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ABSTRACT: The implementation of Countermeasure Techniques (CTs) in the context of Network-On-Chip (NoC)
based Multiprocessor System-On-Chip (MPSoC) routers against the Flooding Denial-of-Service Attack (F-DoSA) falls
under Multi-Criteria Decision-Making (MCDM) due to the three main concerns, called: traffic variations, multiple
evaluation criteria-based traffic features, and prioritization NoC routers as an alternative. In this study, we propose
a comprehensive evaluation of various NoC traffic features to identify the most efficient routers under the F-DoSA
scenarios. Consequently, an MCDM approach is essential to address these emerging challenges. While the recent
MCDM approach has some issues, such as uncertainty, this study utilizes Fuzzy-Weighted Zero-Inconsistency (FWZIC)
to estimate the criteria weight values and Fuzzy Decision by Opinion Score Method (FDOSM) for ranking the routers
with fuzzy Single-valued Neutrosophic under names (SvN-FWZIC and SvN-FDOSM) to overcome the ambiguity. The
results obtained by using the SvN-FWZIC method indicate that the Max packet count has the highest importance among
the evaluated criteria, with a weighted score of 0.1946. In contrast, the Hop count is identified as the least significant
criterion, with a weighted score of 0.1090. The remaining criteria fall within a range of intermediate importance, with
enqueue time scoring 0.1845, packet count decremented and traversal index scoring 0.1262, packet count incremented
scoring 0.1124, and packet count index scoring 0.1472. In terms of ranking, SvN-FDOSM has two approaches: individual
and group. Both the individual and group ranking processes show that (Router 4) is the most effective router, while
(Router 3) is the lowest router under F-DoSA. The sensitivity analysis provides a high stability in ranking among
all 10 scenarios. This approach offers essential feedback in making proper decisions in the design of countermeasure
techniques in the domain of NoC-based MPSoC.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.061318
https://www.techscience.com/doi/10.32604/cmes.2025.061318
mailto:yousif@uowasit.edu.iq


2662 Comput Model Eng Sci. 2025;142(3)

KEYWORDS: NoC-based MPSoC security; flooding DoS attack; MCDM; FDOSM; FWZIC; fuzzy set

1 Introduction

1.1 Motivation
The rapid proliferation of Internet of Things (IoT) platforms actress diverse applications such as smart

cities, health care, and industrial automation has brought unprecedented levels of connectivity and data
exchange [1,2]. At the core of these systems lies the Multiprocessor System-On-Chip (MPSoC) architecture
(see Fig. 1), which integrates multiple processing elements to handle the varied workloads of IoT devices.
Network-On-Chip (NoC) technology plays a critical role in managing communication among these pro-
cessing elements, facilitating low-latency and high-bandwidth data transfer [3]. However, as IoT platforms
grow in complexity, the reliance on third-party intellectual property (3PIP) cores and heterogeneous ones has
exposed NoC-based MPSoCs to significant security risks, as shown in [2,4]. The biggest threat is the Flooding
Denial-of-Service Attack (F-DoSA), where a malicious IP core floods the NoC with unnecessary traffic,
leading to network congestion, degraded performance and potential system failure [5,6]. Given the critical
nature of real-time processing in IoT applications, these is an urgent need for a robust and efficient approach
to detect and mitigate such attacks while maintaining the system’s performance and energy efficiency [5,7].
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Figure 1: Typical NoC-based MPSoC platform in an IoT environment

1.2 Challenges
Securing NoC-based MPSoC against threats like F-DoSA faces key challenges, such as the diversity

of IoT traffic patterns blurs the distinction between normal and malicious behaviour, scalability demands
computationally efficient detection, and evolving attack strategies require adaptable solutions. Machine
Learning (ML) techniques have been used to address these issues using traffic features [8]. Timing-based
features, for instance, have been exploited in attacks such as Earthquake and Prime + Probe Firecracker to
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infer cryptographic keys and map processing elements. At the same time, trust-aware ML models analyze
retransmission and latency to mitigate Hardware Trojans (HTs), as shown in [9,10].

Despite these advancements, the wide variety of NoC traffic features, such as flit latency, throughput,
buffer usage and routing dependency, introduces challenges in determining which features are most
impactful for security and performance optimization. Existing systemic security frameworks depend on
feature-specific ML model approaches but lack a comprehensive approach to evaluate and prioritize traffic
features for integration into a robust countermeasure technique and scalable NoC security mechanisms [11].

1.3 Research Gap
Since the variety of traffic features employed in the ML-based NoC security approaches is rather vast,

assessing such features and their ranking requires a systematic approach. On the one hand, prior research
has identified specific features or threats associated with NoC traffic. However, there is currently no outfield
approach to systemically rank and validate the importance of these features. This creates a gap for developing
a Multi-Criteria Decision Making (MCDM) based approach to evaluate and prioritize NoC traffic features,
enabling more effective and efficient AI-driven security solutions. On the other hand, previous research
indicates that no study has yet integrated Single-valued Neutrosophic (SvN) with Fuzzy Decision by Opinion
Score Method (FDOSM) and Fuzzy-Weighted Zero-Inconsistency (FWZIC) methodologies. Specifically,
such integration into these decision-making frameworks would greatly strengthen their methodology and
practical utility by providing a more precise and powerful means for dealing with uncertainty and inconsis-
tency in complex, real-world problems. Bridging this gap is crucial for advancing theoretical understanding
and practical application in On-Chip communication security.

1.4 Contribution
The present paper aims to provide an integrated new approach for decision-making under uncer-

tainty for ranking NoC router traffic feature alternatives. The proposed model integrates the Single-valued
Neutrosophic-Fuzzy-Weighted Zero-Inconsistency (SvN-FWZIC) and Single-valued Neutrosophic-Fuzzy
Decision by Opinion Score Method (SvN-FDOSM). More precisely, the implementation of the proposed
methodology is based on a four-stage procedure that can be outlined as follows:

• Firstly, a group of experts identifies all relevant NoC-based MPSoC traffic features to be used as criteria
and evaluates NoC routers as possible alternatives.

• Secondly, the SvN should be integrated with FDOSM, known as SvN-FDOSM, to overcome uncertainty
issues and rank NoC routers’ traffic features.

• Thirdly, the integration of SvN with Fuzzy-Weighted Zero-Inconsistency (FWZIC), known as SvN-
FWZIC, will be extended to determine the significance per the criteria.

• Fourthly, implementing the MCDM method of group ranking based on extending SvN-FDOSM into
Single-Valued Neutrosophic Weighted Einstein Averaging (SNEWA) operators.

1.5 Objectives
We aim to achieve the following objectives in the paper:

• Collecting the NoC-based MPSoC router data as an alternative using General Execution-driven
Multiprocessor Simulator version 5 (GEM-5) based GARNET2.0 ruby simulator.

• To integrate FDOSM into a new fuzzy environment to improve the ranking accuracy of fuzzy decisions.
• To develop an advanced version of the FWZIC by extending it to the fuzzy environment based on a new

consistency measure to improve the robustness and accuracy of the weightings.
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• An aggregation operator is also developed to extend the SvN-FDOSM for group decision-making by
efficiently utilizing multiple experts’ opinions.

1.6 Significance and Implications
To the best of our knowledge, no research has been done in the domain of NoC-based MPSoC security

to evaluate and rank the NoC routers’ traffic feature alternatives. The overall significance of this paper is
to develop a new comprehensive approach capable of efficiently and effectively forming experts, examining
and ranking alternatives while considering uncertain and ambiguous data and experts’ confidence levels.
This paper fills the gap in identifying F-DoSA attacks. It provides the foundation for further investigation
of the integration of decision-making with ML to improve security in embedded systems. The paper
has significant practical implications for expanding the understanding of IoT system dependability and
potential vulnerabilities to enhance IoT dependability, especially in safety-critical applications for which
immediate and accurate recognition of security threats is critical. Through this study, we seek to help advance
improved and more secure NoC-based MPSoCs to adequately support the IoT systems domain’s secure
operation. In particular, the MCDM models in our study integrate FWZIC and FDOSM methodologies with
an advanced fuzzy set to address fuzziness and uncertainty in MCDM and incorporate a more nuanced
representation of vague information. Specifically, the model includes the SvN, which extends traditional
fuzzy logic by introducing three distinct membership functions: Being true, indeterminate, and false. This
structure displays the degree to which a criterion is satisfied or unsatisfied and the corresponding hesitation
or uncertainty in this triadic form, often neglected in other fuzzy models.

1.6.1 Why Using Machine Learning (ML) in NoC Security
ML is used in NoC security due to its ability to offer flexible approaches for identifying levels of

security threats, including DoS attacks and hardware Trojans. In today’s system, NoCs, including those in
IoT, encounter flexible and different traffic flows that rule base approaches cannot capture. Anomalies can be
easily detected in real-time through these patterns, thereby improving the results of the ML models with low
false positives. Moreover, using the presented ML approaches, it is possible to select and rank the features
of traffic that are important for detection, allocate the resources more efficiently, and enhance the detection
without a negative impact on the system performance. This makes ML a crucial mechanism for improving
security in NoC-based environments. Table 1 lists the NoC traffic feature resulting from the proposed ML
approaches in the NoC-based MPSoC architecture security context.

1.6.2 Why Using FDOSM and FWZIC
MCDM is a widely utilized method in expert systems and decision science for resolving issues involving

several criteria. It specifically focuses on generating appropriate decisions using the existing data [12].
Additionally, MCDM methods can improve the quality of decisions via a more rational, obvious, and
effective process than traditional ones, so the implementation of MCDM is rapidly gaining popularity [13].
One important issue concerning human decision-making is the inconsistency ratio that results from
pair comparisons. Moreover, the problem involves an innovative approach to measure two measures
that pose a considerable challenge. So, comparing criteria in pairs and using them as a scale was very
time-consuming [14].

Several newly developed methods like Level-Based Weight Assessment (LBWA), Full Consistency
Method (FUCOM), Objective Preference Analysis (OPA), and Distance-Based Ranking (DIBR) [15–17]
attempt to overcome the deficiencies of traditional criteria weighting methods concerning fewer pairwise
comparison requirements and consistency. FUCOM has strict conditions to ensure full consistency, and
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LBWA leads to a stepwise procedure to simplify the process. Unfortunately, most of these methods fail
to address uncertainty or subjectivity adequately. A comprehensive approach is essential to address these
challenges effectively. Salih et al. [18] proposed the FDOSM as an MCDM solution, which offers several
advantages. It significantly reduced the number of comparisons and ensured balanced and transparent
decision-making scenarios, minimizing inconsistencies and mitigating imprecision while maintaining
computational simplicity.

On the other hand, using FWZIC to weigh criteria is also an effective method, with a number of key
advantages that give it great persuasiveness concerning decision-makers [19]. Among the most prominent of
FWZIC’s advantages is its capability to deal with inconsistencies in the decision process if this occurs, which
is the common headache that can quickly mess up a decision’s correctness and its portrait. Using fuzzy set
theory and a zero-inconsistency approach, FWZIC can support the weighting of the criteria in the presence
of inconsistencies. Another important benefit of FWZIC is reducing the time and effort needed to weight
the criteria [13]. Unlike most other methods that require direct comparison of criteria, which can be time-
consuming [20], this approach offers a different way of combining criteria. Therefore, the decision-makers
can be more confident about the final decision based on systematic and uniform criteria weighting.

1.6.3 Why Using Single-Valued Neutrosophic (SvN)
Fuzzy sets and their extensions, as intuitionistic and hesitant fuzzy sets, have supplied noteworthy

improvements in handling uncertain and vague information. Nevertheless, these methods do not ade-
quately represent the indeterminate information embedded in human cognition. In order to fill this gap,
Smarandache proposed neutrosophic as a new area of philosophy that later led to a generalization of
the Intuitionistic Fuzzy Set (IFS), called Neutrosophic Set (NS) [19]. Neutrosophic sets incorporate three
membership functions: Consequently, they can deal with indeterminate and contradictory information
through their truth, indeterminacy, and falsity. On top of this basis, Wang et al. presented the SvN, which
is a practical and simplified form of a neutrosophic set [21]. The standard unit interval {0; 1} is employed
instead of the nonstandard unit interval of neutrosophic sets in SvN, enabling SvN to be applied in real-world
decision-making problems. The adaptation provided by this tool allows decision-makers to better model and
analyze problems with strategies of SvN, which can integrate truth, indeterminacy, and falsity to be examined
in a structured and computationally manageable manner. SvN has extensive applications in many decision-
making processes, such as supply chain management [22], medical diagnosis [23], and risk assessment [20].
In the domain of NoC-based MPSoC, decision-making is commonly made by identifying tradeoffs among
the multiple conflicting criteria like power consumption, latency, throughput, and reliability. Although
traditional fuzzy sets may be satisfactory for handling the vagueness of individual criteria, they cannot
adequately represent the indeterminate states encountered when possessing incomplete design information
or uncertain environmental conditions. However, FWZIC and FDOSM need to be extended with SvN
because the SvN has a greater ability to manage uncertainty, indeterminacy, and vagueness in complex
decision-making processes. The lack of an extension of the FDOSM and FWZIC approaches to the SvN is a
methodological and practical gap that has to be filled.

This paper is structured as follows: Section 2 presents the literature review. Section 3 shows the
steps of constructing the decision matrix, experts’ panel selection, and research methodology framework.
In Section 4, different evaluation results of decision matrix criteria and alternatives prioritizing have been
discussed. Section 5 describes the results’ validation using objective, sensitivity analysis, and Spearman coef-
ficient statistical methods. Section 6 includes the results of compression with previously proposed MCDM
methods. Section 7 shows the practical implications and future directions. Finally, Section 8 concludes this
research paper.
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2 Literature Review

2.1 Studies on ML in NoC Security
F-DoSAs signify threats in the interconnected NoC-based MPSoCs, particularly in IoT applications

where these are expected to provide real-time communication. These attacks mostly flood the NoC with
duplicated data packets that affect the network utilization, availability of system resources and perfor-
mance [24]. Using 3PIPs makes the NoCs more susceptible to such attacks than other networks because
the control targets of many NoCs implement more complex services that depend on 3PIPs. Previous work
studied other techniques for detecting and addressing these problems. However, the inconsistency in the
traffic characteristics of NoC and the limited availability of resources in IoT applications are still issues.

While numerous F-DoSA detection methods exist, most lack adaptability and fail to prioritize NoC
traffic features effectively under dynamic IoT conditions [25–27]. Contemporary approaches fail to employ
the traffic features flexibly and instead use a set of twelve traffic features as the input, failing to consider that
the importance of each of the features may vary depending on the situation. This may lead to suboptimal
performance and excessive computational overhead, making it impractical for IoT applications [28].

Table 1: ML approaches in the context of NoC-based MPSoC: algorithms, selected features, objectives, and utilized
simulators

Article ML approach DoS attack Network traffic
features (criteria)

ML approach
objective

Utilized
simulator

Name Algorithm Source Category
[29] HT detection and

localization
approach

ANN 3PIP,
HT

Path
collision DoS

T, L, UT, PC, PIR Detection +
Localization

NETRACE + 64
MPSoC ALPHA
ISA + PARSEC

Benchmark Tool
[30] Runtime

monitoring
mechanism

KNN, LGB, DCT,
XGB, NN, LRN,

NBC

MIP Flooding
DoS

CCT, IFI, BWT, VCO,
IP, OP, VI, TI, PI, PC,

MP, HC, HR, CH,
TID, VC, FT, FID

Detection GARNET2.0
GEM5

[31] Cascaded ML
model

KNN, SVM HT Path
collision DoS

PI, PR, PNL, P, H Detection GEM5

[32] ML model LR, DT, RF, RF,
XGBOOST

– – PC, VC, FID, BU, Detection GARNET2.0

[33] Sniffer ANN perceptron
classification

model

MIP Flooding
DoS

BWT, IFI, VCO Localization NOXIM + GEM5

[34] SWiNoC security
mechanism

MLP, SVM,
KNN, DT, J48

classifier

– Jamming
DoS

– Detection ASIC design
flows with

synopsys design
compiler using

65-nm chip
multiprocessor

standard cell
libraries

Note: {Inter-Flit-Interval: IFI, Buffer Waiting Time: BWT, Virtual Channel Occupancy: VCO}; {Packet injected: PI,
Packet Revived: PR, Packet Network Latency: PNL, Power: P, Hopes: H, Buffer Utilization: BU}; {Timing: T, Latency:
L, Urination Temperature: UT, Packet Counts: PC, Injection/Ejection Rate: PIR}; {Out Port: OP, In Port: IP, Cach
Coherence Type: CCT, Flit Id: FID, Flit Type: FT, Virtual Channel: VC, Traversal Id: TID, Current Hop: CH, Current
Router: HR, Hop Count: HC, Max Packet: MP, Packet Count: PC, Port Index: PI, Traversal Index: TI, Vnet Index:
VI}, Dynamic Confidence Interval (DCI) algorithm to detect malicious packets, and a novel Dynamic Security Credit
Table}; {Multilayer Perceptron (MLP), Support-Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree
(DT), J48 Classifier (a decision tree-based classifier)}.
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These limitations underscore the need to develop the MCDM approach, which allows for the systematic
evaluation of NoC traffic features and their relevance to DoS detection. This way, researchers could
establish effective countermeasures with proper protection elements, considering the crucial features that
are important in accurate and versatile detection models for different network environments. For example,
The authors [35] developed a new effective means of DoS attack monitoring. Their work showed that they
could design a circuit for PIR-based and PPL-based F-DoS attacks and indicated the possibility of using
low power, energy and area while using low power to counter communication disruption. Similarly, the
study [8] proposes a timing-based attack for reversing the MPSoC layout that achieved 100% accuracy for
identifying processing element mappings across different NoC topologies and demonstrated the inefficiency
of previously proposed countermeasures against latency-oriented reconnaissance attacks. In addition, in the
context of cryptography, authors [36] discussed communication-based microarchitectural attacks like those
attaining leftover noise covariance during cryptographic procedures in shared NoC resources. This study
established that such attacks pose a large threat, as they can extract information through side channels; this
confirms the need to safeguard the communication infrastructure in MPSoCs.

Furthermore, the article’s authors [37] proposed a runtime anomaly detection framework that adopted
machine learning models like linear regression, decision tree and support vector machine for F-DoS attack
detection. The study also confirmed the precision accuracy of those models holding up under different NoC
congestion patterns to prosecute attacks within actual real-time schemes without significant performance
degradation. Altogether, these works abate and resume that the security and resilience improvement of
NoC-based MPSoC for fresh threats remains a significant investigation direction. Besides, Sudusinghe et al.
(2021) [30] used gradient boosting classifiers for DoS detection directly on the analyzed NoC traffic features.
This method is less localized, and it is computationally costly. Hence, it cannot be used effectively in real-
time low-power systems. Also, Siha et al. [33] suggested “Sniffer,” an in-router monitoring system to monitor
congestion anomalies at router input ports.

When it comes to implementation, this approach employs group decision-making in order to find out
which of the proposed flooding attacks is probable, and it has problems with high variability that are common
for modern IoT applications. Moreover, Sankar et al. (2024) [9] proposed a trust-aware routing technique for
MPSoCs infected with Hardware Trojans (HTs). This model selflessly avoids using HTs in routing paths and
minimizes packet retransmission and the latency it accompanies; this it achieved without significantly having
to pay the price in the area and further power consumption. While useful, this learning technique targets
HTs only indirectly, does not involve direct detection, and necessitates extensive routing changes. Besides,
Nagalaxmi et al. (2024) [7] suggested a secure NoC approach built from Noekeon and RSA algorithms to be
implemented in their 4 × 4 2D mesh NoC architecture. The experience takes advantage of Noekeon’s side-
channel resistance, RSA’s efficient encryption, a 64% improvement in throughput, and a 51% reduction in
latency. This method mainly employs high performance concerning the encryption aspect rather than the
detection of DoS attacks.

Unlike prior methods that rely on static features or assume stable traffic, this paper introduces a tailored
MCDM approach limiting adaptability in variable IoT settings. Using FWZIC for weighting and FDOSM
for ranking enables real-time, precise F-DoSA detection with reduced computational demands, enhancing
effectiveness in divers IoT environments.

2.2 Studies on FDOSM and FWZIC
In 2022, authors of [37] demonstrated the utilization of FDOSM and Interval-Valued Pythagorean Fuzzy

Sets to evaluate sign language recognition systems on wearable electronic devices. Besides, in recent research,
FDOSM has been developed by Al-Hchaimi et al. [38,39] to evaluate countermeasure techniques against
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Denial-of-Service and Timing Side-Channel attacks concerning the NoC-based MPSoC domain. This eval-
uation framework utilizes Fermatean-FDOSM and Criteria Importance Through Intercriteria Correlation
(CRITIC). Three experts specializing in NoC-based MPSoC and IoT communications security served as a
judgment panel to ascertain the criterion weights, providing their opinions on the importance of criteria in
each DM. Additionally, two ranking approaches were employed for the alternatives in the DMs: individual
and group rating. The F-FDOSM MCDM method obtained the final ranking of optimal countermeasure
methods against integrated attacks. In addition, the authors of [40–42] delivered an integrated MADM
evaluation framework to Rank Research-Based Microgrids (RB-MGs) by combining FWZIC and VIKOR
processes. The evaluation identified ‘installed power (KW)’ and ‘storage capacity (C3)’ as fundamental
criteria. At the same time, LIER-CIRCE attained the highest position according to this evaluation, and
Ormazabal took the lead in ‘storage capacity (C3)’. The assessment performed positive correlations against
TOPSIS and MABAC methods but yielded negative correlations with Multi-Attribute Ideal Real-Anti Ideal
Ratio Analysis (MAIRA). Using Triangular Spherical Fuzzy Numbers (TSFN), the authors proposed the
APPSS method to handle uncertainties through preference and performance analysis processes. In assessing
COVID-19’s impact on India, this approach identified the 60–69 age segment as the most at-risk population
category, thus helping policy leaders make decisions. In addition, Puška et al. [43] integrated FDOSM
and linear Diophantine fuzzy logic with a medical waste generated by ten hospitals analysis through the
Artificial Neural Network of their amount. Since the FDOSM used an external method to determine a weight
for every criterion, various researchers have advocated that FWZIC should be used. The FWZIC method,
introduced by article [44], was proposed to identify essential criteria weights while ensuring consistency.
Later, many studies considered FWZIC a feasible replacement for the traditional MCDM methods used in
different areas. The distribution of COVID-19 vaccines poses an MCDM challenge due to multiple criteria
incorporations and substantial differences between these cores. This problem is a difficult one that requires
an MCDM framework. Albahri et al. [13] employed a q-rung ortho-pair fuzzy framework to address these
issues, incorporating FDOSM and FWZIC.

Furthermore, the introduction of the Cubic Pythagorean fuzzy set, designed to handle uncertainty,
found application in Sign Language through Alamoodi et al. [14], who integrated it with FWZIC. Also,
Alqaysi et al. [12] used the Interval type 2 trapezoidal-FWZIC technique (IT2TR-FWZIC) to allocate the
correct weights to the nine polluting substances. Besides, Alamoodi et al. [45] applied FWZIC and Multi-
Objective Optimization based on Ratio Analysis (MULTIMOORA) in evaluating oil companies. Despite
previous efforts to address uncertainty and ambiguity in these extensions, some challenges remained. Finally,
the authors of the study [46] suggested a new approach based on FPHFSs and MCDM techniques that rate
Agri-food 4.0 supply chains (Agri4SC) using the criteria Supply Chain Visibility, Supply Chain Resource
Integration and Sustainable Performance (SCV, SCRI, and SP) that take into account the uncertainties of
the evaluation.

3 Research Methodology
This section contains an in-depth discussion of the methodologies utilized to create a new decision-

making method for weighting traffic features and ranking routers of NoC-based MPSoC architecture, as
shown in Fig. 2.

3.1 Dataset and Simulation Scenarios
This study leverages a dataset inspired by Sudusinghe et al. (2021) [30], generated through simulations

of a 3 × 3 mesh NoC architecture using the GARNET2.0 framework and the Gem5 simulator. The NoC
configuration and simulation parameters are listed in Table 2. The captured dataset is normal as well.
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Figure 2: Research methodology

Table 2: Key parameters and configuration of the 3 × 3 NoC topology and simulation setup used for evaluating traffic
features modelling attack scenarios

Parameter Description
NoC topology 3 × 3 mesh topology using deterministic X-Y routing with wormhole

switching and a 3-stage router pipeline.
Router configuration Each router includes buffer write, route computation with virtual

channel allocation, and link traversal. Each input port has four virtual
channel buffers.

Task mapping Tasks executed by IP cores with one malicious core injecting memory
request packets targeting critical nodes.

Processor and memory setup Each IP core operates at 1 GHz with a private L1 cache. Four memory
controllers, placed at boundary nodes, provide equal access to off-chip

memory.
Traffic features Analyzed features include hop counts, enqueue times, packet injection

rates, and virtual channel utilization.
Attack injection rate The malicious core increases traffic by injecting packets 50% above the

normal traffic rate.
Benchmark used FFT benchmark from the SPLASH-2 suite, simulating normal and

attack traffic scenarios.

Attack traffic contains hop counts, traversal identifiers, number of packets, enqueue time, ingress/egress
port, and virtual channel usage, as shown in Fig. 3. The analysis of these features allows the presentation of
a clear picture of NoC functionality under different traffic scenarios.
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highlights elevated traffic activity concentrated around victim IP core

Normal simulation patterns depicted relatively fair traffic distribution across IP cores, while the attack
simulations introduced injected malicious packets focused on particular nodes to mimic congestion and
poor performance. To increase the reliability of the results, the traffic patterns were quite different, which
excluded excessive focus on a specific configuration of the NoC. The decision matrix built from these
simulations quantifies router performance based on criteria including, but not limited to, throughput,
latency, energy consumption and congestion. Feature importance analysis also determined the priority of
measurements towards NoC performance, emphasizing likely performance indicators. SPLASH-2 bench-
marks and synthetic traffic patterns used for the validation confirmed the dataset’s suitability for ranking
routers and discovering significant traffic features essential for effective network operation. This approach
forms a correct framework to assess the NoC traffic and router performances.

3.2 Phase 1: Decision Matrix Construction
In this section, we describe the decision matrix (Table 3) resulting from the simulation process detailed

in above (Section 3.1), which involved a 3 × 3 mesh topology NoC-based MPSoC platform in which each IP
core was connected to a NoC router. The simulation results were collected for mixed NoC traffic scenarios
under normal and F-DoSA conditions, where the Out-Port and In-Port columns in Table 3 reflect the flits
take to leave a router which they enter a router, and both are encoded Integer (0-local, 1-north, 2-east, 3-south
and 4-west). These values mimic flit movement across the NoC to assess traffic distribution and search for
abnormalities (malicious traffic). Moreover, these counts, for example, 12, 14 or 11, represent the flit traffic
on each port; this we use to analyze router activity and traffic under both normal and attack scenarios.
Furthermore, the definitions of other features were obtained:

(i) Enqueue Time: This is when a packet is added to the input queue of a node in the network. In other
words, it is when the packet starts its journey through the network.

(ii) Packet Count Decremented: This refers to the number of packets removed from a node’s input
queue and forwarded to the next node in the network. Each time a packet is forwarded, this count
is decremented.

(iii) Packet Count Incremented: This is the opposite of the previous feature. It refers to the number of
packets a node receives and added to its input queue. Each time a packet is received, this count
is incremented.
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(iv) Max Packet Count: This refers to the larger number of packets that can be placed in a node’s input
queue at any particular moment. When a new packet appears while the queue is full, it will be lost.

(v) Packet Count Index: This index shows a packet’s location in an input queue within a node. It is used
to monitor which packet will be sent next.

(vi) Traversal Index: This is an index of the ranking node in a network. It is used to decide which nodes
a packet should be sent next.

(vii) Hop Count: This is the number of nodes a packet has visited. This count is increased every time a
packet is forwarded to another node.

Table 3: Decision matrix
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R0 12 14 8 3 5 4 4 7 7
R1 8 12 10 4 5 4 3 6 6
R2 8 11 9 4 6 4 3 5 5
R3 13 12 9 5 6 4 4 3 3
R4 11 10 8 4 5 4 3 6 6
R5 9 11 8 5 6 4 3 4 4
R6 8 10 9 4 6 4 3 5 5
R7 10 14 9 4 6 4 3 5 5
R8 11 13 9 4 5 4 3 6 6

Note: R: Router of NoC.

3.3 Phase 2: Criteria Weighting by SvN-FWZIC
In the following subsections, we will elaborate on the five fundamental steps of the SvN-

FWZIC approach:
First Step: The first definition stage is the set of evaluation definitions. This involves specifying the

evaluation criteria, which will be discussed in the next step, whereby these experts evaluate them.
Second Step: The procedure of expert choice for the Structured Expert Judgment (SEJ) involves several

crucial stages. Here are the five sub-steps engaged in this process:

• Identification of Knowledgeable Experts: The first step is to find individuals with knowledge related to
that field of study. Such specialists are regarded as knowledgeable concerning the subject of assessment.

• Creation of an Expert Pool: Many experts are created when potential experts are identified. This pool
should have at least three experts per subject. It should also be mentioned that studies [37] suggest an
optimal size for the panel of experts at 3–5 people.
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• Development of an Evaluation Model: The third sub-step establishes an assessment model of great
importance to data collection. This model underpins the gathering of expert opinions and judgments.

• Assessment of Questionnaire Reliability and Validity: The experts chosen in the previous step are to
evaluate the reliability and validity of a questionnaire. This procedure ensures that the questionnaire is
reliable and efficient for collecting expert opinions.

• Importance Rating Using Likert Scale: Step 4 uses a five-point Likert scale to assess the degree of
importance attributed to each criterion. This selection is made to reduce bias and improve the overall
validity of the expert judgments.

• Conversion of Linguistic Scale to Numerical Scale: Finally, the linguistic scale evaluating the importance
of a criterion used by experts is translated into a quantitative equivalent numerical one. This is done by
using each expert qualitative input and converting it into a number, as represented in Table 4.

• These sub-steps provide for a structured and robust process of expert selection and assessment
procurement, leading to the Structured Expert Judgment (SEJ) results from’ reliability and validity.

Table 4: Five-point Likert scale

Linguistic scoring scale Numerical scoring scale
Not _important 1

Slight_important 2
Moderately_important 3

Important 4
Very_important 5

Third Step: Expert decision matrix construction. An Expert Decision Matrix (EDM) is constructed in
this step, consisting of the alternatives and criteria displayed in Table 5.

Table 5: Expert decision matrix (EDM)

Criteria C1 C2 . . . Cn
E1 I (E1/C1) I (E1/C2) . . . I (E1/Cn)
. . . . . . . . . . . . . . .
Em I (En/C1) I (En/C2) . . . I (Em/Cn)

Note: E1: Expert 1, C1: Criteria.

Fourth Step: The application of the SvN membership function is the next phase of the process. During
this step, the fuzzy function associated with membership and defuzzification is applied to the EDM data.
This procedure enhances the precision and effectiveness of the information, which is crucial, especially
considering the challenge MCDM faces due to its inherent inclination toward strict preferences for each
criterion (refer to Table 6). As previously mentioned, SvN-FWZIC is adept at addressing inconsistency and
achieving high accuracy. The SvN can take on an objective form and is defined following Definitions 1, 2,
and 3.
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Table 6: Linguistic terms and their equivalent SvN

Linguistic term SvNs
Not _important 0.1 0.9 0.9

Slight_important 0.3 0.75 0.7
Moderately_important 0.5 0.5 0.5

Important 0.8 0.15 0.2
Very_important 0.9 0.1 0.1

Definition 1. Following [47], let us consider a space of points or objects denoted as X, where each
element in X is represented as x. Within this context, an SNS (Scalable Neutrosophic Set) in X can be
described as S = {⟨x, t_S(x), f_S(x), k_S(x)⟩ ∣ x ∈ X}, where the components t_S(x), f_S(x), and k_S(x)
correspond to the truth-membership (with values satisfying 0 ≤ t_S(x) ≤ 1), indeterminacy-membership
(with values satisfying 0 ≤ f_S(x) ≤ 1), and falsity-membership (with values satisfying 0 ≤ k_S(x) ≤
1), respectively.

In the scenario where X consists of only one element, the SNS is simplified to an SNN (Scalable
Neutrosophic Number), and it is denoted as S = ⟨t, f, k⟩, where t, f, and k represent the truth-membership,
indeterminacy-membership, and falsity-membership, respectively.

Definition 2. When comparing two SNNs [47], denoted as S_1 and S_2, the process can be described
as follows:

p (S1) > p (S2) , then S1 ≻ S2; (1)
p (S1) = p (S2) and q (S1) > q (S2) , then S1 ≻ S2; (2)
p (S1) = p (S2) and q (S1) = q (S2) , then S1 = S2 . (3)

p (Si) =
t i + 1 − f i + 1 − ki

3
and q (Si) = t i − ki(i = 1,2) (4)

Definition 3. The hypothesis posits that the following:
S j = ⟨t j , f j , k j⟩ ( j = 1, 2, ⋅ ⋅ ⋅ , n represents a collection of SNNs, where S j , ω j ∈ [0, 1] and ∑n

j=1 ω j = 1.
The subsequent operators for single-valued neutrosophic weighted averages are considered in this scenario.
This study employed the SNEWA operators, as demonstrated in Eq. (5) [48].

SNEWA (S1 , S2 , ⋅ ⋅ ⋅ , Sn)

= ⟨
∏n

j=1 (1 + t j) −∏n
j=1 (1 − t j)

∏n
j=1 (1 + t j) +∏n

j=1 (1 − t j)
,

2∏n
j=1 f j

∏n
j=1 (2 − f j) +∏n

j=1 f j

,
2∏n

j=1 k j

∏n
j=1 (2 − k j) +∏n

j=1 k j
⟩ (5)

Fifth Step: The weight coefficients for the evaluation criteria are determined in the Weight Computation
phase. This involves utilizing the fuzzified data from the previous step to calculate the weight coefficients
(w1, w2, . . ., wn) for the evaluation criteria. The following steps are taken to derive these coefficients:
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Calculate the ratio of the fuzzified data using Eq. (6), specifically designed for SvN. These equations can
be referenced in Table 7 for further details. Eq. (7) symbolizes the actual process of computing these weight
coefficients.

Imp(Ẽ1/C1)
∑n

j=1 Imp (Ẽ1/C1 j)
(6)

where Imp ( Ẽ1
C1) represent the fuzzy number of Imp ( E1

C1) .

Table 7: Linguistic terms and their equivalent SvN

Linguistic term SvNs
No_Difference 0.1 0.9 0.9

Slight_Difference 0.3 0.75 0.7
Difference 0.5 0.5 0.5

Very_Difference 0.8 0.15 0.2
Huge_Difference 0.9 0.1 0.1

(ii) The average values are calculated to determine the ultimate fuzzy values of the weight coefficients for
the evaluation criterion (w̃ , w̃2, . . . , w̃n)T . The Fuzzy (ẼDM) is employed to calculate the ultimate weight
value of each criterion using the provided Eq. (7).

W̃ J =
⎛
⎜
⎝

m
∑
i=1

Imp (Et j /Ct j)

∑n
j=1 Imp (E(Etj/Ct j)

⎞
⎟
⎠
/m

⎞
⎟
⎠

, for i = 1, 2, 3, . . . m and j = 1, 2, . . . n (7)

Fuzzy weights w̃J are assigned to each criterion by dividing their ratio values by the total number
of experts, Imp(E1/C1)˜ represent the fuzzy number of Imp (E1/C1), and ∑n

j=1 Imp(E(Etj/Ct j). It is the
calculation of the total value of fuzzy numbers representing the importance assigned by the expert for
each criterion.

3.4 Phase 3: Alternatives Ranking by SvN-FDOSM
This section outlines the steps in the FDOSM approach for ranking NoC traffic features, as illustrated

in the research methodology. The process of the FDOSM ranking method can be summarized into three
distinct stages, as follows:

Stage 1: Data Input
The DM is constructed in the data input stage by considering the intersection of NoC traffic features

criteria and routers as an alternative, as described in Table 1. This process results in the formation of NoC
traffic features, which are structured based on (A × C) sets comprising (A1, A2 . . . Am) alternatives and
(C1, C2. . .Cn) criteria. Eq. (8) visually represents this NoC traffic features DM format.

DM =

A1
A2
⋮

Am

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 . . . C1n
C21 C22 . . . C2n
⋮ ⋮ ⋮ ⋮

Cm1 Cm2 . . . Cmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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Stage 2: Data Transformation
This stage encompasses the following steps:

1. Determine the ideal solution by selecting each criterion’s range of (min, max, critical) values
using Eq. (9). The ideal value represents the maximum benefit and the minimum cost, and the critical
value lies between them.

a∗j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max
i=1, . . . ,m

ai j if C j is a benefit attribute

mini=1, . . . ,m ai j if C j is a cost attribute
cv j otherwise

(9)

2. Select a panel of specialists who possess a comprehensive understanding and substantial expertise in
the field of research. This research required the participation of three experts.

3. Construct an opinion matrix utilizing the perspectives of the experts. The matrix facilitates a comparison
between the ideal answer and alternative values for each criterion while also generating linguistic
phrases that encapsulate the viewpoints of experts.

4. The opinion matrix can be converted into a numerical matrix using a linguistic Likert scale. The Likert
scale allocates different degrees of significance to the criteria, as determined by the evaluations of
experts. Using linguistic terminology plays a pivotal role in ascertaining the degree of importance
within the evaluation process. The scale consists of five levels, ranging from “No Difference” to “Huge
Difference,” as described in Eq. (10) and Table 7.

O pLang = {(( ṽ
i j

⊗ vi j∣ j ∈ J).∣i = 1, 2, 3 . . . m)} (10)

This ⊗ refers to comparing the ideal solution and alternatives [18].
5. Apply the opinion matrix in Eq. (11) as the basis for expert opinions. Transform the matrix into a fuzzy

opinion matrix using the SvN method, yielding the final output of this stage.

OpLang =
A1
⋮

Am

⎡⎢⎢⎢⎢⎢⎣

Op11 ⋅ ⋅ ⋅ Op1n
⋮ ⋱ ⋮

Opm1 ⋅ ⋅ ⋅ Opmn

⎤⎥⎥⎥⎥⎥⎦
(11)

where the term (OpLang) denotes the decision maker’s opinion.

Stage 3: Data Processing

1. This stage marks the conclusive step in ranking the fuzzy decision matrix.
2. There are two methods for ranking based on the opinions of individual and group experts [18].

SNEWAω (S1 , S2, ⋅ ⋅ ⋅ , Sn)

= ⟨
∏n

j=1 (1 + t j)
ω j −∏n

j=1 (1 − t j)
ω j

∏n
j=1 (1 + t j)

ω j +∏n
j=1 (1 − t j)

ω j ,
2∏n

j=1 f ω j
j

∏n
j=1 (2 − f j)

ω j +∏n
j=1 f ω j

j

,
2∏n

j=1 kω j
j

∏n
j=1 (2 − k j)

ω j +∏n
j=1 kω j

j

⟩ (12)

The fuzzy opinion matrices’ results are combined using Eq. (12) [47], and the defuzzification process is
carried out using Eq. (13) [45], where the lower score corresponds to the highest effectiveness NoC router
under the F-DoSA scenario.

s(A) = (t + 1 − f + 1 − k)/3 (13)
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4 Result and Discussion
In this section, we discuss the results obtained from the SvN-FWZIC and SvN-FDOSM in detail. These

results are analyzed and interpreted to emphasize the performance and effectiveness of each method in
tackling the desired decision-making challenges.

4.1 Results of Weighting
The assessment scores and measurement weights for each criterion are shown below. The SvN-FWZIC

result for the assigned weight of the NoC traffic features is also clarified using Eqs. (1)–(7). The evaluation
and selection procedures were given to three specialists with more than 20 years of relevant expertise. Table 8
and Fig. 4 show the experts’ relative weights for NoC traffic features criteria. Table 8 shows the weight of
criteria extracted from NoC-based MPSoC routers’ traffic features under heavy F-DoSAs. To find the impact
of F-DoSAs on MPSoC routers’ traffic feature, criteria such as Enqueue Time, Packet Count Decremented,
Packet Count Incremented, Max Packet Count, Packet Count Index, Traversal Index and Hop Count were
weighted based on their significance to network performance and security.

Figure 4: Importance of criteria weights in the utilized decision matrix

Additionally, the weights for Max Packet Count (0.1946) and Enqueue Time (0.1845) demonstrate their
significant values and relevance in assessing the resilience of MPSoC systems under attack.

The measure of delay due to the time packets are spent in a queue is Enqueue Time, which is key
as excessive amounts of queue time can cause significant processing delays that inhibit response time.
In the same way, the Max Packet Count is similar to the threshold above which the system can handle
packets, exceeding which can cause packet loss or congestion, leading to vulnerability to F-DoSAs. These
two criteria are what engineering teams should optimize—by improving queue management strategies and
packet handling algorithms to handle bursts, as illustrated in Fig. 4. Techniques including dynamic buffer
resizing and implementing rate limiting for the packets’ flow will control the packet flow based on the
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data flow rate and guarantee efficient processing under the high load of the data flow. In addition, adaptive
congestion control methods can also distribute traffic load over processing nodes, avoiding too many packets
enqueueing to a processing node and max packet overload. This focus on high-weight criteria substantially
strengthens MPSoC’s resiliency to F-DoSAs, insulating the system from network congestion and latency
spikes. The other criteria, Packet Count Decremented, Packet Count Incremented, Packet Count Index,
Traversal Index, and Hop Count, are also equally as crucial, together with the high weight criteria Max Packet
Count and Enqueue Time, in evaluating the effects and minimizing the impacts of the F-DoSAs on MPSoC.
In addition, by monitoring these criteria in real time and adapting routing protocols, the system will be
further fortified by balancing network load and reducing vulnerability to F-DoSAs. Focusing on all weighted
criteria of this MPSoC improves its robustness, achieving better performance and resilience to malicious
traffic patterns. The result of weight will be used with SvN-FDOSM to find the final rank of routers.

Table 8: Final criteria weight
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Criteria wight 0.1845 0.1262 0.1124 0.1946 0.1472 0.1262 0.1090

4.2 Results of Ranking
In this part, we provide the findings and discussion from our analysis of the SvN-FDOSM experts’

thoughts on NoC routers during the F-DoS attack. Experts record their collective judgments about the best
possible solution to each criterion based on Eqs. (8) and (9) to make linguistically grounded comparisons
between the best possible answer and other values for each criterion or alternative. Table 9 depicts the opinion
matrix as reported by the three experts using the Likert five-point scale method.

Table 9: Opinion matrix of three experts

NoC
routers

Enqueue
time

Packet count
decremented

Packet count
incremented

Max
packet
count

Packet
count
index

Traversal
index

Hop
count

Expert 1
R0 D D SD SD ND ND ND
R1 ND SD SD SD SD SD SD
R2 SD SD ND SD SD D D
R3 SD ND ND SD ND HD HD
R4 D SD SD ND SD SD SD

(Continued)
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Table 9 (continued)

NoC
routers

Enqueue
time

Packet count
decremented

Packet count
incremented

Max
packet
count

Packet
count
index

Traversal
index

Hop
count

R5 D ND ND SD SD VD VD
R6 SD SD ND SD SD D D
R7 SD SD ND SD SD D D
R8 SD SD SD SD SD SD SD

Expert 2
R0 ND D ND SD SD SD SD
R1 HD ND ND SD ND ND ND
R2 SD ND SD SD ND D D
R3 SD SD SD SD SD HD HD
R4 ND ND ND ND ND ND ND
R5 ND SD SD SD ND VD VD
R6 SD ND SD SD ND D D
R7 SD ND SD SD ND D D
R8 SD ND ND SD ND ND ND

Expert 3
R0 SD ND ND D SD HD HD
R1 HD SD ND D ND VD D
R2 ND SD SD D ND D D
R3 ND D SD D SD ND SD
R4 SD SD ND ND ND VD VD
R5 SD D SD D ND SD ND
R6 ND SD SD D ND D D
R7 ND SD SD D ND D D
R8 ND SD ND D ND VD VD

Note: D: Difference, SD: Slight_Difference, ND: No_Difference, VD: Very_Difference, HD: Huge_Difference.

Table 10 and Fig. 5 present the results of three experts who have ranked nine routers (R0 to R8) according
to 7 criteria, following which their rankings are listed, and common differences in expert opinion are
identified. Router R4 is continuously in the 1st rank (all experts). On the other hand, all of the experts rank
router R3 last (9th is the consensus) due to underperformance.
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Table 10: Individual results

First expert Second expert Third expert

Alternatives Score Rank Alternatives Score Rank Alternatives Score Rank
R0 0.04647 3 R0 0.01671 3 R0 0.08997 5
R1 0.08742 6 R1 0.11049 7 R1 0.12409 8
R2 0.08156 4 R2 0.08694 4 R2 0.08910 3
R3 0.17427 9 R3 0.17470 9 R3 0.14806 9
R4 0.01135 1 R4 −0.22943 1 R4 0.03017 1
R5 0.13302 8 R5 0.13241 8 R5 0.09669 6
R6 0.08910 7 R6 0.08694 4 R6 0.08910 3
R7 0.08156 4 R7 0.08694 4 R7 0.09672 7
R8 0.03245 2 R8 −0.08255 2 R8 0.05736 2

Figure 5: Heatmap showing the expert evaluation of alternatives (R0 to R8), where colour intensity represents the
magnitude of scores assigned by each expert

For Router R0, the ranking result varies a bit; the first and second experts rank it 3rd, but the third expert
ranks it 5th. While R0 performs well overall across criteria, this slight shift seems to suggest a small change
of perspective. Although all experts rank Router R1 in 6th to 8th place, this indicates a stable but not too
high evaluation, with some experts believing it to be less competitive than the routers lying ahead of them.
Routers R2 and R6 show more interesting anomalies. The first and second experts rank R2 as 4th. However,
the third expert ranks it in 3rd place, owing perhaps to different weights given to some criteria that different
experts prioritize, as shown in Fig. 5. Like R6, there are also rank variations observed, in that 7th place was
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reported by the first expert and 4th place is highlighted by the second and third experts, suggesting that R6
may not be tracked well for all necessarily, but could perform well in particular areas preferred by the latter
two experts. Although low in the ranking (8th), it has a small improvement in the score of the third expert, to
indicate some of its strengths being overwhelmed by its lower overall ranking. Lastly, Router R8 also shows
the closest consensus among experts, constantly ranked between 2nd and 3rd.

In addition, there is disagreement amongst the panel of experts; for instance, expert 1 ranked ‘R6’ lower
than experts 2 and 3, while expert 2 ranked it higher. Therefore, we need to unify the opinions of experts.
Finally, Table 11 provides a convention of the results of the three experts’ efforts to reach a consensus utilizing
a group decision-making approach.

Table 11: Group ranking results based on SvN-FDOSM

Group of experts
R0 0.05105 3
R1 0.10733 7
R2 0.08586 4
R3 0.16567 9
R4 −0.0626 1
R5 0.12079 8
R6 0.08838 5
R7 0.08840 6
R8 0.00241 2

The final theoretical ranking results of nine routers (R0 to R8) are provided using the SvN-FDOSM-
SNEWA to aggregate evaluations of individual experts into one group decision in Table 10. This is a group
decision-making approach in which expert’s opinions are aggregated to minimize personal biases and
ultimately decide whether a router is good or bad at a collective level. Router R4 is the top-ranked option in
the final rankings with an assigned score of −0.0626. It shows that this router meets a critical standard that
the entire group values. Router R8 comes next in R4, ranking 2nd with a minimal positive score of 0.00241,
which can be considered moderate. Coming in the 4th position is Router R2 with a score of 0.08586, and
Router R6 takes the 5th position by scoring 0.08838, preceded in the 3rd position with a score of 0.05105 by
Router R0. From this pattern, we speculate that these routers have some properties that always make them
good but not necessarily the best for every type of connection. Router R7 consumed the 6th place (score
0.08840), Router R1 consumed the 7th place (0.10733), and Router R5 with the 8th place (0.12079), which
shows that these routers have performance limitations according to aggregated criteria by experts. Finally,
Router R3 finishes the rankings with the lowest, 9th, and a score of 0.16567. This means that this router has
the lowest rankings in the entire group due to consistently poor performance concerning other routers in
the criteria the group evaluated.

As shown in Table 10, the group decision approach smooths out fluctuations in individual expert
rankings and gives a clearer overall ranking of the routers. This also clarifies routers on which expert group
members have strong consensus with high performance (‘R4’) and those seen as less effective (‘R3’) to help
decision-makers hone in on options that resonate with correlated preferences and performance goals elicited
by the expert group. After the order of the alternatives has been identified, there is an urgent need to evaluate
the accuracy of these results.
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5 Validation
Rapid solutions are required for issues with the generalizability of results, and validation provides this.

The objective, sensitivity analysis and Spearman correlation coefficient validation approach will be applied.
Combining several opinion matrices into a single, unified one and then using that matrix to rank the NoC
traffic features. (1) The group’s decision results in the opinion matrix are used to sort the NoC traffic features
in the opinion matrix. (2) The sorted groups are then divided into equal sections. The mean (x) for each
group is then used to infer the results of the group’s decision-making, as illustrated in Eq. (14) and Table 12
below:

x = 1
n ∑n

i=1 xi (14)

where x refers to the arithmetic mean.

Table 12: The objective validation result

Group Mean
1st group −0.0030

2nd group 0.08755
3rd group 0.13124

The mean of every group is calculated. The comparison implies that the first group’s arithmetic mean
should be smaller than or equal to the second group’s mean. Similarly, the outcomes of the second group
must be less than or equal to those of the third group. Table 12 displays the result of objective validation.

This result demonstrates that groups extended depending on the SvN-FDOSM-SNEWA outcomes to
assess and compare the NoC-based MPSoC are true. The second validation method was sensitivity analysis.
To enhance the robustness and reliability of the presented methods, sensitivity analysis was conducted,
starting with systemically varying the criteria weights to see the effects of the variation on alternatives
ranking. The researchers first determined the most relevant criterion. Based on the result provided in Table 8,
an analysis was conducted on the weighting of criteria, concluding that “Max Packet Count” is the most
influential aspect that should be considered. We increased its weight by 0.5, which is in line with previous
academic investigations. Fig. 6 depicts ten probable outcomes based on the study of seven criteria. The
weights allocated to the remaining criteria were derived using Eq. (15).

wn ∶ (1 − wz1) = w∗n ∶ (1 − w∗z1) (15)

Fig. 6 presents the sensitivity analysis results conducted to evaluate the influence of changing the weights
allocated to the criterion on the ranks of different alternatives. The ranks in the “original” are presented
according to the first set of criterion weights. The ranks are displayed in columns labelled scenario 1 to
scenario 10 after the weights have been adjusted according to different circumstances. By comparing the
rankings in various weights, we can easily observe the final ranks and evaluate how changing the weights
provided to the criterion affects them. The objective of performing a sensitivity analysis is to assess the
robustness and stability of the rankings by examining how changing the weights affects the relative positions
of the alternatives. For instance, in the second scenario, the weights have been altered in a way that is
different from the original weights, resulting in a change in the ranks of certain alternatives. Figure is a visual
evaluation of rankings in various situations, helping researchers or decision-makers understand how changes
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in criteria weights influence the rankings. The final result shows a slight modification in the overall sequence,
thus demonstrating the effectiveness of the weighing and ranking strategy.

Figure 6: Sensitivity analysis

The Spearman technique (Eq. (16)) is used as a third validation method in this study to evaluate the
connection between the scenarios. The relative importance of these elements is established by applying
a specific calculation, which then determines their ranking. By utilizing Spearman’s rank correlation,
researchers may gain useful insights into the relative relevance and influence of different aspects under
investigation. The Spearman rank correlation coefficient quantitatively measures the consistency of rankings
between various scenarios. It is a statistical measure of the degree of correlation between the rankings of each
scenario and an original ranking. A high Spearman correlation coefficient (close to 1) shows the model is
consistent in ranking in the presence of weight variations; in other words, the model is resilient. Fig. 7 shows
the Spearman’s rank correlation.

rs = 1 − 6∑i d2
i

n3 − n
(16)

For instance, the Spearman correlation coefficient we obtained was always above 0.87, even with the
variation of weights up to 20%, indicating that the proposed methods behave well. The relative importance
of these elements is established by applying a specific calculation, which then determines their ranking. By
utilizing Spearman’s rank correlation, researchers may gain useful insights into the relative relevance and
influence of different aspects under investigation. Results are shown in Fig. 7 for the ranking of alternatives,
where the lowest value was 87%, and the highest value was 100%. Moreover, not only does this sensitivity
analysis confirm the stability of the FWZIC and FDOSM methods, but it also confirms their effectiveness in
ensuring reliable rankings. The insights of this analysis allow decision-makers to use the methods in dynamic
or uncertain settings with surety that the results are robust to reasonable changes in the input parameters.
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Figure 7: Spearman’s rank correlation

6 Comparison Analysis
Multiple widely recognized MCDM algorithms operate on SvN numbers. This section compares these

algorithms, focusing on SvN-FDOSM-SNAWA, which has been preferred over other approaches. The
comparison highlights the resilience of SvN-FDOSM-SNAWA. To begin, TOPSIS is a well-known MCDM
methodology that has been extensively used in various applications and is considered one of the top
methods. However, the basic form of TOPSIS is affected by uncertainty, and an extension called fuzzy SvN
number TOPSIS (SvN-TOPSIS) [49] has been developed using the same SvN fuzzy number employed in
SvN-FDOSM-SNAWA. SvN-TOPSIS incorporates SvN fuzzy numbers to address uncertainty, but it retains
the fundamental drawback of the original TOPSIS, which requires external sources to provide preference
weights. In the same way, the SvN integration with VIKOR is used to address uncertainty [22].

SvN-FDOSM-BM outperforms SvN-TOPSIS in several aspects: 1) Handling missing data. 2) Dealing
with immeasurable criteria. 3) Generating criteria weights. 4) Normalizing data involves unifying data from
different scales and types in the decision matrix. 5) Determining the ideal solution (best value under the
same criterion) and measuring the distance between the ideal solution and other alternatives. 6) Managing
ambiguous or unclear data (fuzziness). Table 13 shows the compassion.

Table 13: Comparison with SvN-TOPSIS and SvN-VIKOR

No. Comparison issue SvN-FDOSM SvN-VIKOR SvN-TOPSIS
1 Handling missing data

√ × ×
2 Dealing with immeasurable criteria

√ × ×
3 Generating criteria weights × × ×
4 Normalizing data

√ √ √

5 Determining the ideal solution
√ × ×

6 Managing ambiguous or unclear data
√ √ √
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These details are presented in Table 13, which demonstrates that SvN-FDOSM-SNAWA shows greater
resilience compared to SvN-TOPSIS and SvN-VIKOR for assessing and benchmarking routers. Furthermore,
while TOPSIS addresses ambiguous information and normalization with a limited scope (n = 2/6), SnV-
FDOSM-SNWEA tackles all of the challenges mentioned above comprehensively, except weighting criteria
(n = 5/6).

Similarly, the classic AHP (Analytic Hierarchy Process) is a well-known MCDM approach that suffers
from ambiguity and uncertainty in its original form. The SvN was utilized to augment this approach and
overcome the latter problem. SvN-AHP was introduced as an extension to address uncertainty. However,
SvN-AHP [50] still has limitations compared to SvN-FWZIC, including the number of comparisons
required, nature of comparisons, rank task, inconsistency issues, and the rank process. These problems are
listed in Table 14.

Table 14: Comparison between SvN-FDOSM and SvN-AHP

No. Comparison issue SvN-FWZIC SvN-AHP
1 Number of comparisons (n − 1) The comparison

minimum number is 1
[n (n – 1)/2]

2 Nature of comparisons Similar quantities Several quantities have
been used in this weight

situation, whereas the
exact amounts have been

used in the ranking
process.

3 Rank process Easier Complicated
4 Inconsistency problem Solved The most challenging

task at hand.
5 Feedback from experts It takes less time. It takes more time.
6 Final rank It’s a higher degree of

rationality and alignment
with the perspective DM.

It is reliant on assigning
weights to the decision

criteria.

Considering these comparisons, it becomes evident that SvN-FWZIC is more robust than SvN-AHP for
evaluating and benchmarking, which is why it was used in our work.

7 Practical Implications and Future Directions
In the context of the practical implications, the results of this work offer valuable insights for designing

countermeasure strategies for F-DoSA in NoC-based MPSoC architecture systems. This paper identifies
Max Packet Count as the most significant traffic feature in the study to show that it should best be used
in developing mechanisms for invasion detection. The routers’ ranking, especially Router 4 as the best
performing and Router 3 as the worst performing, provides practical information that could enhance routing
algorithms and router hardware in real-world NoC practice. Such outcomes are highly desirable for IoT
platforms since improving the platform’s tolerance to F-DoSA is relevant to vital industries, including
healthcare, autonomous systems, and smart infrastructure. Nevertheless, the study also recognizes some
limitations, such as the sensitivity nature of FDOSM to the number of experts, which may lead to bias
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or computational time. Further, concerning uncertainty, the elements described in SvN-FWZIC and SvN-
FDOSM offer the validation of the uncertainty element; however, it is also possible to use other approaches
based on fuzzy sets, such as Intuitionistic Fuzzy Sets or Pythagorean Fuzzy Sets. The research also provides
a concrete methodology for the analysis of NoC routers. Still, in future, one can consider the analysis of
adaptive defence measures, other approaches to aggregation, such as Bonferroni, or a study of the algorithms
at larger systems or the different types of more sophisticated attacks. These improvements would extend the
potential of the practicality of the results of this research, especially in providing security for communication
in IoT-based MPSoC systems for smart cities, healthcare Internet of Things, and industrial automation.

Alternatively, as a future direction for enhancing FDOSM for Practical Applications, some samples of
applications include the usage of higher-order fuzzy sets such as M-Polar or cloud-based surroundings for
enhanced ambiguity treatment and adaptive mechanisms as real-time protection means of dynamic threats.
Managing uncertainty using other aggregation methods like Bonferroni will likely improve the existing
results, and extending the approach to larger NoC systems will promote its effectiveness. Industrial applica-
tions include smart city protection, IoT data of the healthcare sector, and reliability of industrial automation.

8 Conclusion
The research endeavours encompassed an extensive evaluation of NoC-based MPSoC traffic features

under F-DoSA. The evaluation process was conducted utilizing pioneering multiple-criteria decision-
making methods known as SvN-FWZIC and SvN-FDOSM, which offered a novel approach to assessing the
effectiveness and suitability of various NoC routers. The research methodology was structured into three
phases, each serving a specific purpose. These phases were visually represented in Fig. 2, facilitating a clear
understanding of the research process. The first phase involved the construction of a decision matrix for the
9 NoC routers as alternatives and seven traffic features as criteria. In the second phase, a meticulous process
of criteria weighting was conducted using the SvN-FWZIC method. This step aimed to assign appropriate
weights to the decision-making criteria, considering their relative significance and impact. By employing the
SvN-FWZIC method, comprehensive and well-balanced weighting criteria were used in the third phase. The
result of this phase indicates that the Max Packet Count with a weight value (0.1946) is the highest importance
criterion, while the Hop count is the lowest criterion with a weight value (0.1090). Moreover, the third
phase involved ranking NoC routers using the SvN-FDOSM method. This method, tailored specifically for
evaluating NoC routers within MPSoCs-based IoT, provided a systematic and robust approach to prioritizing
and comparing the NoC routers. The final result of this study shows that R4 was in the first step, while R3
was the worst.

A rigorous validation process was implemented to ensure the reliability and validity of the evaluation
results. The key contribution of this research lies in developing and proposing an evaluation framework that
addresses the complex challenge of selecting the optimal NoC router that affects the context of MPSoCs-
based IoT. In addition, this investigation offered a new version by combining SvN with FDOSM and
FWZIC to overcome uncertainty issues in weighting and ranking. This research expanded the understanding
of communication security in MPSoCs-based IoT. It provided a practical and effective framework for
researchers and practitioners to make informed decisions regarding the NoC router testing during the F-
DoS attack scenario. Some limitations of the proposed extension are considered. However, the effectiveness
of FDOSM is extremely sensitive to the number of experts. Bias may result from only a limited number of
experts, and a large number can increase computational complexity and make it harder to get consensus.
Second, the model uses SvN as it provides a means to capture truth, indeterminacy, and falsity. However,
such capabilities of capturing uncertainty and incomplete knowledge could be replicated using any fuzzy
sets generalization, like Intuitionistic Fuzzy Sets (IFS) or Pythagorean Fuzzy Sets (PFS). In addition, other
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methods of aggregation can used with FDOSM and FWZIC, such as Bonferroni. For future research
directions, investigate adaptive defence mechanisms. In addition, different fuzzy set techniques, including
M-Polar, D number, and cloud environment, may be executed with FWZIC and/or FDOSM to explore the
ability of these kinds of fuzzy sets to address the ambiguity issue.
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