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ABSTRACT: Efficient resource management within Internet of Things (IoT) environments remains a pressing
challenge due to the increasing number of devices and their diverse functionalities. This study introduces a neural
network-based model that uses Long-Short-Term Memory (LSTM) to optimize resource allocation under dynam-
ically changing conditions. Designed to monitor the workload on individual IoT nodes, the model incorporates
long-term data dependencies, enabling adaptive resource distribution in real time. The training process utilizes Min-
Max normalization and grid search for hyperparameter tuning, ensuring high resource utilization and consistent
performance. The simulation results demonstrate the effectiveness of the proposed method, outperforming the state-
of-the-art approaches, including Dynamic and Efficient Enhanced Load-Balancing (DEELB), Optimized Scheduling
and Collaborative Active Resource-management (OSCAR), Convolutional Neural Network with Monarch Butterfly
Optimization (CNN-MBO), and Autonomic Workload Prediction and Resource Allocation for Fog (AWPR-FOG). For
example, in scenarios with low system utilization, the model achieved a resource utilization efficiency of 95% while
maintaining a latency of just 15 ms, significantly exceeding the performance of comparative methods.

KEYWORDS: Internet of things; resource optimization; deep learning; optimal resource allocation; neural network;
efficiency

1 Introduction
The Internet of Things (IoT) has become a significant technological paradigm, redefining the interaction

and integration of devices within the digital ecosystem. [1–4]. In IoT systems, the main focus is to achieve
seamless integration in several dominions with the help of an elaborate network consisting of connected
sensors [5], actuators and intelligent devices [6]. This connected architecture can allow a wide range
of applications [7], to be automated, allowing data-driven decision making to be realized; these include
addressing various critical quality attributes. However, the increasing scale and complexity of IoT ecosystems
implies the need for robust mechanisms that can ensure optimal performance in the presence of challenges
related to computational resource constraints [8–10]. The resolution of these challenges is very significant for
the widespread adoption of IoT in practical applications in the real world [11–14]. Resource allocation is one
of the major challenges to the implementation of IoT systems [15]. Resource allocation needs to be efficiently
distributed within the growing device network. Conventional static models used for resource allocation do
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not adapt in dynamic IoT environments. This lack leads to a deficient utilization of resources [16], increased
latency, and high energy consumption [17,18].

Resource allocation remains one of the critical challenges in the deployment of IoT systems [19].
A challenging issue is how to distribute limited resources effectively among the increasing number of
interconnected devices [20]. The traditional static models of allocation, though at the foundation, have some
inherent limitations. They lack the flexibility needed to adapt to the ever-changing resource demands of IoT
ecosystems [21,22]. These models rely on a predefined resource distribution, assuming certain fixed and static
requirements. This rigidity significantly reduces the efficiency of IoT systems, whose resource requirements
may change over time [23]. Static allocation methods do not fill the gaps in resources dynamically as
they appear; this causes unnecessary delays, increased energy consumption, and a lack of efficiency that
undermines the sustainability of IoT environments [24–26]. Overcoming these limitations will definitely
help IoT systems perform at their best under dynamic real-world conditions.

Conventional static allocation models, which are designed based on fixed resource requirement assump-
tions, are not able to cope with the dynamically changing requirements typical of the IoT ecosystem. These
models consider rigid distributions of resources, thus not fitting in well for situations where resource needs
vary over time. This limited adaptability often introduces a number of inefficiencies, which manifest them-
selves through increased latency or unnecessary/extra energy consumptions, which impact the operational
efficiency and sustainability of IoT infrastructures accordingly [27–29]. These inefficiencies limit Adaptive
Neural Network-based Dynamic Resource Allocation (ANNDRA-IoT) approaches, necessitating long- and
short-term memory (LSTM) networks with both long- and short-term memories for a proposal. It sets the
performance optimally by using real-time analytical resources, hence dynamically adjusting the resources
according to their ever-changing conditions via IoT systems. This kind of adaptability can be achieved very
well in diverse IoT ecological surroundings, which was beyond the efficacy of previous ones. The proposed
ANNDRA-IoT has mainly performed the following:

• LSTM-Based Real-Time Dynamic Resource Allocation in the IoT. The model outsmarts traditional static
allocation methods by learning to adapt to unique patterns in data flows in the IoT.

• Optimized distribution of resources by predicting and adapting to changes in IoT networks. This would
result in reductions in latency and energy consumption.

• The effectiveness in scalability and adaptability to manage resources in the various IoT scenarios. This
flexibility expands the applicability of ANNDRA-IoT in many applications.

The following sections are arranged as follows. Section 2 provides a comprehensive review of the
literature. Section 3 presents the proposed ANNDRA-IoT approach. Section 4-Experimental Simulation &
Results. Section 5 presents a detailed discussion of the results. Finally, Section 6 serves as the conclusion of
the article.

2 Related Work
The IoT has become a transformative technology, significantly altering the way computing and com-

munication systems function. It has introduced new paradigms of connectivity and interaction across a
wide range of devices and systems. However, efficiently managing resources in IoT environments remains a
significant challenge. This section analyzes recent advances and methodologies in the management of IoT
resources. Table 1 summarizes these approaches, highlights their strengths, and identifies the gaps that the
proposed ANNDRA-IoT model aims to address.
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Table 1: Comparative review of advances and challenges in IoT resource management techniques

Ref. Advances Challenges
[3] Developed a dynamic optimization

framework for balancing loads in IoT
systems.

Compatibility with diverse IoT environments
remains an issue.

[18] Introduced a refined strategy for task
scheduling with preemptive actions in fog

layers of IoT.

Struggles in scenarios with highly fluctuating
IoT workloads.

[30] Proposed an adaptive task allocation model
using deep learning for cloud environments.

Did not fully explore potential in edge
computing scenarios.

[31] Formulated a predictive resource allocation
framework for the industrial IoT sector.

Did not fully delve into unique industrial IoT
challenges.

[32] Reviewed distributed AI techniques for
enhancing resource efficiency in IoT.

Absence of detailed case studies and practical
applications.

[33] Suggested a model for efficient energy
management in IoT’s sensor networks.

Discussion on model’s adaptability to
different network types was limited.

[34] Investigated strategies for improving
communication efficiency at the IoT edge.

Lack of consideration for integration with
existing legacy systems.

[35] Examined multi-resource allocation in IoT
with an emphasis on fairness and efficiency.

Did not evaluate the impact on overall
system performance.

[36] Applied an imperialist competitive algorithm
for service deployment in fog computing.

Performance issues under rapidly changing
network scenarios.

[37] Addressed energy-efficient federated
learning approaches for edge computing in

IoT.

Consideration for broader network
architecture was missing.

[38] Offered a hybrid approach for authentication
in heterogeneous IoT settings.

Challenges with scalability and real-time
operations in diverse environments were

overlooked.
[39] Explored distributed service placement

strategies in fog environments via
optimization.

Comprehensive computational overhead
analysis was lacking.

[40] Showcased a strategy for energy-efficient
offloading in mobile edge computing for IoT.

Depth of adaptability to changing network
conditions was not thoroughly investigated.

2.1 Existing State-of-the-Art Approaches
In [3], the authors proposed a dynamic load balancing mechanism to improve the efficiency and

adaptability of the IoT environment. Their research work highlighted how dynamic resource management
approaches can provide a solution to fluctuating workloads in IoT environments. Similarly, study [18] pro-
posed an optimized task-scheduling mechanism specifically for fog-assisted IoT environments. It develops
this mechanism to introduce preemptive features in scheduling architectures. This concept has been closely
aligned with our efforts to improve responsiveness in IoT systems. The study in [30] presented an overview
of the secure and adaptive deep learning cloud task scheduling. In their approach, by marrying security
with efficiency, there is a developed focus on managing computational tasks efficiently, hence laying down
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the principles that could echo the ANNDRA-IoT framework objectives. Meanwhile, in [31], the authors
have proposed an autonomic framework for workload prediction and resource allocation in industrial IoT
systems. Predictive analysis and autonomic allocation strategies in their work share common goals with
ANNDRA-IoT and point out the necessity for intelligent resource management.

The authors in [32] conducted a comprehensive review of resource-efficient distributed AI methods
for IoT applications. Their review highlighted the increasing demand for AI-driven solutions, laying the
foundations for integrating AI to optimize IoT resource allocation-a central theme in our research. On the
other hand, study [33] developed an energy management model for wireless sensor networks in IoT systems,
emphasizing resource optimization. Finally, reference [34] studied the AI-driven communication-efficient
method at the edge of IoT. The contributions of [34] complement our work in minimizing communications
overhead in IoT settings. Furthermore, study [35] proposed a multiresource allocation approach with fairness
constraints; the ANNDRA-IoT model developed has considered the fairness of coverage consideration for
resource allocation.

In [36], an imperialist competitive algorithm was used to implement IoT services in fog computing,
focusing on resource utilization. Similarly, study [37] proposed a federated learning technique to achieve
energy efficiency and resource optimization within environmentally sustainable IoT edge intelligence
systems. These studies align with the goals of ANNDRA-IoT to maintain energy-efficient operations.
Lastly, study [38] presented a hybrid authentication architecture for heterogeneous IoT systems, blending
centralized and blockchain-based methods. This approach addresses security and efficiency, critical to the
secure functioning of IoT environments. Works such as [39] and [40] further contribute to this discourse by
exploring distributed IoT service placement and energy-efficient task offloading strategies, respectively.

2.2 Comparison of LSTM in IoT Resource Management
The management of resources within the IoT has seen significant advancements through the adoption

of LSTM neural networks. Table 2 provides a comparison including rule-based systems, classic machine
learning techniques, and different neural network designs.

Table 2: Comparison of ANNDRA-IoT with other approaches in IoT resource management

Approach Performance Scalability Ease of Implementation
LSTM-based neural

networks
enhanced capturing temporal

dependencies, leading to
enhanced forecasting

accuracy.

Highly scalable with the
ability to process

large-scale time-series
data efficiently.

Requires expertise in neural
network configuration and

training.

Rule-based systems Limited by static rules, less
effective in dynamic

environments.

Scalability is constrained
by the complexity of rules

and their maintenance.

Relatively easier
implementation but difficult
to adapt to new environment
without manual intervention.

Traditional machine
learning algorithms
(e.g., SVMs, DTs)

Effective in structured data
environments but struggles
with high-dimensional and

sequential data.

Moderate scalability;
performance may degrade

with very large datasets.

Implementation complexity
varies with the algorithm;

significant domain
knowledge is required for

feature engineering.
Alternative neural

network architectures
(e.g., CNNs, GRUs)

Varies by architecture; CNNs
are effective for spatial data,
while GRUs offer advantages
in temporal data processing.

Scalability is generally
high, similar to LSTMs.

Implementation complexity is
dependent on the specific

architecture and the problem
domain.
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LSTM, a type of recurrent neural network, has the distinct ability to identify and retain temporal pat-
terns, making it essential for managing resources in IoT scenarios characterized by time-series data. In [41],
experimental evidence demonstrated that LSTMs exhibited superior predictive performance by effectively
capturing temporal dynamics. This capability improves resource allocation strategies, thus improving the
responsiveness of IoT systems [13,41,42]. In contrast, rule-based systems perform inadequately in dynamic
IoT environments due to their static nature. Their inability to adapt to evolving data patterns renders
them ineffective compared to LSTM models, which can seamlessly integrate new information and maintain
consistent performance as system configurations evolve.

Conventional machine learning techniques, including support vector machines and decision trees,
played a fundamental role in the early stages of IoT resource management. However, their reliance on manual
feature selection and significant domain expertise limits their applicability in complex, high-dimensional
sequential data scenarios [43,44]. LSTMs address these limitations by processing intricate sequential infor-
mation with remarkable efficiency, which makes them particularly suited to the sophisticated demands of
IoT frameworks. Other neural network architectures, such as convolutional neural networks (CNNs) and
gated recurring units (GRUs), have their own strengths in the management of spatial and temporal data [45].
Hybrid models that integrate CNNs with LSTM have proven especially effective in tasks such as solar
irradiance prediction and photovoltaic power [46]. These combinations balance computational efficiency
with predictive accuracy, overcoming the constraints of single-architecture models in IoT applications [47].

3 Proposed ANNDRA-IoT Approach
This ANNDRA-IoT framework implements a type of neural network known as long-short-term

memory neural networks to address disorders in resource allocation in heterogeneous IoT environments.
This framework has considered IoT devices’ heterogeneity by being able to adapt at run-time to different
device capabilities and demands. The implementation details of ANNDRA-IoT will be elaborated here,
which mentions the key contributions towards increasing system performance with the optimization of
resource utilization.

3.1 Overview of Proposed Approach (ANNDRA-IoT)
ANNDRA-IoT has been proposed for resource management in highly heterogeneous IoTs. Introduce

reconfigurability for adaptation in versatile and complex scenarios related to IoT ecosystems. By incorpo-
rating LSTM neural networks with Artificial Neural Networks (ANNs), ANNDRA-IoT enables dynamic
allocation of resources, thus performing self-adaptation even under complex operational conditions. This
system uses prediction capabilities as an intelligent one, working in real time to manage network and
computational resources through device utilization patterns.

The architecture of ANNDRA-IoT includes LSTM units responsible for processing input data streams
from a variety of IoT devices. These units analyze resource usage patterns and generate resource allocation
decisions. Fig. 1 illustrates the architecture, showcasing the interaction among the system’s components and
the data flow within ANNDRA-IoT.
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Figure 1: The architecture of the proposed ANNDRA-IoT appraoch
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3.2 LSTM-Based Real-Time IoT Resource Allocation
This section introduces a new LSTM neural network that is suitable for real-time IoT resource allocation.

The framework is based on stochastic calculus, tensor analysis, variational optimization, differential geom-
etry, and information theory; thus, it can learn sophisticated temporal and multi-dimensional dynamics of
an IoT system.

Consider an IoT environment comprising a set of devices D = {d1 , d2, . . . , dN}, each generating
multidimensional data streams over continuous time. Let the state of the entire IoT system at time t be
represented by a stochastic process X(t) ∈ Rn , where n denotes the dimensionality of the state space of the
system. The objective is to determine an optimal resource allocation policy π∗ that minimizes a cumulative
cost functional over a finite time horizon [0, T]:

π∗ = argmin
π∈Π

E [∫
T

0
L (X(t), π(X(t), t), t) dt + Φ(X(T))] , (1)

where Π is the set of admissible policies, L is an instantaneous cost function capturing resource utilization
and performance metrics, and Φ is a terminal cost function. The evolution of the state of the IoT system
X(t) is governed by a controlled stochastic differential equation (SDE):

dX(t) = f(X(t), π(X(t), t), t) dt + G(X(t), t) dW(t), (2)

where f ∶ Rn ×R
m × [0, T] → R

n is the drift term, G ∶ Rn × [0, T] → R
n×k is the diffusion term and W(t)

is a Wiener process of dimensions k representing environmental uncertainties. To approximate the optimal
policy π∗, we construct an LSTM neural network enhanced with tensor operations and higher-order gates.
Let xt ∈ Rp denote the input vector in time t, representing sensor readings and device statuses. The LSTM
cell is redefined using the tensor calculus to handle multidimensional interactions:

it = σ (Wi ∗ xt + Ui ∗ ht−1 + Vi ∗ ct−1 + bi) , (3)
f t = σ (W f ∗ xt + U f ∗ ht−1 + V f ∗ ct−1 + b f ) , (4)
ct = f t ⊙ ct−1 + it ⊙ tanh (Wc ∗ xt + Uc ∗ ht−1 + bc) , (5)
ot = σ (Wo ∗ xt + Uo ∗ ht−1 + Vo ∗ ct + bo) , (6)
ht = ot ⊙ tanh(ct), (7)

where∗denotes tensor contraction,⊙ is the element-wise Hadamard product, and σ is the sigmoid activation
function. Tensors Wi , Ui , Vi , etc., are higher-order weight tensors that capture interactions across multiple
dimensions. The LSTM network parameters are optimized using variational principles. We define an action
functional S associated with the policy πθ parameterized by the network weights θ:

S [θ] = E [∫
T

0
L (Xθ(t), πθ(Xθ(t), t), t) dt + Φ(Xθ(T))] , (8)

where Xθ(t) denotes the state trajectory under policy πθ . Optimization proceeds by computing the
functional derivative δS /δθ and updating θ by gradient descent in the function space. Recognizing that the
state space of the IoT system may exhibit manifold structures, we introduce differential geometric concepts.
Let M be a smooth manifold representing the state space with a Riemannian metric gX. The geodesic
distance between states X1 and X2 is given by:
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dM (X1 , X2) = inf
γ ∫

1

0

√
gγ(t) (γ̇(t), γ̇(t)) dt, (9)

where γ ∶ [0, 1] → M is a smooth path connecting X1 and X2. We redefine the LSTM input transformation
to map inputs onto M :

zt = expht−1
(Wz ∗ xt + bz) , (10)

where expht−1
is the Riemannian exponential map at ht−1. To capture non-Gaussian characteristics and

higher-order dependencies in the data, we introduce gates based on higher-order statistics:

kt = κ (Wk ∗ xt + Uk ∗ ht−1 + bk) , (11)
st = ς (Ws ∗ xt + Us ∗ ht−1 + bs) , (12)

where κ and ς are functions that extract kurtosis and skewness, respectively. The cell state update now
includes these higher-order terms:

ct = f t ⊙ ct−1 + it ⊙ gt + kt ⊙ (ct−1 ⊛ ct−1)
+ st ⊙ (ct−1 ⊛ ct−1 ⊛ ct−1), (13)

where ⊛ denotes the element-wise tensor power. An advanced attention mechanism is incorporated using
information-theoretic measures. The attention weights are defined on the basis of the mutual information
between hidden states and outputs:

αt =
exp (I(ht ; yt))

∑T
s=1 exp (I(hs ; yt))

, (14)

where I(ht ; yt) is the mutual information between ht and the output yt . This attention mechanism ensures
that the most informative hidden states are emphasized in the output computation:

yt = ϕ (
T
∑
s=1

αshs) , (15)

with ϕ being a nonlinear activation function. The optimal control problem is connected to the Hamilton-
Jacobi-Bellman (HJB) equation. The value function V(X, t) satisfies:

−∂V
∂t

= min
π

{L (X, π, t) + ⟨∂V
∂X

, f(X, π, t)⟩

+ 1
2

Tr(GG⊺ ∂2V
∂X2 )} , (16)

where ⟨⋅, ⋅⟩ denotes the inner product, and Tr is the trace operator. The LSTM network aims to approximate
the policy π that minimizes the right-hand side of the HJB equation. To train the LSTM network in this
complex setting, we employ Stochastic Gradient Hamiltonian Monte Carlo (SGHMC), which combines
stochastic gradient descent with Hamiltonian dynamics. The parameter updates are given by:

dθ = −∇θS [θ] dt +
√

2D(θ) dBt , (17)

where D(θ) is a diffusion matrix capturing the curvature of the loss landscape, and Bt is a Brownian motion.
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3.3 Training and Optimization Framework for the LSTM Model
This section presents a novel mathematical framework for training and optimizing the LSTM model

within the ANNDRA-IoT architecture. Let D = {(xt , yt)}T
t=1 denote the training dataset derived from the

preprocessed TON_IoT data, where xt ∈ Rp represents the input features at time t, and yt ∈ Rq denotes the
corresponding target output for resource allocation decisions. The primary objective is to find the optimal
network parameters θ∗ that minimize a composite loss function J (θ), including the empirical risk and
regularization terms:

θ∗ = arg min
θ∈Θ

J (θ) = arg min
θ∈Θ

[L (θ) + λR(θ)] , (18)

where Θ is the parameter space, L (θ) is the empirical loss function defined over the training data, R(θ)
is a regularization functional, and λ > 0 is a regularization coefficient controlling the trade-off between data
fitting and model complexity. The empirical loss function is defined using a time-averaged functional that
accounts for temporal dependencies.

L (θ) = 1
T

T
∑
t=1

� (yt , ŷt(θ)) + β
2 ∫

T

0
∥ d

dt
ŷt(θ)∥

2
dt, (19)

where �(⋅, ⋅) is a loss function that measures the discrepancy between the true output yt and the predicted
output ŷt(θ), ∥ ⋅ ∥ denotes the Euclidean norm, and β > 0 is a smoothing parameter that enforces the
temporal smoothness through the Sobolev norm of the predictions. The regularization functional R(θ)
is defined using concepts from reproducing kernel Hilbert spaces (RKHS) to promote smoothness and
generalization:

R(θ) = ∥θ∥2
H = ∑

i
∥Wi∥2

H + ∥Ui∥2
H + ∥bi∥2

H , (20)

where ∥⋅∥H denotes the RKHS norm, and Wi , Ui , bi are the weight matrices and bias vectors associated with
the LSTM gates. This regularization encourages the parameters to lie in a smooth function space, enhancing
the model’s ability to generalize to unseen data. To solve the optimization problem, we employ stochastic
gradient descent (SGD) enhanced with adaptive moment estimation and preconditioning matrices derived
from second-order information:

θk+1 = θk − ηkP−1
k ∇θJ (θk), (21)

where ηk is the learning rate in iteration k, ∇θJ (θk) is the loss function gradient, and Pk is a precondi-
tioning matrix calculated as:

Pk = εI + (v̂k)1/2 , (22)

with ε being a small constant to ensure numerical stability, I the identity matrix, and v̂k the exponentially
weighted moving average of the squared gradients:

v̂k = γv̂k−1 + (1 − γ) (∇θJ (θk) ⊙∇θJ (θk)) , (23)

where γ ∈ [0, 1) is the decay rate and ⊙ denotes element-wise multiplication. This makes the learning
rates of each parameter adaptive, which gives a better convergence behavior. Yet another variant of this
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further incorporates information geometry in order to use the natural gradient that takes into account the
Riemannian structure of the parameter space:

θk+1 = θk − ηkF−1(θk)∇θJ (θk), (24)

where F(θk) is the Fisher information matrix in iteration k, defined as:

F(θ) = Ext [∇θ log pθ(yt ∣xt)∇θ log pθ(yt ∣xt)⊺] , (25)

with pθ(yt ∣xt) being the conditional probability of the output given the input under the model parameterized
by θ. The natural gradient descent adapts to the curvature of the parameter space, potentially leading to
faster convergence. To capture the uncertainty of the model and improve generalization, we adopt a Bayesian
learning framework using variational inference. We define a variational posterior q(θ) over the model
parameters and minimize the variational free energy F (q):

F (q) = ∫ q(θ) log q(θ)
p(D , θ)dθ

= KL(q(θ)∣∣p(θ)) −Eq(θ)[log p(D ∣θ)], (26)

where p(θ) is the prior distribution over parameters, p(D , θ) is the joint probability of data and parameters,
and KL denotes the Kullback-Leibler divergence. The optimization seeks a variational distribution q(θ) that
approximates the true posterior, balancing the fit and complexity of the model. This study also introduces
entropy regularization to encourage exploration during training.

Jentropy(θ) = J (θ) − μH[q(θ)], (27)

where H[q(θ)] is the differential entropy of the variational posterior:

H[q(θ)] = −∫ q(θ) log q(θ)dθ , (28)

and μ > 0 is a coefficient that controls the influence of regularization of the entropy. To analyze the
convergence properties of the optimization algorithm, the proposed approach utilizes convex analysis and
establishes conditions under which the loss function J (θ) is convex or satisfies the inequality:

1
2
∥∇θJ (θ)∥2 ≥ μPL (J (θ) − J (θ∗)) , (29)

where μPL > 0 is the PL constant. Under this condition, gradient descent methods exhibit linear convergence
rates. In addition to standard L2 regularization, we incorporate Total Variation (TV) regularization to
penalize rapid changes in the parameter space:

RTV(θ) = ∫ ∥∇θ(s)∥ds, (30)

where θ(s) denotes the parameters as a function over a continuous index s, and ∇θ(s) is the gradient with
respect to s. This approach further integrates adaptive learning rates based on the spectral properties of the
Hessian matrix H(θ) of the loss function:

ηk = 2
λmax(H(θk)) + λmin(H(θk))

, (31)
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where λmax and λmin are the largest and smallest eigenvalues of H(θk), respectively. This choice of learning
rate ensures stable convergence by taking into account the curvature of the loss landscape. The advanced
training algorithm integrates the concepts mentioned above and is outlined as Algorithm 1.

Algorithm 1: Advanced training algorithm for the LSTM model
Result: Optimized LSTM Model for ANNDRA-IoT
1 Initialization: Initialize parameters θ0 and variational posterior q0(θ);
2 for k = 0 to K do
3 Sample mini-batch Bk from training data;
4 Compute stochastic gradients ∇θJBk(θk);
5 Update preconditioning matrix Pk ;
6 Update parameters using adaptive learning rate:

θk+1 = θk − ηkP−1
k ∇θJBk(θk)

Update variational posterior qk+1(θ) via Bayesian update rules;
7 Adjust learning rate ηk+1 based on spectral analysis;
8 end

We incorporate constraints into the optimization problem to ensure feasibility with respect to resource
limitations:

Find θ∗ such that θ∗ = arg min
θ∈Θ

J (θ), s.t. C (θ) ≤ Cmax, (32)

where C (θ) is a cost function representing computational or energy resources consumed by the model,
and Cmax is the maximum allowable cost. This constrained optimization can be addressed using Lagrangian
multipliers or penalty methods. To ensure the global convergence of the training algorithm, we employ
Lyapunov stability analysis. We define a Lyapunov function V(θk) = J (θk) − J (θ∗) and show that:

V(θk+1) − V(θk) ≤ −αV(θk), (33)

for some α > 0, implying exponential convergence to the global minimum.

3.4 Advanced Framework for Adaptation and Scalability of the LSTM Model in IoT Systems
This framework incorporated decentralized optimization, variational inference, and nonlinear dynam-

ical systems to address the challenges posed by the heterogeneous and dynamic nature of IoT environments.

3.4.1 Manifold Embedding for Adaptive Representations
Let X denote the high-dimensional input space of IoT data streams. We assume that the data lie on

a lower-dimensional manifold M ⊂ R
n embedded in X . To capture the intrinsic geometry of the data, we

map inputs to a manifold-adapted feature space using a diffeomorphic mapping ϕ ∶ M → R
d . The LSTM cell

is redefined to operate on manifold-valued inputs:

it = σ (Wi ϕ(xt) + Ui ht−1 + bi) , (34)
ft = σ (W f ϕ(xt) + U f ht−1 + b f ) , (35)
ct = ft ⊙ ct−1 + it ⊙ tanh (Wc ϕ(xt) + Ucht−1 + bc) , (36)
ot = σ (Woϕ(xt) + Uoht−1 + bo) , (37)
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ht = ot ⊙ tanh (ct) . (38)

By operating on manifold embeddings, the model adapts to the underlying data structure, improving
generalization. To ensure scalability, we model the LSTM parameters as elements of a Hilbert space H
endowed with the inner product ⟨⋅, ⋅⟩H . The optimization of the network parameters θ ∈ H is formulated
as minimizing a functional J ∶ H → R:

θ∗ = arg min
θ∈H

{L (θ) + λ∥θ∥2
H } , (39)

where L (θ) is the empirical loss and λ > 0 is a regularization parameter. The use of functional spaces allows
for scalability through dimensionality reduction and efficient parameterization. In distributed IoT systems,
data is generated across multiple devices. We employ decentralized optimization to train the LSTM model
collaboratively. Let there beN devices, each with local data Di . The global objective is to minimize:

θ∗ = arg min
θ∈H

{ 1
N

N
∑
i=1

Li(θ) + λ∥θ∥2
H } . (40)

We use a consensus-based algorithm where each device updates its local parameters θi and communi-
cates with neighboring devices to reach agreement:

θ(k+1)
i = θ(k)

i − η
⎛
⎝
∇Li(θ(k)

i ) + ∑
j∈Ni

(θ(k)
i − θ(k)

j )
⎞
⎠

, (41)

where Ni is the set of neighboring devices of device i, and η is the learning rate. To adapt to non-stationary
data distributions, we model the LSTM parameters probabilistically using variational inference. We define a
posterior distribution q(θ) over the parameters and optimize the evidence lower bound (ELBO):

LELBO = Eq(θ) [log p(D ∣θ)] − KL(q(θ)∥p(θ)), (42)

where p(θ) is the prior distribution, and KL(⋅) denotes the Kullback-Leibler divergence. This approach
allows the model to adaptively update its beliefs about the parameters in response to new data. We analyze
the stability of the LSTM dynamics by modeling the hidden states as a nonlinear discrete-time dynamical
system:

ht+1 = F(ht , xt ; θ). (43)

Using Lyapunov’s direct method, we establish conditions for the asymptotic stability of the system by
finding a Lyapunov function V ∶ Rn → R+ such that:

V(ht+1) − V(ht) ≤ −W(ht), (44)

where W(ht) is a positive definite function. We define a scalability metricS using mutual information to
quantify the model’s capacity to handle increasing data complexity:

S = I(Y; H)
C

, (45)

where I(Y; H) is the mutual information between the output Y and the hidden states H, andC is the
computational cost. A higherS indicates better scalability.
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3.5 Integration with IoT Systems
The development of the integrative ANNDRA-IoT model in existing and future IoT systems is the last

significant step towards a deployed model with full capabilities, as shown in Algorithm 2.

Algorithm 2: Integration and customization process for ANNDRA-IoT in IoT systems
Result: Integrated and Customized ANNDRA-IoT Model for IoT Systems
1 Input: ANNDRA-IoT Model, IoT System Architecture;
2 Output: Integrated and Customized ANNDRA-IoT Model;
3 Step 1: Identify Integration Points;
4 for each node n inNIoT do
5 if Impact(n) > θ then
6 Add n to Ip;
7 end
8 end
9 Step 2: Configure Data Interfaces;
10 Set up Dintf_in for incoming data from IoT devices;
11 Set up Dintf_out for model’s output to IoT system;
12 Step 3: Deploy and Synchronize Model;
13 Deploy ANNDRA-IoT model at Ip;
14 Synchronize tmodel with tIoT using Ssync;
15 Step 4: Customize for IoT Applications;
16 for each IoT appl ication App do
17 Select relevant features Fapp based on Relevance( f , App);
18 Adjust model configuration with Cdynamic;
19 Optimize model’s performance for App using Oapp;
20 end
21 Return Integrated and Customized ANNDRA-IoT Model;

3.5.1 Process of Integrating ANNDRA-IoT in IoT Environments
The integration of ANNDRA-IoT within diverse IoT environments is a multifaceted process, involving

several key steps to ensure seamless functionality and compatibility. This process is not just a mere deploy-
ment of the model but a harmonious fusion with the existing IoT ecosystem. The first step involves identifying
specific points within the IoT infrastructure where the ANNDRA-IoT model can be most effective. This
involves analyzing the architecture of the IoT network and pinpointing nodes where resource allocation
decisions have the most significant impact. Let NIoT represent the set of all nodes in the IoT network, the
integration points Ip can be defined as:

Ip = {n ∈ NIoT∣Impact(n) > θ}, (46)

where Impact(n) quantifies the influence of node n on network performance and θ is a predefined threshold.
Configuring the data interface is crucial for the flow of information between the ANNDRA-IoT and the IoT
system. This involves setting up data pipelines that feed real-time IoT data into the model and retrieve the
model’s allocation decisions. The data interface Dintf is represented as:

Dintf_in(xIoT) = xIoT → ANNDRA-IoT,
Dintf_out(yANNORA) = yANNORA → IoT System, (47)
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where xIoT represents the input data from the IoT devices and yANNORA is the output of the ANNDRA-
IoT model. Deploying the ANNDRA-IoT model within identified integration points involves not just
the installation of the model, but also its synchronization with the IoT system’s operational tempo. This
synchronization ensures that the model’s resource allocation decisions are timely and contextually relevant.
The synchronization function Ssync can be represented as:

Ssync(tmodel , tIoT) = Align(tmodel , tIoT), (48)

where tmodel and tIoT are the time cycles of the ANNDRA-IoT model and the IoT system, respectively, and
Align ensure their alignment.

3.5.2 Customization for Various IoT Applications
Customization is one of the building blocks to integrate ANNDRA-IoT into different IoT applications.

Every IoT application has its unique features and requirements, and hence a tailored approach to its
integration and realization. The customization process starts with selecting the relevant features for every
tailored IoT application. Let Ftotal represent the total set of features available in the ANNDRA-IoT model.
The subset of characteristics Fapp for a specific application is selected based on its relevance and impact,
formulated as:

Fapp = { f ∈ Ftotal∣Relevance( f , App) > τ}, (49)

where Relevance( f , App) quantifies the importance of the feature f for the application and τ is a threshold
that determines the selection. The ANNDRA-IoT configuration model dynamically adjusts to the complexity
and nature of the applied IoT. It includes the number of layers, units in the LSTM, and learning parameters.
The dynamic configuration function for the application Cdynamic is expressed as follows:

Cdynamic(Nlstm, Nlayers , α, App) = Adjust(Nlstm, Nlayers , α, App), (50)

where Nlstm, Nlayers, and α are LSTM units, the number of layers, and the learning rate, respectively,
and Adjust the adjustment. The performance model has yet to be adjusted to the application for optimal
performance loss through fine-tuning optimization. The optimization function Oapp is defined as:

Oapp(Lloss , Mmetrics , App) = Optimize(Lloss , Mmetrics , App), (51)

where Lloss is the loss function, Mmetrics is a set of performance metrics, and Optimize optimizes the
parameters for IoT applications.

4 Experimental Simulation and Results
This section elaborates the evaluation of the ANNDRA-IoT model through the experimental simula-

tions. The experimental simulations were conducted with the use of simulation of falling edge computing
technology within the IoTSim-Edge simulator. To ensure the robustness of the ANNDRA-IoT system,
objective and subjective performance evaluations were performed. Objective evaluations include quantitative
metrics such as resource utilization efficiency, response time, system performance, load balance effec-
tiveness, and latency. Subjective evaluations emphasize practical implications, demonstrating the system’s
effectiveness in addressing real-world challenges like dynamic resource allocation and scalability in IoT
environments. Extensive simulations have been conducted against several cutting-edge approaches to
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demonstrate the superiority of ANNDRA-IoT in optimizing resource allocation. Specifically, we compared
ANNDRA-IoT with the following models: DEELB [3], OSCAR [18], CNN-MBO [30] and AWPR-FOG [31].

4.1 Simulation Setup
IoTSim-Edge simulator emulates the complex IoT ecosystem within the simulation environment. The

basis of our training and testing stages comprised data from the TON_IoT Dataset, obtained from UNSW
Research. The realization also utilizes IoTSim-Edge’s API for integrating the model within the simulated
IoT environment.

4.2 Performance Evaluation Metrics
This section discusses the key performance metrics to be used to assess the efficacy of the ANNDRA-IoT

model in optimal resource allocation within IoT environments. This indicates that 100 training epochs of the
ANNDRA-IoT model accuracy metric are tracked. In a comparative analysis, the internal accuracy of the
ANNDRA-IoT model over time was benchmarked compared to four important models in this field, namely
DEELB, AWPR-FOG, and OSCAR. At epoch 100, the ANNDRA-IoT model outperformed the competing
models with a training accuracy of 0.976 and a validation accuracy of 0.968 as illustrated in Table 3. In
contrast, the DEELB model reported a training accuracy of 0.925 and a validation accuracy of 0.917, while
the OSCAR model achieved a training accuracy of 0.902 and a validation accuracy of 0.895. The CNN-MBO
model presented a training accuracy of 0.940 and a validation accuracy of 0.932, and the AWPR-FOG model
showed a training accuracy of 0.950 and a validation accuracy of 0.942.

Table 3: Comparative analysis of accuracy and precision

Model Accuracy Precision

Training Validation Training Validation
ANNDRA-IoT 0.976 0.968 0.97 0.957

DEELB 0.925 0.917 0.89 0.88
OSCAR 0.902 0.895 0.85 0.83

CNN-MBO 0.940 0.932 0.91 0.90
AWPR-FOG 0.950 0.942 0.93 0.92

The precision and recall of the ANNDRA-IoT model were observed for the 100 training epochs. The
precision and recall of ANNDRA-IoT were compared with other algorithms. It can be seen in Table 4 that
upon completion of the training, the ANNDRA-IoT model exhibited a training precision value of 0.97 and
a recall value of 0.96. The precision and recall of the ANNDRA-IoT model in the classification states were
recorded as the model was trained over 100 training epochs to assess its classification efficacy. At the end
of the training, the ANNDRA-IoT model achieved training and validation precision of 0.97 and 0.96, and
recall of 0.96 and 0.96, surpassing the corresponding metrics of the algorithms compared as represented
in Table 4. The DEELB model was trained to achieve a precision of 0.89 and 0.88 and a recall of 0.87 and 0.86,
for training and validation, respectively. OSCAR was trained and validated to reach a precision of 0.85 and
0.84 and a recall of 0.83 and 0.82, respectively. The CNN-MBO approach achieved a training precision of 0.91
and a validation precision of 0.90, a training recall of 0.90 and validation recall of 0.89. Finally, the AWPR-
FOG model needed to achieve training precision of 0.93 and recall of 0.92, with corresponding validation
measurements of 0.92 and 0.91.
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Table 4: Comparative analysis of recall and F1 score

Model Recall F1 score

Training Validation Training Validation
ANNDRA-IoT 0.96 0.954 0.965 0.955

DEELB 0.87 0.86 0.88 0.87
OSCAR 0.84 0.82 0.84 0.83

CNN-MBO 0.90 0.89 0.91 0.90
AWPR-FOG 0.92 0.91 0.93 0.92

For benchmarking the performance of the ANNDRA-IoT model, the F1 score’s performance was
compared to that of DEELB, OSCAR, CNN-MBO, and AWPR-FOG, where this comparison was done
against the F1 score at the last epoch, which is 100. Herein, the ANNDRA-IoT model has given the highest
performance with 0.965 of the training F1 score and 0.955 of the validation F1 score.

In this comparison, the DEELB model reached 0.88 for a training F1 score and 0.87 for a validation F1
score according to [3]. Besides, OSCAR, which was proposed in [18], reported 0.84 for a training F1 score
and 0.83 for a validation F1 score, while the CNN-MBO approach of [30] had 0.91 for a training F1 score and
0.90 for a validation F1 score. The last model, AWPR-FOG, proposed in [31] reached 0.93 F1 score during
training, and its F1 score when validated was 0.92.

4.3 Resource Allocation Optimization Metrics
In a comprehensive way of assessing the effectiveness of ANNDRA-IoT as a framework to optimize

resource allocation in IoT environments, a set of custom metrics is used, including efficiency, response time,
and overall system performance.

4.3.1 Resource Utilization Efficiency
Efficiency in resource utilization is one of the important metrics concerned with IoT systems; hence,

a significant amount of performance analysis needs to be taken into consideration regarding variable load
conditions. It was estimated that, when the load was low, the ANNDRA-IoT model gained an efficiency rate
of 94%, which definitely outperformed the compared models: DEELB with 88%, OSCAR 85%, CNN-MBO
90%, and AWPR-FOG 92%. Thus, these numeric results depict that this model has great capability for the
optimization of resources in under utilization conditions. Shown here in Fig. 2 are the performance results
in different scenarios.
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Figure 2: Load-varying efficiency comparison of IoT resource management models

In the case of the application of moderate load, ANNDRA-IoT maintained an efficiency of 92%, while
DEELB achieved an efficiency of 86%, OSCAR similarly reached 83%, CNN-MBO recorded 88%, and
AWPR-FOG recorded 90%. Finally, for increasing load conditions, the efficiency of the ANNDRA-IoT model
was at 89%, well above that of DEELB at 84%, OSCAR at 81%, CNN-MBO at 85%, and AWPR-FOG at 87%,
reflecting the capability of the model to manage resources in times of high load with much more efficiency.
At peak load conditions, the ANNDRA-IoT model achieved an efficiency of 87%, exceeding the performance
of DEELB (82%), OSCAR (79%), CNN-MBO (83%) and AWPR-FOG (85%), which demonstrated superior
performance in resource management under maximum demand.

4.3.2 Resource Allocation Response Time
Resource allocation responsiveness time is one of the useful performance indices of a model under

varied operational conditions in IoT systems for a useful decision. In idle scenarios, characterized by minimal
resource demands, the ANNDRA-IoT model demonstrated a rapid response time of 20 ms (see Fig. 3),
significantly faster than DEELB (35 ms), OSCAR (40 ms), CNN-MBO (30 ms) and AWPR-FOG (28 ms).
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Figure 3: Comparative analysis of resource allocation response times under varying operational scenarios

Although ANNDRA-IoT had a higher response time during high-demand situations, where resource
allocation becomes more difficult, of 80 ms vs. DEELB, OSCAR, CNN-MBO, and AWPR-FOG, who had
100, 105, 90, and 95 ms. Finally, in the peak demand condition, which represents the testing point at both the
resource and system limit, ANNDRA-IoT records a response time of 100 ms, overcoming DEELB (130 ms),
OSCAR (135 ms), CNN-MBO (120 ms), and AWPR-FOG (115 ms).

4.3.3 System Throughput
This study computed the overall work handled by the IoT system under the operational scenarios

considered, which inherently represent quite challenging and distinctly different conditions. However, the
results are presented in Fig. 4. In the idle scenario, where the system load was minimal, the throughput
in the ANNDRA-IoT model was 1000 tasks per hour, much better than that of DEELB (850 tasks/h),
OSCAR (800 tasks/h), CNN-MBO (900 tasks/h) and AWPR-FOG (920 tasks/h). In regular demands of
operations, a moderate use scenario was observed through the throughput of the ANNDRA-IoT model at
2000 tasks per hour compared to DEELB (1700 tasks/h), OSCAR (1650 tasks/h), CNN-MBO (1800 tasks/h)
and AWPR-FOG (1850 tasks/h).
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Figure 4: Comparative system throughput analysis across various operational scenarios

The use of the system is very high, in such a way that the demands for this system increase. ANNDRA-
IoT can handle a throughput of 3000 tasks per hour, which means that it is faster than DEELB (2600 tasks/h),
OSCAR (2500 tasks/h), CNN-MBO (2800 tasks/h) and AWPR-FOG (2850 tasks/h). Under peak demand
scenarios, i.e., the limits of the system being tested, the throughput arrived at for the ANNDRA-IoT model
was 3500 tasks per hour against DEELB (3100 tasks/h), OSCAR (3000 tasks/h), CNN-MBO (3300 tasks/h),
and AWPR-FOG (3200 tasks/h). In such conditions, the ANNDRA-IoT model registered a throughput of
4000 tasks per hour in a stress test scenario, leaving DEELB at 3500 tasks per hour, OSCAR at 3400 tasks per
hour, and CNN-MBO at 3700 tasks per hour, while AWPR-FOG remained at 3600 tasks per hour. Finally,
in the worst-case situation of an emergency scenario, with demands being both urgent and unexpected and
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that these demands reach a high volume, the ANNDRA-IoT throughput model in this work is 4500 tasks
per hour, while that of DEELB is 3900 tasks/h, OSCAR is 3800 tasks/h, CNN-MBO is 4200 tasks/h, and AW.

4.3.4 Load Balancing Effectiveness
This study evaluated the performance of the ANNDRA-IoT model under four distinct operational

scenarios: low utilization, average utilization, high utilization, and peak utilization, while the result of
these is presented in Fig. 5. The first low utilization scenario is implemented with minimal system load,
the ANNDRA-IoT model achieved a load balancing efficiency of 95%, indicating its superior capability to
evenly distribute work. This was significantly higher than DEELB (87%), OSCAR (85%), CNN-MBO (90%),
and AWPR-FOG (88%), demonstrating ANNDRA-IoT’s advanced load management under underutilized
conditions. In addition, in the average utilization scenario that represents regular operational demands, the
ANNDRA-IoT model maintained a load balancing efficiency of 92%, outperforming DEELB (84%), OSCAR
(80%), CNN-MBO (86%) and AWPR-FOG (85%).

Figure 5: Comparative load balancing effectiveness across various utilization scenarios
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In a high utilization scenario implemented under increased demands, where effective load balancing
becomes more challenging, ANNDRA-IoT showcased an efficiency of 89%. In comparison, DEELB recorded
82%, OSCAR 78%, CNN-MBO 83%, and AWPR-FOG 81%. Upon further evaluation of performance, another
scenario is implemented named the Peak Utilization Scenario. During peak utilization tests, the ANNDRA-
IoT model demonstrated its exceptional load balancing capability with an efficiency of 87%, surpassing
DEELB (79%), OSCAR (75%), CNN-MBO (81%) and AWPR-FOG (80%).

4.3.5 Latency Analysis
The latency performance of the ANNDRA-IoT model was compared to DEELB, OSCAR, CNN-MBO,

and AWPR-FOG in four distinct scenarios. A baseline scenario was established without the ANNDRA-IoT
model to highlight its impact on system latency. The results for each scenario are presented below:

• Idle Environment: In scenarios with minimal resource demand, ANNDRA-IoT demonstrated a latency
of 10 ms, outperforming DEELB (18 ms), OSCAR (22 ms), CNN-MBO (15 ms), and AWPR-FOG (12
ms). Without ANNDRA-IoT, the system latency increased to 25 ms.

• Normal Operations: During typical operations, ANNDRA-IoT maintained a latency of 15 ms, signifi-
cantly lower than DEELB (25 ms), OSCAR (28 ms), CNN-MBO (22 ms), and AWPR-FOG (20 ms). In
systems without ANNDRA-IoT, the latency rose to 30 ms.

• High Demand: Under conditions of high demand, ANNDRA-IoT achieved a latency of 25 ms,
compared to DEELB (35 ms), OSCAR (40 ms), CNN-MBO (30 ms), and AWPR-FOG (28 ms). Systems
without ANNDRA-IoT recorded a latency of 45 ms.

• Peak Demand: During peak demand scenarios, ANNDRA-IoT maintained a latency of 40 ms, out-
performing DEELB (50 ms), OSCAR (55 ms), CNN-MBO (45 ms), and AWPR-FOG (42 ms). Systems
without ANNDRA-IoT exhibited a latency of 60 ms.

Fig. 6 depicts the outcome in these four scenarios that demonstrates the adaptability and efficiency of the
ANNDRA-IoT model in diverse operational environments. These results validate the ANNDRA-IoT model
as a superior solution for the allocation of real-time IoT resources.

Figure 6: (Continued)
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Figure 6: Comparative load balancing effectiveness across various utilization scenarios

5 Discussion
The proposed ANNDRA-IoT model is a novel architecture based on adaptive neural networks that

addresses the complexities and dynamic nature of IoT environments. The adaptive approach employed
by ANNDRA-IoT facilitates optimal resource distribution, ensuring efficient utilization while minimizing
latency and improving overall system throughput. The key to this approach is its ability to intelligently
interpret and respond to different IoT scenarios, thus boosting the performance and reliability of IoT
systems. The implementation of LSTM-based neural networks for IoT resource management faces several
key challenges. The large-scale data collection and processing carried out by these models poses a potential
threat to data privacy, necessitating the development of privacy-preserving mechanisms.

Our simulation results demonstrate that ANNDRA-IoT outperforms state-of-the-art solutions such as
DEELB, OSCAR, CNN-MBO, and AWPR-FOG. For example, ANNDRA-IoT achieves 95% efficiency in
highly loaded scenarios, a significant improvement over DEELB’s 87% and OSCAR’s 85%. In terms of latency
reductions, the proposed model reduces latency to 15 ms, as opposed to 22 ms in CNN-MBO and 20 ms in
AWPR-FOG. These results demonstrate not only the effectiveness of ANNDRA-IoT in diverse operational
conditions but also its potential to revolutionize IoT resource management.

The possible future expansion would be the incorporation of state-of-the-art machine learning algo-
rithms for predictive analytics, allowing the model to predict future resource requirements based on trends in
historical data. In addition, research for the incorporation of some edge computing paradigms may enhance
the processing power of the model to capture, trace, and retrieve the nearest possible data from its source,
reducing latency further with an exceptionally superfast decision-making processes’ speed.

6 Conclusion
This paper introduces the ANNDRA-IoT model that provides a significant improvement in resource

allocation in environmental settings of the IoT. The ANNDRA-IoT model effectively combats the complex
and dynamic natures associated with IoT systems through its innovative neural network-based architecture.
The implementation of the model has led to many achievements in improving system performance.
ANNNORA-IoT lowered latency to 15 ms in simulation scenarios as compared to CNN-MBO’s 22 ms and
AWPR-FOG’s 20 ms. The efficiency in resource utilization under low utilization scenarios hit peaks at 95%



Comput Model Eng Sci. 2025;142(3) 3177

with DEELB only at 87% and OSCAR only at 85%. Moreover, the throughput of the system with ANNDRA-
IoT has been measured in high-demand scenarios that were 3000 tasks per hour, better than the DEELB
and OSCAR results of 2600 tasks/h and 2500 tasks/h, respectively. The efficiency in load balancing was also
superior in high utilization scenarios and registered an efficiency 89% compared to DEELB 82% and OSCAR
78%. The primary limitations of this study include the computational complexity of implementing LSTM
networks on resource-constrained devices. Future extension of the proposed approach can include more
diversity in the data set to increase efficiency in resource allocation.
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