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ABSTRACT: The growing threat of malware, particularly in the Portable Executable (PE) format, demands more
effective methods for detection and classification. Machine learning-based approaches exhibit their potential but often
neglect semantic segmentation of malware files that can improve classification performance. This research applies
deep learning to malware detection, using Convolutional Neural Network (CNN) architectures adapted to work with
semantically extracted data to classify malware into malware families. Starting from the Malconv model, this study
introduces modifications to adapt it to multi-classification tasks and improve its performance. It proposes a new
innovative method that focuses on byte extraction from Portable Executable (PE) malware files based on their semantic
location, resulting in higher accuracy in malware classification than traditional methods using full-byte sequences.
This novel approach evaluates the importance of each semantic segment to improve classification accuracy. The results
revealed that the header segment of PE files provides the most valuable information for malware identification,
outperforming the other sections, and achieving an average classification accuracy of 99.54%. The above reaffirms the
effectiveness of the semantic segmentation approach and highlights the critical role header data plays in improving
malware detection and classification accuracy.
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1 Introduction
Malicious software (malware) is currently considered the main weapon for carrying out malicious

actions in cyberspace to breach any organization’s cybersecurity [1]. It is one of the most effective cyberattack
vectors today [2], and driven by economic benefits, malware attacks increase significantly daily [3].

Based on statistics published by AV-Atlas in 2024, approximately 1.444 million malware samples were
identified between 2008 and 2024. In the last year, new malware specimens have grown by 7.14% [4].

Based on the above, it can be concluded that the threat of malware is growing, which brings the need to
develop more effective methods for its detection and classification. The malware affects all operating systems
with their different file formats, from Windows [2], Linux [5], IoT devices [6] and others. Research efforts
are underway to develop new methods to detect malware effectively and efficiently to defend against these
constantly evolving and growing threats [2].
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Evasive techniques, such as packaging, encryption, polymorphism, metamorphism, and others, are used
by malware producers to quickly change their behavior and formats to avoid detection, thus generating a
large amount of new malware as variants of existing malware [7].

As attacks become more sophisticated, research into innovative approaches, such as using Artificial
Intelligence (AI) techniques, is warranted to improve the accuracy and speed of classification and detection
of this threat by the various anti-malware systems currently in use [8].

The need to develop techniques that generalize well the identification of new malware makes the task
of malware detection suitable for machine learning (ML) [9]. The use of ML in malware detection is under
constant study, as can be observed in the research articles in [2,10].

Convolutional neural networks (CNNs) are a class of deep learning neural networks designed for
multidimensional data processing, which, through convolutions, make it possible to extract features for
learning from raw data such as images, spectrograms, signals, and text sequences [11,12]. In addition, these
are being applied to malware detection because of their generalization properties in unknown data by using
malicious Portable Executable (PE) file features.

Malware in PE format poses a major threat to Windows users due to its widespread adoption and
portability. This is mainly due to the worldwide popularity and file portability of the Windows family of
operating systems. Probably the main reason is that the file in this format, in addition to including all the
data and instructions necessary to execute an attack, can also be easily executed by any user, thus becoming
the main target of attackers to maximize the benefits of attacks [2].

Several approaches have been employed to feed deep learning systems for malware detection or
classification. Both static and dynamic features can be extracted from PE files, such as header information,
contents of strings, sequences of bytes, lists of opcodes, calls to APIs, and others. The use of raw bytes is a
viable alternative for identifying malware in PE files [9], but without considering any semantic context [13].

The literature review identified a lack of approaches that effectively combine semantics with deep
learning techniques, such as convolutional neural networks, for malware classification. Many previous
studies have not comprehensively addressed the interaction between these two fields, which limits detection
and classification capabilities in complex scenarios.

This research proposes an innovative approach for malware classification using convolutional neural
network (ML) techniques using statically extracted raw byte sequences, considering the semantic context
represented by the PE executable file format.

The main contribution of this work is the proposal to apply the concept of semantic variation for the
static extraction of malware resources in PE format to feed neural network systems. This is done by separating
PE files into parts based on the semantic meanings that bytes can have. The aim is to improve performance
and malware classification results using Convolutional Neural Network (CNN) architectures.

In addition, it is evaluated whether the use of data extracted based on semantic location can present
better results than the use of the sequence of bytes of the whole file and whether the number of trainable
parameters in CNNs can be reduced while maintaining performance rates. In conclusion, this research seeks
to provide an innovative approach that combines advanced machine learning techniques with semantic
processing to improve the identification of malicious patterns.

The paper is organized as follows: Section 2 presents the concepts and related work, Section 3 describes
the objectives, methods, proposals, and metrics used in the research, and Section 4 details the procedures
performed to execute the practical tests. Section 5 presents and discusses the results, and finally, Section 6
concludes with insights and future directions.
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2 Background and Related Work
Deep learning (DL) focuses on developing algorithms that automatically improve through experience.

Positioned at the intersection of computer science and statistics, DL has become central to Artificial
Intelligence (AI) and, more recently, data science [14]. It employs multiple layers of information processing
in hierarchical supervised architectures to extract relevant features and perform joint discrimination [15].
These layers enable the learning of data representations with various levels of abstraction, enhancing pattern
analysis and understanding from unsupervised resources.

The strength of deep networks lies in their ability to discover complex structures in large datasets.
Utilizing backpropagation algorithms, these computational models can adjust their internal parameters to
compute representations in each layer based on the previous layer’s outputs [11].

The use of DL can be observed in many knowledge domains. These include natural language processing,
speech recognition, image recognition, medical applications, semantic segmentation, scene labeling, face
recognition, object detection, video object segmentation, background and foreground separation, graph-
based applications, intelligent transportation systems, financial modeling, policing, and marketing [14].

Recently, DL models have been applied and adapted for malware classification and detection [2,16], with
most datasets comprising PE files. CNN, a type of DL, is designed to process multidimensional data. Many
data modalities can be represented as multiple arrays: signals, sequences, and language in one dimension
(1D); images (such as a color image composed of three two-dimensional arrays containing the intensity of
pixels in three color channels) [12] or audio spectrograms in two dimensions (2D); and videos or volumetric
images in three dimensions (3D) [11].

Among the different types of layers in CNNs are convolutional, pooling, and fully connected layers.
These layers transform the original input using convolutional and reduction techniques to produce class
scores for classification and regression purposes [17].

Fig. 1 shows a typical basic structure of a CNN applied to malware detection, using the three common
layers to produce the output as a sample classification probability. The purpose of the convolutional layer is
to extract high-level features from the input data and pass them to the next layer in the form of feature maps.
Each convolutional operation is specified by a step and the filter size, and it can have a padding option.

Figure 1: Basic CNN architecture applied to malware detection (Source: Vinayakumar et al., 2019 [7])

The pooling layers aim to gradually reduce the dimensionality of the representation, reducing the
number of parameters and the computational complexity of the model [17]. This layer receives each feature
map output from the convolutional layer and prepares a condensed feature map.
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Fully connected layers are typically used in the final stages of a CNN. These layers connect all the inputs
of one layer to each activation unit of the next layer, abstracting the low-level information generated in
previous layers to a final decision [15].

Malware detection systems examine specific files to determine whether they are malicious. Early
antivirus products relied on monitoring machines for specific indicators of compromise, such as file names
or exact signatures (specific sequences of bytes or strings from the contents of a file) [16]. ML offered the
most promising strategies for detecting malware attacks on enterprise information systems in this context
due to its increased accuracy and precision [18].

Three main objectives can be applied to malware analysis using ML. The first is malware detection, and
the second is similarity analysis to learn how variants differ from existing ones, including variant detection,
family, similarity, and difference; and finally, categorization to learn about the behavior and goals of the
malware [10].

Malicious artifact analysis is a complex process focused on detecting whether a binary is malicious or not
or classifying it into families or variants of malware [13]. Distinguishing between the categories of malware is
important to understanding how they can infect computer systems, the threat level, and the ways to protect
against them [19].

Malware detection can be divided into two general categories: anomaly-based and signature-based
detection. Both can be further subdivided into three traditional categories of malware analysis: static,
dynamic, and hybrid, each with its advantages and limitations [20]. Traditional malware analysis cannot
keep up with the rate of new attacks, new variants, and millions of daily attacks. ML presents itself as an
alternative [21].

Malware detection using standard signature-based methods is becoming increasingly difficult due
to the use of polymorphic, metamorphic, encryption, and compression techniques to evade detection by
anti-malware tools or the use of lateral mechanisms to automatically update to a newer version in short
periods [22].

Recent research indicates that existing ML and DL techniques can enable superior detection of emerging
and novel malware [2] and can be more efficient than traditional signature-based approaches in detecting
zero-day threats [23]. ML has the potential to significantly change the cybersecurity landscape by addressing
the growing challenges related to malware classification [24] and identifying shared features among samples
that cannot be classified using simple rules [16]. DL models can learn arbitrary patterns in streams of bytes
and exhibit satisfactory performance in detecting malware [25].

Based on Musser et al. [26], the first studies using machine learning for malware detection were initiated
in 1996 by IBM researchers to classify boot sector viruses. Dambra et al. [27] defined limitations in current
malware detection and classification approaches, indicating future directions for improving the effectiveness
of malware detection models. Hence, it compared static and dynamic features in malware classification using
the Random Forest (RF) and XGBoost AI models.

Massun et al. [28] presented a comparative study of several ML or machine learning models for the
detection and specific classification of ransomware. They highlighted the effectiveness of the Randon Forest
model with 99% classification accuracy. The study concluded that machine learning is a viable strategy for
detecting ransomware variants and families, overcoming the limitations of traditional detection systems.
Another similar study is the one by Ramon et al. [29] that employed recursive temporal contextualization
to identify and classify ransomware activities in real-time by analyzing sequences of system events and
the one performed by Wasoye et al. [30] to propose an innovative approach to ransomware classification
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using the Binary Transformation and Lightweight Signature (BTLS) algorithm for static and dynamic feature
extraction from samples combined with machine learning techniques.

Aslan et al. [31] proposed a new malware classification framework based on a hybrid DL approach, which
uses a Hybrid Deep Neural Network to extract distinctive features from malware images. The classification
method combined two pre-trained models: AlexNet and ResNet-50.

Another innovative approach to malware classification [32] is using CNNs to extract features from
malware representations as grayscale images. The study utilized the VGG19 neural network and spatial
convolutional attention mechanisms to improve malware detection accuracy.

Chaganti et al. [33] used another innovative approach to malware classification using image repre-
sentations and EfficientNet convolutional neural networks. Liu et al. [34] presented an automatic malware
classification system based on a Spiking neural networks (SNNs) model, combining feature extraction from
grayscale images, n-grams of opcodes, and import functions.

Yoo et al. [35] introduced a hybrid malware detection model that combines random forest and DL
techniques, achieving a detection rate of 85.1% with a low false positive rate. The main contributions included
optimizing voting rules and using hybrid features to improve the classification accuracy of malicious and
benign files, thus facilitating fast and effective malware detection.

A comprehensive review of malware classification and composition analysis was conducted by Abusitta
et al. in [36]. Problems and challenges in malware detection were identified, and a new taxonomy was
proposed to organize existing approaches and provide a framework for improving feature extraction using
deep learning techniques.

A comparative table summarizing AI-based malware detection methods is adapted to include shallow
learning (SL), deep learning (DL), and bio-inspired techniques, as these are the primary categories discussed
in Wolsey’s review [37]. The following is an adapted representation combining key AI techniques and their
features, Table 1:

Table 1: Comparative analysis of the state-of-the-art AI models in relation to malware classification and detection
(adapted from [37])

Technique AI models used Features extracted Environment Performance
Shallow learning SVM, Random

Forest, KNN
API Calls, OpCode

Graphs
Host-based
detection

Up to 99%
accuracy

Deep learning CNN, RNN, GCN,
LSTM

API Calls, Opcode
Sequences,

Domain Features

IoT, Android,
Cloud

Up to 99.93%
accuracy

Bio-inspired
methods

Genetic
Algorithms,

Particle Swarm
(PSO)

Permissions,
Malware Behaviors

Android, IoT ~93%–98.59%
accuracy

The integration of CNNs into malware detection has proven highly effective, particularly for analyzing
PE files. As highlighted by Jiang et al. [38] in the cited review [37], a novel approach using CNNs combined
with an evolutionary fuzzy LSTM immune system achieved 98.59% accuracy in PE malware detection.
Another research work by Maniriho et al. [39], based on the use of CCN as an AI model, obtained a
performance of 99.93% accuracy.
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The ability of CNNs to process visualized binary data from malware files and extract hierarchical features
makes them superior in analyzing complex data, enabling the extraction of complex features that static or
heuristic methods can miss.

Fig. 2 presents an overview of the ML process for malware detection, illustrating three major stages:
data acquisition, resource extraction, and training models and making predictions [2].

Figure 2: A general machine learning process for malware detection (Source: Ling et al. 2023 [2])

The first step involves structuring a database with samples, considering analysis objectives, the execution
platform, the number of samples, the availability of binaries, and available labels [13]. Evaluating the
effectiveness of classic DL architecture requires creating a large dataset with various samples. Publicly
available datasets for potential malware detection research are limited due to the privacy preservation policies
of individuals and organizations [7].

The objective of the second step is to extract intrinsic properties from the PE files to feed learning
models for malware detection and perform necessary preprocessing, such as transforming the properties
into appropriate numerical resources [2], to ensure the effectiveness and applicability of ML [40]. Different
categories of features extracted from PE files, both static and dynamic, can be utilized to generate resources
for learning systems [10,21].

Coull et al. [41] indicated that deep learning architectures with raw byte data inputs are a viable
alternative to traditional machine learning for malware classification, eliminating the costs of manual
identification work for resource identification.

Raff et al. [9] demonstrated that neural networks can extract the underlying high-level interpretation of
raw bytes, making it possible to develop malware detectors without manual feature extraction. They used a
feature vector extracted statically from the entire binary.

In the third step, the resources are utilized to train neural networks, evaluate them, and predict unknown
data. The model can also be utilized to produce classification results with broader outputs, such as similarity
or categorization analysis.

The use of raw byte sequences as a resource for malware detection was proposed by [4], apparently
the first of its kind to use a sequence containing the entire file. CNNs can extract the underlying high-level
interpretations of raw bytes, making it possible to develop malware detectors without manually extracting
features [25].
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This capability highlights CNN’s role in bridging the gap between high detection and classification
accuracy, better performance in identifying complex patterns, and adaptability to evolving malware. This is
the main reason that justifies the choice of this AI model in the present research.

Malware in PE format remains the predominant threat to both personal and corporate users. This is
mainly due to the worldwide popularity of the Windows family of operating systems. The portability of PE
files between operating system families also contributed. Probably the main reason is that the file in this
format, in addition to including all the data and instructions needed to execute an attack, can also be easily
executed by any user, thus becoming the main target for attackers to maximize the benefit of attacks [2].

It can be considered a sequence of bytes to apply static analysis and detection techniques to a malware
sample in PE format, which is a binary file. The sequence represents the file’s structure, control information,
codes, and data. There can be different semantic contexts for each set of information.

Developing detection rules that capture the semantics of a malicious sample can be more challenging to
circumvent because malware developers can apply complex modifications to avoid detection [10]. Semantic
variation is a concept that occurs when malware is represented as a sequence of bytes without considering
the different types of information existing in a PE file [13].

The bytes of a PE file can contain various types of information that can exhibit spatial correlation,
depending on the section in which they are stored [9]. In addition, binaries can have varying lengths, as
they are sequences of bytes. Demetrio et al. [42] emphasized that no definitive metrics can be applied to
these bytes, as each value represents either an instruction or data, making it challenging to establish a
standardized approach.

The concept of semantic variation is illustrated in Fig. 3, where the author presents an example in which
the byte 64h has different meanings depending on its location in the PE file. Based on this foundation, this
work proposes applying the concept of semantic variation to segregate byte extraction from PE files. Then,
each segregated set of bytes will feed a specific CNN.

Figure 3: Semantic variation example: (a) Section .text malware code; (b) data section malware data; (c) Malware
header data
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As a conclusion to this section and as mentioned in the “Introduction” section, the main gap identified
in the literature review is the lack of approaches that effectively combine semantics with deep learning
techniques, such as convolutional neural networks, for malware classification. Many previous studies
have not comprehensively addressed the interaction between these two fields, which limits detection and
classification capabilities in complex scenarios.

Based on the literature review conducted, the main contribution of the present research related to mal-
ware classification is the use of the semantic approach in extracting data from a PE file of a malware specimen.
This allows a more accurate classification of malware by considering the structure and meaning of the bytes
rather than simply their full byte sequence and can be a breakthrough for malware detection systems.

In addition, the use of CNN architecture adapted to work with semantically extracted data can lead
to an advance in the application of AI techniques in the field of cybersecurity and a reduction of trainable
parameters by using a smaller volume of semantically extracted data. This can lead to more efficient models
without sacrificing performance. Finally, algorithms for data preparation, feature extraction, and dataset
separation are developed, providing practical tools for malware detection and classification research.

3 Materials and Methods

3.1 Objectives
The main contribution of this study is to verify how using raw bytes extracted from different parts of PE

files (semantic parts) can impact performance and malware classification results using CNN architectures
through applied research. Hence, the following objectives are defined:

1. Conducting bibliographic research on the state of the art in the use of CNN to detect and classify
malware in PE format.

2. Preparing a dataset of malware samples to conduct the applied research tests.
3. Analyzing and separating PE files into parts based on the semantic meanings of the bytes, considering

the headers, codes, and data.
4. Analyzing and adapting CNN architectures for training, validation tests, prediction, and metrics col-

lection.
5. Analyzing the results obtained in the training and verifying if they can be compared to related

research results.

During the research, the following hypotheses related to the application of the semantic approach are
assessed:

1. The use of data extracted based on the semantic location of sample files can show better results than
utilizing a sequence of bytes from the whole file.

2. The number of trainable parameters in CNN can be reduced using a smaller volume of data extracted
based on semantic meaning while maintaining performance rates.

3. Models from CNN architectures can be reused for training and testing with semantic part data.
4. CNN models trained in semantic feature analysis can accurately detect unknown samples.

A four-phase approach is adopted to achieve the objectives of the study, as represented in Fig. 4. The first
phase involves preparing the database for research. The initial data used consists of samples of executable
files in PE format labeled in malware families. This study analyzes the dataset and applies techniques to
correct distortions.

The second phase includes activities to apply the semantic concept in extracting data from executable
files in PE format to generate intermediate data to feed the CNN input layers.



Comput Model Eng Sci. 2025;142(3) 3039

Figure 4: Summary of the investigation process method

The third phase involves selecting, preparing, and using the CNN model with the semantic resources
extracted in the previous step. A model known in the research environment for malware classification was
chosen to fulfill the research objectives and provide a basis for comparing the results.

The fourth phase is to analyze the collected data and compare the results obtained in the tests with the
four categories of semantic resources extracted from the malware samples to assess whether the semantic
separation achieved the expected results. Then, the results were compared to those of similar research using
raw byte data or the same metrics.

3.2 Semantic Propose
Windows executables must adhere to the PE specification, a file format used for executables, object

code, DLLs, and other file types (.cpl, .exe, .dll, .ocx, .sys, .scr, .drv) across both 32-bit and 64-bit Windows
operating systems. Malware, such as any legitimate executable, must comply with this specification to be
recognized and executed by the operating system, even though it can manipulate the structure by mixing or
scrambling PE sections or embedding code within data sections while preserving the overall compatibility
with the PE format.
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The semantic proposal of this work is depicted in Fig. 5, providing a comprehensive visualization of the
structure and organization of a PE file. The first part of the figure presents a high-level structure of a PE file,
highlighting its main components: the header and sections. The header is responsible for storing essential
information about the file, such as addresses and sizes, while the sections are organized based on their
functionalities, such as executable code, data, and debugging information. This structural view facilitates the
understanding of the internal organization of a PE file, providing a foundation for further analysis.

Figure 5: Representation of the semantic proposal: (a) PE file structure; (b) Semantic parts

The second part of the figure illustrates how the semantic parts were defined and organized in this
research work. These semantic parts were created by grouping sections based on their specific purposes:
header, code (.text and .debug), data (.data, .idata, and .rdata), and an integrated file view (file), which
consolidates information from all previous groups to provide a comprehensive perspective of the PE file.
This semantic organization enables effective extraction and structuring of data, optimizing its use in deep
learning models such as convolutional neural networks (CNNs). Section 4.2 specifies the criteria utilized to
separate the semantic parts.

Finally, the proposed model in this research was conceived based on a dataset containing whole malware
files, which happened to be in the PE format for the Windows system. However, considering that the PE and
Executable and Linkable Format (ELF) of Linux or UNIX systems that have reasonably similar structures
(Fig. 6 [43]), it will only need to rewrite the function that retrieves the raw bytes from the file and classifies
them into semantic parts to utilize a dataset of ELF malware. The LIEF library, utilized to analyze and extract
bytes, supports both formats. Future work can consist of extending this model for malware classification and
detection on Linux systems with ELF file format.
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Figure 6: Comparison of PE and ELF file formats: (a) Windows PE format; (b) Linux EL format (Source: Wang et al.
2021 [43])

3.3 Method Followed in the Research
A cross-validation method adapted from the k-fold cross-validation proposal is used [44] to collect

consistent data during practical tests with neural network models using semantic parts data and to allow
better validation of the results. The method, called incremental cross-validation, consists of two techniques
applied before each test performance. Based on the algorithms proposed in the first group of procedures, the
first technique aims to separate the dataset into three data sets, with 80% for training, 10% for validation,
and 10% for testing and prediction, randomly selected. A high-level representation of how the datasets are
distributed, as shown in Fig. 7.

Figure 7: k-fold cross-validation representation

The second technique in Fig. 8 represents how the size of semantic input data increases in successive
training rounds. The model learns in a controlled and gradual manner by starting with smaller data segments
(input bytes) and progressively expanding them by adding incremental portions (increment). This approach
raises smoother optimization and reduces the risks of overfitting or underfitting as the model is exposed to
increasingly larger and more complex data representations.
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Figure 8: Incremental data representation

Each fold (Fold 1, Fold 2, and others) corresponds to a training round, where the input data size increases
by a predefined value (increment). The last fold (n) cannot include the entire dataset (raw bytes of the
malware’s semantic parts) if the number of rounds is insufficient to ensure that the model is trained on the
full scope of data for a semantic part.

It defines the amount of data in bytes of the semantic parts utilized to feed the CNN input layer within
a defined limit. The amount (n) was changed incrementally between tests, with the primary objective of
directly assessing the impact on the results.

Algorithm 1 is included to improve the understanding of Fig. 8.

Algorithm 1: Al for incremental training with semantic parts
Inputs:

input_size: Initial size of the semantic parts (in bytes)
pe_increment: Incremental value to increase the size in each round
train_incremental: Boolean indicating if incremental training is enabled
rounds: Total number of training rounds

Output: Model results for different input sizes
1. /* Check if incremental training is enabled
2. if train_incremental:
3. for round in range(1, rounds + 1):
4. if round > 1:
5. # Increment the size of semantic parts
6. input_size += pe_increment
7. /* Configure the CNN model with the updated input size
8. configure_model(input_size)
9. /* Load training and validation data with the current input size
10. data = load_data(input_size)

(Continued)
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Algorithm 1 (continued)
11. /* Train the model with the loaded data
12. results = train_model(data)
13. /* Save the results for analysis
14. save_results(results, input_size)
15. else:
16. /* Perform standard training without increments
17. configure_model(input_size)
18. data = load_data(input_size)
19. results = train_model(data)
20. save_results(results, input_size)

This model was chosen to ensure that each step has its dataset created randomly and isolated, thus
ensuring the data used for testing and prediction were new to the trained model.

3.4 Metrics and Their Justification
Two metrics were used for global model evaluation: Sparse Categorical Accuracy (SCAcc) and Sparse

Categorical Cross Entropy (SCCE). SCAcc calculates how often predictions match the integer labels, while
SCCE computes the cross-entropy loss between the labels and predictions provided as integers. Both metrics
are calculated using the Keras API in the test data [45].

• SCAcc checks whether the actual maximum value equals the index of the maximum predicted value by
calculating the frequency with which the predictions match the full labels. Accuracy was measured in
three phases: training, validation, and evaluation. Training accuracy indicates how well the model learns
to map inputs to outputs. Validation accuracy measures the degree of generalization of the network
during training. Evaluation accuracy indicates the generalization power on new data once the model
is trained.

• SCCE is the cross-entropy loss function used because the expected result of the classification problem
comprises a set of discrete values with nine possibilities.

For the final calculation of the cross-validation result for accuracy and error rate, global model
evaluation metrics, Eqs. (1) and (2) are used.

CrossVal idation Accurac y = SCAcc1 + ⋅ ⋅ ⋅ + SCAcck

k
(1)

CrossVal idation Error = SCCE1 + ⋅ ⋅ ⋅ + SCCEK

K
(2)

The performance of the malware classification approach was evaluated using the metrics accuracy
(SCAcc) and loss (SCCE). These metrics were chosen for their suitability in evaluating classification models.
Accuracy provides a simple measure of the model’s overall correctness, while loss assesses the model’s
ability to generate predictions that align closely with the true labels. Together, they provide a comprehensive
evaluation of the model’s performance.

The use of accuracy and loss as metrics aligns with standard practices for evaluating machine learning
models, particularly in classification tasks. In addition, these metrics are directly relevant to the research
question as they explicitly measure the model’s accuracy in classifying malware.
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4 Development and Experiment

4.1 Dataset Structure and Composition
The existence of a dataset of sample malware files in PE format is a prerequisite for performing any

research related to malware classification using machine learning (ML) techniques that require static feature
extraction. In preparing this dataset, the purpose of the analysis, the sample format, the quantity, the existence
of binaries, and the presence of tags are considered as criteria for selection [13].

The database used contains 28.617 malware samples with binary files in PE format labeled into nine
families. The original files were compressed without extension to avoid improper execution. They were
unzipped only for static feature extraction. The sample information provided with the dataset is composed
of two data structures: one containing the list of file names and the other with the labels, related through a
common index. The dataset originates from the research work [13], fully provided by the author. Technical
details, criteria, and the base creation process are described in Appendix “A” in the author’s thesis.

The reason for choosing the dataset developed by Sant’Ana (one of the authors of this study) lies in its
relevance and suitability for the task of malware classification. This database provides a wide variety and
representativeness regarding PE file characteristics of malware samples, which allows to effectively train and
evaluate artificial intelligence models in an environment that resembles real-world conditions.

In addition, it includes diverse malware families and structural features, which is critical for developing
more robust and accurate models. In the first instance, a search for malware datasets publicly available
on the Internet was conducted, but none of them had the necessary samples of malware specimens to perform
the research. Datasets in .csv format were found but did not have the samples, so they were not useful for
the research.

The dataset preparation process involved collecting and labeling malware samples for the VirusShare-
Sant dataset. This process was made by Sant’Ana as part of his doctoral [13].

• Malware Sample Collection: The malware was selected from 7 sample packages from VirushShare, pre-
viously labeled in the ML Sec Project and validated by VirusTotal, which has complete malware samples.

• Initial Family Selection and Acceptance Criteria: An initial selection of 17 malware families was made,
and specific acceptance criteria were applied to each sample. These criteria included being detected by
Microsoft antivirus, being detected by at least 10 other antiviruses, and having at least two other antivirus
solutions using family nomenclature similar to Microsoft antivirus.

• Validation of Compatibility: The PEFILE library in Python was utilized to verify if the malware samples
were compatible with the Microsoft Windows PE FILE standard. Samples that were not compatible
were discarded.

• Final Family Selection: The final selection of families for the VirusShareSant dataset was made by
selecting the nine families with the largest malware samples, resulting in 28,617 samples.

Table 2 presents the data distribution across families, with the percentage representation and weight
of each class in the set. The data is unbalanced, with an amplitude difference of about 86% between the
smallest value (BrowserModier: Win32/Zwangi) and the largest (Trojan: Win32/Vundo). The two largest
classes represent about 44% of all the data.

The distortion in the data distribution represents a difficulty for ML algorithms that assume the number
of objects in the considered classes is approximately similar. However, in real-life situations, the distribution
of examples is often skewed, where representatives of some classes appear much more frequently than others.
Nonetheless, the minority classes can be the most important, as they carry valuable and useful information
for the domain [45].
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Table 2: Distribution of families of malware samples in the dataset

Label value Family name Samples Per cent % Weight
0 Backdoor:Win32/Bifrose 2291 8.006 0.101
1 Trojan:Win32/Vundo 6794 23.741 0.034
2 Backdoor:Win32/Cycbot 3622 12.657 0.064
3 BrowserModifier:Win32/Zwangi 920 3.215 0.252
4 Rogue:Win32/Winwebsec 4624 16.158 0.050
5 Trojan:Win32/Koutodoor 5605 19.586 0.041
6 Backdoor:Win32/Rbot 1170 4.088 0.198
7 Backdoor:Win32/Hupigon 1943 6.790 0.119
8 Trojan:Win32/Startpage 1648 5.759 0.141

An over-sampled version of the dataset was used to address this problem. An algorithm was created
to randomly separate data into sets proportionally for training (utilized to train the model), validation
(employed to compare different models and hyperparameters), and testing (utilized to validate that the model
works, ignored in training and the process of choosing hyperparameters).

The process initially randomly separates 80% for training, and the remaining 20% is randomized and
divided proportionally 50% into the other two. This 20% was further randomized and divided equally into the
validation and test sets. The pandas.DataFrame.sample() is the primary function utilized to return a random
sample of items from the dataset. The split process was repeatedly for each phase of the k-fold cross-validation
process. This process is designed to be performed before each model training series.

The proposed method in the study addresses the scalability with larger and more diverse datasets by
employing semantic-based segmentation of PE files to reduce the input size required for training, directly
impacting the computational resources and training time. The key points from the document regarding
scalability and dataset size impact:

• Semantic Segmentation and Data Limitation: The method separates the PE file into semantic parts
(header, code, data) and evaluates the model’s performance using smaller datasets derived from these
parts. This segmentation allows effective use of data without requiring the entire file, as observed in their
experiment, with headers achieving the highest accuracy (99.54%) using only 4 KB of input data.

• Impact on Training Time: The research highlights that reducing training data size (using semantic
parts) proportionally decreases training times. For example, models trained using header data showed
shorter training durations compared to those using full file data, as indicated in their incremental
cross-validation results.

• Generalization Across Dataset Sizes: The method ensures the model’s ability to generalize effectively with
varying dataset sizes by adopting incremental cross-validation and limiting data sizes for code, data, and
file categories. The use of 114.468 files, generated with constrained byte limits, further validates scalability
without compromising performance metrics (accuracy and loss).

Accordingly, the proposed approach demonstrates effective scaling by strategically reducing the input
size for training, thus optimizing computational resource usage and maintaining high classification accuracy
even with constrained datasets. This consideration of dataset size directly impacts training times and model
performance, showing the method’s adaptability to larger datasets.
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Of course, if it becomes necessary to use a significantly larger dataset or increase the amount of data
processed for each semantic part, a viable alternative to maintaining reasonable and consistent training times
will be to adopt more advanced hardware specifically designed for machine learning training. Equipment
such as high-performance GPUs (NVIDIA A100 series) or TPUs, which are designed for deep learning
operations, can significantly accelerate the training process. In addition, using servers optimized for parallel
processing and high-capacity memory will further facilitate handling larger and more complex datasets
without compromising training efficiency. This approach will enable the model to scale effectively to
accommodate larger datasets while preserving productivity and the expected outcomes.

4.2 Extract PE Features
The data extraction from executable files was conducted statically, relying only on information obtained

by reading the bytes stored in the file. These bytes were normalized to values on a hexadecimal scale (integers
ranging from 0 to 255) and grouped into four categories: Header, Code, Data, and File (the latter representing
the entire file). The term semantic part refers to the elements within these groups.

The semantic variation concept approach involves the static extraction of malware features in Portable
Executable (PE) format to feed neural network systems. This approach recognizes that the bytes of a PE file
can contain multiple types of information that can be spatially correlated with each other, depending on the
section where it is stored.

This approach is utilized to extract data from PE files based on the semantic meanings of the parts of a file
to feed the input layer of neural networks to identify characteristics through convolutions. Data extraction
from the files is done statically, considering only the information that can be obtained by reading the bytes
of files stored in the file systems.

This approach is based on semantic variation for the static extraction of malware features in PE files,
to provide data for neural network systems. The bytes of a PE file can encode various types of information,
potentially correlated depending on the section in which they are stored. Thus, the data collection respects
the semantic nature of each part of the file to feed the input layer of neural networks designed to identify
features through convolutions.

PE files comprise a set of headers and sections that store various data types. The number, usage,
and attributes of these sections are defined by development tools and programmers based on the desired
functionality [46]. At a minimum, a PE file requires two sections to function: one for code and another for
data. Although standard section names and functions are commonly used, there is no restriction against
using alternative names, particularly in obfuscation techniques. A complete list of standard sections is
available in [47]:

1. Executable code section (.text)
2. Data section (data, .rdata, .bss)
3. Resources section (.rsrc)
4. Data export section (.edata)
5. Import data section (.idata)
6. Exception handling functions section (.pdata)
7. Debugging information section (.debug).

The sections are defined in a data structure known as the section table, where each row represents a
40-byte section header. The last 4 bytes of each header store the section’s characteristics, which indicate the
type of content or actions the section can support. Table 3 outlines some of the relevant characteristics of this
study; the complete list can be found in [47].
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Table 3: List of some PE section characteristics

Characteristics Function
IMAGE SCN CNT CODE The section contains executable code.

IMAGE SCN MEM EXECUTE The section contains executable code.
IMAGE SCN CNT INITIALIZED DATA The section contains initialized data.

IMAGE SCN CNT UNINITIALIZED DATA The section contains uninitialized data.

Identifying code and data sections as semantic parts was based on these characteristics. For code
sections, CNT_CODE and MEM_EXECUTE were utilized to indicate the presence of executable code, while
CNT_INITIALIZED_DATA and CNT_UNINITIALIZED_DATA were applied to identify sections contain-
ing data. A section was classified as either code or data if it exhibited at least one of these characteristics.

The extraction of byte sequences based on semantic context involves reading the file and padding the
sequence with zeros when the byte count is below the desired limit. The bytes are then normalized to integers
from 0 to 255. The boundaries for each category are defined as follows:

• Headers: These are well-defined structures in PE files. The sizeof_headers property indicates the total
size of the headers, enabling their extraction.

• Code and Data Sections: These are identified using the characteristics CNT_CODE, MEM_EXECUTE,
CNT_INITIALIZED_DATA, and CNT_UNINITIALIZED_DATA. A section is classified as either code
or data if it contains at least one characteristic of the respective category. Although this method is not
infallible, it has proven effective in identifying the parts necessary to characterize the semantic content
of a PE file.

A control mechanism was implemented to prevent any section from being simultaneously categorized
as both code and data in cases where properties overlapped to ensure accurate classification. Although it
is acknowledged that all information within PE files can potentially be manipulated, no viable alternative
for automating the static identification and separation of sections was identified. As a result, this approach
was determined to be the most effective and practical solution for achieving semantic segmentation of code
and data.

Data were collected for all features of all sections in the files, resulting in a set of 148.815 rows and 37
columns to verify whether the proposal of using features to separate codes and data can be implemented.
The rows represent the total number of sections in all samples, and the columns represent the number of
features found in the sections. From the result of overlapping the collected data, grouped by files, sections,
and characteristics, it can be inferred that all files have at least one section with one of the four characteristics
used, and the criterion can be considered valid.

After defining the data separation process, statistical data of the sizes of all semantic parts of the samples
were collected to evaluate the possibilities of limiting the sizes of the sequence of bytes to be extracted. The
results are listed in Table 4. The definition of limits was necessary, firstly, to limit the amount of extracted
data because it directly impacts the use of computational resources, and secondly, for planning purposes of
defining the input dimensions of the CNN models.

The maximum observed header size was 4096 bytes for all samples, and this value was utilized to define
the size of the sequence to be extracted. For codes, data, and files, it was decided to use an approximation of
the average values as a feasible value considering the computational resources available, limiting respectively
to 100,000 bytes for codes and data and 250,000 for the file.
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Table 4: Size data in bytes of semantic parts

Header Code Data All
Count 28,617 28,617 28,617 28,617
Mean 1890 102,937 102,048 261,854

Std 1395 247,247 164,062 399,364
Min 512 0 0 2560
25% 1024 18,944 12,626 86,272
50% 1024 43,238 48,436 72,288
75% 4096 98,304 120,852 330,240
85% 4096 137,216 165,376 411,761
90% 4096 188,416 320,722 474,264
95% 4096 416,784 393,222 715,515
99% 4096 846,043 699,093 1,810,588
Max 4096 12,431,360 4,252,368 12,435,456

For each of the semantic parts, a new file was generated for each of the samples with the size of the
defined maximum limits. If the amount of data was smaller than the limit, the sequence was completed with
zeros. The 114,468 files generated containing the byte sequences in decimal scale in the format of a NumPy
array were stored on disk. The UINT8 data type was utilized to store the byte values as unsigned integers to
reduce storage space and memory footprint during neural network training.

The Leif library was utilized to implement the logic for extracting the data from the malware samples.
The library provides a common abstraction via API for performing analysis and modification on executable
files of various formats, with support mainly for the languages C++ and Python. It also supports various
executable file types. With this library, it is possible to retrieve all the contents of the header from a property
that provides the total size of the headers. The bytes are extracted from the beginning of the file to the
maximum value defined, completing with zeros where necessary.

The algorithm processes all the file sections to check the characteristics and aggregates the extracted
content sequentially until the maximum limit is reached to extract the code and data sections. After
extraction, it is impossible to identify the data’s origin.

The extraction of bytes for the part called file, which represents the entire file, was performed based
on the original proposal of the Malconv model [9], from the beginning of the file to the maximum defined
limit. The original model used about 2,000,000 bytes, and this study employed 250,000 due to computational
resource limitations.

Examples of data processed from headers and loaded into RAM (a) with their labels (b) are illustrated
in Fig. 9. All extracted semantic parts have the same representation format, changing only the second value
of the dimension representing the sequence size.
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Figure 9: Representation of extracted semantic part data: (a) headers loaded into RAM; (b) with their labels

4.3 CNN Architecture
The present research, in terms of neural network architectures, aims to solve the problem of classifying

samples of binary files in PE format into families using supervised learning techniques. Fig. 10 shows an
overview of the proposed use of CNNs in this work, which consists of using the same network architecture
with semantic data extracted from PE files to classify samples into families. It emphasizes the extraction of
components from Portable Executable (PE) files (Header, Code, Data, File) and their input into a pre-trained
CNN model, which then classifies the input into one of the predefined malware families.

Figure 10: Overview of how CNN works

The choice of the CNN architecture over other effective classical machine learning systems, such as
Support Vector Machines (SVM), is based on the work by Edward Raff et al. [9], which justifies the application
of neural networks to malware detection due to their generalization properties on unknown data using
features of malicious PE files.

In addition, CNNs are particularly well suited for processing data with multiple dimensions, such as
the raw bytes of malware files in PE format. The structure of CNNs makes it possible to efficiently extract
features and discover complex patterns from large data sets.

Using CNNs provides several advantages over traditional malware detection methods. These include the
ability to automatically learn and adapt to new malware variants, the potential for higher accuracy compared
to standard signature-based methods, and the capability to detect zero-day threats unknown to traditional
security systems.
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The research focused on CNNs due to their demonstrated effectiveness in image recognition and natural
language processing tasks, which involve similar challenges in terms of pattern recognition and feature
extraction. In addition, previous studies have shown promising results using CNNs for malware detection
in PE files.

This study does not propose a new CNN malware detection or classification architecture. However, it
relies on one to perform practical research activities. Thus, an architecture for malware detection created
by Edward Raff et al. [9], called MalConv, was used for the detection of malware. Fig. 11 is a graphical
representation of this preexisting model. It can be visualized as two representations of the model with
different levels of abstraction, in (a) an overview as defined by [9] and in (b) an extended representation
of [42].

Figure 11: Malconv representation: (a) overview; (b) an extended representation (Source: Raff et al., 2017 [9]; Demetrio
et al., 2019 [42])

A detailed analysis of the MalConv architecture to understand how the system learns to discriminate
between malicious and benign executables using raw bytes can be found in the literature [48], where the
gradients at various stages of the trained network are analyzed to see how the system assigns weights to
different parts of the executable, among other technical features. The MalConv model was selected based on
the following criteria:

1. It was one of the first malware detection initiatives that used raw neural network input bytes extracted
sequentially from PE files, without any additional processing, for feature selection with the ability to
generalize [49].

2. There are some publicly available implementations of the architecture, making it possible to understand
and allowing for reuse.

3. It uses a sequence of raw bytes of fixed size, selected from the start of the file to the defined boundary,
as input to the neural network. This type of input and the characteristics of the neural networks
are compatible with the proposal of this research, visualizing a possibility of comparing results by
performing the MalConv training with the database of this work.
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4. The architecture was used in several works such as Coull et al. [41] analyzed a deep neural network
model for malware classification, Ling et al. [2] studied ML/DL methods for malware detection PE,
Vinayakumar et al. [7] addressed the use of CNN and Recurrent Neural Networks (RNN) with long
term memory (LSTM) for malware detection, Gibert et al. [21] performed a survey on machine learning
for malware detection, Jeong et al. [25] proposed a CNN to detect malware in byte streams of PDF
files by extracting spatial patterns, Burr [49] used Malconv model for malware detection, Demetrio
et al. [42] explained DL vulnerabilities, Anderson et al. [50] addressed malware classification using
LSTM language models. Finally, Raff et al. [8] indicated that the Malconv model is the most efficient for
performing malware classification and detection tasks.

5. It provides an opportunity to add some semantic context to the architecture. Demetrio et al. [42]
indicated that MalConv learns to discriminate between benign and malware samples primarily based
on file header characteristics, almost ignoring the data and code sections where the malicious content is
usually hidden. This also means that, depending on the training data, it can learn a spurious correlation
between class labels and how file headers are formed for malware and benign files.

In addition, the CNN architecture was adapted to learn efficiently from statically extracted raw byte
sequences by performing the following tasks:

1. Semantic Segmentation: The PE files were split into different sections based on meaning. Different parts
of the file (such as headers, code, and data) do different things and will have different byte patterns.

2. Static Data Extraction: Raw byte sequences were extracted from each section (with some limits due to
malware sizes). This way, this study only looks at the structure of the PE file, not how it runs.

3. Preservation of Semantic Context: The context is kept by taking byte sequences from specific parts of
the PE file. The CNN sees byte sequences that accurately show the different functional areas inside the
PE file.

4. Leveraging Convolutional Neural Networks (CNNs): CNNs are great for learning from these segmented
byte sequences. The convolutional layers can spot patterns within each sequence, capturing the unique
features of headers, code, or data sections.

5. Model Optimization: The CNN was tweaked using techniques such as regularization and the right
number of training rounds. This helps prevent overfitting (where the model only works well on the data
it’s seen before) and makes it better at handling new PE files.

Performing these tasks ensured that CNNs learned the specific byte patterns of different parts of the PE
file, which makes malware classification better and faster.

Fig. 12 presents an adaptation of the MalConv model, inspired by the implementation from [51], for
malware classification tasks into families, implemented with the Keras library, to meet the goals of this
research. The last layer of the model was changed from a binary output, which was originally designed for
the classification of malware into benign and malignant, to a multiple-class output with nine possibilities,
corresponding to the nine malware families

Fig. 13 depicts the result of compiling the model from the code of Fig. 12 using head-end training data. It
indicates that all connected layers of the model, the dimensions of the inputs and outputs, and the activation
functions applied. It represents the MalConv model after its compilation and provides a clear visualization of
the connections between layers, input and output dimensions, and the activation functions applied at each
layer. This approach was chosen to facilitate the understanding of the model’s architecture and its data flow.
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Figure 12: MalConv model adaptation code

Figure 13: Representation of the compiled MalConv model
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In order to improve the understanding of Fig. 8, Algorithm 2 is included.

Algorithm 2: MalConv model
Inputs: Data sequence (dimension: [None, 4096])
Output:
1. Embedding: Maps input to a vector space (output dimension: [None, 4096, 8])
2. Convolutions:
3. a. Conv1D with ReLU (output dimension: [None, 82, 128])
4. b. Conv1D with Sigmoid (output dimension: [None, 82, 128])
5. Multiplication of convolutional outputs (dimension: [None, 82, 128])
6. Global pooling (dimension: [None, 128])
7. Dense layers with ReLU and Softmax for final classification (output dimension: [None, 9])

The first layer of the model represents the data entry point through the Input object, where the linear
sequences of raw bytes extracted from PE files have as a parameter the length of the sequence based on the
limits in Table 5.

Table 5: Size limit for semantic parts

Header Code Data File
Average 4096 100,000 100,000 250,000

In the second layer, the inputs are transformed into two-dimensional matrices in preparation for the
convolution layer. The original model used the Malicious method for the convolution layer. The original
model used the MalConv method to perform this transformation, but the Keras library provides the
Embedding API to perform this process.

The Embedding layer transforms a one-dimensional input into a two-dimensional output based on
two main parameters: the size of the representative vocabulary of the data types and the value of the
expansion dimension.

Next, the model uses two one-dimensional convolution layers (Conv1D9), a multiplication layer
(Multiply10), a global max-pooling layer (GlobalMaxPooling1D11), and two fully connected layers (Dense12).
Conv1D convolutions use convolution windows on the input value of the layer in a single spatial dimension
to produce outputs based on the number of filters applied.

The Multiply layer is a data binding layer that multiplies the values of the input lists. It takes as
input a list of data structures in the same format and returns a single structure in the same format. The
GlobalMaxPooling1D layer performs a global max-pooling operation for temporal data, reducing the input
representation to the maximum value size in the time dimension. This network’s temporal dimension is
represented by the number of filters generated in the convolution layers.

The Dense layers are the fully connected layers of the model. Two layers are used: the first receives the
clustering output as input, and the second one, connected to the first one, condenses the output into nine
possible classes. The last layer of the model was changed from a binary output, originally designed to classify
malware into benign and malignant, to multiple class outputs with nine possibilities corresponding to the
nine malware families. Due to using a categorical variable to represent the discrete domain of the labels, the
activation function SoftMax was employed.
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In the convolution and fully connected layers, only the values considered hyperparameters of the
algorithm were changed. The selection process and values used for these hyperparameters are discussed in
the following sections.

4.4 Hyperparameters
The model was compiled with the sparse categorical accuracy metric and the cross-entropy loss function

to measure accuracy and loss in training and validation, respectively. The accuracy metric calculates how
often the predictions match the labels. The higher the value, the better the model.

The loss function quantifies the penalties incurred when the label estimate does not exactly match the
predicted one. The lower the value, the better the model. The Stochastic Gradient Descent (SGD) algorithm
was used as the optimization technique, with the same parameters as the original proposal of the MalConv
model. Stochastic Gradient Descent is an optimization algorithm often used in machine learning applications
to find the model parameters that correspond to the best fit between predicted and actual outputs. The
application of the metric configuration and the optimization algorithm are illustrated in Fig. 14.

Figure 14: Metrics tuning and optimization

The number of filters and units in the penultimate Dense layer was kept per the reference implementa-
tion. The kernel size was changed for the header data to 50 bytes due to the maximum size of 4096, as using
500 bytes in the convolution window did not yield the expected results.

The number of epochs is a hyperparameter that denotes the number of times the learning algorithm
will be run on the entire training data set. Iteration over the dataset is performed in batches of configurable
size. The number of epochs used as a MalConv model indicated in the literature ranges from 5 in the tests of
application of Dropout layers in [52] and up to 1000 [7]. Different databases were used in all cases where the
number of seasons was indicated.

The EarlyStopping technique was used for regularization in statistics as no reference patterns were found
to control the number of epochs in training [53]. It is a form of regularization based on choosing when to
stop running an iterative algorithm. Fig. 15 presents an example of applying this technique to stop training
with header data when the validation accuracy reaches a value of 0.982 and is held stable for 20 epochs while
the training accuracy continues to increase.

One of the goals of employing this technique is to avoid overfitting, a phenomenon pervasive in all
statistics, as well as to reduce computational complexity [54]. The same configuration pattern was maintained
for all the training performed in this research work. Each training series can be performed for up to 1000
epochs, using the validation accuracy metric as a parameter for applying the technique, considering the
sequential results of 20 epochs without improvement in the metric values. The EarlyStopping API was utilized
to implement the technique.
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Figure 15: Example of the early stop operation

Table 6 summarizes the hyperparameters of the AI model used in the research:

Table 6: Hyperparameter configuration of the CNN model

Hyperparameter Configuration
Number of layers Input layer→ Embedding layer→ 2 Conv1D layers→ GlobalMaxPooling1D

→ Dense layers
Embedding dimensions 8

Vocabulary size 256 (range of byte values)
Convolutional layers 2 Conv1D layers with kernel size = 50 (header data), stride = 500, padding =

‘same’
Activation functions ReLU (feature extraction path), Sigmoid (gating mechanism)

Pooling layer GlobalMaxPooling1D
Dense layers Dense layer (32 units, ReLU), Output layer (9 units, Softmax)
Optimizer SGD (learning rate = 0.01, momentum = 0.9, Nesterov = True, decay = 1 ×

10−3)
Loss function Sparse Categorical Cross-Entropy

Evaluation metric Sparse Categorical Accuracy
Epochs Up to 1000 (with Early Stopping after 20 epochs of stable validation accuracy)

Dropout Applied experimentally but not retained due to suboptimal results
Input length variable value depending on the semantic part used

4.5 Tests and Verifications Performed
The problem of classifying malware into families is an example of supervised machine learning, where

the model is trained from examples that contain labels. Evaluation occurs with the trained model, which uses
the test dataset with its labels to determine how well the model predicts. Based on the proposed incremental
cross-validation method, training was performed with data from the semantic parts, gradually increasing
the number of bytes of the sequences between training runs.

Due to the maximum size of the headers, using the incremental technique was unnecessary. Six runs
were performed with the value of 4096 bytes of input. For codes, data, and files, the sequences were
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incremented by 5000 bytes by default between runs up to 25,000, with this value doubled for the last run. The
initial value of 5000 was chosen because it represents the dimensional space for ten standard convolution
windows of the original MalConv model and allows flexibility in choosing the values up to the maximum
limits available.

Each training run began by randomizing and separating the data into three sets (training, validation,
and testing), loading the data from disk to machine memory, training the model for the maximum number
of defined epochs (or until early stopping), evaluating the model with the testing data, and performing
predictions on the testing data to validate the generalizability of the model. Using the same dataset in the last
two steps does not cause interference because, during evaluation, the model no longer learns from the data.

The models were trained in the semantic parts with the Keras API fit method, and all the datasets were
loaded into RAM. The training results were grouped by parts in Tables 7–9. Each table contains the number
of the test series, the epoch where the best training result was obtained (from this point on, the epochs were
counted using the early stopping technique), and the values of the accuracy metrics (SCAcc) and the loss
function (SCCE) for training, validation, and evaluation. The result of the predictions is represented by the
percentage of correct predictions.

Table 7: Results validation with semantic part headers

Round Input Epoch Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
1 4096 69 0.002 99.928 0.039 99.444 0.022 99.640 99.640 00:09:41
2 4096 55 0.002 99.930 0.033 99.558 0.026 99.673 99.673 00:07:53
3 4096 68 0.002 99.933 0.017 99.673 0.027 99.558 99.558 00:09:29
4 4096 70 0.002 99.933 0.020 99.624 0.036 99.509 99.509 00:10:06
5 4096 48 0.003 99.926 0.025 99.542 0.026 99.526 99.526 00:06:57
6 4096 78 0.001 99.959 0.028 99.526 0.024 99.542 99.542 00:10:59

Mean 4096 66 0.002 99.937 0.027 99.568 0.029 99.547 99.547 00:09:52

Table 8: Results validation with semantic part code

Round Input Epoch Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
1 5000 34 0.053 97.821 0.310 93.067 0.300 92.533 92.533 00:08:03
2 10,000 32 0.057 97.683 0.325 93.467 0.297 93.400 93.400 00:11:40
3 15,000 39 0.053 97.771 0.284 93.900 0.297 93.900 93.900 00:22:01
4 20,000 35 0.054 97.725 0.251 93.933 0.249 94.500 94.500 00:34:29
5 25,000 25 0.057 97.721 0.255 93.900 0.287 93.500 93.500 00:25:49
6 50,000 18 0.058 97.775 0.260 93.200 0.236 94.300 94.300 00:32:02

Mean 20,833 30 0.055 97.749 0.281 93.578 0.278 93.689 93.689 00:22:21
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Table 9: Results validation with semantic part data

Round Input Epoch Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
1 5000 28 0.106 95.342 0.258 93.000 0.296 91.833 91.833 00:04:11
2 10,000 36 0.105 95.417 0.246 93.200 0.297 92.500 92.500 00:06:59
3 15,000 38 0.104 95.783 0.278 92.467 0.308 92.733 92.733 00:10:04
4 20,000 39 0.103 95.454 0.299 93.300 0.288 92.133 92.133 00:24:34
5 25,000 25 0.108 95.542 0.261 92.333 0.298 91.700 91.700 00:24:23
6 50,000 43 0.108 95.429 0.322 92.200 0.327 92.133 92.133 00:47:33

Mean 20,833 34 0.106 95.494 0.277 92.750 0.302 92.172 92.172 00:19:37

The execution times for each run are expressed in the last column and represent the total time until
the predictor completes the run. The averages of the results are calculated in the last row based on Eqs. (1)
and (2). These values are used for analysis and comparison to other results.

5 Results and Discussion
This section presents the results obtained from the tests and compares them to results from other

research. Tables 10 shows the validation of the results of the whole file.

Table 10: Results validation with the whole file

Round Input Epoch Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
1 5000 29 0.009 99.713 0.096 97.933 0.091 98.000 98.000 00:04:18
2 10,000 21 0.011 99.679 0.066 98.567 0.085 97.967 97.967 00:04:26
3 15,000 36 0.007 99.754 0.098 97.767 0.112 97.800 97.800 00:10:39
4 20,000 38 0.006 99.796 0.105 98.100 0.061 98.433 98.433 00:16:58
5 25,000 29 0.009 99.700 0.088 98.133 0.084 97.833 97.833 00:16:53
6 50,000 32 0.006 99.804 0.105 97.867 0.131 97.300 97.300 01:04:31

Mean 20,833 30 0.008 99.741 0.093 98.061 0.094 97.889 97.889 00:19:38

Analyzing the results of applying the incremental cross-validation method indicates that the expected
effects related to obtaining similar performance using fewer data and using the same random data between
the series were achieved. Thus, the first hypothesis is validated by obtaining the same performances as the
models trained with more input data in shorter times.

The reduction in training time was directly proportional to the amount of input data in the time
dimension of the convolutional layers, which in the applied case is the number of bytes. The more data,
the longer the time, considering that the same number of samples and fewer hyperparameter values were
used. Fig. 16 shows the comparisons with the four semantic parts considered. The results of the headers are
linear because the input was the same for all runs.
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Figure 16: Relationship between validation and input size

Fig. 17 shows the relationship between the number of bytes and validation accuracy. It demonstrates that
the increase in data does not improve the accuracy, with a slight reduction in the semantic part of the data.

Figure 17: Relationship between the number of bytes and validation accuracy

Comparing the results of the four semantic parts demonstrates that the use of headers provides the best
results in all the evaluated input sizes, with an average evaluation accuracy of 99.54%. Considering the small
amount of data used, with only 4096 bytes, the average time spent in training, and the accuracy of the results.
This conclusion collaborates with the observations of [42] that the MalConv model learns much more from
the header data than the rest of the data in the other sections.

The second-best result was obtained in the non-semantic part (although in the scope of this work, it is
called semantic for standardization purposes), using the all-byte sequence, with an evaluation accuracy of
97.88%, followed by data with 92.17% and code with 93.68%. This result is likely because the all-byte sequence
contains all the header data. This is most evident with the results of the first training run in Table 8, where
when only the first 5000 bytes of the file stream are used, the headers account for about 80% of the data.

For the semantic parts of the code and the data in Fig. 18, a possible case of overfitting occurred, where
the curves of the metrics are far apart at the beginning of the training and do not converge again. The
hyperparameters of the model will probably be modified to address this situation. However, as one study
aims to compare results with the same set of parameters, no changes were made. Perhaps this is also related
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to the observations of Demetrio et al. [42] that the model does not learn from features in other areas of the
PE files.

Figure 18: Best results for code and data: (a) Accuracy, (b) Loss

Tables 11 and 12 provide complementary insights into the performance of the proposed CNN model
for malware family classification. Table 11 presents the average results across all semantic parts during cross-
validation, while Table 12 highlights the model’s performance with the smallest input data (5000 bytes) for
each semantic part.

Table 11: Mean results of the semantic parts

Part Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
Header 0.002 99.937 0.027 99.568 0.029 99.547 99.547 00:09:52
Code 0.055 97.749 0.281 93.578 0.278 93.689 93.689 00:22:2
Data 0.106 95.494 0.277 92.750 0.302 92.172 92.172 00:19:37
File 0.008 99.741 0.093 98.061 0.094 97.889 97.889 00:19:38

Table 12: Smallest data entry results for semantic parts

Part Train Validation Evaluation Prediction Time

SCCE SCAcc SCCE SCAcc SCCE SCAcc
Header 0.002 99.928 0.039 99.444 0.022 99.640 99.640 00:09:41
Code 0.053 97.821 0.310 93.067 0.300 92.533 92.533 00:08:03
Data 0.106 95.342 0.258 93.000 0.296 91.833 91.833 00:04:11
File 0.009 99.713 0.096 97.933 0.091 98.000 98.000 00:04:18

The comparison of results from both tables reveals a strong consistency in the model’s accuracy (SCAcc)
across the training, validation, and evaluation phases, even when the input data size is significantly reduced.
The differences in SCAcc values are minimal, particularly for the ‘Header’ and ‘File’ semantic parts, with
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variances below 0.2 percentage points. This indicates that the model demonstrates robust generalization and
can effectively classify malware families with limited data input.

In addition, the SCCE values remain low across both scenarios, further confirming the stability and
reliability of the model. These findings imply that CNN does not require extensive input data to achieve high
classification accuracy, which can reduce computational overhead and facilitate deployment in resource-
constrained environments.

The second comparative analysis was performed with the author’s results of the semantic variation
problem [13]. In his proposal for solving the problem, the author used the representation of the semantic
parts as images, using Lenet-5 Tiny for the header and VGG16 non-top for code and data. Table 13 shows
the compiled results, considering the highest value obtained by the author in the test or validation accuracy
metric with the average values found.

Table 13: Results compared to Sant’Ana [13]

Part Author Sant’Ana [13] Present work

Parameters SCAcc Parameters SCAcc
Header 48.585 95.60% 113.545 99.54%
Code 6.456.841 92.57% 516.553 93.57%
Data 6.456.841 95.55% 516.553 92.75%

In the validation accuracy for headers, the model improved by about four percentage points, but with
about 35% more trainable parameters. In the results for codes, an improvement of one percentage point was
also obtained, but with only about 8% more trainable parameters. No better results were obtained for data
but with only about 8% more trainable parameters. The best results are highlighted in bold.

The third comparative analysis was performed using the results of the author of the MalConv model [9].
Although a direct comparison cannot be made, firstly because of the classification category used since the
original model was a binary classification and the one used in the present research is multiple classifications,
and secondly because the author only tested raw byte sequences from the whole file.

It will be possible to make a rough comparison to have an overview of the model’s performance without
and with the semantic context applied. Hence, only the best of the results obtained by the author in the
Area Under the Curve (AUC) calculations were considered, a measure he utilized to assess the model’s
best performance in distinguishing between positive and negative classes. The results of Raff et al. [8] were
compared to the average of the results in the semantic parts to visualize the model’s overall performance
(Table 14).

Table 14: Results compared to Raff et al. [9]

Part Author Raff et al. [9] Present work

Parameters SCAcc Parameters SCAcc
Header 134,632 98.50% 113.545 99.54%
Code 134,632 98.50% 516.553 93.57%
Data 134,632 98.50% 516.553 92.75%
File 134,632 98.50% 516.553 98.06%



Comput Model Eng Sci. 2025;142(3) 3061

The results of the models used in the present research were compared and analyzed with models trained
in similar research, obtaining an improvement in malware classification accuracy between 1% and 4%”.

The fourth comparative analysis is the comparative analysis of the research articles reviewed in the
literature review regarding malware detection and analysis. Table 15 shows the result of this comparison:

Table 15: Results obtained from the review of malware classification works in the literature

Reference AI model used Malware families in the
dataset

Performance
(accuracy)

Jeong et al. [25] Naïve Bayes (NB), Decision
Tree (DT) Random Forest

(RF) and CNN

Malware in PDF documents 99.76 for CNN

Dambra et al. [27] RF and XGBoost Grayware, downloaders,
worms, backdoors, viruses,

ransomware, rogueware,
spyware, and others

97.8% for Xboost

Massun et al. [28] DT, RF, NB), Logistic
Regression (LR), NN

Ransomware 99% for RF

Ramon et al. [29] Recurrent neural network
(RNN)

Ransomware 98.7%

Wasoye et al. [30] NN (BTLS) Ransomware 96.5%
Aslan et al. [31] Hybrid deep neural network Trojans, worm, adware,

rootkit, virus (Polymorphic),
and others

97.78%

Awan et al. [32] CNN with VGG19 Trojans, worm, adware, bot,
obfuscator, rootkit and

ransomware

97.62%

Chaganti et al. [33] EfficientNet CCN Trojans, adware, and
obfuscator

98.82%

Liu et al. [34] SNN Virus, worms, Trojans,
backdoors, and others

98.9%

Yoo et al. [35] Hybrid model combining RF
and Multi-Layer Perceptron

(MLP)

Not specified 85.7%

Wosley et al. [37] KNN, LR, RF, DT, SVM,
CNN, GNC, RNN, LSTM,

and others

AAdware, ransomware,
scareware, and SMS Malware

98.97% for CNN

Jiang et al. [38] Artificial Evolutionary Fuzzy
LSTM Immune System,

SVM, NB, K-NN, and RF

Not specified 98.59% for LSTM

Maniriho et al. [39] KNN, LR, RF, DT, SVM,
CNN, GNC, RNN, LSTM,

and others

Backdoor, trojans,
rogueware, and

others

99.93%

(Continued)
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Table 15 (continued)

Reference AI model used Malware families in the
dataset

Performance
(accuracy)

Present research CNN Malconv model Backdoor, trojans,
rogueware, and

others

99.54%

Table 15 indicates that the best performance in the classification of malware was obtained by Maniriho
et al. [40] with an accuracy of 99.93% in a specific dataset. It should be noted that the same AI model
(CNN) obtained an accuracy of 95.73%, 96.16%, and 98.18% on three other datasets. The present research
obtained a similar performance to the previous work with an accuracy of 95.54%. Note that the work of
Maniriho et al. [40] obtained a lower accuracy in three datasets than the work of the present research, which
implies that a better comparison of the two models should be conducted with the same dataset to have more
conclusive results.

The result obtained in the work of Jeong et al. [27] is not comparable with that of the present research
because it was performed for a dataset composed of malware pdf documents that is very different from
the other works developed with a malware PE file families dataset. There are three works developed for the
detection and classification of ransomware; the work of Ramon et al. [31] is the one with the best performance
with an accuracy of 99%.

The comparative analysis highlights the need for semantic segmentation in datasets to enhance the
interpretability and generalizability of results. The present research introduces semantic segmentation as
a unique contribution, separating PE files into functional parts to improve classification performance and
reduce model complexity.

The results were generally better only when the number of trainable parameters was fewer, except for
the header, where more parameters were used than in the original MalConv model. The data presented in
this section indicates that results using only header data can be the most representative of a PE file and are
the best overall, both in terms of performance and accuracy. The best results are highlighted in bold.

This is because the PE file header contains crucial information about the file’s structure, entry point, and
dependencies. The superior performance observed when using headers for classification can be attributed to
the following factors:

• Unique Signatures: Malware families often have distinctive header patterns or signatures, which machine
learning models can detect effectively.

• Compact Information: Headers provide a concentrated source of information relevant to malware
classification, enabling efficient learning without the overhead of processing the entire file.

• Metadata for Classification: The metadata presented in headers, such as the compiler version or
timestamps, can be useful for malware classification.

6 Conclusion and Future Works
The execution of this work presents several challenges and limitations. The first is related to the lack

of a public and standardized dataset to conduct malware research using neural networks and facilitate
comparison and verification of the results, considering that each uses its approach to build its foundations.
The availability of malware is a serious problem, mainly due to its role as a cyber weapon.
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However, without standardization, the general perception is that research is limited, results cannot
be replicated, and comparisons are difficult to make. The need for binary sample files imposes additional
challenges to the research. The realization of this research was made possible by previous work [13].

A second is related to the computational resources available to train neural network models. This
activity is currently practically unfeasible, given the availability of GPUs and large storage spaces. This can be
considered a premise for research planning. Initially, more tests were considered to be performed to better
consolidate the results, but during the development of the work, it was perceived that this would not be
possible due to the limited time required to perform the activities and the computational resources available.

It can be concluded that they were achieved regarding the fulfillment of the objectives proposed in this
research work. The first objective was specifically addressed through the work conducted in the ‘Background
and Related Work’ section, with the construction of a theoretical foundation that, although summarized,
supports the research. The second objective can be considered accomplished in Sections “Dataset” and
“Extract PE Features,” with the reuse of a dataset built with well-defined criteria for the classification of
malware and with the activities conducted for balancing the samples in the families.

The third objective is demonstrated in Section “CNN Architecture” with the presentation of the
considerations and process for identifying and separating the files based on the characteristics of the sections.
The fourth objective is achieved in the Section “Hyperparameters” with an adaptation and explanation of
how the Malconv model works to produce multiple classification results. The fifth objective is reached in
Sections “Tests” and “Results” where the data collected and comparisons with other results are discussed.

A point that can be considered positive regarding the implementation of neural networks is the existence
of libraries that abstract away the mathematical complexity involved in the implementation and operation of
algorithms, such as the Keras library used in this work. This allows the researcher to focus on the activities,
allowing for better productivity and leaving the complexity of the algorithms to specific research areas.

The use of raw bytes extracted from different parts of PE files (semantic parts) can significantly impact
the improvement of pressure in malware classification and detection using CNN architectures in applied
research. This conclusion is supported by the test results, which show a substantial influence of the header
data on the results, with an accuracy of 99.54% in malware classification. In addition, the results of the models
used in the present research were compared and analyzed with models trained in similar research, and an
improvement in malware classification accuracy of between 1% and 4% was obtained.

The implications of this finding for future research can be significant, indicating that prioritizing the
analysis of PE headers can lead to more efficient and accurate malware classification systems. Future research
directions can include:

• Header-Specific Models: Developing machine learning models specifically designed to extract and
analyze PE headers’ features.

• Ensemble Methods: Combining header-based classification with models that analyze other parts of the
PE file to improve overall accuracy.

• Dynamic Analysis: Integrating static header analysis with dynamic analysis techniques that examine
malware behavior during execution.

The results indicate that using data extracted from PE files based on the proposed semantic approach
can reduce the computational resources required for model training and produce satisfactory performance
results. In absolute values, the smallest amount of data used presented the best results as a resource for
machine learning using CNN.

Finally, the main findings and contributions of the study can have several implications for improving
future malware detection and classification systems:
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• Improved accuracy: Trained models using convolutional neural networks (CNNs) can lead to increased
accuracy in malware detection and classification, which can reduce the number of false positives
and negatives.

• Adaptation to New Threats: Systems can quickly adapt to new malware variants by employing machine
learning techniques, which is crucial in an environment where threats are constantly evolving.

• Analysis efficiency: Automating the detection and classification process using artificial intelligence
models will enable faster and more efficient analysis of large volumes of data.

• Development of New Strategies: The strategies proposed in the study can inspire the development
of more robust and versatile malware detection and classification approaches that combine deep
learning techniques.

Accordingly, the results of this research can significantly influence the future of cybersecurity, raising
the use of advanced technologies to strengthen defense against malware.

Three proposals for future work are indicated based on the results and challenges found in this work.
The first relates to applying the semantic proposal in other datasets, either for binary classification purposes
or other multiple classification categories, to verify if the results are compatible with those of this work.
The second is to validate the process of identification and extraction of sections from PE files to assess the
degree of accuracy of the process and whether it is possible to use other techniques in addition to the use of
features to identify them automatically and statically and the third the extension of this model for malware
classification and detection on Linux systems with ELF file format.
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