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ABSTRACT: This review explores multi-directional functionally graded (MDFG) nanostructures, focusing on their
material characteristics, modeling approaches, and mechanical behavior. It starts by classifying different types of
functionally graded (FG) materials such as conventional, axial, bi-directional, and tri-directional, and the material
distribution models like power-law, exponential, trigonometric, polynomial functions, etc. It also discusses the
application of advanced size-dependent theories like Eringen’s nonlocal elasticity, nonlocal strain gradient, modified
couple stress, and consistent couple stress theories, which are essential to predict the behavior of structures at small
scales. The review covers the mechanical analysis of MDFG nanostructures in nanobeams, nanopipes, nanoplates, and
nanoshells and their dynamic and static responses under different loading conditions. The effect of multi-directional
material gradation on stiffness, stability and vibration is discussed. Moreover, the review highlights the need for
more advanced analytical, semi-analytical, and numerical methods to solve the complex vibration problems of MDFG
nanostructures. It is evident that the continued development of these methods is crucial for the design, optimization,
and real-world application of MDFG nanostructures in advanced engineering fields like aerospace, biomedicine, and
micro/nanoelectromechanical systems (MEMS/NEMS). This study is a reference for researchers and engineers working
in the domain of MDFG nanostructures.
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1 Introduction
With the advancement of new manufacturing techniques, material science has moved from traditional

metals to advanced materials and smart materials. Though these materials have great properties, they
have limitations in their applications. To deal with this a new class of advanced composite materials,
known as functionally graded (FG) materials, has gained much attention due to their superior mechanical
performance. These materials, which have a smooth variation in composition or structure, have advantages
over traditional composites, especially in mechanical, thermal, and environmental resistance. FG materials
are being used in industries like aerospace, biomedical, automotive, and defense as they can withstand
extreme conditions without compromising the inherent properties [1]. The first use of FG materials were
reported in Japan in the 1980s to overcome the limitations of conventional composite materials, which often
suffer from delamination failures when subjected to high temperatures or high-stress conditions [2]. These
failures occur due to the differences in thermal expansion properties of the constituent materials. In FG
materials, the composition of constituents changes gradually, which helps to reduce stress concentrations
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and enhance material performance. These materials are called advanced engineering materials, as they
show improved durability and function in harsh environments, like aerospace and defense applications, and
high-temperature scenarios like thermal barrier coatings and fire retardants [3].

Conventional FG materials have been extensively utilized for their ability to mitigate abrupt property
changes across interfaces. Multi-directional functionally graded (MDFG) materials, which are graded in
more than one direction, surpass conventional FG materials by offering enhanced mechanical, structural,
and energy transfer properties. For instance, bi-directional FG (BDFG) materials alleviate stress concen-
tration and cracking issues, improving stiffness and lightweight characteristics, especially in dynamic and
structural applications [4]. In tribological settings, multi-directional forging improves hardness and wear
rate, and alters wear mechanisms, reducing friction coefficients and fostering beneficial microstructures [5].
Similarly, in metallurgical contexts, such as Al 6061 alloys, multi-directional forging enhances grain refine-
ment, leading to increased hardness and yield strength, though with some brittleness [6]. Furthermore,
anisotropic multi-layer FG materials, like black phosphorus, enable precise control of energy transfer rates
in specific directions, which is a significant advantage over isotropic materials for energy applications [7].
These innovations demonstrate their potential to optimize performance in industries ranging from aerospace
to electronics.

The lifecycle and ecological implications of MDFG nanostructures are crucial for their sustainable
development. While their advanced properties, such as reduced weight and enhanced performance, improve
efficiency and extend lifespan during use, the energy-intensive fabrication processes and resource con-
sumption pose environmental challenges. To address this, sustainable manufacturing methods like green
synthesis and additive manufacturing should be adopted, supported by life cycle assessments to evaluate and
minimize environmental impacts. End-of-life management remains a challenge due to the complex, multi-
material composition and nanoscale features, highlighting the need for eco-friendly recycling, upcycling, and
disposal strategies. Additionally, the potential ecotoxicity of nanoscale particles must be studied to ensure
environmental safety. A circular economy approach that prioritizes renewable resources, efficient recycling,
and responsible disposal is essential to mitigate ecological risks while maximizing the benefits of MDFG
nanostructures for advanced applications [8–10].

However, recent advancements in nanotechnology have enabled the development of MDFG structures
at the nanoscale, offering enhanced control over spatially varying properties. This progression bridges the gap
between macroscale FG materials and the sophisticated capabilities of nano-engineered MDFG structures,
highlighting a continuous evolution in design and application. MDFG nanostructures are a significant
advancement in material engineering, enabling more complex and efficient designs in micro/nanodevices
like atomic force microscopes [11] and micro/nano electro-mechanical systems (MEMS/NEMS) [12]. These
systems benefit from the size-dependent behavior of FG nanostructures, which cannot be explained by clas-
sical continuum theory. Instead, advanced theories like Eringen’s nonlocal elasticity theory (ENET) [13,14],
nonlocal strain gradient theory (NSGT) [15,16], modified couple stress theory (MCST) [17,18], and consistent
couple stress theory (CCST) [19,20] are being used to understand the unique mechanical behavior of these
materials at small scales. These theories are thoroughly explained in Section 3. By incorporating size effects,
these theories enable a more accurate analysis of stress distribution, deformation patterns, and structural
responses in FG materials. This is especially significant for FG nanostructures, where small-scale effects
strongly influence stiffness, strength, and stability. The insights provided by size-dependent theories are
instrumental in optimizing the design and performance of FG materials in advanced applications, such as
aerospace, biomedical devices, and nanotechnology. Various MDFG nanostructures are presented in Fig. 1
and the advancement of MDFG nanostructures is shown in Fig. 2.
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Figure 1: Various MDFG nanostructures

Figure 2: Advancement of MDFG nanostructures

Researchers have extensively applied nonlocal theories to analyze size-dependent effects in FG struc-
tures such as FG beams, FG plates, FG shells, and FG pipes. In vibration problems, governing equations
are typically transformed into generalized eigenvalue problems [21–25] and solved using various analyt-
ical, semi-analytical, and numerical methods. The Finite Difference Method (FDM) [26–28] discretizes
differential equations into finite difference equations, making it suitable for FG materials with spatially
varying properties, though it is limited by its dependence on grid resolution. The Finite Element Method
(FEM) [29–31], a powerful and versatile technique, divides structures into elements, allowing precise analysis
of FG materials with complex geometries and varying boundary conditions. Semi-analytical methods
like the Adomian Decomposition Method (ADM) [32–34] and Homotopy Perturbation Method (HPM)
[35–37] provide fast, convergent solutions for nonlinear problems, especially in dynamic and thermal con-
texts. Numerical techniques such as the Differential Quadrature Method (DQM) [38–40] and Collocation
Method [41–43] offer computationally efficient and precise solutions for high-order differential equations
in FG materials. Energy-based approaches like the Rayleigh-Ritz Method [44–46] and weighted residual
techniques such as the Galerkin Method [47–49] are particularly effective for vibration and stability analyses
of FG materials. Meanwhile, the Boundary Element Method (BEM) [50–52] focuses on boundaries, making
it ideal for FG structures in infinite or semi-infinite domains. For simply supported structures, analytical
approaches like the Navier method [53,54], suitable for cases where all edges are simply supported, and
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the Levy method [55,56], ideal for plates simply supported on two opposite edges, remain popular choices.
These methods collectively enable a deeper understanding of the dynamic behavior and size-dependent
characteristics of FG materials, contributing to their optimization in engineering applications.

The computational and experimental findings on MDFG nanostructures play a critical role in advancing
their practical applications. Computational models provide precise predictions of mechanical, thermal, and
dynamic behaviors, enabling the optimized design of lightweight aerospace components, biocompatible
biomedical implants, and high-performance MEMS/NEMS devices. Experimental validations confirm the
accuracy of these models and demonstrate the feasibility of fabricating MDFG structures with precise
material gradation, ensuring reliability, durability, and superior performance under real-world conditions.
These combined insights highlight the ability of MDFG nanostructures to enhance stiffness, stability, and
vibration resistance while extending operational lifespans, making them highly suitable for cutting-edge
engineering and technological applications [9,57,58].

Markworth et al. [59] discussed modeling studies on FG materials. They highlighted the diverse
microstructures in FG materials and recommended further studies using advanced techniques such as lattice
models, fuzzy logic, percolation theory, fractal analysis, neural networks, and the renormalization group.
Chakraverty [60] provided a comprehensive introduction to plate vibration theory, and introduced new
methodologies and the concept of Boundary Characteristic Orthogonal Polynomials (BCOPs), offering
valuable insights for analyzing plate dynamics in engineering structures. Nie et al. [61] studied the mechanical
behavior of MDFG annular plates using DQM. They derived frequency equations for free vibration with
varying material properties. Their findings suggest that MDFG materials are a promising alternative to
unidirectional FG materials. BDFG material with varying elastic modulus was analyzed by Zhao et al. [62].
Their results highlighted the significance of eigenvalues in understanding local material behavior and
failure, with numerical examples showing stress distributions in FG beams. Behera et al. [63–66] studied
the vibration, bending, and buckling of nanobeams and nanoplates using ENET. They used the Rayleigh-
Ritz method to solve vibration problems under different boundary conditions. Their results showed that
nonlocal effects reduce frequency parameters and are more prominent in higher modes, especially in
nonuniform structures on Winkler-Pasternak foundations. Şimşek [67] investigated the BDFG Timoshenko
beams under moving loads. The dynamic responses were analyzed using the Newmark-β method. Pradhan
et al. [68–71] solved FG beams and plates problems using efficient computational techniques, including
FEM, DQM, and Rayleigh-Ritz methods. Their study examined the effects of material properties, volume
fractions, and external factors such as thermal environments and elastic foundations, with applications
in aerospace, nuclear, and automotive fields. Razavi et al. [72] analyzed electromechanical vibrations in
FG piezoelectric material cylindrical nanoshells using the size-dependent CCST. Their study highlighted
the influence of parameters such as length scale, length-to-radius ratio, and radius-to-thickness ratio on
vibration behavior. The vibration characteristics of MDFG cellular materials inspired by natural structures
was investigated by Niknam et al. [73]. Using homogenization and FEM, they demonstrated that optimized
cell variation, especially through thickness, significantly enhances structural properties like bending stiffness
in MDFG cellular plates. Ghayesh et al. [74] reviewed the mechanical behavior of FG nanostructures and
microstructures, discussing fabrication advancements, studies on buckling, vibration, and deformation, and
suggesting future applications in MEMS and NEMS. The effect of various homogenization models on the
FG curved microbeams was analyzed by Karami et al. [75]. They concluded that the Mori-Tanaka and Voigt
models overestimate frequencies, while the Local Representative Volume Elements (LRVE) model provides
a good balance of accuracy and simplicity, especially for high-stiffness FG materials. Qin et al. [76] studied
the traveling wave motions of rotating multi-layered FG-graphene platelet-reinforced composite cylindrical
shells under various boundary conditions. They used the Donnell shell theory and the Rayleigh-Ritz method,
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considering centrifugal and Coriolis effects. Their results emphasized the influence of boundary spring
stiffness, GPL weight fraction, total layer number, and geometric parameters on vibration characteristics,
with consistent frequency trends across different conditions. Abbaspour et al. [77] investigated the free and
forced vibrations, as well as the thermal buckling behavior, of three-layered centrosymmetric piezoelectric
microplates. They utilized the CCST and examined the effects of material length scale, flexoelectricity,
and circuit conditions on the outcomes. Ghatage et al. [78] reviewed on modeling and analysis of MDFG
structures, focusing on beams, plates, and shells. While most FG composite studies address unidirectional
gradation, they emphasize the need for multi-directional grading to meet complex application demands. The
nonlinear vibration characteristics of BDFG plates with global and localized imperfections under harmonic
excitation was analyzed by Chen et al. [79]. Using von Kármán’s nonlinearity and a reduced-order model, they
analyzed how material gradients, imperfections, and excitation parameters impact vibrational responses,
including resonant nonlinearity, bifurcations, and chaotic motions. Truong et al. [80] presented a deep
feedforward neural network optimization technique to model the BDFG beams under static load. This
method effectively saves computation resources while optimizing material distribution. The vibrations of
FG porous nanobeams and microbeams were investigated by Jena et al. [81–83] using Euler-Bernoulli beam
theory (EBT). Also, Jena et al. [84,85] considered the single-walled carbon nanotubes (CNTs) utilizing
one-variable shear deformation beam theory (SDT), considering effects of axial magnetic fields, thermal,
and hygroscopic environments. They applied NSGT for size effects and analyzed the impact of nonlocal
parameters, magnetic fields, and environments on natural frequencies, and also investigated armchair,
chiral, and zigzag single-walled CNTs embedded in a Winkler substrate, addressing surface energy, residual
stresses, and temperature effects. Tang et al. [86,87] studied BDFG and TDFG material nanobeams on
Pasternak foundations under magneto-electro-elastic (MEE) fields. Using Hamilton’s principle and GDQM,
they found that BDFG MEE nanobeams display asymmetric modes, while TDFG beams enhance load-
bearing capacity and flexibility with distinct nonlinear behaviors. Gao et al. [88] presented a model to
analyze wave propagation in GPL-reinforced FG metal foam plates with piezoelectric layers under magneto-
electro-thermo conditions. They studied the effects of material viscoelasticity, porosity, GPL distribution, and
external fields on wave behavior, providing insights for tunable control in smart sandwich plates. Karmakar
et al. [89–92] investigated the vibration behavior of nanobeam using NSGT with methods like ADM,
HPM and DQM. They investigated thermal vibration on Winkler and Winkler-Pasternak foundations,
piezoelectric and flexoelectric effects on nanobeam with different elastic foundations, and magnetic fields
on FG nanobeam. Their results show the effect of foundation parameters, small-scale effects, and thermal
and magnetic environments on vibration frequencies, which is helpful for complex nanobeam applications.
Nuhu et al. [93] presented a comprehensive review of advancements in the vibration analysis of micro- and
nanoplates using nonclassical continuum theories, including ENET, NSGT, and micro-continuum theories.
Their work examined a range of small-scale structures, such as graphene sheets and metallic nanosheets,
categorizing them into types like piezoelectric, viscoelastic, and composite-based systems. They concluded
by highlighting future research opportunities, with a focus on integrating machine learning and optimization
techniques to advance the analysis of small-scale structures. Wu et al. [94] reviewed mechanical analyses
of rectangular nanobeams and CNTs using ENET. They covered bending, vibration, buckling, thermo-
elastic effects, instability, wave propagation, and nonlinear behaviors. The survey includes the development
of nonlocal beam/shell theories, strong- and weak-form formulations of the nonlocal Timoshenko beam
theory (TBT) for the free vibration analysis of CNTs, and a comparative study of the results obtained
using different nonlocal beam and shell theories. Mathew et al. [95] also explored different homogenization
methods, such as the rule of mixtures and the Mori-Tanaka scheme, to estimate the effective properties of
FG plates, which follow distributions like power-law, sigmoid, or exponential across the thickness. Zheng
et al. [96] reviewed the recent advancements in tailoring the mechanical properties of FG piezoelectric
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micro/nanostructures, emphasizing their role in improving the performance of MEMS/NEMS. The review
covers the size-dependent mechanical behaviors of these structures, including bending, buckling, vibration,
and energy harvesting.

Though there is a lot of research on FG materials, BDFG and TDFG materials are still in the early stages
of development. These complex structures are required for applications that involve multi-axial stress and
temperature gradients, like modern aerospace vehicles where the stresses and environmental conditions vary
in multiple directions. However, the study on MDFG nanostructures is still an under-explored area due to
the challenges in modeling and simulation, especially with the need for robust and efficient numerical tools.

This article provides the first comprehensive review of the size-dependent mechanics of MDFG
nanostructures. The review is organized into eight sections. In the first section, a general background and
literature survey on the nanostructures and FG nanostructures are presented. Section 2 defines different
types of FG materials and presents various homogenization models. In Section 3, size-dependent theories
suitable for analyzing the FG structures at the nanoscale are discussed. Sections 4.1–4.4 review studies on
the nonlocal behaviors of MDFG nanobeams, nanopipes, nanoplates, and nanoshells, focusing on vibration,
buckling, and bending, respectively. Finally, Section 5 presents a summary of the main insights from this
review and outlines potential directions for future research on the mechanics of FG nanoscale structures.

2 Different Types of FG Materials
FG materials are a unique class of nonhomogeneous engineered materials, characterized by a gradual

variation in composition or structure. This results in a continuous change in material properties throughout
their volume. This gradual transition enables FG materials to perform effectively under diverse environ-
mental conditions, making them ideal for a wide range of applications. Key differences, advantages, and
applications of various material property variations are summarized in Table 1 and a visual representation is
presented in Fig. 3. There are several types of FG materials based on how the material properties change:

Table 1: Key differences, advantages, and applications of material property variations in FG materials

Variation type Key differences Advantages Applications References
Transverse
direction

Material properties
vary across the

thickness or height
of the material.

Improved
resistance to
thermal and

mechanical stress
along the
thickness.

Thermal barrier
coatings for turbine

blades, wear-resistant
surfaces in cutting
tools, biomedical

implants.

[97–99]

Axial direction Property variation
along the length

(longitudinal axis)
of the material.

Tailored
load-bearing
capacity and

flexibility along the
length.

Aerospace
components like

fuselage, automotive
parts such as shafts

and pipes.

[46,100,101]

Bi-directional Variations occur in
both the transverse

and axial
directions.

Enhanced strength
and durability

across both axial
and transverse

directions.

Aerospace structures
(e.g., wings, fuselage),

pressure vessels,
shipbuilding, and

automotive chassis.

[16,78,102]

(Continued)
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Table 1 (continued)

Variation type Key differences Advantages Applications References
Tri-directional Material properties

vary along three
orthogonal axes
(length, width,

thickness).

Superior isotropic
behavior, offering

balanced
mechanical and

thermal properties.

High-performance
sports equipment,

aerospace structures,
and advanced medical

devices (e.g.,
prosthetics).

[103–105]

Multi-
directional

Complex
variations occur in

multiple, often
non-orthogonal

directions.

Highly customized
performance for

specific multi-axial
load conditions.

Complex aerospace
structures, specialized
sensors, and advanced
robotics components.

[61,73,78]

Figure 3: Variation of material properties in FG nanostructures

2.1 Conventional FG Materials
In conventional FG materials, the material properties are typically considered to vary along the

thickness direction. This type of variation is most commonly employed due to its effectiveness in enhancing
performance under external loading conditions. These materials are specifically designed for applications
that require high thermal resistance on one side and high strength or toughness on the other. The advantages
and applications of conventional FG materials are shown in Table 1. Typically, the variation in material
properties, such as thermal conductivity, Young’s modulus, mass density, and Poisson’s ratio, is modeled using
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some specific mathematical functions. The choice of function depends on the nature of the application and
the material behavior required.

The primary objective in the mechanics of FG materials is to predict their behavior by estimating their
effective material properties, a process commonly known as Homogenization. Several homogenization tech-
niques are used to determine the effective material properties. Below, a few commonly used homogenization
models are discussed.

2.1.1 Power-Law Model
This model is widely recognized for describing FG materials composed of metal and ceramic con-

stituents. In such materials, the volume fractions vary continuously along the thickness direction. For an
FG material with a ceramic-rich upper surface and a metal-rich bottom, this distribution ensures a smooth
transition between the two constituents, resulting in improved material properties. The variation in material
properties of the FG material follows a specific power-law function, as defined by the following Rule of
Mixture (also known as Voigt Model) [70,97,99,106,107]:

P(z) = (PU − PL)Vf (z) + PL , (1)

where, P(z) represents the effective material property, PU and PL are the material properties of upper surface
(ceramic) and lower surface (metal), respectively. The volume fraction, Vf , follows a power-law, given by:

Vf (z) = (
z
h
+ 1

2
)

k
, (2)

where, k is the power-law exponent, or material in-homogeneity constant (non-negative), h is height, and z
denotes the transverse direction of the material.

When k = 0 or z = h
2 , then P(z) = PU , indicating that the material property corresponds to the upper

surface (ceramic). Conversely, if k →∞ or z = − h
2 , then P(z) = PL , signifying that the material property

corresponds to the lower surface (metal). The effect of z/h and k on Young’s modulus E(z), according
to Eqs. (1) and (2), is presented in Fig. 4. For all the plots, Alumina is considered ceramic and Aluminium is
considered a metal constituent. So, EU = 380 (Alumina) and EL = 70 (Aluminium) [16,107].

Figure 4: Effect of z/h and k on E(z) in power-law model

It is important to note that the effective mass density is determined using the rule of mixtures (Eq. (1)),
regardless of the homogenization models applied.
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2.1.2 Exponential Law Model
FG materials with exponential variation create smooth transitions in properties like thermal conduc-

tivity, stiffness, and strength, reducing stress concentrations and enhancing performance, making them
useful for fracture studies. These materials are commonly used in thermal barrier coatings, aerospace
structures, biomedical implants, and wear-resistant surfaces to optimize thermal and mechanical behavior
under extreme conditions. The effective material property, P(z), based on the exponential law is given
by [108–112]:

P(z) = PU e−δ(1− 2z
h ), (3)

where, δ = 1
2 ln ( PU

PL
). Similarly, at z = h

2 , P(z) = PU , and at z = − h
2 , P(z) = PL .

2.1.3 Sigmoid Law Model
In the power-law variation of FG materials, the volume fraction changes rapidly near the bottom when

k < 1 and near the top when k > 1. To achieve a smoother variation in material properties, two power-
law functions are used. The volume fractions of ceramic and metal are defined using the rule of mixtures,
ensuring a more gradual and controlled variation throughout the material. The sigmoid law of variation is
expressed as [113–117]:

P(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(PU − PL) [
1
2
(1 + 2z

h
)

k
] + PL , for − h

2
≤ k ≤ 0,

(PU − PL) [1 −
1
2
(1 − 2z

h
)

k
] + PL , for 0 ≤ k ≤ h

2
.

(4)

When k = 0, the Sigmoid-FG material behaves as a homogeneous material, with equal volume fractions
of ceramic and metal constituents throughout its thickness. At k = 1, the sigmoid model aligns with the
power-law model.

2.1.4 Viola-Tornabene Model
This model offers the most diverse range of material variations compared to the power-law model.

Its formulation allows for the selection of material mixtures at either the bottom or top surface of an FG
structure. The model is further divided into three-parameter and four-parameter versions, as described
below [98,118–121]:

P(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(PU − PL) [
1
2
− z

h
+ c2 (

1
2
+ z

h
)

k1

]
k2

+ PL , (Viola-Tornabene Three-Parameter Model)

(PU − PL) [1 − c1 (
1
2
− z

h
) + c2 (

1
2
+ z

h
)

k1

]
k2

+ PL , (Viola-Tornabene Four-Parameter Model)

(5)

where, the constant parameters c1 , c2, k1 , and k2 dictate the propagation of material along the thickness
direction in the FG structure.
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2.1.5 Trigonometric Model
In this model, the volume fraction of FG materials is considered in terms of trigonometric functions.

The effective material property is written as [98,121]:

P(z) = (PU − PL) c1 [
1
2
− c2

2
sin( c3πz

h
+ c4)]

k
+ PL , (6)

where, c1 , c2, c3, c4, and k are the controlling parameters that define the pattern of material variation within
the FG structure.

2.1.6 B-Spline Basis Function
The design optimization of FG materials involves determining the optimal variation in material

composition to improve structural performance. For greater flexibility in the design, this variation is
often represented using B-Splines, which offer smooth and precise control over the material distribution
throughout the structure. The effective material property is given by [122–126]:

P(z) = (PU − PL) [
nc p

∑
i=1

Bi , p(ξ) Vi(z)] + PL , ξ ∈ [0, 1], (7)

where, nc p denotes the number of control points. The term Vi(z) corresponds to the volume fraction at the
i-th control point, and Bi , p is the B-Spline basis function associated with that point. Here, p is the degree of
the B-Spline basis, and γ is the parametric coordinate, which ranges from 0 to 1.

The B-Spline basis Bi , p is constructed using a knot vector, which consists of non-negative and non-
decreasing parametric values. These values are bounded by the parametric interval in which the B-Spline is
defined. For a given knot vector Ξ = {γ1 , γ2, . . . , γn+p+1}, the basis functions are computed using the recursive
Cox-de Boor formula [122,126]:

Bi , p(γ) =
γ − γi

γi+p − γi
Bi , p−1(γ) +

γi+p+1 − γ
γi+p+1 − γi+1

Bi+1, p−1(γ), (8)

Bi ,0(γ) =
⎧⎪⎪⎨⎪⎪⎩

1, for γi ≤ γ < γi+1 ,
0, otherwise.

(9)

2.1.7 Piece-Wise Cubic Interpolation Function
In this model, the material properties are determined using a non-monotonic variation function, which

means the volume fraction at any point is computed using piecewise cubic interpolation. In this case, the
effective material property is defined as [127,128]:

P(z) = (PU − PL) [Vi H1(z) + Si H2(z) + Vi+1H3(z) + Si+1H4(z)] + PL , z ∈ [zi , zi+1], (10)

where, Vi and Si are the volume fraction and the slope of the volume fraction at the i-th control point in the
thickness direction, respectively. The values of Vi , Si , and the Hermite basis functions Hk(z), (k = 1, 2, 3, 4)
are provided in the study by Vel et al. [127].

2.1.8 Mori-Tanaka Model
This homogenization model is widely used to estimate the effective material properties of FG structures,

where a continuous isotropic matrix is reinforced with randomly distributed particles. It calculates the
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effective shear moduli (G) and bulk moduli (K), which are then used to derive properties such as E and ν.
Its simplicity, computational efficiency, and capability to manage both particulate and discontinuous phases
make it a reliable tool for designing advanced graded structures. In this model, E(z) and ν(z) are given
by [129–133]:

E(z) = 9K(z)G(z)
3K(z) +G(z) , (11)

ν(z) = 3K(z) − 2G(z)
2(3K(z) +G(z)) , (12)

where,

K(z) = (KL − KU)

⎛
⎜⎜⎜⎜
⎝

Vf (z)

1 + (1 − Vf (z))
KL − KU

KU + 4
3 GU

⎞
⎟⎟⎟⎟
⎠

+ KU , (13)

G(z) = (GL −GU)
⎛
⎜⎜⎜
⎝

Vf (z)

1 + (1 − Vf (z))
GL −GU

GU + fU

⎞
⎟⎟⎟
⎠
+GU , (14)

where,

Vf (z) = (
z
h
+ 1

2
)

k
and fU =

GU(9KU + 8GU)
6(KU + 2GU)

. (15)

2.1.9 Tamura-Tomota-Ozawa Model
This model introduces an experimental parameter, denoted as q, which represents the stress-to-strain

transfer. It is determined by coupling the average stress and strain values in a two-phase composite material
under uni-axial uniform loading. The parameter q is mathematically expressed as [134–138]:

q = σU − σL

∣ εU − εL ∣
, 0 < q < ∞, (16)

where, σU , σL are the average stresses, and εU , εL represent the average strains of the upper and lower surfaces
of the FG material, respectively. Here, E(z) is represented as [138]:

E(z) =
EU Vf (z) + EL(1 − Vf (z))

q + EU

q + EL

Vf (z) + (1 − Vf (z))
q + EU

q + EL

, (17)

where, Vf (z) = ( z
h +

1
2)

k . G(z) is determined using E(z) and ν(z). ν(z) is calculated using the formula
ν(z) = νU Vf (z) + νL(1 − Vf (z)). It can be verified that when the parameter q approaches ±∞, Eq. (17)
simplifies to the expression for E(z) in the Voigt model.

2.1.10 Reuss Model
This model, also known as the inverse of the Voigt model, assumes that, at the macroscopic level, the

average stress is the same in every phase of a material when subjected to uniform stress. In simple terms,



2416 Comput Model Eng Sci. 2025;142(3)

the Reuss model predicts the effective properties of a composite material by considering that all phases
experience equal stress under an external load. Based on this, the E(z) and ν(z) of the material are [139–143]:

E(z) = EU EL

EU(1 − Vf (z)) + ELVf (z)
, (18)

ν(z) = νU νL

νU(1 − Vf (z)) + νLVf (z)
, (19)

where, Vf (z) = ( z
h +

1
2)

k . Hill [144] reported that the Voigt and Reuss models provide the upper and lower
bounds, respectively, for the effective elastic properties of a material. Fig. 5 illustrates the effect of z/h and k
on E(z) for EU = 380 and EL = 70.

Figure 5: Effect of z/h and k on E(z) in Reuss model

2.1.11 Self-Consistent Estimation Model
This model is effective for determining the bulk and shear moduli in regions with interconnected

skeletal microstructures. It assumes that each reinforcement inclusion is embedded in a continuous material
possessing the composite’s effective properties, without differentiating between matrix and reinforcement
phases. As a result, composites with identical constituents, even in different roles, will have the same moduli.
To calculate the shear modulus, G(z), of the FG material, the following quadratic equation needs to be solved
at each surface [145–149]:

3GU Vf (z)
3GU + 4G(z) +

3GL(1 − Vf (z))
3GL + 4G(z) +

5Vf (z)GL

G(z) −GL
+

5(1 − Vf (z))GU

G(z) −GU
+ 2 = 0. (20)

An auxiliary function η(z) is introduced in the form:

η(z) =
G(z) Vf (z)
G(z) −GL

+
G(z) (1 − Vf (z))

G(z) −GU
. (21)

The bulk modulus, K(z), is now written in terms of G(z) and η(z) as:

K(z) = 4 G(z) (3 − 5η(z))
15 η(z) − 6

. (22)
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The Mori-Tanaka model is then used to calculate the elastic modulus and Poisson’s ratio. According
to Kiani et al. [149], the material properties determined using the Voigt, Mori-Tanaka, and Self-Consistent
models differ by about 3%. It was found that the Mori-Tanaka model is more accurate when there is a
continuous matrix, while the Self-Consistent model is more accurate and better suited for materials with a
skeletal microstructure [146].

2.1.12 Cubic Local Representative Volume Elements Model
Gasik et al. [150] introduced this model, which is designed to estimate the effective properties of two-

phase composite materials, where the second phase is considered as an inclusion [75,139,151]. The effective
Young’s modulus of the composite is expressed as [150,152]:

E(z) = EL

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − 3
√
(Vf (z))2

⎛
⎜⎜⎜
⎝

1 − 1

1 − 3
√

Vf (z) (1 −
EL

EU
)

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

The effect of z/h and k on E(z) is shown in Fig. 6 for EU = 380 and EL = 70. The Voigt homogenization
model is used to determine the effective Poisson’s ratio of FG materials.

Figure 6: Effect of z/h and k on E(z) in cubic LRVE model

2.1.13 Hashin-Shtrikman Bounds Model
This model, also known as the Composite Sphere Assemblage Model, is developed by Hashin et al. [153],

using a variational approach to heterogeneous linear elasticity, to calculate the effective elastic properties
of two-phase materials. This model provides upper and lower bounds for the shear modulus (G) and bulk
modulus (K) of materials with randomly distributed spherical inclusions. The upper bounds for the effective
moduli are [153–157]:

G+(z) = GU +
1 − Vf (z)

1
GL −GU

+
6(KU + 2GU)Vf (z)
5GU(3KU + 4GU)

, (24)

K+(z) = KU +
1 − Vf (z)

1
KL − KU

+
3Vf (z)

3KU + 4GU

. (25)
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Similarly, the lower bounds for the effective moduli are:

G−(z) = GL +
Vf (z)

1
GU −GL

+
6(KL + 2GL)(1 − Vf (z))

5GL(3KL + 4GL)

, (26)

K−(z) = KL +
Vf (z)

1
KU − KL

+
3(1 − Vf (z))
3KL + 4GL

. (27)

In these equations, + and − represent the upper and lower bounds, respectively. With these shear and
bulk moduli, the effective Young’s modulus and Poisson’s ratio can be obtained by using the Mori-Tanaka
method. Notably, the lower bound given by the Hashin-Shtrikman model aligns with the results obtained
from the Mori-Tanaka method.

2.1.14 Wakashima-Tsukamoto Model
Wakashima et al. [158] calculated K(z) and G(z) of macroscopically isotropic dual-phase compos-

ite materials, accounting for arbitrary phase geometries. It models the composite as having randomly
dispersed ellipsoidal inclusions and uses a mean-field approach to determine the effective mechanical
properties [159,160]. In this model, K(z) and G(z) are expressed as [161,162]:

K(z) = KL +
aVf (z)KL(KU − KL)

(1 − Vf (z))KU + aVf (z)KL
, (28)

G(z) = GL +
bVf (z)GL(GU −GL)

(1 − Vf (z))GU + bVf (z)GL
, (29)

where,

a = KU(3KL + 4GL)
KL(3KU + 4GU)

, b = (1 + e)GU

GL + eGU
, e = 9KL + 8GL

6KL + 12GL
. (30)

Then, the Mori-Tanaka model is used to determine the E(z) and ν(z) of FG materials.

2.1.15 Sasaki-Kerner Model
This modeling approach assumes that the reinforcement particles are spherical and are embedded in a

uniform, isotropic material (which means the material has the same properties in every direction). It also
assumes that the reinforcement particles and the surrounding material are perfectly bonded, with no gaps
or imperfections at the interface [152,163,164]. The effective bulk and shear moduli are given as [159,165]:

K(z) =

KU Vf (z)
3KU + 4GU

+
KL(1 − Vf (z))

3KL + 4GU
Vf (z)

3KU + 4GU
+

1 − Vf (z)
3KL + 4GU

, (31)

G(z) = GU

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL(1 − Vf (z))
(7 − 5νU)GU + (8 − 10νU)GL

+
Vf (z)

15(1 − νU)
GU(1 − Vf (z))

(7 − 5νU)GU + (8 − 10νU)GL
+

Vf (z)
15(1 − νU)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)
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Similarly, the Mori-Tanaka model is applied further to obtain the E(z) and ν(z).

2.1.16 Coherent Potential Approximation Model
The Coherent Potential Approximation model is also utilized to obtain the effective material properties

of FG materials. A notable advantage of this method is that it can be applied regardless of whether the material
phases are continuous or particulate in nature. This model leads to a set of coupled implicit equations, which
is expressed as [159,165,166]:

Vf (z)(
KU − K(z)

3KU + 4G(z)) + (1 − Vf (z))(
KL − K(z)

3KL + 4G(z)) = 0, (33)

Vf (z)

⎛
⎜⎜⎜⎜
⎝

GU −G(z)

GU +
G(z)(9K(z) + 8G(z))

6K(z) + 12G(z)

⎞
⎟⎟⎟⎟
⎠

+ (1 − Vf (z))

⎛
⎜⎜⎜⎜
⎝

GL −G(z)

GL +
G(z)(9K(z) + 8G(z))

6K(z) + 12G(z)

⎞
⎟⎟⎟⎟
⎠

= 0. (34)

The K(z) and G(z) can be derived from Eqs. (33) and (34). Then, the E(z) and ν(z) are obtained using
the Mori-Tanaka model.

2.2 Axially FG Materials
Axially FG materials are a type of advanced composite materials where the material properties, such

as Young’s modulus, thermal conductivity, mass density, or Poisson’s ratio, vary continuously along the
axial direction. This gradation is designed to optimize the material’s performance under varying conditions
like thermal loads, mechanical stress, or environmental factors. By gradually changing the properties along
the structure, axially FG materials reduce stress concentrations, improve durability, and enhance thermal
resistance compared to homogeneous materials. They are used in applications like aerospace, biomedical
implants, and mechanical components where tailored performance is crucial. The key differences between
conventional and axially FG materials, along with their advantages and applications, are presented in Table 1.
Some homogenization models related to axial variation are presented below.

2.2.1 Power-Law Variation
In this model, the material properties of FG material are considered to vary in axial direction according

to a power-law function. The effective material property is given by [167–171]:

P(x) = (PR − PL) (
x
L
)

k
+ PL . (35)

In some literature [46,172–174], the effective material property in Power-Law model is also considered
as:

P(x) = (PL − PR) (1 −
x
L
)

k
+ PR . (36)

Here, PL and PR are material properties on the left and right sides, respectively, of the FG structure. k is
the power-law exponent, and x is the axial direction of the FG material. It is noted that P(x) = PL when x = 0,
and P(x) = PR when x = L. But, at k = 0, P(x) = PR in Eq. (35) and P(x) = PL in Eq. (36). The effects of x/L
and k on Young’s modulus E(x) according to Eqs. (35) and (36) are presented in Figs. 7 and 8. Here, the
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left side is considered as ceramic and right side is considered as metal. So, EL = 380 (Alumina) and ER = 70
(Aluminium).

Figure 7: Effect of x/L and k on E(x) in power-law variation (35)

Figure 8: Effect of x/L and k on E(x) in power-law variation (36)

2.2.2 Exponential Variation
An exponent function is considered in this model to vary the material properties in the axial direction

of the FG material. The effective material property with exponential variation is represented as [175–178]:

P(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(PR − PL)(
ek x

L − 1
ek − 1

) + PL , if k ≠ 0,

(PR − PL) (
x
L
) + PL , if k = 0,

(37)

where, k is the gradient parameter, which describes the change in volume fraction between the two
constituents of the FG material. Similarly, at x = 0, P(x) = PL , and at x = L, P(x) = PR . Fig. 9 demonstrates
the effect of x/L and k on the Young’s modulus E(x), considering EL = 380 and ER = 70.
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Figure 9: Effect of x/L and k on E(x) in exponential variation

2.2.3 Trigonometric Law Model
The material properties of the FG material are considered to vary according to a trigonometric law along

the axial direction, and the effective material property is given by [179]:

P(x) = (PR − PL) sin2 (x
L
− α) + PL , (38)

where, α is an optional parameter. In Fig. 10, the plot for the effect of x/L and α on E(x) is illustrated, taking
EL = 380 and ER = 70.

Figure 10: Effect of x/L and α on E(x) in trigonometric law model

2.2.4 Four-Parameter Power-Law Distribution
A power-law distribution function involving four parameters is used to describe the material properties

of FG material in the axial direction. The effective material property, in this case, is given by [100,180]:

P(x) = (PL − PR) c1 [1 − (
x
L
) + c2 (

x
L
)

k1

]
k2

+ PR , (39)

where, the unknown parameters c1, c2, k1, and k2 control the variation of the material properties. These

parameters are selected such that 0 ≤ c1 [1 − ( x
L) + c2 ( x

L)
k1]

k2
≤ 1. When c1 = 1 and k2 = 0, P(x) = PL , and
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when c1 = 0, P(x) = PR . Also, when c1 = 1 and c2 = 0, it reduces to the general power-law variation, as defined
in Eq. (36).

2.2.5 Four-Parameter Trigonometric Distribution
In this model, the material properties are also assumed to vary along the axial direction following a

trigonometric distribution. However, this time, four parameters are used in the trigonometric distribution
function. The effective material property of the FG material is determined as [181]:

P(x) = (PL − PR) c1 [1 + cos(c2x + c3)]k + PR , (40)

where, c1, c2, c3, and k are the design variables that regulate the variation of material properties. These
parameters are chosen to ensure that 0 ≤ c1 [1 + cos(c2x + c3)]k ≤ 1.

2.2.6 Five-Parameter Trigonometric Distribution
A trigonometric distribution consisting of five different parameters is considered in this model to vary

the material properties of the FG material along the axial direction. Here, the effective material property is
represented as [100,180]:

P(x) = (PL − PR) c1 [
1
2
− c2

2
sin( c3πx

L
+ c4)]

k
+ PR , (41)

where, c1, c2, c3, c4, and k are parameters that control the material variation, and the values of these
parameters are considered such that 0 ≤ c1 [ 1

2 −
c2
2 sin ( c3 πx

L + c4)]
k ≤ 1.

2.2.7 Voigt-Reuss-Hill Model
This model is based on the principle of averaging stress and strain in heterogeneous materials. According

to this model, the effective material property of the axially FG material is expressed as [101,182–184]:

P(x) = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(PR − PL) (
x
L
)

k
+ PL +

PLPR

(PL − PR) (
x
L
)

k
+ PR

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

It is noted that when k = 0, P(x) = PR . The effect of x/L and k on E(x) is plotted in Fig. 11, considering
EL = 380 and ER = 70.

Figure 11: Effect of x/L and k on E(x) in Voigt-Reuss-Hill model
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The Voigt, Reuss, Tamura, Mori-Tanaka, Local Representative Volume Element, and Hashin-Shtrikman
bounds models for axially FG materials are similar to those used for conventional FG materials. The main
difference is that Vf (z) (which represents the volume fraction in conventional FG materials) is replaced by
Vf (x), where x denotes the axial direction. Additionally, the subscript U is replaced by R, where R and L
correspond to the right and left sides, respectively, of the FG material. In this context, the material variation
follows a power-law distribution function given by Vf (x) = ( x

L)
k , where k is the power-law exponent [101].

2.3 Bi-Directional FG Materials
BDFG materials are designed with properties that vary along both the thickness and length (axial)

directions. This unique variation makes them highly valuable for use in NEMS and MEMS. By customizing
the material properties in two directions, BDFG materials can significantly improve structural performance
while reducing material consumption and weight, making them a highly efficient choice for advanced
engineering applications [16]. The advantages and applications of BDFG materials are outlined in Table 1.

2.3.1 Power-Law Variation
Two power-law distribution functions are considered in the thickness and axial directions to vary the

material properties of the BDFG materials. The effective material property, P(x , z), is expressed as:

P(x , z) = (Pc − Pm) Vf (x , z) + Pm , (43)

where, Pc and Pm are the material properties of the ceramic and metal constituents, respectively. The volume
fraction, Vf (x , z), is given by [78,102,185–187]:

Vf (x , z) = (x
L
)

k1

( z
h
+ 1

2
)

k2

. (44)

The effect of x/L and z/h on Young’s modulus E(x , z) according to Eqs. (43) and (44) is shown in Fig. 12
with fixed values of k1 = 1 and k2 = 2. Here, Ec = 380 and Em = 70 are considered for this plot.

Figure 12: Effect of x/L and z/h on E(x , z) in power-law variation (k1 = 1, k2 = 2)
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In some literature [188,189], the volume fraction in a power-law variation of BDFG materials is also
defined by:

Vf (x , z) = (x
L
+ 1

2
)

k1

( z
h
+ 1

2
)

k2

. (45)

Chen et al. [190] reported the volume fraction as:

Vf (x , z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x
L
)

k1

(1 + 2z
h
)

k2

, 0 ≤ x ≤ L, −h
2
≤ z ≤ 0,

(x
L
)

k1

(1 − 2z
h
)

k2

, 0 ≤ x ≤ L, 0 ≤ z ≤ h
2

.
(46)

While, Li et al. [191] and Thang et al. [192] presented the volume fraction as:

Vf (x , z) = (1 − x
2L
)

k1

( z
h
+ 1

2
)

k2

. (47)

Here, k1 and k2 are the power-law exponents in the axial and thickness directions, respectively. If k1 =
k2 = 0, then P(x , z) = Pc , which shows that the BDFG material has uniform material properties.

Additionally, in BDFG materials, the variation of material properties following a power-law distribution
can be considered along the axial (x-axis) and lateral (y-axis) directions. The effective material property,
P(x , y), in this case, is expressed as [79,193,194]:

P(x , y) = (Pc − Pm) V1(x) V2(y) + Pm , (48)

where, V1(x) and V2(y) are volume fractions of constituents in the axial and lateral directions, respectively.
Three different types of variations are presented here.

Type I:

V1(x) = (
x
L
)

k1

, 0 ≤ x ≤ L, (49a)

V2(y) = (
y
b
)

k2

, 0 ≤ y ≤ b. (49b)

Type II:

V1(x) = (
x
L
)

k1

, 0 ≤ x ≤ L, (50a)

V2(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2y
b
)

k2

, 0 ≤ y ≤ b
2

,

(2 − 2y
b
)

k2

, b
2
≤ y ≤ b.

(50b)
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Type III:

V1(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2x
L
)

k1

, 0 ≤ x ≤ L
2

,

(2 − 2x
L
)

k1

, L
2
≤ x ≤ L,

(51a)

V2(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2y
b
)

k2

, 0 ≤ y ≤ b
2

,

(2 − 2y
b
)

k2

, b
2
≤ y ≤ b,

(51b)

in which, k1 and k2 are power-law exponents in x and y directions, respectively.

2.3.2 Exponential Variation
In this model, the material properties of BDFG materials change exponentially along both the axial

direction (x-axis) and the lateral direction (y-axis). The effective material property, P(x , y), is given
by [195,196]:

P(x , y) = (Pc − Pm)
ec1 x+c2 y

ec1+c2
+ Pm , (52)

where, c1 and c2 are the material gradient indices, which dictate the material properties along the x and
y directions.

2.3.3 Exponential and Power-Law Variations
The material properties of the BDFG material are varied using an exponential function along the axial

direction and a power-law function along the thickness direction. The resulting effective material property
is expressed as [16,197–200]:

P(x , z) = e
c
L x [(Pc − Pm) (

z
h
+ 1

2
)

k
+ Pm] , (53)

where, c is the axial FG index, and k is the thickness FG index. In Fig. 13, the effect of x/L and z/h on Young’s
modulus E(x , z) is plotted for c = 1 and k = 2, considering Ec = 380 and Em = 70.

Figure 13: Effect of x/L and z/h on E(z) in power-law model
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2.3.4 Polynomial Function Variation
In this model, the material properties of BDFG materials are varied using two polynomial functions

along the axial and lateral directions. The effective material property is described as [195,196,201]:

P(x , y) = (Pc − Pm)
⎡⎢⎢⎢⎢⎣

m
∑
i=0

c1 (
x
L
)

i n
∑
j=0

c2 (
y
b
)

j⎤⎥⎥⎥⎥⎦
+ Pm , (54)

where, c1 and c2 are control parameters, m and n are orders of polynomials in x and y directions, respectively.

2.3.5 BDFG Materials with Three Material Constituents
In this model, the BDFG material consists of three distinct constituents, with at least one being ceramic

and the other two being metals. This is different from conventional BDFG materials, which usually consist
of only two material constituents. The material properties are designed to vary in both the axial and lateral
directions. The effective material property for this type of BDFG material is described as [202,203]:

P(x , y) = P1 [(1 − (x
L
)

k1

)(1 − ( y
b
)

k2

)] + P2 [(
x
L
)

k1

(1 − ( y
b
)

k2

)] + P3 (
y
b
)

k2

, (55)

where, k1 and k2 are the gradient indices that represent the composition variation in the axial and lateral
directions, respectively. These indices are independent of one another.

2.3.6 BDFG Materials with Four Material Constituents
The BDFG material is assumed to be composed of two ceramic and two metal constituents. The volume

fraction of these materials varies in both the axial and transverse directions. Here, P(x , z) is represented
by [191]:

P(x , z) = Pc1 Vc1 + Pc2 Vc2 + Pm1 Vm1 + Pm2 Vm2 , (56)

where,

Vc1 = [1 − (
x
L
)

k1

]( z
h
+ 1

2
)

k2

, (57a)

Vc2 = (
x
L
)

k1

( z
h
+ 1

2
)

k2

, (57b)

Vm1 = [1 − (
x
L
)

k1

] [1 − ( z
h
+ 1

2
)

k2

] , (57c)

Vm2 = (
x
L
)

k1

[1 − ( z
h
+ 1

2
)

k2

] . (57d)

Here, the subscripts c1, c2, m1, and m2 denote the ceramic 1, ceramic 2, metal 1, and metal 2, respectively.
Pi represents the material property, and Vi denotes the volume fraction of the corresponding material
constituent, where i = c1 , c2, m1 , m2.

The Mori-Tanaka and Voigt models applied to BDFG materials operate similarly to those used for
conventional or axially FG materials. The key difference is that in the BDFG models, the standard volume
fraction is replaced with the volume fractions of BDFG material [185].
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2.4 Tri-Directional FG Materials
Tri-directional functionally graded (TDFG) materials are a type of advanced composites with properties

that gradually vary in three directions: length (x-axis), width (y-axis), and thickness (z-axis). This design
provides precise control over thermal, elastic, and mechanical properties throughout the material, making
TDFG materials ideal for use in aerospace, automotive, and biomedical applications where they can
withstand complex, multi-directional stresses. The key differences, advantages, and applications of TDFG
materials compared to other materials are summarized in Table 1.

The effective material property of TDFG materials, characterized by power-law variations in the x, y,
and z directions, is expressed as [104,105,204]:

P(x , y, z) = (Pc − Pm) [(
x
L
)

k1

( y
b
)

k2

( z
h
+ 1

2
)

k3

] + Pm . (58)

For TDFG materials, an additional type of power-law variation is considered in the literature [205],
where the effective material property is:

P(x , y, z) = (Pc − Pm) [V1(x) V2(y) (
z
h
+ 1

2
)

k3

] + Pm , (59)

where,

V1(x) =
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(2x
L
)
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2

,
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L
)

k1

, L
2
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(60a)

V2(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(2y
b
)

k2

, 0 ≤ y ≤ b
2

,
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b
)

k2

, b
2
≤ y ≤ b.

(60b)

Here, k1, k2 and k3 are power-law indexes in the x, y and z directions, respectively.
The effective material property of TDFG materials, where properties vary exponentially along the x

direction and follow a power-law variation in the y and z directions, is written as [86,103]:

P(x , y, z) = ec1
x
L [(1 − c2) (

y
b
+ 1

2
)

k1

+ c2] [(Pc − Pm) (
z
h
+ 1

2
)

k2

+ Pm] , (61)

where, c2 is the material constant, and c1, k1 and k2 are the axial, lateral, and transverse FG indexes,
respectively.

3 Size-Dependent Theories for FG Nanostructures
The nonlocal/size-dependent theory provides a more accurate framework for describing the mechanical

behavior of FG nanostructures by accounting for both the intrinsic material nonhomogeneity and the
influence of small-scale effects on the overall response [206]. Unlike classical continuum mechanics, nonlocal
theories incorporate the long-range interactions and size effects inherent in nanostructures, leading to a
more precise analysis of their structural performance and enabling valuable insights into the underlying
mechanisms governing the behavior of FG nanomaterials [207]. Incorporating nonlocal theory into the
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analysis of FG nanostructures enhances the understanding of stress distribution and deformation patterns,
particularly in systems where size effects play a significant role. This approach allows for improved pre-
dictions of key mechanical properties, such as stiffness, strength, and stability, as well as the structural
integrity of FG nanomaterials under various loading and boundary conditions [208]. Moreover, nonlocal
models provide deeper insights into the influence of nanoscale phenomena, such as surface effects and
scale-dependent stiffness, which are critical for the design and optimization of advanced FG materials. By
leveraging nonlocal theories, researchers can bridge the gap between nanoscale physics and macroscopic
material behavior, advancing the development of FG nanostructures for applications in cutting-edge fields
such as nanoelectronics, biomedical engineering, and aerospace systems. Several well-established nonlocal
models commonly used in the literature to analyze FG nanostructures are shown in Fig. 14 and discussed in
detail below.

Figure 14: Various size-dependent theories for FG nanostructures

3.1 Eringen’s Nonlocal Elasticity Theory
The ENET is an extension of classical elasticity theory that incorporates nonlocal effects into the consti-

tutive equations to account for interactions between material points not only at the same spatial location but
also at neighboring points. This modification provides a more accurate representation of material behavior at
small scales, particularly in nanoscale systems where atomic-scale interactions are significant [209,210]. By
averaging stress and strain fields over a finite spatial domain, ENET captures size-dependent behaviors that
classical theories often neglect. This theory is particularly valuable for analyzing materials with microstruc-
tural heterogeneities or addressing phenomena such as wave propagation, dislocation motion, and flexural
rigidity in nanostructures [14]. For instance, ENET has been successfully applied to study the forced vibration
of nanorods, where nonlocal effects enhance dynamic displacements and frequencies compared to classical
models [211]. Additionally, it has been used in the buckling analysis of nano-scale plates, providing analytical
solutions that align with observed size effects in experiments [212]. Furthermore, ENET has proven effective
in addressing elastic properties in granular and nanoscale systems, emphasizing the limitations of standard
continuum mechanics at small scales [213]. By integrating atomic-scale considerations, ENET bridges the gap
between molecular dynamics and continuum mechanics, offering improved models for nanoindentation and
other applications [214]. This theory is foundational for understanding mechanical behaviors in nanoscale
systems and remains a critical tool in advancing nanotechnology and material science.

In ENET, the nonlocal stress tensor σi j(x) at a point x is defined by integrating over the entire volumeV
of the material to account for the strain at all points x′ within that neighborhood [215,216]:

σi j(x) = ∫
V

α(∣x′ − x∣, τ) ti j(x) dV(x′), (62)

where, ti j(x) is the local stress tensor at x, and α(∣x′ − x∣, τ) is a kernel function that describes the nonlocal
interaction between points based on the distance ∣x′ − x∣ and a scaling factor τ. The kernel function α can
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take different forms depending on the dimensionality of the problem, and τ = e0 a
L . Here, L and a are external

and internal characteristic lengths, respectively, and e0 is material constant. The components of the classical
local stress tensor for a Hookean material are expressed as [216]:

ti j = Ci jk l εk l , (63)

where, Ci jk l is the fourth order elasticity tensor, and εkl is the strain tensor.
To simplify practical application, Eringen developed an equivalent differential form that relates the

nonlocal stress tensor σi j to the local stress tensor ti j via the Laplacian operator ∇2 [13,217]:

(1 − (e0a)2∇2) σi j = ti j . (64)

This differential form is more computationally convenient for modeling stress distributions in various
dimensions, capturing the size effect by introducing terms related to the second gradient of strain. By
applying this theory, researchers gain an enhanced understanding of stress and deformation behaviors,
particularly at the micro- and nanoscale, making it widely applicable in the analysis of FG materials, thin
films, and other structures sensitive to nonlocal effects. Eringen’s theory thus extends the predictive power
of elasticity models by incorporating essential nonlocal interactions, leading to more accurate descriptions
of material behavior under diverse loading conditions.

3.2 Nonlocal Strain Gradient Theory
The NSGT provides a more accurate description of material behavior at small scales by incorporating

both the nonlocal and strain gradient effects [15]. This theory is particularly useful in determining the
mechanical properties of materials with microstructural features, such as thin films or nanomaterials [218].
Furthermore, this theory offers a comprehensive framework for analyzing the deformation and failure
mechanisms of these advanced materials, taking into account the interactions between nonlocal effects and
strain gradients [219].

According to NSGT, the total stress field t is defined to account for both classical nonlocal stress σ and
higher-order strain gradient stress σ(1), formulated as [15,220]:

t = σ −∇σ(1), (65)

where, ∇ is the Laplacian operator, capturing the effect of spatial stress variations, and

σ = ∫
V

α0(x′, x , e0a) C ∶ ε′ dV ′, (66)

σ(1) = l 2 ∫
V

α1(x′, x , e1a) C ∶ ∇ε′ dV ′, (67)

where, C is the fourth-order elasticity tensor and ε and ∇ε represent the strain tensor and strain gradient
tensor, respectively. The terms e0 and e1 are nonlocal parameters describing the significance of nonlocal
effects, and l is the material length scale parameter capturing strain gradient effects. The kernel functions α0
and α1 are assumed to satisfy the differential operator form suggested by Eringen [13]:

Li = 1 − (ei a)2∇2 for i = 0, 1. (68)
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Substituting these into the total stress expression results in the generalized NSGT constitutive relation,
we get [220]:

(1 − (e1a)2∇2) (1 − (e0a)2∇2) t = (1 − (e1a)2∇2)C ∶ ε − l 2 (1 − (e0a)2∇2)∇C ∶ ∇ε. (69)

To simplify this, we often assume e0 = e1 = e, yielding:

(1 − (ea)2∇2) t = C ∶ ε − l 2∇C ∶ ∇ε. (70)

Setting l = 0, we get the ENET, as proposed by Eringen [13,217]:

(1 − (ea)2∇2) t = C ∶ ε, (71)

while, setting ea = 0 yields the pure strain gradient theory [221–223], represented by:

t = (1 − l 2∇2)C ∶ ε. (72)

The NSGT model effectively explains size-dependent behavior in nanostructures, such as CNTs,
showing strong agreement with molecular dynamics simulations. Its incorporation of both nonlocal and
gradient effects provides a robust framework for capturing the unique mechanical properties observed at
the nanoscale.

3.3 Modified Couple Stress Theory
The modified couple stress theory (MCST) [17] is an extension of classical continuum mechanics

designed to account for size-dependent behaviors observed in micro- and nanoscale materials. Unlike
classical theories, which assume that stress at a point is solely determined by deformation, MCST introduces
a material length-scale parameter and incorporates rotational effects through couple stresses. This approach
captures the influence of microstructural elements, such as grain boundaries or particle interactions, by
allowing moments and higher-order deformation gradients to contribute to the material response [18,224].
MCST is particularly relevant in applications involving microbeams, nanoplates, and other small-scale
structures, where classical mechanics often fails to predict mechanical behavior accurately [225,226].

The strain energy U in a deformed isotropic linear elastic material occupying a volume V is expressed
by [227–229]:

U = 1
2 ∫V

(σ ∶ ε +m ∶ χ) dv , (73)

where, σ represents the Cauchy (classical) stress tensor, conjugated with the strain tensor ε, and m is the
deviatoric part of the couple stress tensor, conjugated with the symmetric curvature tensor χ. The kinematic
relations for strain and curvature are defined in terms of the displacement vector u and the rotation vector
θ (related to the displacement gradient) as follows [228]:

ε = 1
2
(∇u + (∇u)T) and χ = 1

2
(∇θ + (∇θ)T) , (74)

with the rotation vector θ defined by:

θ = 1
2
∇× u. (75)
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The constitutive relations for stress and couple stress are expressed using Lamé constants λ and μ, along
with the length-scale parameter l , as [230]:

σ = λ tr(ε)I + 2μ ε and m = 2μl 2 χ. (76)

Here, λ and μ are related to the material’s Young’s modulus E and Poisson’s ratio ν, while l characterizes
the material’s resistance to couple stresses. The theory necessitates positive definiteness of the strain energy
density function w, requiring that:

E > 0, −1 < ν < 0.5, and l 2 > 0. (77)

This ensures that the material response remains stable and unique in boundary value problems. The
length-scale parameter l introduces a dependency on the material’s microstructure, distinguishing this
model from classical elasticity. The value of l can be empirically determined through torsion or bending tests
on slender structures, making the theory particularly useful for materials with pronounced side effects.

3.4 Consistent Couple Stress Theory
The consistent couple stress theory (CCST), proposed by Hadjesfandiari et al. [19,231], provides a robust

framework for addressing the size-dependent mechanical behavior of materials at micro- and nanoscales.
This theory refines classical continuum mechanics by introducing additional measures of deformation,
particularly the couple-stress tensor and the curvature tensor, to account for microstructural effects. These
additions allow CCST to capture phenomena that are otherwise inaccessible using traditional methods, such
as size-dependent stiffness and strength in small-scale structures.

A central achievement of CCST is the introduction of the skew-symmetric couple-stress tensor, μi j,
defined by [20]:

μ ji = −μi j . (78)

This tensor represents the internal moment per unit area caused by microstructural rotations. Unlike
classical stress tensors, the force-stress tensor σi j in CCST is asymmetric and is decomposed into symmetric
and antisymmetric parts [20,232]:

σi j = σ(i j) + σ[i j], (79)

where, σ(i j) = 1
2(σi j + σji) represents the symmetric part and σ[i j] = 1

2(σi j − σji) represents the antisymmet-
ric part.

The surface forces and moments are described using the force-stress tensor and the couple-stress tensor,
respectively [19,20]:

t(n)i = σji n j , m(n)i = μ ji n j , (80)

where, t(n)i and m(n)i are the force and moment traction vectors, and n j is the normal unit vector.
The equilibrium conditions in CCST extend those of classical mechanics to incorporate couple-

stresses [19]:

σji , j + fi = 0, (81a)
μ ji , j+ εi jk σ jk + Ci = 0. (81b)
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Here, fi and Ci are the body force and body couple per unit volume, respectively, and εi jk is the
permutation tensor.

CCST introduces the rotation tensor ωi j and the curvature tensor κi j as measures of deformation. The
displacement gradient tensor is decomposed as [20]:

ui , j = εi j + ωi j , (82)

where, εi j = 1
2(ui , j + u j , i) is the strain tensor, and ωi j = 1

2(ui , j − u j , i) is the rotation tensor. The curvature
tensor is derived as [20,233]:

κi j = ω[i , j] =
1
2
(ωi , j − ω j , i). (83)

These tensors describe the antisymmetric parts of the deformation and rotation fields.
For isotropic materials, CCST defines the stress and couple-stress tensors as [19,233]:

σ(i j) = λεkk δi j + 2Gεi j , (84a)
μi j = −4η(ωi , j − ω j , i), (84b)

where λ and G are the Lamé constants, δi j is the Kronecker delta, and η = Gl 2 is the couple-stress material
constant, with l being the material length-scale parameter. The relation between η and l highlights that CCST
requires only one additional material parameter.

The strain energy density function under CCST accounts for both symmetric and antisymmetric
contributions [233]:

Us = ∫
Ω
[ 1

2
σ(i j)εi j + μi jκi j] dΩ. (85)

These mathematical formulations enable CCST to effectively model phenomena such as bending,
vibration, and stability in micro- and nanoscale structures. By addressing the limitations of classical
mechanics and earlier couple-stress theories, CCST provides a unified and physically consistent approach for
analyzing the mechanical behavior of small-scale materials. It plays a critical role in the design and analysis
of advanced engineering systems, including FG materials and multilayered microstructures.

4 MDFG Nanostructures

4.1 MDFG Nanobeams
MDFG nanobeams are advanced materials with graded properties in multiple directions for enhanced

resilience under complex loading and environmental changes. These FG materials are very important in
nanotechnology where stability, vibration control, and resistance to thermal and mechanical stresses are
crucial. Studies have shown that BDFG and TDFG materials outperform uni-directional materials as they
can resist multi-directional forces and extreme temperature variations. Bi-directional grading enhances
nanobeam performance by improving static deflection, load-bearing capacity, and stability along two axes,
making it suitable for simpler applications. Tri-directional grading, with an additional material gradient,
provides better vibration resistance, dynamic stability, and post-buckling performance, especially under
complex multi-field conditions, making it ideal for advanced applications [234].

Nejad et al. [197,199] studied buckling and free vibration of BDFG nanobeams using ENET to capture
nanoscale effects. By varying properties along both thickness and length, they reported that material length
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scale and gradation parameters affect critical buckling loads and frequencies. Using GDQM and Hamilton’s
principle, they proved that bi-directional grading and nonlocal effects are important in nanoscale beam
design. Yang et al. [235] presented a nonlinear model for BDFG nanobeams with exponential distribution of
material in thickness and length. Using ENET and DQM, they studied size-dependent nonlinear bending,
buckling, and vibration, and showed the effect of gradation, boundary conditions, and size effect on critical
loads and frequencies. Hadi et al. [103] analyzed free vibration in TDFG Euler-Bernoulli nanobeams using
NSGT. By grading material properties along axial, thickness, and width directions (excluding Poisson’s
ratio) and using GDQM, they showed that natural frequencies could vary from classical results. Lal
et al. [236] examined the vibrational behavior of BDFG Timoshenko nanobeams using ENET and first-
order shear deformation theory (FSDT). With material composition graded by a power-law in thickness
and exponentially in the axial direction, they demonstrated the effects of temperature, nonlocal parameters,
and gradient indices on vibration characteristics. Dangi et al. [237] analyzed the nonlocal free vibration of
BDFG nanobeams with material properties graded axially and through thickness. Using ENET, Hamilton’s
principle, and FEM, they calculated the natural frequencies of the primary modes of vibration. Nazmul
et al. [238] presented an analytical approach for bending analysis of BDFG nanobeams using ENET. By
applying the Laplace transform, the authors derived explicit solutions for bending displacements under
various loads and boundary conditions, considering material variation along thickness and axial directions.
Khoram et al. [239] studied the bending behavior of BDFG nanobeams under mechanical and magnetic loads
including the Winkler-Pasternak foundation. Applying ENET and TBT, they studied the effects of material
gradation, aspect ratio, magnetic fields, and elastic foundation on buckling load. Malik et al. [240] studied the
rotating BDFG nanobeams for free vibrations using ENET and EBT. The composition of the beam changes
along length and thickness, and the governing equations derived from Hamilton’s principle and solved as an
eigenvalue problem using the Ritz method. This paper focuses on flapping and lead-lag motions and provides
nondimensional frequency-speed plots to understand the influence of nonlocality, length and thickness,
root radius, and aspect ratio. Gholami et al. [241] studied the nonlinear free vibration of BDFG nanobeams
with fixed boundary conditions using EBT. It was observed that nonlinear frequencies are higher than
linear frequencies for the same oscillation amplitude and investigated the impacts of nonlocal parameters,
vibration amplitude, and material gradient on the frequency behavior. Dangi et al. [242,243] modeled BDFG
Euler-Bernoulli nanobeams with ENET, NSGT, and Gurtin-Murdoch surface elasticity theories, showing
how combined nonlocal, strain gradient, and surface stresses affect natural frequencies, especially at low
thicknesses. Also, Lal et al. [244] used nonlocal TBT to analyze the vibration response of BDFG nanobeams.
The governing equations were solved with DQM, and the study highlights that surface and nonlocal effects
are essential in accurately predicting the vibration behavior of shear-deformable nanobeams. Tang et al. [86]
studied the nonlinear behavior of slender beams made of TDFG materials to resist multi-directional loads,
particularly for aerospace and marine applications. Assuming the material properties vary continuously in
three directions, they derived the governing equation using Hamilton’s principle and geometric nonlinearity.
Using GDQM and homotopy analysis method (HAM), they calculated the nonlinear critical buckling load
and frequency and found that TDFG indexes can increase the load-carrying capacity and dynamic flexibility
more than FG and BDFG materials. Ohab-Yazdi [245] used ENET to analyze the mechanical vibration
of rotating BDFG Euler-Bernoulli nanobeam. They varied the material properties for thickness and axial
directions as a power-law to investigate the effects of hub ratio, rotation speed, and power indexes on
natural frequencies. The results demonstrate that the natural frequency reduction is heavily influenced by
different parameter adjustments, especially at high rotation speeds. Using a two-phase local/NSGT, Wang
et al. [246] investigated the buckling behavior of porous BDFG Timoshenko nanobeams under hygro-
thermo-mechanical loadings. The GDQM is employed and the results demonstrate softening/hardening
behaviors in terms of critical buckling load against parameter variations including nonlocality, strain
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gradient, aspect ratio, and hygrothermal loadings under different boundary conditions. Barati et al. [247]
studied the transverse vibrations of BDFG nanobeams under a longitudinal magnetic field using ENET.
The equations of motion are solved with the GDQM. The study shows that parameters such as BDFG
properties, size-dependent factors, and magnetic field strength significantly affect vibration frequencies,
which can be controlled by adjusting the magnetic field. Zhao et al. [248] studied vibration frequency and
wave propagation in MDFG nanobeams reinforced with CNTs, using an NSGT to account for size-dependent
effects. The study separates bending and shear responses and considers nonlinear moisture and thermal
effects. Analytical solutions revealed that changes in FG indexes influence the impact of the strain gradient
coefficient on the vibration frequency. Shanab et al. [249] investigated the bending, buckling, and vibration
characteristics of the BDFG nanobeams. Based on Gurtin-Murdoch’s surface elasticity theory and MCST,
they analyzed the surface energy and microstructure of the tapered BDFG beams and established an EBT for
the tapered BDFG beams. It includes the thickness and length dependency of material properties and linearly
varying cross-section of the beam. They illustrated that nonuniformity, aspect ratio, and microstructural
parameters sharply influenced the nanobeam’s static and dynamic behavior. Gartia et al. [16] investigated
the free vibration of simply supported BDFG nanobeams, using EBT and NSGT to account for small-scale
effects. Modeling material variations in axial and thickness directions, they analyzed the nanobeam on a
Winkler-Pasternak foundation, finding that material inhomogeneity, nonlocal parameters, and foundation
constants significantly influence vibration frequencies. In BDFG porous nanobeams subjected to moving
loads, forced and free vibrations were analyzed by Majdi et al. [250] considering thickness effects using
NSGT. Porosity is modeled as even, uneven, and asymmetric, and these properties are distributed differently
on transverse and axial directions. The authors derived mathematical expressions for dynamic phenomena
(such as resonance and cancellation effects) and pointed out a particular double-cancellation effect using a
combination of analytical and numerical approaches. Parametric studies indicate that the system stiffness is
thickness dependent and critical load speed is very sensitive to the porosity distribution and the thickness
power index. A summary of the important studies on MDFG nanobeams is provided in Table 2 and the
advancement of research is shown in Fig. 15.

Table 2: Summary of studies on MDFG nanobeams

Author(s) Beam
theory

Nonlocal
theory

Methods Findings Applications

Nejad et al.
(2016) [199]

EBT ENET GDQM Material length-scale &
gradation parameters
affect critical buckling
loads and frequencies.

Nanoscale beam
design.

Hadi et al.
(2018) [103]

EBT NSGT GDQM Natural frequencies
deviate from classical

results due to
multi-directional

grading.

Vibration of
nanobeams in

harsh
environments.

Lal et al.
(2019) [236]

TBT ENET,
FSDT

GDQM Temperature, nonlocal
parameters & gradient

indices significantly
impact vibrational

behavior.

Thermal &
mechanical

vibration studies.

(Continued)
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Table 2 (continued)

Author(s) Beam
theory

Nonlocal
theory

Methods Findings Applications

Nazmul
et al.

(2020) [238]

EBT ENET Laplace
Transform

Analytical solutions for
bending displacements
under various loads &
boundary conditions.

Bending analysis of
nanobeams.

Malik et al.
(2020) [240]

EBT ENET Ritz method Rotating beams
experience frequency

variations influenced by
length, thickness &

aspect ratio.

Rotating
nanostructures.

Wang et al.
(2022) [246]

TBT NSGT GDQM Hygrothermal & nonlocal
effects induce

softening/hardening
behaviors in buckling

load.

Porous nanobeams
under

environmental
loads.

Zhao et al.
(2022) [248]

Sinusoidal
SDT

NSGT Analytical
solutions

FG indexes influence
strain gradient effects on

vibration frequencies.

CNT-reinforced
nanostructures.

Shanab
et al.

(2022) [249]

EBT Gurtin-
Murdoch,

MCST

GDQM,
Navier’s
Method

Aspect ratio &
microstructural

parameters influence
static & dynamic

behavior.

Tapered BDFG
beams for

nanotechnology.

Gartia et al.
(2024) [16]

EBT NSGT Rayleigh-Ritz
Method

Material inhomogeneity
& nonlocal parameters

significantly impact
vibrational frequencies.

BDFG nanobeams
on elastic

foundations.

Majdi et al.
(2024) [250]

EBT NSGT Analytical &
numerical
approaches

Porosity & thickness
distribution impact

stiffness & critical load
speeds.

Vibration analysis
of porous

nanobeams.

Figure 15: Research advancement of MDFG nanobeams
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Future work on MDFG nanobeams may focus on dynamic loading under various environmental
conditions and advanced beam theories for complex geometries. Experimental validation along with multi-
scale modeling and optimization will help to fine tune these materials for specific applications. Multi-physics
and machine learning will help to streamline the design process and studies on durability and fatigue
under cyclic loading will improve reliability and will open the way for their wider use in high performance
nanotechnology and MEMS devices.

4.2 MDFG Nanopipes
MDFG nanopipes are nanostructures with properties that vary in multiple directions. This design

optimizes strength, thermal conductivity, and corrosion resistance. For example, outer layers can be
corrosion-resistant, and inner layers can be stronger or better at heat management. These nanopipes are good
for electronics where thermal control is crucial, and biomedical where durability and bio-compatibility are
important. The tailored material distribution gives better performance in harsh environments.

Deng et al. [251] examined the size effect and stability of viscoelastic FG nanopipes with fluid flow,
employing ENET to predict natural frequencies. They demonstrate that stability reduces as the nonlocal
parameter increases, as depicted in Fig. 16, and enhances as the volume fraction exponent increases,
suggesting that FG design can modulate natural frequencies. Liu et al. [252] investigated the nonlinear
vibration and instability of fluid-conveying FG nanopipes containing initial imperfection based on NSGT
and Von-Karman nonlinearity. They analyzed how oscillator amplitude, initial imperfection, and power-
law index influence the frequency response and critical fluid velocity, which can be useful for the FG
nanopipe design in micro/nanofluidic systems. Lyu et al. [253] presented a thermo-mechanical model for a
size-dependent pipe made of BDFG materials conveying fluid. The model, based on NSGT and Hamilton’s
principle, incorporates varying material properties and pipe-fluid interactions. Using the GDQM, they
analyzed the frequency response and critical flow velocity, showing that the BDFG design improves pipe
stability, with implications for advanced micro/nanofluidic devices in bioengineering. Zhang et al. [254]
developed a multi-physics simulation to study the stability of a BDFG curved nanopipe conveying a liquid-
gas flow. Using higher order shear deformation theory (HSDT), NSGT, FEM, and DQM, they analyzed the
nanopipe’s frequency response to flow-induced forces. Their parametric study explored the effects of fluid
velocity, aerodynamic pressure, yaw angle, and gas volume fraction, providing insights into controlling flow-
induced vibration in nanoscale applications. Table 3 provides a summary of key studies on MDFG nanopipes,
and Fig. 17 illustrates the advancements in this research field.

Figure 16: Stability vs. Nonlocal parameter for MDFG nanopipes
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Table 3: Summary of studies on MDFG nanopipes

Author(s) Beam
theory

Nonlocal
theory

Methods Findings Applications

Deng et al.
(2017) [251]

EBT ENET Reverberation-
Ray Matrix

Method, Wave
Propagation

Method

Stability reduces with
increased nonlocal

parameter but improves
with a higher volume

fraction exponent.

Design of FG nano
pipes for stability

modulation in
fluid systems.

Liu et al.
(2019) [252]

EBT NSGT Galerkin
Method

Frequency response &
critical fluid velocity are
influenced by oscillator

amplitude, initial
imperfections &
power-law index.

FG nanopipe
design for

micro/nano-fluidic
systems.

Lyu et al.
(2023) [253]

TBT NSGT GDQM BDFG design enhances
pipe stability, accounting

for varying material
properties & fluid

interactions.

Advanced
micro/nano-fluidic

devices in
bioengineering.

Zhang et al.
(2024) [254]

HSDT NSGT FEM, DQM Stability & frequency
response are affected by

fluid velocity,
aerodynamic pressure,

yaw angle & gas volume
fraction. Insights into

flow-induced vibration
control.

Nanoscale
applications for
flow-induced

vibration control.

Figure 17: Research advancement of MDFG nanopipes

Possible future studies on MDFG nanopipes could be aimed at using new materials including nanocom-
posites and employing new fabrication technologies including 3D printing for the precise control of material
characteristics. It will also be important to investigate how these nano pipes behave under conditions
such as temperature variation and fluid flows, particularly in multiphase systems. Studying their nonlinear
characteristics like vibration and stability will enable their enhancement in real-life usage. Also, improving
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computational models and thinking about the environmental implications of these materials will expand
their applications in the aerospace, bioengineering, and energy industries.

4.3 MDFG Nanoplates
MDFG nanoplates are advanced materials with properties varying in multiple directions, thickness,

length and width. They are designed to perform optimally in applications where stress, thermal fields or other
conditions vary in different axes. Usually made of ceramics, metals or composites, FG nanoplates gradate
in properties like strength or flexibility. Analysis of their behavior requires advanced methods like FEM
and HSDT to account for material gradients and size effects. These FG nanoplates are especially useful in
applications like nanoelectronics, aerospace, and flexible devices.

Xie et al. [255] studied vibrations in BDFG nanoplates using an advanced HSDT that accounts for
material property variations and small-scale effects via ENET. Their findings show that FG parameters
increase natural frequency when the size effect parameter is less than 0.5 nm, as shown in Fig. 18, but
decrease when it exceeds this value. Daikh et al. [256] studied the buckling behavior of bilayer FG porous
nanoplates with consideration of thickness stretching and microstructure. Quasi-3D SDT was used to reduce
displacement variables and to predict how microstructure, geometry, and material properties affect the
critical buckling load for designing stable nanostructures. Saffari et al. [257] studied wave propagation in
porous, MDFG nanoplates in a Kerr-elastic medium using FSDT and enhanced NSGT. They found that as the
volume fraction index increases, phase velocity and wave frequency decrease, and porosity always decreases
these values. This work shows how material gradients and porosity affect wave dispersion in FG nanoplates.
Also, Roodgar Saffari et al. [258] studied the free and forced vibration behavior of sandwich magneto-
electro-elastic nanoplates with an FG porous core, considering the varying thickness and initial electric and
magnetic potentials. Using advanced shear deformation and NSGT, they examined the effects of porosity
patterns, taper constants, initial potentials, and material gradients on the nanoplates’ vibration responses. Thi
et al. [259] presented a three-node triangular plate element to study static bending, free vibration, and forced
vibration in MDFG porous nanoplates using an improved FSDT and ENET. Their model, based on Mixed
Interpolation of Tensorial Components 3+ (MITC3+) elements, handles material properties varying in three
directions and diverse porosity distributions, with features to eliminate shear correction factors and avoid
shear-locking. Nguyen et al. [187] discussed the analysis of static bending of BDFG nanoplates with internal
pores, including geometric nonlinearity. In order to analyze stiffness-softening and hardening behaviors,
they employed the FSDT, the von-Kármán assumption, and NSGT to investigate the deflection and other
nonlinear properties for advanced engineering applications. In Table 4, a summary of significant research
on MDFG nanoplates is presented, and in Fig. 19, the progression of research is illustrated.

Figure 18: Natural frequency vs. Size effect for MDFG nanoplates
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Table 4: Summary of studies on MDFG nanoplates

Author(s) Plate
theory

Nonlocal
theory

Methods Findings Applications

Xie et al.
(2022) [255]

HSDT ENET Navier Method Natural frequency
increases for size effect
parameter < 0.5 nm but

decreases above this
threshold.

Nanoelectronics,
vibration control.

Daikh et al.
(2023) [256]

Quasi-
3D

HSDT

NSGT Galerkin
Method

Critical buckling load
depends on

microstructure, geometry
& FG material properties.

Stable
nanostructure

design.

Saffari et al.
(2023) [257]

FSDT Enhanced
NSGT

Wave
Propagation

Method

Increased volume
fraction index decreases

phase velocity &
frequency; porosity

decreases these further.

Wave dispersion
analysis.

Saffari et al.
(2023) [258]

FSDT NSGT Galerkin
Method

Effects of porosity
patterns, taper constants

& initial potentials on
vibration responses.

Magneto-electro
devices, vibration

systems.

Thi et al.
(2023) [259]

Improved
FSDT

ENET FEM Handles 3D material
variations & porosity
distributions while

avoiding shear-locking
issues.

Static bending,
vibration in

MDFG nanoplates.

Nguyen
et al.

(2024) [187]

FSDT NSGT Isogeometric
Approach,

NURBS
Functions

Stiffness
softening/hardening

behaviors analyzed via
nonlinear deflection &

material gradients.

Nonlinear bending
in MDFG
materials.

Figure 19: Research advancement of MDFG nanoplates
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MDFG nanoplates are exciting across all engineering fields. Dynamic load and impact resistance studies
are important for aerospace and automotive applications, and analysis of thermo-mechanical behavior
under extreme environmental conditions is useful in space and nuclear engineering. Models for complex
geometry and coupling multi-physics effects (like electromagnetic or piezoelectric) will boost smart material
applications. AI-driven optimization and experimental validation will help targeted design improvements,
and innovations in material grading will make FG nanoplates suitable for use in biomedical, electronic, and
wearable technologies, resulting in more resilient and high-performance materials.

4.4 MDFG Nanoshells
MDFG nanoshells are complex materials with properties that vary gradually in multiple directions at the

nano level. These nanoshells are made using techniques like chemical vapor deposition (CVD) and atomic
layer deposition (ALD), and the concentric layers possess distinct characteristics. MDFG nanoshells are more
suitable for applications in energy storage, biomedical, optoelectronics, and structural composites because of
their controlled properties. For the design and optimization of these materials, techniques like finite element
analysis (FEA), molecular dynamics simulations, etc., are used to understand the response of the material
under different conditions.

Cao et al. [260] analyzed the free vibration of TDFG nanoplates and nanoshells, with properties varying
along length, width, and thickness (except for Poisson’s ratio). Using ENET and the Galerkin method, they
derived natural frequencies for FG nanostructures, including spherical and cylindrical nanoshells. Their
study examined the effects of nonlocal parameters and grading indexes on these frequencies. Cuong-Le
et al. [261] investigated the natural frequency and critical buckling load of MDFG nanoshells with size effects
using 3D isogeometric analysis based on ENET. They found out that as size effect parameters increased, the
frequencies and critical buckling loads of the nanoshells reduced, as illustrated in Fig. 20. Their approach,
which was based on non-uniform rational B-splines (NURBS) basis functions, gave reliable results without
any assumptions made on deformation or stress distributions. Wang et al. [262] presented a quadratic
hexahedral solid element for predicting the static and dynamic characteristics of porous MDFG nanoshell
in MCST. Their method uses penalty unsymmetric FEM to impose C1 continuity in a weak form and
adds independent rotation to improve the C0 continuity of test functions. They discovered that the out-of-
plane vibrations are suppressed by increasing the material length scale parameter (MLSP) and the mode
frequencies and order can be controlled by MLSP, a finding with significant implications for FG material
design. A summary of key studies on MDFG nanoshells is presented in Table 5, with research advancements
depicted in Fig. 21.

Figure 20: Natural frequency vs. Size effect for MDFG nanoshells
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Table 5: Summary of studies on MDFG nanoshells

Author(s) Shell
theory

Nonlocal
theory

Methods Findings Applications

Cao et al.
(2021) [260]

FSDT ENET Galerkin
Method

Natural frequencies of FG
nanostructures (spherical
& cylindrical nanoshells)

derived. Effects of
nonlocal parameters &

grading indexes on
frequencies analyzed.

Energy storage,
structural

composites,
nanoshell design

for vibration
control.

Le et al.
(2022) [261]

Classical
Shell

Theory

ENET 3D
isogeometric

Analysis,
NURBS

Functions

Frequencies & critical
buckling loads of MDFG
nanoshells reduce with
size effect parameters.

Reliable results without
assumptions on

deformation or stress.

Optoelectronics,
biomedical

applications,
structural stability
in nanotechnology.

Wang et al.
(2022) [262]

Classical
Shell

Theory

MCST Hexahedral
Solid Element

(FEM)

Out-of-plane vibrations
suppressed by increasing
MLSP. Mode frequencies
and order are controllable

by MLSP.

Structural
composites,

vibration control
in nanoshells, FG

material design for
dynamic

characteristics.

Figure 21: Research advancement of MDFG nanoshells

The future of MDFG nanoshells is in advancing computational methods like higher-order FEA,
isogeometric analysis, and machine learning to predict their mechanical behavior. Multi-physics simulations
and advanced techniques like meshless methods and molecular dynamics will give us insight into their
performance under different conditions. With these scalable fabrication methods, we can design and
optimize FG nanoshells for nanotechnology, biomedicine, aerospace, and energy and drive innovation in
smart materials and adaptive structures.

5 Conclusions
This paper is a comprehensive review of MDFG nanostructures covering material distribution models,

size-dependent elasticity theories, and the mechanical behavior of these structures. Although a lot of work
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has been done on FG nanostructures and MDFG structures, there is limited work on MDFG nanostructures,
especially with various complicating effects. The importance of advanced size-dependent theories like ENET,
NSGT, MCST, and CCST in capturing nanoscale behavior has been emphasized. This review also explores
the mechanical responses of MDFG nanobeams, nanopipes, nanoplates, and nanoshells under both static
and dynamic loading conditions, while underscoring the need for more robust analytical, semi-analytical,
and numerical methods to address the complex vibration problems inherent to MDFG nanostructures.

To advance the research on MDFG nanostructures, several critical directions need to be explored.
Developing more advanced modeling techniques, including machine learning-based and hybrid analytical-
numerical approaches, will enable efficient analysis of static, dynamic, and vibrational behaviors under
multi-directional material gradation and small-scale effects. Further investigation into the interplay between
various size-dependent theories, such as ENET, NSGT, and MCST, is essential for creating a unified frame-
work for nanoscale modeling. Additionally, coupled multi-physics effects, including thermomechanical,
piezoelectric, and magnetoelastic responses, require comprehensive exploration to expand the practical
applicability of MDFG structures. Experimental validation and material characterization are equally crucial
to validate theoretical and numerical models. This includes the precise fabrication of MDFG nanostructures
and rigorous testing to ensure real-world feasibility.

Moreover, research on optimization strategies tailored to real-world applications is necessary to
bridge the gap between theoretical advancements and practical implementation, particularly in aerospace,
biomedicine, and MEMS/NEMS. Investigating the dynamic and stability responses of MDFG nanostructures
under complex loading conditions, while incorporating nonlinear effects and large deformations, is essential.
Innovations in material design and synthesis, including novel material distribution models and advanced
manufacturing techniques like additive manufacturing and nanolithography, will further enable the realiza-
tion of precise MDFG structures. Finally, exploring the integration of MDFG nanostructures into emerging
technologies such as soft robotics, flexible electronics, and nanomedicine will unlock their multi-functional
potential and lead to groundbreaking applications.

In conclusion, advancing these research directions is crucial for the effective design, optimization, and
practical implementation of MDFG nanostructures. This review serves as a valuable resource for researchers
and engineers working on MDFG nanostructures and provides a clear roadmap for addressing existing
challenges and driving innovations in this evolving field.
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110. ŞimŞek M, Kocatürk T. Free and forced vibration of a functionally graded beam subjected to a concentrated moving
harmonic load. Compos Struct. 2009;90(4):465–73. doi:10.1016/j.compstruct.2009.04.024.

111. Chakraverty S, Pradhan KK. Free vibration of exponential functionally graded rectangular plates in thermal
environment with general boundary conditions. Aerosp Sci Technol. 2014;36(2):132–56. doi:10.1016/j.ast.2014.04.
005.

112. Kumar V, Singh SJ, Saran VH, Harsha SP. Vibration response of the exponential functionally graded material
plate with variable thickness resting on the orthotropic Pasternak foundation. Mech Based Des Struct Mach.
2024;52(5):2841–68. doi:10.1080/15397734.2023.2193623.

113. Jung WY, Han SC. Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal
elasticity theory. Math Probl Eng. 2013;2013(1):476131. doi:10.1155/2013/476131.

114. Hamed M, Eltaher MA, Sadoun A, Almitani K. Free vibration of symmetric and sigmoid functionally graded
nanobeams. Appl Phys A. 2016;122(9):829. doi:10.1007/s00339-016-0324-0.

115. Ramteke PM, Mehar K, Sharma N, Panda SK. Numerical prediction of deflection and stress responses of
functionally graded structure for grading patterns (Power-Law, Sigmoid, and Exponential) and variable porosity
(Even/Uneven). Sci Iran. 2021;28(2):811–29. doi:10.24200/sci.2020.55581.4290.

116. Van Vinh P. Nonlocal free vibration characteristics of power-law and sigmoid functionally graded nanoplates
considering variable nonlocal parameter. Physica E: Low-Dimens Syst Nanostruct. 2022;135:114951. doi:10.1016/j.
physe.2021.114951.

117. Kumar P, Harsha SP. Dynamic analysis of porosity dependent functionally graded sigmoid piezoelectric (FGSP)
plate. Structures. 2022;46(6):1737–52. doi:10.1016/j.istruc.2022.11.021.

118. Viola E, Tornabene F. Free vibrations of three parameter functionally graded parabolic panels of revolution. Mech
Res Commun. 2009;36(5):587–94. doi:10.1016/j.mechrescom.2009.02.001.

119. Tornabene F, Viola E. Free vibrations of four-parameter functionally graded parabolic panels and shells of
revolution. Eur J Mech—A/Solids. 2009;28(5):991–1013. doi:10.1016/j.euromechsol.2009.04.005.

120. Nicholas Fantuzzi FT, Viola E. Four-parameter functionally graded cracked plates of arbitrary shape: a GDQFEM
solution for free vibrations. Mech Adv Mater Struct. 2016;23(1):89–107. doi:10.1080/15376494.2014.933992.

121. Boggarapu V, Gujjala R, Ojha S, Acharya S, babu Venkateswara P, Chowdary S, et al. State of the art in functionally
graded materials. Compos Struct. 2021;262(5):113596. doi:10.1016/j.compstruct.2021.113596.

122. Piegl L, Tiller W. The NURBS book. Berlin/Heidelberg: Springer Science & Business Media; 2012.
123. Lieu QX, Lee J, Lee D, Lee S, Kim D, Lee J. Shape and size optimization of functionally graded sandwich plates using

isogeometric analysis and adaptive hybrid evolutionary firefly algorithm. Thin-Walled Struct. 2018;124:588–604.
doi:10.1016/j.tws.2017.11.054.

124. Do DTT, Lee D, Lee J. Material optimization of functionally graded plates using deep neural network and modified
symbiotic organisms search for eigenvalue problems. Compos Part B: Eng. 2019;159(4):300–26. doi:10.1016/j.
compositesb.2018.09.087.

https://doi.org/10.1016/j.apm.2020.06.002
https://doi.org/10.1016/j.apm.2020.06.002
https://doi.org/10.1016/j.cma.2023.116474
https://doi.org/10.1016/j.matdes.2008.05.015
https://doi.org/10.1016/j.compositesb.2013.02.027
https://doi.org/10.1016/S0020-7403(03)00058-4
https://doi.org/10.1016/j.matdes.2006.02.007
https://doi.org/10.1016/j.compstruct.2009.04.024
https://doi.org/10.1016/j.ast.2014.04.005
https://doi.org/10.1016/j.ast.2014.04.005
https://doi.org/10.1080/15397734.2023.2193623
https://doi.org/10.1155/2013/476131
https://doi.org/10.1007/s00339-016-0324-0
https://doi.org/10.24200/sci.2020.55581.4290
https://doi.org/10.1016/j.physe.2021.114951
https://doi.org/10.1016/j.physe.2021.114951
https://doi.org/10.1016/j.istruc.2022.11.021
https://doi.org/10.1016/j.mechrescom.2009.02.001
https://doi.org/10.1016/j.euromechsol.2009.04.005
https://doi.org/10.1080/15376494.2014.933992
https://doi.org/10.1016/j.compstruct.2021.113596
https://doi.org/10.1016/j.tws.2017.11.054
https://doi.org/10.1016/j.compositesb.2018.09.087
https://doi.org/10.1016/j.compositesb.2018.09.087


Comput Model Eng Sci. 2025;142(3) 2449

125. Wang C, Yu T, Curiel-Sosa J, Xie N, Bui TQ. Adaptive chaotic particle swarm algorithm for isogeometric multi-
objective size optimization of FG plates. Struct Multidiscipl Optim. 2019;60(2):757–78. doi:10.1007/s00158-019-
02238-2.

126. Ribeiro LG, Maia MA, Parente E, de Melo AMC. Surrogate based optimization of functionally graded plates using
radial basis functions. Compos Struct. 2020;252(4):112677. doi:10.1016/j.compstruct.2020.112677.

127. Vel SS, Pelletier JL. Multi-objective optimization of functionally graded thick shells for thermal loading. Compos
Struct. 2007;81(3):386–400. doi:10.1016/j.compstruct.2006.08.027.

128. Nguyen TT, Lee J. Optimal design of thin-walled functionally graded beams for buckling problems. Compos Struct.
2017;179(5):459–67. doi:10.1016/j.compstruct.2017.07.024.

129. Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta
Metallurgica. 1973;21(5):571–4. doi:10.1016/0001-6160(73)90064-3.

130. Bayat M, Sahari BB, Saleem M, Dezvareh E, Mohazzab AH. Analysis of functionally graded rotating disks with
parabolic concave thickness applying an exponential function and the Mori-Tanaka scheme. IOP Conf Ser: Mater
Sci Eng. 2011;17(1):012005. doi:10.1088/1757-899X/17/1/012005.

131. Shen HS, Wang ZX. Assessment of Voigt and Mori–Tanaka models for vibration analysis of functionally graded
plates. Compos Struct. 2012;94(7):2197–208. doi:10.1016/j.compstruct.2012.02.018.

132. Singam S, Kumar B, Gupta R, Rajagopal A, Reddy J. Influence of the homogenization scheme on the bending
response of functionally graded plates. Acta Mech. 2018;229(10):4071–89. doi:10.1007/s00707-018-2223-2.

133. Eker M, Yarımpabuç D, Yıldırım A, Çelebi K. Elastic solutions based on the Mori-Tanaka scheme for pressurized
functionally graded cylinder. J Appl Math Comput Mech. 2020;19(4):57–68. doi:10.17512/jamcm.2020.4.05.

134. Tamura I, Tomota Y, Ozawa M. Strength and ductility of fe-ni-c alloys composed of austenite and martensite with
various strength. In: Proceedings of the Third International Conference on Strength of Metals and Alloys; 1973.
Vol. 1, p. 611–5.

135. Jin ZH, Paulino GH, Dodds RH. Cohesive fracture modeling of elastic–plastic crack growth in functionally graded
materials. Eng Fract Mech. 2003;70(14):1885–912. doi:10.1016/S0013-7944(03)00130-9.

136. Nayak P, Armani A. Optimal three-dimensional design of functionally graded parts for additive manufacturing
using Tamura–Tomota–Ozawa model. Proc Inst Mech Eng, Part L: J Mater: Des Appl. 2021;235(9):1993–2006.
doi:10.1177/14644207211011638.

137. Arslan K, Gunes R, Apalak MK, Reddy JN. Evaluation of geometrically nonlinear and elastoplastic behavior of
functionally graded plates under mechanical loading–unloading. Mech Adv Mater Struct. 2022;29(11):1587–600.
doi:10.1080/15376494.2020.1829760.

138. Nguyen D, Hoai B, Tran TH, Alexandrov S. Large deflections of functionally graded sandwich beams with influence
of homogenization schemes. Arch Appl Mech. 2022;92(6):1757–75. doi:10.1007/s00419-022-02140-2.

139. Akbarzadeh AH, Abedini A, Chen ZT. Effect of micromechanical models on structural responses of functionally
graded plates. Compos Struct. 2015;119(6):598–609. doi:10.1016/j.compstruct.2014.09.031.

140. Fan F, Lei B, Sahmani S, Safaei B. On the surface elastic-based shear buckling characteristics of functionally graded
composite skew nanoplates. Thin-Walled Struct. 2020;154:106841. doi:10.1016/j.tws.2020.106841.

141. Shahsavari D, Karami B. Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally
graded nanoplates. Arch Civil Mech Eng. 2022;22(2):92. doi:10.1007/s43452-022-00409-5.

142. Billel R, Mansouri K, Mourad C, Berkia A, Messas T, Khadraoui F, et al. Effect of idealization models on deflection
of functionally graded material (FGM) plate. J Nano Electron Phys. 2023;15:1022.

143. Billel R. Contribution to study the effect of (Reuss, LRVE, Tamura) models on the axial and shear stress of sandwich
FGM plate (Ti–6A1–4V/ZrO2) subjected on linear and nonlinear thermal loads. AIMS Mater Sci. 2023;10(1):26–39.
doi:10.3934/matersci.2023002.

144. Hill R. Theory of mechanical properties of fibre-strengthened materials: I. elastic behaviour. J Mech Phys Solids.
1964;12(4):199–212.

145. Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids. 1965;13(4):213–22. doi:10.1016/
0022-5096(65)90010-4.

https://doi.org/10.1007/s00158-019-02238-2
https://doi.org/10.1007/s00158-019-02238-2
https://doi.org/10.1016/j.compstruct.2020.112677
https://doi.org/10.1016/j.compstruct.2006.08.027
https://doi.org/10.1016/j.compstruct.2017.07.024
https://doi.org/10.1016/0001-6160(73)90064-3
https://doi.org/10.1088/1757-899X/17/1/012005
https://doi.org/10.1016/j.compstruct.2012.02.018
https://doi.org/10.1007/s00707-018-2223-2
https://doi.org/10.17512/jamcm.2020.4.05
https://doi.org/10.1016/S0013-7944(03)00130-9
https://doi.org/10.1177/14644207211011638
https://doi.org/10.1080/15376494.2020.1829760
https://doi.org/10.1007/s00419-022-02140-2
https://doi.org/10.1016/j.compstruct.2014.09.031
https://doi.org/10.1016/j.tws.2020.106841
https://doi.org/10.1007/s43452-022-00409-5
https://doi.org/10.3934/matersci.2023002
https://doi.org/10.1016/0022-5096(65)90010-4
https://doi.org/10.1016/0022-5096(65)90010-4


2450 Comput Model Eng Sci. 2025;142(3)

146. Reiter T, Dvorak GJ, Tvergaard V. Micromechanical models for graded composite materials. J Mech Phys Solids.
1997;45(8):1281–302. doi:10.1016/S0022-5096(97)00007-0.

147. Kim JH, Paulino GH. An accurate scheme for mixed-mode fracture analysis of functionally graded materials using
the interaction integral and micromechanics models. Int J Numer Methods Eng. 2003;58(10):1457–97. doi:10.1002/
nme.819.

148. Goupee AJ, Vel SS. Multi-objective optimization of functionally graded materials with temperature-dependent
material properties. Mater Des. 2007;28(6):1861–79. doi:10.1016/j.matdes.2006.04.013.

149. Kiani Y, Eslami MR. Thermal postbuckling of imperfect circular functionally graded material plates: examination
of Voigt, Mori–Tanaka, and self-consistent schemes. J Press Vessel Technol. 2014;137(2):021201.

150. Gasik MM, Lilius RR. Evaluation of properties of W-Cu functional gradient materials by micromechanical model.
Comput Mater Sci. 1994;3(1):41–9. doi:10.1016/0927-0256(94)90151-1.

151. Shabana YM, Noda N. Numerical evaluation of the thermomechanical effective properties of a functionally graded
material using the homogenization method. Int J Solids Struct. 2008;45(11):3494–506. doi:10.1016/j.ijsolstr.2008.
02.012.

152. Gasik MM. Micromechanical modelling of functionally graded materials. Comput Mater Sci. 1998;13(1):42–55.
doi:10.1016/S0927-0256(98)00044-5.

153. Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J
Mech Phys Solids. 1963;11(2):127–40. doi:10.1016/0022-5096(63)90060-7.

154. Hashin Z. Analysis of composite materials—A survey. J Appl Mech. 1983;50(3):481–505. doi:10.1115/1.3167081.
155. Mishnaevsky LL Jr. Computational mesomechanics of composites. West Sussex, England: John Wiley & Sons; 2007.
156. Loja MAR, Barbosa JI, Mota Soares CM. A study on the modeling of sandwich functionally graded particulate

composites. Compos Struct. 2012;94(7):2209–17. doi:10.1016/j.compstruct.2012.02.015.
157. Song G, Zou Y, Nie Y, Habibi M, Albaijan I, Toghroli E. Application of Hashin–Shtrikman bounds homog-

enization model for frequency analysis of imperfect FG bio-composite plates. J Mech Behav Biomed Mater.
2024;151(1):106321. doi:10.1016/j.jmbbm.2023.106321.

158. Wakashima K, Tsukamoto H. Mean-field micromechanics model and its application to the analysis of
thermomechanical behaviour of composite materials. Mater Sci Eng: A. 1991;146(1):291–316. doi:10.1016/0921-
5093(91)90284-T.

159. Zuiker JR. Functionally graded materials: choice of micromechanics model and limitations in property variation.
Compos Eng. 1995;5(7):807–19. doi:10.1016/0961-9526(95)00031-H.

160. Kapuria MBS, Kumar AN. Theoretical modeling and experimental validation of thermal response of metal-ceramic
functionally graded beams. J Therm Stresses. 2008;31(8):759–87. doi:10.1080/01495730802194292.

161. Cho JR, Ha DY. Averaging and finite-element discretization approaches in the numerical analysis of functionally
graded materials. Mater Sci Eng: A. 2001;302(2):187–96. doi:10.1016/S0921-5093(00)01835-9.

162. Chen B, Tong L. Thermomechanically coupled sensitivity analysis and design optimization of functionally graded
materials. Comput Methods Appl Mech Eng. 2005;194(18):1891–911. doi:10.1016/j.cma.2004.07.005.

163. Kerner EH. The elastic and thermo-elastic properties of composite media. Proc Phys Soc B. 1956;69(8):808–13.
doi:10.1088/0370-1301/69/8/305.

164. Miyamoto Y, Kaysser WA, Rabin BH, Kawasaki A, Ford RG. Functionally graded materials: design, processing and
applications. New York: Springer Science & Business Media; 1999.

165. Zaidi M, Joshi KK, Shukla A, Cherinet B. A review of the various modelling schemes of unidirectional functionally
graded material structures. AIP Conf Proc. 2021;2341(1):020021. doi:10.1063/5.0050306.

166. Debnath A, Prokash RJ, Das SC, Afsar AM. An analysis of stress intensity factor of four equally spaced edge cracks
in a functionally graded material cylinder. AIP Conf Proc. 2018;1980(1):030027. doi:10.1063/1.5044306.

167. Nguyen DK. Large displacement response of tapered cantilever beams made of axially functionally graded material.
Compos Part B: Eng. 2013;55(6):298–305. doi:10.1016/j.compositesb.2013.06.024.

168. Li X, Li L, Hu Y, Ding Z, Deng W. Bending, buckling and vibration of axially functionally graded beams based on
nonlocal strain gradient theory. Compos Struct. 2017;165(1):250–65. doi:10.1016/j.compstruct.2017.01.032.

https://doi.org/10.1016/S0022-5096(97)00007-0
https://doi.org/10.1002/nme.819
https://doi.org/10.1002/nme.819
https://doi.org/10.1016/j.matdes.2006.04.013
https://doi.org/10.1016/0927-0256(94)90151-1
https://doi.org/10.1016/j.ijsolstr.2008.02.012
https://doi.org/10.1016/j.ijsolstr.2008.02.012
https://doi.org/10.1016/S0927-0256(98)00044-5
https://doi.org/10.1016/0022-5096(63)90060-7
https://doi.org/10.1115/1.3167081
https://doi.org/10.1016/j.compstruct.2012.02.015
https://doi.org/10.1016/j.jmbbm.2023.106321
https://doi.org/10.1016/0921-5093(91)90284-T
https://doi.org/10.1016/0921-5093(91)90284-T
https://doi.org/10.1016/0961-9526(95)00031-H
https://doi.org/10.1080/01495730802194292
https://doi.org/10.1016/S0921-5093(00)01835-9
https://doi.org/10.1016/j.cma.2004.07.005
https://doi.org/10.1088/0370-1301/69/8/305
https://doi.org/10.1063/5.0050306
https://doi.org/10.1063/1.5044306
https://doi.org/10.1016/j.compositesb.2013.06.024
https://doi.org/10.1016/j.compstruct.2017.01.032


Comput Model Eng Sci. 2025;142(3) 2451

169. Huang Y, Wang T, Zhao Y, Wang P. Effect of axially functionally graded material on whirling frequencies and
critical speeds of a spinning Timoshenko beam. Compos Struct. 2018;192(11):355–67. doi:10.1016/j.compstruct.2018.
02.039.

170. Lin X, Huang Y, Zhao Y, Wang T. Large deformation analysis of a cantilever beam made of axially functionally
graded material by homotopy analysis method. Appl Math Mech. 2019;40(10):1375–86. doi:10.1007/s10483-019-
2515-9.

171. Singh R, Sharma P. Vibration analysis of an axially functionally graded material non-prismatic beam under axial
thermal variation in humid environment. J Vib Control. 2022;28(23–24):3608–21. doi:10.1177/10775463211037150.

172. Babilio E. Dynamics of an axially functionally graded beam under axial load. Eur Phys J Special Topics.
2013;222(7):1519–39. doi:10.1140/epjst/e2013-01942-8.

173. Akbas SD. Forced vibration responses of axially functionally graded beams by using ritz method. J Appl Computat
Mech. 2021;7(1):109–15.

174. Simsek M, Kocaturk T, Akbas S. Dynamic behavior of an axially functionally graded beam under action of a moving
harmonic load. Compos Struct. 2012;94(8):2358–64. doi:10.1016/j.compstruct.2012.03.020.

175. Huang Y, Li XF. A new approach for free vibration of axially functionally graded beams with non-uniform cross-
section. J Sound Vib. 2010;329(11):2291–303. doi:10.1016/j.jsv.2009.12.029.

176. Cao D, Gao Y, Yao M, Zhang W. Free vibration of axially functionally graded beams using the asymptotic
development method. Eng Struct. 2018;173:442–8. doi:10.1016/j.engstruct.2018.06.111.

177. Dai J, Liu Y, Liu H, Miao C, Tong G. A parametric study on thermo-mechanical vibration of axially functionally
graded material pipe conveying fluid. Int J Mech Mater Des. 2019;15(4):715–26. doi:10.1007/s10999-018-09439-5.

178. Rajasekaran S, Khaniki HB. Finite element static and dynamic analysis of axially functionally graded nonuniform
small-scale beams based on nonlocal strain gradient theory. Mech Adv Mater Struct. 2019;26(14):1245–59. doi:10.
1080/15376494.2018.1432797.

179. Bednarik M, Cervenka M, Groby JP, Lotton P. One-dimensional propagation of longitudinal elastic waves through
functionally graded materials. Int J Solids Struct. 2018;146(13):43–54. doi:10.1016/j.ijsolstr.2018.03.017.

180. Tsiatas GC, Charalampakis AE. Optimizing the natural frequencies of axially functionally graded beams and
arches. Compos Struct. 2017;160:256–66. doi:10.1016/j.compstruct.2016.10.057.

181. Alshabatat NT. Natural frequencies optimization of thin-walled circular cylindrical shells using axially functionally
graded materials. Materials. 2022;15(3):698. doi:10.3390/ma15030698.

182. Voigt W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann Phys.
1889;274(12):573–87. doi:10.1002/andp.18892741206.

183. Reuss A. Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle.
ZAMM—J Appl Math Mech/Zeitschrift Für Angewandte Mathematik Und Mechanik. 1929;9(1):49–58. doi:10.
1002/zamm.19290090104.

184. Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65(5):349. doi:10.1088/0370-1298/65/
5/307.

185. Ebrahimi MJ, Najafizadeh MM. Free vibration analysis of two-dimensional functionally graded cylindrical shells.
Appl Math Model. 2014;38(1):308–24. doi:10.1016/j.apm.2013.06.015.

186. Sahmani S, Safaei B. Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including
nonlocal stress and microstructural strain gradient size effects. Thin-Walled Struct. 2019;140:342–56. doi:10.1016/j.
tws.2019.03.045.

187. Nguyen NV, Phan DH. A size-dependent nonlinear isogeometric approach of bidirectional functionally graded
porous plates. Structures. 2024;68(4):107097. doi:10.1016/j.istruc.2024.107097.
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