-Heuristic (MH) algorithms. An effective task-scheduling mechanism should be able to
shorten the execution and construction time of fog-cloud applications in IoT systems. It also reduces energy
consumption and provides efficient resource utilization. In other words, when task-scheduling problems are
generally considered optimization problems, the focus is on optimizing these three parameters (makespan
time, execution time, and energy consumption) [8]. Therefore, algorithms that provide multi-objectives in
one place are needed rather than a classical single-objective MH.

During task planning, it is necessary to propose a solution with the knowledge that various constraints
exist [9]. One of them is considering the limits of physical resources such as memory, bandwidth, and
processor power. Another challenge is to define the precursor tasks. The third issue is to know whether the
tasks are preconditional to each other. The last and fourth constraints define the tasks that must be completed
within a specific certain time frame. These four conditions must be considered and implemented regardless
of what algorithm is designed [10]. In addition to these constraints, more restrictions can occur depending
on the needs of the system and the user. A similar scenario is valid for output objectives. Providing all these
together means finding a solution to a complex problem. Therefore, MH algorithms have become better than
a good option over classical and precise approaches. Accordingly, an optimal task scheduling mechanism is
needed in a fog-cloud-based IoT system to provide efficient resource utilization, balanced load distribution,
and high-quality service quickly with minimum cost, time, and energy. Detailed explanations about the
problem are included in Section 3.

This study proposes a new task scheduling algorithm that provides the makespan time, execution time,
and energy consumption at the most optimal level, especially considering the minimum latency requirement
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suitable for real-time IoT applications, to cope with the described problems. Accordingly, the MH-based
Artificial Rabbits Optimization (ARO) [11] algorithm is enhanced in a way compatible with the problem
by using Chaotic maps and Levy flight strategies (CLARO). This proposed algorithm addresses some of
ARO’s weaknesses and tries to optimally solve the task scheduling problem in fog-cloud environments.
In this regard, the efficiency of the exploration phase of the algorithm is improved with the approach
based on chaos theory, while the efficiency of the exploitation phase is strengthened with the Levy flight
strategy. In addition, a multi-objective fitness function is defined to address the problem, prioritizing the
parameters of makespan, energy consumption, and execution cost, and the weights of these parameters
are also set at the optimum level. The proposed algorithm is expected to exhibit superior performance
using this admissible and consistent heuristic function. The ARO algorithm, published in 2023, is one of
the best and strongest MH-based algorithms in recent times, and it works effectively and quickly with few
parameters in solving complex problems. Another strength of this algorithm is its balanced and rapid changes
between the exploration and exploitation phases. It is also a suitable choice for the problem considered in this
study since it will quickly find suitable solutions for time-sensitive problems. However, since the population
distribution of the ARO algorithm is random, it can have difficulty in the exploration phase and, therefore, in
the exploitation phase in similar problems. In order to solve this issue, the aim is to increase the population
diversity with the chaotic map and make the algorithm work efficiently. The levy flight strategy allows search
agents to move beyond the local optimal with significant steps and fast convergence while hunting. As a
result, the growing amount and volume of data in IoT systems raises the cost of computing and processing,
which causes delays that cannot be avoided. It is necessary to use the best task-scheduling method possible.
The key contributions of this study can be outlined as follows:

• It addresses the shortcomings of ARO and improves its performance.
• An improved and adaptive ARO algorithm based on chaotic map and levy flight strategies is proposed to

ensure effective task scheduling and maximize Quality of Service (QoS) and IoT end-users’ satisfaction.
• Exploration and exploitation phases and the transition between them becomes even more effective.
• A fitness function is designed for the problem, incorporating makespan time, execution time, and energy

consumption as key parameters.
• It shows superior performance and achieves the best results compared to known metaheuristic-based

algorithms in 30 cases and two special cases.

The remainder of this paper is structured as follows: Section 2 reviews the relevant literature. Section 3
explained the problem statement. Section 4 provides a concise overview of the operational mechanism of
the ARO algorithm. In Section 5, an appropriate fitness function is introduced, along with a comprehensive
explanation of the proposed algorithm. Section 6 discusses the simulation results and their analysis. Section 7
discusses the constraints and challenges of the proposed method, while the final section concludes the study
and suggests directions for future research.

2 Related Works
This section discusses recent studies focusing on task and workflow scheduling challenges in fog-cloud

environments. Classical and deterministic approaches, such as Earliest Time First (ETF), Join Shortest Queue
(JSQ), and Heterogeneous Earliest Finish-Time (HEFT) algorithms, serve as well-known examples. Due to
the complex nature of this problem with numerous parameters, these traditional methods fail to ensure
efficient resource utilization and tend to elevate transaction costs. As explained before, the task scheduling
problem, which is one of the most critical issues for efficient resource utilization, falls into the class of NP-
hard problems, and therefore, MH-based approaches have been used more frequently by researchers recently.
Studies in literature based on this category are examined in this section.
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Bacanin et al. [12] proposed a modified Firefly Algorithm (FA) method to solve the workflow scheduling
problem in a fog-cloud environment with minimum cost and throughput time. This method used the original
FA algorithm, genetic operators, and a semi-reflection-based learning procedure. The results indicated that
it has a faster convergence performance than FA and is successful in finding the best solutions compared to
the other algorithms. Abohamama et al. [13] introduced a modified Genetic Algorithm (GA) to enhance task
scheduling in a real-time fog-cloud environment, emphasizing minimizing cost and makespan. This study
aimed to obtain minimum makespan and execution time by assigning tasks in the most appropriate order.
Jing et al. [14] proposed a discrete PSO-based scheduling algorithm to fulfill the QoS requirements (time,
reliability, and cost) and improve the IoT system’s fault tolerance. However, this method finds good results for
minimal cases and situations. Xie et al. [15] suggested the Non-Local Convergent PSO (DNCPSO) algorithm
to solve the workflow scheduling problem by focusing on the throughput time and cost parameters in a cloud-
based environment. This method added selection and mutation operations to the directed search process.
This way, the probability of falling into local optima was reduced with a faster convergence. Kakkottakath
et al. [16] described a hybrid ACO-PSO algorithm that improves security using the Data Encryption Standard
(DES) algorithm to schedule work more efficiently in the cloud. The fitness function was designed solely
around cost, load, and makespan considerations. Natesan et al. [17] introduced a hybrid algorithm that
combines the GA with the Whale Optimization Algorithm (WOA) to minimize costs and decrease makespan
time. However, a shortcoming of these studies was their exclusive focus on the cloud environment. All these
studies share the common shortcoming of ignoring the energy parameter.

Nikravan et al. [18] proposed an advanced PSO-based framework utilizing a proximal gradient approach
to solve the task scheduling problem in an IoT system. This method effectively addressed the challenges
associated with nondifferentiable convex optimization. However, this method has difficulty finding good
answers because it occasionally faces local optima problems. Yadav et al. [19] presented the Opposition-
Based Chemical Reaction (OBCR) method for task scheduling within fog computing networks. This novel
algorithm integrated heuristic upward ranking and Chemical Reaction Optimization (CRO) techniques
with Opposition-Based Learning (OBL). By employing its four operators, OBCR enhances exploration
and exploitation within the solution space, reducing uptime delays and improving device stability. Cho
et al. [20] developed a hybrid algorithm that integrates Ant Colony Optimization (ACO) and Particle Swarm
Optimization (PSO) to tackle the task scheduling challenge. This algorithm effectively utilized historical
data to adapt to complex environments while requiring minimal domain expertise, allowing it to forecast
the workload of incoming requests. In addition, it eliminates requests that only become viable when the
scheduling process aims to reduce processing time. Hasan et al. [21] proposed a Canonical PSO-based
method to minimize resource allocation problems and optimal makespan time in an IoT-based system.
Although it outperforms traditional list-based scheduling algorithms in comparison, it often falls into the
local optimum trap. Khezri et al. [22] introduced the Data-Locality Aware Job Scheduling in Fog-Cloud
(DLJSF) algorithm for job scheduling in fog-cloud environments, emphasizing data locality to reduce
makespan, improve load balancing, and minimize unnecessary data transfers. A prevalent limitation across
all studies within this category is their insufficient emphasis on execution time and energy consumption
parameters.

Saif et al. [23] focused on enhancing delays and energy efficiency by addressing the QoS objectives for
diverse IoT tasks, proposing the Multi-Objectives Grey Wolf Optimizer (MGWO) algorithm to achieve this
goal. Djemai et al. [24] employed the Discrete PSO algorithm to reduce energy consumption and service
delay within the fog environment. Therefore, a simple decision mechanism featuring a discrete structure
was developed to assess whether resources are allocated to the intended process. A key limitation of this
proposed model is its applicability solely to discrete structures. Movahedi et al. [25] proposed an improved
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WOA (OppoCWOA) method by focusing on energy consumption and time parameters for optimal task
scheduling. However, this method is not efficient in terms of time computation. Milan et al. [26] introduced
a novel task-scheduling algorithm using Bacterial Foraging Optimization (BFO) to minimize idle time in
VMs. This approach utilizes the principles of chemotaxis, reproduction, and elimination-dispersal observed
in bacterial behavior to dynamically assign tasks to suitable VMs within the cloud environment. Ijaz
et al. [27] proposed an Energy-Makespan Multi-Objective Optimization (EM-MOO) algorithm for workflow
scheduling in fog-cloud environments, optimizing energy consumption and makespan. It achieved up to
50% energy reduction with minimal impact on completion times through adaptive bi-objective optimization
and frequency scaling. Kurkreja [28] explored task scheduling in cloud computing and IoT networks using
metaheuristic algorithms. Multiswarm PSO outperforms other methods by reducing memory costs and
energy consumption, making it ideal for dynamic IoT environments with efficient resource allocation and
energy-aware solutions. The common shortcoming of all the studies described in this category is that they
do not focus on the task execution cost parameter.

Gowri et al. [29] proposed a hybrid metaheuristic algorithm, OSS-GSA, inspired by the Oppositional
Sparrow Search and Gravitational Search Algorithms to balance system load and enhance overall system
performance. This approach improved energy consumption and response time, demonstrating better
effectiveness in optimizing response time than energy metrics. Mangalampalli et al. [30] proposed a WOA-
based task scheduling method focusing on energy and execution time parameters. Although the results are
promising, its early convergence sometimes causes local traps. These studies did not address the aspects of
QoS and makespan parameters.

Bitam et al. [31] presented an algorithm based on bees’ behavioral patterns to tackle the task allocation
challenge within a fog computing environment. They aimed to achieve an optimal equilibrium between the
time required to complete tasks and the storage demands of fog services created by mobile users. However,
a limitation of this research is its exclusive focus on the fog layer, neglecting the collaboration between fog
and cloud layers. In addition, the fitness function is constructed around a single objective. Subramoney
et al. [32] proposed a Multi-Swarm PSO (MSPSO) algorithm to tackle the scheduling problem within a fog
architecture, optimizing energy, cost, delay, and load balancing parameters. These studies overlook QoS and
user satisfaction issues while failing to address dynamic task scheduling and prioritization.

In addition to the current shortcomings, most of the studies in the literature were conducted on a
small number of scenarios and data. On the other hand, instead of the actual dataset, some studies used
datasets that were either private datasets or created by researchers. This study proposes a new method on a
comprehensive real dataset, focusing on all parameters and considering users’ satisfaction. The characteristics
of some of the existing MH-based studies in literature are summarized in Table 1.

Table 1: Current studies on task scheduling problems in IoT-based systems

Study Year Used MH algorithm Focus on Advantages Disadvantages
[12] 2022 Enhanced firefly

algorithm (Genetic
operators & quasi-

reflection-based
learning)

Workflow scheduling
in cloud-edge

environments to
minimize cost and

makespan

+Enhanced solution
quality and

convergence speed
+Reduces makespan
and cost compared

to other
state-of-the-art

methods

- Increased
algorithm

complexity
- Requires careful

tuning of additional
control parameters
- Do not focus on
energy parameter

(Continued)
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Table 1 (continued)

Study Year Used MH algorithm Focus on Advantages Disadvantages
[13] 2023 Improved GA for

IGA-POP
Improved Genetic

Algorithm for
Permutation-Based

Optimization
Problems

(IGA-POP)

Provides a balance
between makespan
and execution cost
+Achieves optimal

solutions in all tested
scenarios, flexible
trade-off through
balance coefficient

- Relatively complex
implementation

- Potential for higher
computational

overhead in
large-scale scenarios

- Do not focus on
energy parameter

[17] 2020 Hybrid GA-WOA Minimizing
makespan and cost
in task scheduling
for heterogeneous
cloud computing

environments

+Improves
makespan and cost

compared to classical
WOA and standard

GA
+Provides

near-optimal
solutions with better

scalability

- Increased
complexity due to

hybridization; higher
computational

overhead compared
to simpler methods
- Do not focus on
energy parameter

[18] 2023 Opposition-Based
Chemical Reaction

Optimization
(OBCR)

Task scheduling in
fog computing

networks to
minimize

service-time latency
and improve stability

+High population
diversity, fast
convergence

+Better exploration
and exploitation,

improved stability
and latency

performance
compared to other

techniques

- Increased
computational

complexity due to
hybridization

- Potential scalability
issues for extremely
large-scale problems

- Do not focus on
execution time and
energy parameters

[22] 2024 Heuristic
Data-Locality Aware

Job Scheduling in
Fog-Cloud
Algorithm

Job scheduling in
fog-cloud

environments with
data locality
awareness

+Reduces makespan
significantly

+Improves load
balancing

+Decreases network
load and

unnecessary data
transfers

- Requires additional
computational
overhead for

managing data
locality and job

distribution
- Do not focus on the

main three
parameters together

[27] 2021 Energy-Makespan
Multi-Objective

Optimization
(EM-MOO)

Workflow scheduling
in fog-cloud

environments to
optimize energy and

makespan

+Achieves a
significant reduction

in energy
consumption with
minimal impact on

makespan
+Incorporates

adaptive bi-objective
optimization for
better trade-offs

- Increased
computational

complexity
compared to simpler

heuristics.
- Requires

fine-tuning of
parameters for

specific workflows.
- Do not focus on the

execution time
parameter

(Continued)
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Table 1 (continued)

Study Year Used MH algorithm Focus on Advantages Disadvantages
[30] 2022 WOA Task scheduling in

cloud computing to
minimize the

makespan, energy
consumption, and
power cost at data

centers

+Multi-objective
optimization,

reduced makespan,
and energy

consumption
compared to PSO

and Cuckoo Search
+Effectively maps

tasks based on
priorities

- Increased
complexity due to

priority calculation
and multi-level

optimization
- Potential scalability
challenges with large

workloads
- Do not focus on the
makespan parameter

[32] 2022 Multi-Swarm
Particle Swarm
Optimization

(MS-PSO)

Scientific workflow
scheduling in

cloud-fog
environments to

optimize makespan,
cost, energy

consumption, and
load balancing

+Better exploration
and avoidance of

premature
convergence
compared to

canonical PSO
+Stable and reliable

performance,
competitive with
other algorithms

such as GA-PSO and
DE

- Increased
computational cost

compared to
canonical PSO

- Slightly longer
execution times than
simpler algorithms

[33] 2023 Improved Artificial
Hummingbird

Algorithm (CODA)

Task scheduling in
fog computing with

reduced energy, cost,
and makespan

+Efficient results
+Avoids local

optima effectively
and improves

exploration ability

- Increased
computational

complexity
- Potential resource

overhead when
applied to large-scale

dynamic systems
[34] 2023 NSGA-II, Bees

Algorithm,
NSGA-II-MMDE,

BA-MMDE

Optimization of
energy consumption

and latency in
IoT-fog-cloud
environments

+High performance
in energy

consumption and
delay optimization
+fast convergence

rate, lower variance,
and stable results

- NP-hard nature of
the problem makes
traditional methods

impractical
- BA-based methods
show lower efficiency

compared to
NSGA-II

(Continued)
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Table 1 (continued)

Study Year Used MH algorithm Focus on Advantages Disadvantages
[35] 2024 Hybrid GA-SA,

GA-PSO
IoT service

placement in
fog-cloud systems;

optimizing
makespan, energy
consumption, and

cost

+Achieves a good
trade-off between
makespan, energy,

and cost
+Outperforms
state-of-the-art
algorithms in
performance
+Scalable and
effective for

heterogeneous IoT
environments

- Higher
computational

complexity due to
hybridization

- Limited scope for
very large-scale IoT

networks

[36] 2023 Krill Herd Algorithm Workflow scheduling
in fog-cloud
architecture;

optimizing energy
consumption,

makespan, and cost

+Reduces energy
consumption
+Simultaneous
optimization of

makespan and cost
+Enhanced

population diversity
and fast convergence

- Time-consuming
initialization and
optimization for
complex DAGs

- Similar
performance to

other methods with
lower task numbers

or low CCR

3 Problem Statement
Task scheduling involves the optimal execution of a collection of tasks on designated processors

or resources, factoring in the QoS parameters provided to users during task distribution in a fog-cloud
environment. Efficient allocation of these resources can maximize the utilization of network parameters
such as bandwidth and energy, preventing resource failures due to excessive workloads while upholding the
QoS guarantees. Therefore, the optimal task scheduling method will minimize the makespan and execution
time, and the energy consumption costs, thus ensuring efficient resource utilization and increasing user
satisfaction by maximizing the QoS rate. Metrics including makespan, execution time, and energy consump-
tion characterize this NP-hard problem. Given that a simple and comprehensive solution mechanism can
greatly enhance resource utilization, this study presents an improved ARO algorithm to efficiently allocate
and schedule tasks within the system. When defining the relevant problem, it is essential to consider specific
inherent constraints and conditions, as these will underpin effective problem-solving. The devices involved
have particular limitations regarding RAM, CPU, and storage capacity. Therefore, the cumulative RAM,
CPU, and storage requirements for all scheduled tasks must remain within the devices’ available resources.
In addition, the total execution time for each task must comply with its specified deadline, ensuring it does
not exceed this limit. Mathematically, the task scheduling problem can be formulated as follows.

3.1 Definition of Makespan Time Parameter
A primary objective of task scheduling is to minimize the total completion time, commonly referred

to as makespan, or to enhance resource efficiency. Makespan is defined as the total duration of a task
from its initiation to its conclusion, encompassing the complete time taken to execute a sequence of tasks.
This parameter is critical in task scheduling, as minimizing makespan directly correlates with maximizing
resource utilization. The makespan comprises several components, including processing time, queuing
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delays, and transmission time, and its calculation is articulated through Eq. (1). In addition, the overall
completion time for a given schedule is denoted by ‘Mt ’, which is derived using Eq. (2), drawing inspiration
from the methodology outlined in [35].

Mt (i) = ∑n
i=1

Te(i)
y j

+
Tc(i , j)

B
+ Tq(i) (1)

Mt = Max (Mt (i)) ; i = 1, . . . , k (2)

where ‘Te’ is the time necessary to compute the ‘ith’ task, ‘yi’ is the computing power of the ‘jth’ VM. ‘Tc’ is
the time required to transfer and receive a service from the ‘ith’ node on the ‘jth’ VM, ‘Tq’ is the anticipated
duration for resource allocation to the task, which is assumed to be zero in this study, and ‘B’ is the network
bandwidth available between the resources where tasks are allocated.

3.2 Definition of Execution Time Parameter
Another key evaluation parameter is execution time (cost). This parameter represents the service cost

for executing various tasks within an IoT application. The total cost of service execution is calculated based
on the transaction costs incurred in the fog-cloud layer, the makespan time, and the resource cost. This
calculation employs hours as the time unit, as outlined in Eq. (3).

ECt (i) = yp j × tp j × Mt (i) (3)

where ‘ypj’ and ‘tpj’ are the costs associated with the processing and transmission units on the resource ‘j’
under observation.

3.3 Definition of Energy Parameter
Another critical parameter examined in this study is energy consumption. In IoT systems, architecture

typically employs inexpensive and compact devices designed for specific application domains. Therefore,
these devices often face power constraints, making efficient energy usage paramount. Therefore, monitoring
the energy consumption of VMs is essential to ensure optimal performance and resource efficiency. This
analysis is conducted in accordance with Eq. (4), as outlined in the literature [36]. It is vital to consider the
machines’ busy and idle states, as articulated in Eqs. (5) and (6), emphasizing the need for minimal energy
consumption during idle periods to ensure accurate calculations.

Et (i) = Ebus y (i) + Eid l e (i) (4)

Ebus y (i) = ∑n
i=1 d × v2

j ,s × f j ,s × ECt (i) (5)

Eid l e (i) = ∑n
i=1 d1 × v2

j ,min × f j ,min × ICt (i) (6)

where ‘d’ is a constant associated with the device’s dynamic power usage, which depends on its capacity,
‘V2

j,s’ and ‘f j,s’ are the voltage and frequency at the ‘sth’ level of the ‘jth’ virtual machine, ‘V2
j,min’ and ‘f j,min’

are the minimum voltage and frequency for the same machine, and ‘ICt ’ is the idle duration of the relevant
fog resource.

4 ARO: Artificial Rabbits Optimization
The Artificial Rabbits Optimization (ARO) algorithm is an MH optimization algorithm inspired by the

hiding and foraging behavior of rabbits. Although it was introduced recently, it has been used in many studies
based on its special characteristics and multipurpose compatible model [37–39]. This algorithm is inspired
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by three behavioral models of rabbits. It uses the foraging properties of rabbits in nature for the exploration
phase, hiding features for the exploitation phase, and an energy shrink strategy for transitions between the
two phases. This study section outlines the ARO algorithm’s working mechanism using mathematical models.

4.1 Initialization Phase
In this algorithm, the initial distribution of the population is generated randomly. Each individual

(rabbit) in the population seeks optimal solutions using a fitness function designed for the problem during
every iteration. The agent that identifies the best solution in each iteration leads the others, enhancing the
quality of the solutions as the iterations advance. The role of each agent in the corresponding function is
detailed in Eq. (7). Therefore, there is a matrix consisting of agents and problem’s parameters. Fig. 2 illustrates
the ARO algorithm with a two-dimensional matrix comprising agents and problem dimensions.

FX =
⎡⎢⎢⎢⎢⎢⎣

f (X11 ⋅ ⋅ ⋅ X1m)
⋮ Xi j ⋮

f (Xn1 ⋅ ⋅ ⋅ Xnm)

⎤⎥⎥⎥⎥⎥⎦n∗m

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
⋮
fn

⎤⎥⎥⎥⎥⎥⎥⎥⎦n∗1

(7)

where ‘n’ is the number of rabbits, ‘m’ is the dimensions of the problem, ‘Xij’ is the position of rabbit ‘i’ in
dimension ‘j’, [Xi1, Xi2, ..., Xim] is the positions of the ‘ith’ agent, and the f [Xi1, Xi2, ..., Xim] is the value found
by the agent based on the fitness function.

Figure 2: Matrix of ARO algorithm

4.2 Exploration Phase
The algorithm’s exploration phase is based on rabbits’ foraging strategies. In nature, rabbits stealthily

eat grass near the burrows of other rabbits while hunting, which makes them difficult to be found by
predators. Using this feature, the algorithm updates the position of each agent by comparing it to another
randomly selected individual, which introduces a disturbance factor. The working model of this structure is
mathematically presented in Eq. (8). This stage helps the ARO algorithm escape local optima and conduct a
more effective global search across the search space.

V⃗i (t + 1) = X⃗ j (t) + R. (X⃗i (t) − X⃗ j (t)) + round(0.5 + (0.05 + r1).n1; i , j = 1 . . . .n, i ≠ j, n1 ∼ N(0, 1) (8)

where ‘Vi(t + 1)’ is the candidate position of the ‘ith’ rabbit at the time ‘t + 1’ (the next iteration), ‘Xi’ and ‘Xj’
are the positions of the ‘ith’ and ‘jth’ rabbits, respectively, ‘t’ is the current iteration, ‘T’ is the total number
of iterations allowed, ‘r1’, ‘r2’, and ‘r3’ are uniformly distributed random numbers ranging from 0 to 1. In
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addition, ‘n1’ adheres to a standard normal distribution, and ‘round’ signifies the operation of rounding to
the closest integer. The parameter ‘R’ simulates the running behavior of rabbits, which is calculated based
on Eq. (9).

R = L.C (9)

L = (e − e(
t−1
T )

2
). sin(2πr2) (10)

C (k) =
⎧⎪⎪⎨⎪⎪⎩

1 i f k = g(l)
0 otherwise

; k = 1 . . . d , l = 1 . . . ⌈r3.d⌉, g = rand perm(d) (11)

where R is the running operator. ‘L’ specifies the movement speed (running length) during the position
update process, determined based on Eq. (10). As iterations proceed, this parameter decreases, allowing
individuals to take shorter steps. ‘C’ is the mutation process that individuals undergo during foraging, which
allows some individuals to randomly select regions, aiding the global search (Eq. (11)). Also, the ‘randperm’
generates a random permutation of the integers from 1 to ‘d’.

4.3 Exploitation Phase
The ARO algorithm generates random nests for individuals in every direction during each iteration,

drawing inspiration from the rabbits’ natural behavior of building continuous and random burrows. In this
process, the rabbits randomly select one of the ‘d’ burrows to hide in and create additional tunnels for further
passage. Thanks to this feature, rabbits try to escape from predators. A simple example of the model, where
the ‘ith’ rabbit moves to the ‘jth’ nest, is shown in Eq. (12). This model establishes ‘d’ burrows across each
dimension within the rabbit’s surrounding area.

b⃗i ,u (t) = X⃗i (t) + H.gu .X⃗i (t); i = 1 . . . n, j = 1 . . . d (12)

where ‘bi,j’ is a randomly selected hiding burrow, ‘H’ and ‘gu’ are calculated based on Eqs. (13) and (14), and
the parameter ‘H’ is the hiding factor, which decreases linearly from 1 to 1/T with a random disturbance
applied for iterations [40].

H = T − t + 1
T

.n2; n2 ∼ N (0, 1) (13)

gu (k) =
⎧⎪⎪⎨⎪⎪⎩

1 i f k = ⌈r5.d⌉
0 otherwise

; k = 1 . . . d (14)

In this regard, although the number of slots is significant in the first iterations, the number of
neighborhoods decreases inversely as the iterations progress. Therefore, at this stage, the ‘nth’ individual
randomly chooses one of the ‘d’ slots and updates its position based on Eq. (15).

V⃗i (t + 1) = X⃗i (t) + R. (r4.b⃗i ,u (t) − X⃗i (t)) ; i = 1 . . . n (15)

Therefore, once one of the stealthy foraging or random hiding techniques is effectively executed, the
position update for the ‘nth’ rabbit is conducted using Eq. (16). If the fitness value associated with a rabbit’s
candidate location surpasses that of its current position, the candidate location is selected as the following
position for that rabbit. In such cases, either Eqs. (8) or (14) will be utilized, contingent upon the specific
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circumstances. In contrast, the rabbit will retain its existing position if the candidate location does not yield
a superior fitness value.

X⃗i (t + 1) =
⎧⎪⎪⎨⎪⎪⎩

X⃗i (t) i f f (X⃗i (t)) ≤ f (V⃗i (t + 1))
V⃗i (t + 1) otherwise

(16)

4.4 Transition between Phases
In the ARO algorithm, the most obvious and specially designed model is that the real-life characteristics

of rabbits inspire the transition between phases. For this, the Energy Shrink feature is defined. In the real
world, rabbits change their status due to energy loss while grazing or hiding, and they do the opposite. Thanks
to this feature, the algorithm is provided with a balance between the exploration and exploitation stages. In
the algorithm, the ‘L’ and ‘C’ parameters are used. In addition, the ‘A’ parameter (energy factor) presented
in Eq. (17) is an important metric. This factor is inversely proportional to the number of iterations. So, if
A(t) > 1, rabbits will be forced to explore; otherwise, they will try to exploit. where ‘r6’ is a random number
in [0, 1]. The working of this concept is depicted in Fig. 3.

A(t) = 4(1 − t
T
) ln 1

r6
(17)

Figure 3: Exploration and exploitation behavior of ARO based on energy shrink [40]

5 Proposed Method
This section presents various dynamic strategies for improving the ARO algorithm, and a fitness

function is defined under the problem defined in the previous section. Accordingly, it is planned to solve the
task scheduling problem with an admissible and consistent heuristic function defined by the novel proposed
improved ARO algorithm.

5.1 Chaotic Levy Flight ARO: CLARO
This section proposes an improved ARO algorithm by adding the chaotic map and levy strategies

to amend is proposed in terms of amending the hiding and foraging mechanisms to increase exploration
capability, reduce the possibility of local optima trapping, and increase the convergence speed. In this regard,
each strategy and its role in the proposed algorithm and its mathematical model are explained. The general
working schematic of the proposed method is presented in Fig. 4. It illustrates architecture addressing the
task scheduling problem in an IoT-based system. The architecture consists of two main components: the
network (IoT device) side and the server (cloud) side. On the network side, tasks are generated and collected
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from IoT devices and transmitted to the server side. On the server side, incoming tasks (Task1, Task2, ...,
Taskn) are allocated to virtual machines (VM1, VM2, ..., VMm) for processing. The assigned tasks to VMs
are managed by the proposed algorithm, which leverages chaotic maps and Levy flight strategies. This
approach involves two primary phases: the initialization phase and the exploration-exploitation phase. In
the initialization phase, the solution space is organized by helping the chaotic maps to establish an initial
distribution between VMs and tasks. Adaptive search and refinement processes are employed during the
exploration and exploitation phase to identify the optimal task-virtual machine assignment using the Levy
flight strategy.

Figure 4: Working mechanism of CLARO

5.1.1 Gauss/Mouse Chaotic Map
The concept of chaos refers to the unpredictable behavior of a complex system, yet it has a form of

internal harmony [41]. From a mathematical perspective, chaos refers to deterministic randomness exhibited
by nonlinear, dynamic systems that do not converge to a stable state. This concept is introduced into the
ARO algorithm to ensure that the algorithm performs a good scan in the global space, effectively realizes the
initial population formation, and avoids the local optimum trap. Enhancing population diversity improves
the likelihood of exploring the global search space, safeguarding the algorithm from getting trapped in local
optima. Chaotic maps are based on this theory and help ensure equal population distribution. In this study,
Gauss/Mouse chaotic map was determined that the map most compatible with the working nature of ARO is
the Gauss/Mouse map after various experiments and also inspired by [42]. This chaotic map has been chosen
after various experimental evaluations and is inspired by its robust performance in enhancing exploration
capabilities. The Gauss/Mouse map is particularly effective in ensuring a well-distributed initial population
across the search space, which is crucial for the algorithm’s success in solving complex optimization problems.
The mathematical expression of this map is represented in Eq. (18). A large portion of the search area
can be scanned with this map, providing more compatibility and better performance for ARO than other
maps. It is important to highlight that during the initial population generation using the chaos map, careful
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consideration must be given to the problem’s upper and lower bound limits. This mitigates the risk of
agents clustering in suboptimal regions, which can hinder performance. In addition, the exploration phase
is refined by dynamically adjusting the population distribution, allowing the algorithm to adapt to various
problem complexities. In this regard, Eq. (8), presented for the exploration phase, is revised to Eq. (19). This
adjustment reflects the integration of chaos theory into the agent’s positional updates, ensuring enhanced
global search capabilities. Implementing the chaotic map introduces an element of randomness that is
deterministic yet non-repetitive, further reinforcing the algorithm’s ability to navigate complex solution
landscapes.

CG = Xi+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 Xi = 0
1

mod (Xi , 1) , otherwise
(18)

V⃗i (t + 1) = X⃗ j (t) + R. (CG .X⃗i (t) − X⃗ j (t)) + round(0.5 + (0.05 +CG).n1 (19)

5.1.2 Levy Flight Strategy
Levy flight is a random walk methodology defined by a combination of short steps and occasional

long jumps, adhering to a probability distribution referred to as the levy distribution. This strategy draws
inspiration from natural foraging behaviors observed in animals, where sporadic long-distance movements
allow for a broader exploration of the environment. This strategy aims to facilitate rapid convergence in
ARO while ensuring efficient exploration through a balanced interaction between the two phases. Short
steps ensure the algorithm performs local searches around promising solutions, while infrequent long jumps
enable the search agents to escape local optima and explore distant regions of the search space. This dynamic
approach helps maintain diversity in the population and accelerates convergence toward the global optimum.
In addition, this strategy aims to increase the flexibility of the exploitation phase. Eq. (20) expresses Lévy
distribution.

LF = S−1−γ ; 0 < γ ≤ 2 (20)

s = w
∣v∣

1
γ

; w ∼ N (0, α2
w), v ∼ N (0, α2

v)

αw =
⎛
⎜⎜⎜
⎝

Γ (1 + β) × sine (πβ
2
)

Γ (1 + β
2
) × β × 2(β−0.5)

⎞
⎟⎟⎟
⎠

, αv = 1

where ‘s’ is the step length, ‘w’ and ‘v’ are derived from Gaussian distributions with a mean value of 0. The
variances are denoted by α2

w and α2
v , while ‘Γ’ is the standard Gamma function. The correlation parameter,

denoted as ‘β’, is set to a value of 1.5. Applying this strategy, the exploitation model outlined in Eq. (15) is
updated to Eq. (21).

V⃗i (t + 1) = X⃗i (t) + R. (LF .b⃗i ,u (t) − X⃗i (t))−; i = 1 . . . n (21)

This strategy allows agents to traverse vast areas of the search space, identifying high-quality solutions
more rapidly by incorporating long-distance jumps. In addition, the stochastic nature of Levy flight prevents
agents from clustering around local optima, fostering continuous exploration throughout the optimization
process. In addition, the flexible step size adapts to the current iteration, providing larger jumps in the early
stages of optimization and finer adjustments in later stages.
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5.1.3 Flowchart, Pseudocode, and Time Complexity of CLARO
This section presents the flowchart and pseudocode of the proposed algorithm. Also, the time com-

plexity analysis of the CLARO algorithm is depicted. The flowchart of the proposed algorithm is illustrated
in Fig. 5, and its pseudocode is presented in Algorithm 1.

Figure 5: The flowchart of the CLARO algorithm

Algorithm 1: The pseudocode of the CLARO algorithm
1: Calculate fitness values and select Xbest
2: While t < T
3: For each individual
4: Calculate the energy factor A using Eq. (17)
5: If A > 1
6: Choose a rabbit randomly from other individuals.
7: Calculate R using Eq. (9)
8: Perform detour foraging using Eq. (21)
9: Calculate the fitness using Eq. (22)
10: Update the position of the current individual using Eq. (16)
11: Else
12: Generate d burrows and randomly pick one as hiding using Eq. (21)
13: Perform random hiding using Eq. (12)
14: Calculate the fitness
15: Update the position of the individual using Eq. (16)
16: End If
17: Update the best solution found so far Xbest
18: End For
19: End While
20: Return Xbest
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The complexity of CLARO is related to the initialization of search agents and the evaluation of the fitness
function. These metrics are affected by the chaotic map and levy flight strategy involved in the proposed
algorithm. The complexity of the initialization phase is O(nm); where ‘n’ is the number of search agents and
‘m’ is the dimension of the problem. The computational cost associated with assessing the fitness functions of
all search agents is O(nT); where ‘T’ is the maximum iteration. The complexity of the location update process
is equivalent to O(nmT). The complexity of the chaotic map and levy flight strategies are O(nT). Therefore,
there is no negative impact on the overall complexity of the algorithm. As a result, the overall complexity
cost of CLARO is calculated as O(nmT).

5.2 Fitness Function Definition
Once the problem is defined and the relevant uncertain parameters identified, it is essential to establish

a fitness function designed for the specific challenges. This function will guide the proposed method and
serve as a crucial metric for effectively evaluating the algorithm’s performance. The optimization challenge
explored in this study seeks to simultaneously reduce makespan time, execution time cost, and energy
consumption. In order to facilitate this, an appropriate fitness function was established (see Eq. (22)),
incorporating weight coefficients for the relevant parameters to reflect their relative importance. Turning
methods or metaheuristic approaches are necessary to determine these weights in an optimized manner. The
tuning method developed and presented in the literature [43] was utilized to find the optimal weights of the
defined parameters. The results obtained after application were as follows: α1 = 0.41, α2 = 0.24, and α3 = 0.35.

Fitness (x) = α1 × makespan + α2 × execution + α3 × energ y; α1 + α2 + α3 = 1 (22)

6 Simulation Results and Analysis
This section analyzes the performance of the proposed algorithm (CLARO) on the optimal task

scheduling problem on the parameters makespan, execution time, and energy consumption. In this regard,
the Google Cloud Jobs Dataset (GoCJ_Dataset) [44], which consists of publicly available and real-world
examples, is utilized to demonstrate the algorithm’s effectiveness. A comparison is made with the well-known
Sand Cat Swarm Optimization (SCSO) [45], Grey Wolf Optimizer (GWO) [24], Artificial Rabbits Optimizer
(ARO) [11], Particle Swarm Optimization (PSO) [32], and Whale Optimization Algorithm (WOA) [30] to
discuss the results. The algorithms used for comparison, except for the standard ARO, are methods that are
specifically proposed and adapted to the problem addressed in this study. Therefore, the comparisons made
will be more reliable and acceptable. All algorithms are implemented under identical conditions and designed
to solve the problem to ensure reliable comparisons. All algorithms in this study are simulated on the same
PC with a Core i7-11800 U 2.3 processor and 16 GB of RAM. In these studies, all analyses are performed
in MATLAB. Accordingly, the population size is assumed to be 30, the total number of iterations is 100,
and the total number of runs is 10. The parameter setting of each algorithm is listed in Table 2. Accordingly,
analyses are conducted on 30 different case studies. Information on these cases is presented in Table 3. Small,
medium, and large numbered tasks are in 10 different datasets. In this regard, VM numbers are evaluated in
three different scenarios. In addition, in another analysis, allocations are made, assuming that VM numbers
are 10% and 20% of the task numbers.
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Table 2: Parameter settings for each optimization algorithm

Algorithms Parameters Values Algorithms Parameters Values

ARO N1 [0, 1] SCSO rG [2, 0]
N2 [0, 1]

GWO
a [2, 0]

WOA

a [2, 0] A [2, 0]
A [2,0] C 2.rand (0, 1)
C 2.rand (0, 1)

PSO
Maximum weight 0.9

l [−1, 1] Minimum weight 0.4
b 1 C1 and C2 2

Table 3: Various case studies for various tasks and VM numbers

Cases studies Dataset category Number of tasks Number of virtual machines
Case 1 GoCJ_Dataset_100 100 5
Case 2 10
Case 3 30
Case 4 GoCJ_Dataset_200 200 5
Case 5 10
Case 6 30
Case 7 GoCJ_Dataset_300 300 5
Case 8 10
Case 9 30
Case 10 GoCJ_Dataset_400 400 5
Case 11 10
Case 12 30
Case 13 GoCJ_Dataset_500 500 5
Case 14 10
Case 15 30
Case 16 GoCJ_Dataset_600 600 5
Case 17 10
Case 18 30
Case 19 GoCJ_Dataset_700 700 5
Case 20 10
Case 21 30
Case 22 GoCJ_Dataset_800 800 5
Case 23 10
Case 24 30
Case 25 GoCJ_Dataset_900 900 5
Case 26 10
Case 27 30
Case 28 GoCJ_Dataset_1000 1000 5
Case 29 10
Case 30 30
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6.1 Analysis Based on Makespan Parameter
In this section, the performances of all algorithms for 30 different case studies and scenarios created on

the considered data set are performed on the makespan parameter. The results obtained are listed in Table 4.
Accordingly, the CLARO algorithm ranked first in 28 cases by finding the best answer (minimum makespan).
Although it occasionally won this first place by a small margin, it caught up with other MH algorithms in
most cases by a wide margin. It was not ranked first in cases 8 and 28, and it ranked first in cases 4, 11, 13, 16,
19, and 22, jointly with other MH algorithms. Based on the general performance analysis, SCSO ranked 2nd,
and ARO ranked 3rd in this parameter. The other rankings belong to GWO, PSO, and WOA-based methods.

Table 4: The performances of all algorithms on the makespan parameter

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 1 Mean 2.79 × 106 2.81 × 106 2.79 × 106 2.83 × 106 2.95 × 106 3.08 × 106

Case 2 Mean 1.54 × 106 1.65 × 106 1.56 × 106 1.65 × 106 1.75 × 106 1.67 × 106

Case 3 Mean 9.00 × 105 9.60 × 105 9.00 × 105 9.43 × 105 9.94 × 105 9.97 × 105

Case 4 Mean 5.60 × 106 5.63 × 106 5.60 × 106 5.63 × 106 5.74 × 106 5.91 × 106

Case 5 Mean 2.95 × 106 3.13 × 106 3.12 × 106 3.08 × 106 3.15 × 106 3.45 × 106

Case 6 Mean 1.45 × 106 1.52 × 106 1.51 × 106 1.54 × 106 1.52 × 106 1.49 × 106

Case 7 Mean 8.44 × 106 8.58 × 106 8.51 × 106 8.49 × 106 8.70 × 106 8.77 × 106

Case 8 Mean 4.64 × 106 4.64 × 106 4.64 × 106 4.63 × 106 5.08 × 106 4.78 × 106

Case 9 Mean 2.02 × 106 2.07 × 106 2.04 × 106 2.08 × 106 2.20 × 106 2.28 × 106

Case 10 Mean 1.05 × 107 1.06 × 107 1.05 × 107 1.05 × 107 1.10 × 107 1.11 × 107

Case 11 Mean 5.61 × 106 5.61 × 106 5.69 × 106 5.69 × 106 6.04 × 106 6.00 × 106

Case 12 Mean 2.38 × 106 2.41 × 106 2.43 × 106 2.43 × 106 2.40 × 106 2.71 × 106

Case 13 Mean 1.32 × 107 1.33 × 107 1.32 × 107 1.33 × 107 1.38 × 107 1.38 × 107

Case 14 Mean 6.85 × 106 7.09 × 106 7.05 × 106 7.07 × 106 7.29 × 106 7.23 × 106

Case 15 Mean 2.88 × 106 3.04 × 106 2.94 × 106 2.95 × 106 3.21 × 106 2.95 × 106

Case 16 Mean 1.67 × 107 1.67 × 107 1.68 × 107 1.68 × 107 1.71 × 107 1.73 × 107

Case 17 Mean 8.66 × 106 8.82 × 106 8.80 × 106 8.78 × 106 9.04 × 106 9.21 × 106

Case 18 Mean 3.53 × 106 3.56 × 106 3.58 × 106 3.58 × 106 4.01 × 106 4.10 × 106

Case 19 Mean 1.77 × 107 1.77 × 107 1.77 × 107 1.77 × 107 1.80 × 107 1.83 × 107

Case 20 Mean 9.28 × 106 9.42 × 106 9.40 × 106 9.35 × 106 9.66 × 106 1.01 × 107

Case 21 Mean 3.66 × 106 3.80 × 106 3.68 × 106 3.83 × 106 3.94 × 106 4.06 × 106

Case 22 Mean 1.99 × 107 1.99 × 107 2.00 × 107 2.01 × 107 2.05 × 107 2.03 × 107

Case 23 Mean 1.02 × 107 1.04 × 107 1.06 × 107 1.05 × 107 1.06 × 107 1.08 × 107

Case 24 Mean 4.14 × 106 4.18 × 106 4.16 × 106 4.21 × 106 4.25 × 106 4.31 × 106

Case 25 Mean 2.43 × 107 2.44 × 107 2.45 × 107 2.44 × 107 2.49 × 107 2.48 × 107

Case 26 Mean 1.27 × 107 1.29 × 107 1.29 × 107 1.29 × 107 1.31 × 107 1.35 × 107

Case 27 Mean 4.97 × 106 5.04 × 106 5.11 × 106 5.28 × 106 5.30 × 106 5.63 × 106

Case 28 Mean 2.63 × 107 2.62 × 107 2.62 × 107 2.64 × 107 2.63 × 107 2.66 × 107

Case 29 Mean 1.50 × 107 1.55 × 107 1.53 × 107 1.58 × 107 1.59 × 107 1.62 × 107

Case 30 Mean 3.20 × 106 3.25 × 106 3.22 × 106 3.28 × 106 3.30 × 106 3.35 × 106

Note: The best values are highlighted in bold.
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The ranking performances of the algorithms are also presented in percentages in Fig. 6. This figure is
based only on the cases ranked first. Although the method ranked first alone received a full score (1), the
score was equally divided among those ranked first jointly. This success rate is 80% for CLARO.

Figure 6: Percentage of success in ranking first based on makespan parameter analysis

6.2 Analysis Based on the Execution Time (Cost) Parameter
In this section, the performance of each method is evaluated through the execution time parameter.

In some studies, this parameter is defined with the name cost. Based on the results (Table 5), the CLARO
algorithm took first place by obtaining the best answer from 24 cases. The second place belongs to the
standard ARO-based task scheduling method. The other places are SCSO, GWO, PSO, and WOA. The
proposed algorithm cannot take first place in cases 7, 14, 15, 16, 19, and 26. When we calculate the rankings
based on the score distribution in the previous section, the proposed algorithm achieved a success of 61% in
catching first place. This information is presented in Fig. 7.

Table 5: The performances of all algorithms on the execution time (cost) parameter

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 1 Mean 2.84 × 106 2.87 × 106 2.85 × 106 2.84 × 106 3.09 × 106 3.06 × 106

Std 4.33 × 104 6.51 x104 4.11 × 104 3.35 × 104 1.02 × 104 5.55 × 104

Case 2 Mean 1.54 × 106 1.64 × 106 1.68 × 106 1.64 × 106 2.00 × 106 1.90 × 106

Std 4.59 × 104 3.15 × 104 6.54 × 104 8.27 × 104 7.84 × 103 6.03 × 103

Case 3 Mean 9.15 × 105 9.79 × 105 9.72 × 105 9.37 × 105 1.03x106 1.00 × 106

Std 3.44 × 104 2.40 × 104 3.61 × 104 5.26 × 104 3.95 × 103 1.38 × 103

Case 4 Mean 5.62 × 106 5.71 × 106 5.65 × 106 5.70 × 106 6.24 × 106 5.87 × 106

Std 2.45 × 104 5.65 × 104 7.80 × 104 3.87 × 104 4.84 × 102 1.95 × 104

Case 5 Mean 3.16 × 106 3.20 × 106 3.20 × 106 3.18 × 106 3.44 × 106 3.44 × 106

Std 5.65 × 104 5.00 × 104 7.10 × 104 9.93 × 104 2.94 × 104 4.08 × 104

Case 6 Mean 1.48 × 106 1.57 × 106 1.50 × 106 1.60 × 106 1.60 × 106 1.66 × 106

Std 6.21 × 104 5.28 × 104 6.44 × 104 5.54 × 104 4.09 × 104 6.43 × 104

Case 7 Mean 8.56 × 106 8.60 × 106 8.58 × 106 8.54 × 106 9.07 × 106 8.65 × 106

Std 1.07 × 105 9.08 × 104 1.15 × 105 1.25 × 105 1.91 × 101 1.10 × 101

Case 8 Mean 4.62 × 106 4.82 × 106 4.66 × 106 4.66 × 106 5.06 × 106 5.29 × 106

(Continued)
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Table 5 (continued)

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Std 1.76 × 104 6.54 × 104 1.15 × 105 9.19 × 104 3.08 × 104 3.49 × 104

Case 9 Mean 2.11 × 106 2.18 × 106 2.13 × 106 2.21 × 106 2.19 × 106 2.28 × 106

Std 5.98 × 104 4.48 × 104 9.94 × 104 7.76 × 104 2.52 × 104 4.75 × 104

Case 10 Mean 1.05 × 107 1.07 × 107 1.06 × 107 1.05 × 107 1.06 × 107 1.13 × 104

Std 5.98 × 103 1.82 × 104 1.01 × 104 8.23 × 104 6.38 × 104 5.11 × 104

Case 11 Mean 5.73 × 106 5.79 × 106 5.73 × 106 5.78 × 106 6.17 × 106 6.08 × 106

Std 9.82 × 104 1.09 × 105 1.31 × 105 4.02 × 104 3.35 × 103 4.68 × 104

Case 12 Mean 2.42 × 106 2.52 × 106 2.49 × 106 2.57 × 106 2.60 × 106 2.94 × 106

Std 3.16 × 104 1.10 × 105 6.63 × 104 6.77 × 104 3.23 × 104 1.84 × 102

Case 13 Mean 1.33 × 107 1.34 × 107 1.33 × 107 1.33 × 107 1.34 × 107 1.37 × 107

Std 1.10 × 104 9.89 × 104 1.46 × 104 1.70 × 105 8.40 × 103 1.30 × 102

Case 14 Mean 7.09 × 106 7.17 × 106 7.04 × 106 7.17 × 106 7.59 × 106 7.49 × 106

Std 1.60 × 105 1.47 × 105 1.53 × 105 9.88 × 104 7.12 × 103 5.76 × 103

Case 15 Mean 2.91 × 106 2.97 × 106 2.89 × 106 3.06 × 106 3.05 × 106 3.14 × 106

Std 1.17 × 105 7.32 × 104 1.04 × 105 6.16 × 104 4.31 × 104 4.27 × 104

Case 16 Mean 1.68 × 107 1.69 × 107 1.67 × 107 1.69 × 107 1.74 × 107 1.73 × 107

Std 1.84 × 105 1.68 × 105 1.10 × 105 1.82 × 105 9.22 × 103 4.76 × 104

Case 17 Mean 8.90 × 106 9.00 × 106 9.07 × 106 9.09 × 106 9.04 × 106 9.42 × 106

Std 1.74 × 105 1.56 × 105 1.21 × 105 1.56 × 105 5.32 × 104 7.14 × 104

Case 18 Mean 3.67 × 106 3.73 × 106 3.80 × 106 3.81 × 106 3.80 × 106 4.25 × 106

Std 9.96 × 104 7.87 × 104 7.86 × 104 5.27 × 103 7.80 × 104 1.42 × 103

Case 19 Mean 1.78 × 107 1.79 × 107 1.79 × 107 1.77 × 107 1.80 × 107 1.82 × 107

Std 1.64 × 105 1.08 × 105 1.08 × 105 7.27 × 104 9.38 × 104 6.94 × 104

Case 20 Mean 9.42 × 106 9.48 × 106 9.43 × 106 9.49 × 106 9.53 × 106 9.89 × 106

Std 1.12 × 105 1.20 × 105 1.57 × 105 3.69 × 104 2.02 × 104 1.01 × 105

Case 21 Mean 3.84 × 106 3.95 × 106 3.90 × 106 3.91 × 106 3.85 × 106 4.34 × 106

Std 1.69 × 104 4.68 × 104 2.18 × 104 5.91 × 104 6.04 × 104 1.95 × 104

Case 22 Mean 2.02 × 107 2.02 × 107 2.02 × 107 2.03 × 107 2.07 × 107 2.09 × 107

Std 1.36 × 104 1.62 × 105 7.77 × 104 7.09 × 104 2.42 × 101 6.04 × 103

Case 23 Mean 1.06 × 107 1.06 × 107 1.06 × 107 1.07 × 107 1.10 × 107 1.12 × 107

Std 1.07 × 104 1.78 × 104 6.93 × 104 1.31 × 105 3.26 × 104 8.42 × 101

Case 24 Mean 4.24 × 106 4.29 × 106 4.39 × 106 4.43 × 106 4.61 × 106 4.84 × 106

Std 9.55 × 104 1.33 × 105 7.11 × 104 3.14 × 103 1.29 × 103 6.37 × 104

Case 25 Mean 2.43 × 107 2.44 × 107 2.43 × 107 2.45 × 107 2.45 × 107 2.47 × 107

Std 2.44 × 104 1.77 × 105 2.63 × 105 1.41 × 105 9.81 × 104 1.31 × 103

(Continued)
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Table 5 (continued)

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 26 Mean 1.28 × 107 1.30 × 107 1.27 × 107 1.29 × 107 1.30 × 107 1.31 × 107

Std 2.47 × 105 1.35 × 105 1.54 × 105 1.66 × 105 8.84 × 104 1.64 × 102

Case 27 Mean 5.13 × 106 5.22 × 106 5.17 × 106 5.24 × 106 5.52 × 106 5.19 × 106

Std 6.03 × 104 1.03 × 105 5.58 × 104 7.86 × 104 2.29 × 104 7.84 × 104

Case 28 Mean 2.64 × 107 2.64 × 107 2.64 × 107 2.64 × 107 2.73 × 107 2.68 × 107

Std 1.70 × 105 7.82 × 104 9.28 × 104 1.22 × 105 1.71 × 103 1.66 × 103

Case 29 Mean 1.39 × 107 1.40 × 107 1.39 × 107 1.39 × 107 1.43 × 107 1.42 × 107

Std 1.39 × 105 1.45 × 105 1.47 × 105 2.01 × 105 1.38 × 105 2.87 × 104

Case 30 Mean 5.39 × 106 5.42 × 106 5.46 × 106 5.50 × 106 5.43 × 106 5.81 × 106

Std 1.08 × 105 1.82 × 105 1.23 × 105 6.19 × 104 5.18 × 104 2.23 × 104

Note: The best values are highlighted in bold.

Figure 7: Percentage of success in ranking first based on execution time (cost) parameter analysis

6.3 Analysis Based on Energy Consumption Parameter
Another critical evaluation parameter is energy consumption, which refers to the amount of power

utilized by resources during the execution of tasks. The results of the analysis are listed in Table 6. Based
on the results, the CLARO method managed to take the first place except for 4 cases. These cases are cases
3, 15, 25, and 26, and in these scenarios, the SCSO, GWO, SCSO, and ARO methods took the first place,
respectively. In addition, in 10 cases, the proposed algorithm took the first place jointly with other methods.
The second place belongs to the SCSO-based task scheduling method. The other places are ARO, GWO, PSO,
and WOA.

Table 6: The performances of all algorithms on the energy consumption parameter

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 1 Mean 2.80 × 106 2.77 × 106 2.80 × 106 2.82 × 106 3.11 × 106 2.95 × 106

Std 8.01 × 104 3.58 × 104 8.85 × 104 4.69 × 104 1.83 × 102 4.21 × 104

(Continued)
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Table 6 (continued)

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 2 Mean 1.67 × 106 1.67 × 106 1.72 × 106 1.68 × 106 1.70 × 106 1.79 × 106

Std 5.23 × 104 5.19 × 104 5.29 × 104 2.95 × 104 1.20 × 104 1.08 × 104

Case 3 Mean 9.21 × 105 9.15 × 105 9.72 × 105 9.89 × 105 1.01 × 106 1.04 × 106

Std 3.55 × 104 4.11 × 104 2.74 × 104 1.92 × 104 2.49 × 104 1.49 × 104

Case 4 Mean 5.60 × 106 5.68 × 106 5.68 × 106 5.61 × 106 5.67 × 106 6.10 × 106

Std 3.17 × 104 7.00 × 104 8.13 × 104 1.45 × 101 2.89 × 104 3.26 × 104

Case 5 Mean 3.09 × 106 3.17 × 106 3.16 × 106 3.19 × 106 3.37 × 106 3.27 × 106

Std 7.14 × 104 8.65 × 104 8.07 × 104 9.03 × 104 1.21 × 104 1.03 × 102

Case 6 Mean 1.44 × 106 1.57 × 106 1.51 × 106 1.55 × 106 1.54 × 106 1.60 × 106

Std 2.69 × 104 7.01 × 104 3.61 × 104 7.42 × 104 7.91 × 103 6.99 × 104

Case 7 Mean 8.49 × 106 8.56 × 106 8.54 × 106 8.56 × 106 8.72 × 106 8.85 × 106

Std 1.07 × 105 1.36 × 105 4.63 × 104 8.26 × 101 4.88 × 104 1.39 × 103

Case 8 Mean 4.55 × 106 4.76 × 106 4.73 × 106 4.59 × 106 4.87 × 106 4.93 × 106

Std 6.81 × 104 1.41 × 105 1.46 × 105 1.02 × 105 2.52 × 104 6.81 × 104

Case 9 Mean 2.10 × 106 2.14 × 106 2.23 × 106 2.17 × 106 2.18 × 106 2.45 × 106

Std 4.43 × 104 9.15 × 104 6.82 × 104 2.04 × 104 2.40 × 104 5.60 × 104

Case 10 Mean 1.06 × 107 1.07 × 107 1.07 × 107 1.06 × 107 1.09 × 107 1.12 × 107

Std 8.71 × 104 8.95 × 104 3.21 × 104 9.69 × 104 2.70 × 104 5.23 × 104

Case 11 Mean 5.67 × 106 5.80 × 106 5.73 × 106 5.78 × 106 5.88 × 106 5.99 × 106

Std 4.18 × 104 1.04 × 105 1.44 × 105 1.11 × 105 6.46 × 104 2.83 × 102

Case 12 Mean 2.43 × 106 2.52 × 106 2.50 × 106 2.55 × 106 2.70 × 106 2.83 × 106

Std 4.58 × 104 7.03 × 104 6.47 × 104 5.38 × 104 4.92 × 103 2.11 × 103

Case 13 Mean 1.32 × 107 1.33 × 107 1.32 × 107 1.33 × 107 1.34 × 107 1.36 × 107

Std 7.37 × 104 1.01 × 105 1.36 × 105 1.02 × 105 9.65 × 104 5.51 × 104

Case 14 Mean 6.86 × 106 7.01 × 106 7.20 × 106 7.16 × 106 7.50 × 106 7.28 × 106

Std 5.25 × 104 2.02 × 102 5.08 × 104 2.60 × 104 3.11 × 104 1.57 × 105

Case 15 Mean 2.96 × 106 3.05 × 106 3.04 × 106 2.93 × 106 3.01 × 106 3.22 × 106

Std 1.05 × 104 6.89 × 104 4.89 × 104 1.82 × 102 1.31 × 104 6.80 × 104

Case 16 Mean 1.67 × 107 1.67 × 107 1.69 × 107 1.68 × 107 1.67 × 107 1.73 × 107

Std 1.08 × 105 1.36 × 105 1.37 × 105 1.79 × 105 4.24 × 104 1.52 × 104

Case 17 Mean 8.77 × 106 9.04 × 106 9.04 × 106 8.94 × 106 9.25 × 106 9.82 × 106

Std 8.25 × 104 1.15 × 105 1.09 × 105 1.79 × 105 7.86 × 103 1.37 × 102

Case 18 Mean 3.70 × 106 3.77 × 106 3.72 × 106 3.71 × 106 3.68 × 106 3.81 × 106

Std 1.11 × 105 1.01 × 105 1.21 × 105 5.27 × 104 1.05 × 105 7.28 × 104

Case 19 Mean 1.78 × 107 1.78 × 107 1.79 × 107 1.79 × 107 1.85 × 107 1.86 × 107

Std 1.20 × 105 7.25 × 104 8.34 × 104 1.19 × 105 1.21 × 104 1.29 × 102

(Continued)
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Table 6 (continued)

Cases studies Measure CLARO SCSO ARO GWO PSO WOA
Case 20 Mean 9.37 × 106 9.48 × 106 9.48 × 106 9.53 × 106 9.54 × 106 9.62 × 106

Std 1.02 × 105 7.41 × 104 9.36 × 104 1.12 × 105 3.75 × 104 1.43 × 105

Case 21 Mean 3.82 × 106 3.94 × 106 3.86 × 106 4.03 × 106 3.92 × 106 4.20 × 106

Std 7.52 × 104 6.95 × 104 3.07 × 104 9.49 × 104 5.55 × 104 7.56 × 104

Case 22 Mean 2.00 × 107 2.02 × 107 2.00 × 107 2.02 × 107 2.03 × 107 2.09 × 107

Std 2.15 × 105 1.37 × 105 5.35 × 104 1.24 × 105 9.55 × 104 2.07 × 103

Case 23 Mean 1.05 × 107 1.07 × 107 1.05 × 107 1.06 × 107 1.15 × 107 1.13 × 107

Std 8.75 × 104 1.20 × 105 2.32 × 104 1.53 × 105 6.99 × 104 6.04 × 104

Case 24 Mean 4.25 × 106 4.35 × 106 4.32 × 106 4.28 × 106 4.40 × 106 4.60 × 106

Std 1.24 × 105 5.46 × 104 8.68 × 104 1.30 × 105 1.69 × 104 1.12 × 104

Case 25 Mean 2.44 × 107 2.43 × 107 2.45 × 107 2.45 × 107 2.51 × 107 2.51 × 107

Std 1.41 × 105 2.15 × 105 1.98 × 105 1.87 × 105 2.49 × 104 1.83 × 105

Case 26 Mean 1.27 × 107 1.30 × 107 1.26 × 107 1.29 × 107 1.34 × 107 1.35 × 107

Std 2.06 × 104 8.37 × 104 5.34 × 104 1.45 × 105 2.24 × 104 5.29 × 104

Case 27 Mean 4.94 × 106 5.22 × 106 5.13 × 106 5.11 × 106 5.56 × 106 5.61 × 106

Std 1.00 × 105 7.21 × 104 1.81 × 105 3.52 × 104 3.34 × 104 4.55 × 104

Case 28 Mean 2.63 × 107 2.64 × 107 2.63 × 107 2.65 × 107 2.65 × 107 2.71 × 107

Std 1.17 × 105 1.60 × 105 1.63 × 105 9.77 × 104 5.22 × 102 6.05 × 104

Case 29 Mean 1.37 × 107 1.38 × 107 1.37 × 107 1.39 × 107 1.45 × 107 1.44 × 107

Std 1.07 × 105 1.45 × 105 1.01 × 105 7.19 × 104 2.85 × 104 2.55 × 104

Case 30 Mean 5.38 × 106 5.59 × 106 5.69 × 106 5.50 × 106 5.49 × 106 5.87 × 106

Std 1.03 × 105 5.72 × 104 1.10 × 105 1.21 × 105 9.16 × 104 6.82 × 104

Note: The best values are highlighted in bold.

In addition, the ranking performances of the algorithms on the energy consumption parameter are
presented as percentages in Fig. 8, based on the first-ranked cases. Accordingly, the success rate of the
proposed algorithm is 69%. The proposed algorithm runs tasks with the best performance even with few
resources. This inference is also understood from the analyses of the other two parameters. Our algorithm
can perform well in all three parameters and will be able to work with a balanced load.

6.4 Analysis Based on Multi-Objective Fitness Function
In this section, the performance evaluation of each algorithm on the multi-objective fitness function

is performed (Fig. 9). In this analysis, the algorithm with the lowest fitness value is the method that finds
the best result and shows the best performance. The tuning process of the weights in the function used, as
mentioned before, was conducted using the method developed and presented in [43]. Based on the results
obtained, CLARO is 2.52% better than ARO, 3.95% better than SCSO, 5.06% better than GWO, 8.15% better
than PSO, and 9.41% better than WOA.
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Figure 8: Percentage of success in ranking first based on energy consumption parameter analysis

Figure 9: Performance of algorithms on multi-objective fitness function in all case studies

6.5 Analysis Based on Convergence Behavior
As the analysis progresses, the performance of all algorithms is assessed using the convergence curve.

It is widely recognized in literature [46,47] that intelligent agents in optimization algorithms often exhibit
unpredictable behavior in the initial stages, which is a normal occurrence. This shift in motion leads
to a broader exploration of the search space, enabling more effective exploitation of its resources. The
innovative strategies integrated into the CLARO algorithm, particularly the implementation of the chaotic
map, significantly reduce the inefficiencies associated with this previously erratic working model. As a result,
the algorithm exhibits robust performance right from the outset and maintains this consistency throughout
its execution. In addition, fluctuations and variations diminish in the final iterations, facilitated by the levy
strategy, ultimately leading to convergence at a specific local optimum. The analysis results are presented for
all evaluation parameters on GoCJ_Dataset_100 and GoCJ_Dataset_1000, as shown in Figs. 10 and 11. The
analysis results for other datasets are available in the supplementary file shared with the study.
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Figure 10: Convergence curve for all analysis parameters on GoCJ_Dataset_100 with various VMs

Figure 11: (Continued)
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Figure 11: Convergence curve for all analysis parameters on GoCJ_Dataset_1000 with various VMs

6.6 Analysis Based on Proportional VM-Task Numbers
In this section, experiments are repeated with different numbers of VMs for all dataset categories

depending on the number of tasks in each dataset category. This analysis has recently become the focus of
many scientific studies [48,49]. The number of VMs for each dataset is assumed to be 10% and 20% of its
tasks. This study aims to examine the performance of each algorithm at proportional VM numbers. The
performance of the proposed algorithm on all datasets for both scenarios is presented in detail in Figs. 12
and 13.

Figure 12: Performance of CLARO algorithm over all datasets in 10% task-VM ratio
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Figure 13: Performance of CLARO algorithm over all datasets in 20% task-VM ratio

In addition, the performance analysis of the methods is shown by convergence curves (Figs. 14 and 15).
These analyses are presented on four different datasets, but analyses and information on other datasets can
be obtained from our supplementary document. Based on the analysis of these behaviors, the proposed
algorithm has a good convergence curve in this scenario, and the convergence rate is also accelerated
compared to traditional ARO in general cases. Therefore, the search agents thoroughly investigate the
solution space during the initial iterations and subsequently shift their focus to exploiting the identified areas
after a certain number of iterations.

Figure 14: (Continued)
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Figure 14: Convergence curve at a 10% rate for all analysis parameters (makespan, execution time, and energy
consumption) over different datasets

Figure 15: (Continued)
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Figure 15: Convergence curve at a 20% rate for all analysis parameters (makespan, execution time and energy
consumption) over different datasets

A comparative analysis of the results reveals that the proposed algorithm demonstrates superior
performance, particularly in the execution time parameter, when contrasted with other algorithms. Although
CLARO does not consistently match this level of superiority across all parameters, it still outperforms
alternative methods. As the number of tasks and VMs increases, energy consumption inevitably rises, a trend
observed across all algorithms [50–52]. Therefore, regardless of the savings achieved, energy consumption
tends to escalate, leading to the performance of the more effective methods converging. However, the
proposed method continues to exhibit the highest performance.

7 Constraints and Challenges
In real-world fog-cloud environments, task scheduling is constrained by multiple factors, which

significantly influence algorithmic design and implementation. These constraints can be categorized as
follows:

• Resource Limitations: Physical resources such as CPU, memory, and bandwidth are finite, and their
availability can vary over time. For example, devices within fog layers can have limited computational
power compared to centralized cloud resources. Overcoming this constraint requires dynamic allocation
strategies and efficient resource utilization to avoid bottlenecks.

• Task Dependencies: Some tasks have precursor requirements, meaning they cannot begin until specific
prior tasks are completed. This creates interdependencies that must be carefully managed to prevent
delays and ensure logical execution order.

• Deadlines and QoS Requirements: Many IoT applications are time-sensitive, necessitating strict adher-
ence to task deadlines to maintain QoS. Algorithms must prioritize tasks to avoid penalties associated
with latency or missed deadlines.
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• Scalability Challenges: As the number of tasks and devices increases, scheduling becomes more complex,
making scalability a critical challenge. Metaheuristic algorithms, while effective, must be tuned to ensure
their efficiency even in large-scale systems.

• Uncertainty and Dynamic Changes: Real-world systems are often affected by dynamic conditions, such
as fluctuating network bandwidth, sudden resource failures, or changing workloads. Algorithms must
be robust enough to adapt to these uncertainties.

In addition, implementing the proposed task scheduling approach in real-world scenarios entails
additional challenges:

• Heterogeneity of Devices: Fog and cloud layers comprise highly heterogeneous devices with varying
computational capabilities and energy consumption rates. Balancing workloads across these devices
without overloading specific resources is critical.

• Energy Efficiency: Energy consumption is a key consideration, particularly for IoT edge devices
powered by batteries. Ensuring energy-efficient scheduling is essential to prolong device lifespans while
maintaining QoS.

• Security and Privacy Concerns: Data transmission and processing in fog-cloud environments can raise
privacy concerns. Secure scheduling mechanisms must be incorporated to protect sensitive information,
especially when tasks involve personal or confidential data.

• Algorithm Complexity: Although the proposed algorithm demonstrates strong performance metrics, its
computational overhead must remain manageable for real-time implementations. Balancing complexity
with efficiency is crucial.

• Interoperability: Real-world systems often require integration with existing hardware and software
frameworks. Ensuring compatibility with different systems and protocols poses an additional layer
of complexity.

8 Conclusions and Future Works
This study examines the fog-cloud environment for processing large volumes of data in real-time IoT

systems. In this regard, allocating and scheduling tasks to fog nodes or VMs is crucial. The objective is
to utilize system resources efficiently by focusing on key parameters such as completion (makespan) time,
energy consumption, and execution time (cost). An enhanced version of the ARO algorithm is developed to
achieve this aim, integrating a chaotic map and Lévy flight strategies (CLARO). A suitable fitness function is
also defined in this study by recognizing the interrelationship among these three parameters. A real public
dataset, comprising a range of small, medium, and large datasets and tasks, was utilized, consisting of a total
of 10 sub-datasets. Simulations are conducted with three different numbers of VMs for each dataset, resulting
in a total of 30 case studies. In addition, VM and task quantities were distributed in ratios of 10% and 20%,
allowing for an assessment of each method’s performance under these scenarios. The results indicate that the
proposed method outperformed other approaches across numerous case scenarios.

Future studies based on the findings and limitations of the current study can be listed as follows:

• It is planned to run the proposed algorithm on more complex and different types of datasets and network
configurations and to make necessary improvements.

• Exploring the integration of multi-objective optimization techniques to balance conflicting parameters
such as energy consumption and execution time more effectively.

• Extending the proposed algorithm to handle dynamic environments with real-time changes in task loads
and resource availability.



Comput Model Eng Sci. 2025;142(3) 2721

• As discussed earlier, user satisfaction metrics are incorporated into the optimization framework through
surveys or user studies.

• Validating the algorithm’s performance using additional real-world case studies across various
IoT domains.
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