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ABSTRACT: With the rapid advancements in technology and science, optimization theory and algorithms have
become increasingly important. A wide range of real-world problems is classified as optimization challenges, and
meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains,
such as machine learning, process control, and engineering design, showcasing their capability to address complex
optimization problems. The Stochastic Fractal Search (SFS) algorithm is one of the most popular meta-heuristic
optimization methods inspired by the fractal growth patterns of natural materials. Since its introduction by Hamid
Salimi in 2015, SFS has garnered significant attention from researchers and has been applied to diverse optimization
problems across multiple disciplines. Its popularity can be attributed to several factors, including its simplicity, practical
computational efficiency, ease of implementation, rapid convergence, high effectiveness, and ability to address single-
and multi-objective optimization problems, often outperforming other established algorithms. This review paper offers
a comprehensive and detailed analysis of the SFS algorithm, covering its standard version, modifications, hybridization,
and multi-objective implementations. The paper also examines several SFS applications across diverse domains,
including power and energy systems, image processing, machine learning, wireless sensor networks, environmental
modeling, economics and finance, and numerous engineering challenges. Furthermore, the paper critically evaluates
the SFS algorithm’s performance, benchmarking its effectiveness against recently published meta-heuristic algorithms.
In conclusion, the review highlights key findings and suggests potential directions for future developments and
modifications of the SFS algorithm.

KEYWORDS: Meta-heuristic algorithms; stochastic fractal search; evolutionary computation; engineering applica-
tions; swarm intelligence; optimization

1 Introduction
Optimization aims to determine the optimal values for decision variables that minimize or maxi-

mize objective functions while satisfying specific constraints. Numerous real-world optimization problems
present significant challenges, such as high computational costs, nonlinear constraints, non-convex search
spaces, dynamic or noisy objective functions, and extensive solution spaces [1]. These factors influence the
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choice between exact and approximate methods for addressing complex problems. While exact methods can
accurately identify the global optimum, their computational time typically increases exponentially with the
number of variables [2]. In contrast, stochastic optimization algorithms can effectively find near-optimal or
optimal solutions within a practical timeframe. Heuristic and meta-heuristic methods are among the most
effective approximate algorithms for solving complex optimization problems [3].

Heuristic algorithms are techniques employed to find near-optimal solutions efficiently. They generate
feasible solutions within a predefined number of iterations, demonstrating adaptability to the problem being
addressed. Heuristics typically employ a trial-and-error approach to explore potential solutions, aiming to
do so within reasonable computational time and resource constraints. However, their inherent tendency
towards local exploration can lead to convergence at local optima, which may prevent the attainment of the
global optimum [3].

On the other hand, meta-heuristic algorithms were developed to address the limitations of heuristic
algorithms. Each meta-heuristic employs distinct strategies to guide the search process, aiming for a com-
prehensive search space exploration to identify near-optimal solutions. These algorithms encompass diverse
techniques, ranging from simple local exploration to sophisticated learning methods [4]. Meta-heuristics
are often considered problem-independent as they do not rely on the specific characteristics of the problem
being solved. Furthermore, their non-greedy approach enables a comprehensive search space exploration,
potentially resulting in improved solutions that may sometimes align with global optima [5]. Consequently,
meta-heuristic algorithms can uncover superior solutions for many optimization problems while avoiding
local optima. These robust and adaptable algorithms tackle many challenges, including path planning, feature
selection, wireless sensor networks, image processing, and neural network optimization [6].

Several vital attributes contribute to the appeal of meta-heuristic algorithms, such as simplicity,
flexibility, black-box nature, and the capability to avoid local optima traps [6]. Unlike heuristic algorithms,
meta-heuristics effectively manage the balance between exploration and exploitation, two essential compo-
nents of the optimization process [7]. Exploration focuses on discovering solutions in unexplored regions of
the search space, while exploitation aims to identify optimal solutions among the current candidate solutions.
By employing iterative and efficient processes that effectively balance these components, meta-heuristic
algorithms guide the search towards optimal or near-optimal solutions [7].

Numerous meta-heuristic algorithms have been developed over the past few decades [8]. Fig. 1 illustrates
the five primary categories of meta-heuristic algorithms, which include evolutionary-based, swarm-based,
human-inspired, chemistry/physics-based, and mathematics-based methods.

The first class encompasses evolutionary techniques inspired by the biological principle of survival of
the fittest [9]. The most well-known evolutionary algorithm is the Genetic Algorithm (GA), developed by
Holland [10]. GA emulates Darwin’s theory of evolution by generating improved solutions through mating
the fittest parents using the crossover mechanism, which enhances exploitation by producing offspring
similar to the parents. On the other hand, the mutation operator helps maintain diversity by introducing
new genetic material into the population, facilitating the exploration of different regions in the search
space. Another notable evolutionary algorithm is Differential Evolution (DE) [11], introduced by Storn and
Price. DE addresses optimization problems by refining candidate solutions through an effective evolutionary
process that includes mutation, crossover, and selection. Other developed evolutionary algorithms, such as
Biogeography Based Optimization (BBO) [12], Evolutionary Programming (EP) [13], Memetic Algorithm
(MA) [14], Genetic Programming (GP) [15], Clonal Selection Algorithm (CSA) [16], Evolution Strategy
(ES) [17], have demonstrated significant effectiveness in addressing several optimization challenges.
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Figure 1: A brief classification of meta-heuristic techniques

The second class comprises swarm intelligence techniques inspired by the collective behaviors observed
in natural swarms, such as those of social animals. Group intelligence emerges from the interactions among
simple individuals within the group, allowing the emergence of specific intelligent traits without centralized
control [9]. A prominent example is Particle Swarm Optimization (PSO) [18], which simulates the foraging
behavior of birds to guide the search process. PSO effectively utilizes individual and collective information
during the search, typically achieving optimal solutions through collaboration and information sharing
among individuals within the population. Another noteworthy algorithm is Ant Colony Optimization
(ACO) [19], which mimics how ants find the shortest paths while foraging. In ACO, ants deposit pheromones
as they traverse paths, leading to a positive feedback mechanism where more ants gradually favor shorter
routes over time. This process allows the ant colony to determine the shortest paths. Other significant swarm-
based algorithms include the Pied Kingfisher Optimizer (PKO) [20], Grey Wolf Optimizer (GWO) [21],
Puma Optimizer (PO) [22], Elk Herd Optimizer (EHO) [23], Secretary Bird Optimization Algorithm
(SBOA) [24], Mountain Gazelle Optimizer (MGO) [25], White Shark Optimizer (WSO) [26], and others.

The third class encompasses chemistry/physics-based algorithms replicating physical or chemical phe-
nomena. These algorithms simulate the interactions among search agents based on fundamental principles
from physics or chemistry [9]. The most popular physics-based approach is Simulated Annealing (SA) [27],
inspired by the annealing process of metals. In SA, the metal is initially heated to a molten state and
then gradually cooled, allowing it to form an optimal crystal structure. Another notable algorithm is the
Gravitational Search Algorithm (GSA) [28], which models Newton’s laws of gravity by treating search agents
as a group of masses that interact according to the laws of gravity and motion, facilitating the search for
an optimal solution. Several other chemistry/physics-based algorithms have been introduced, including
Kepler Optimization Algorithm (KOA) [29], Energy Valley Optimizer (EVO) [30], Homonuclear Molecules
Optimization (HMO) [31], Special Relativity Search (SRS) [32], Young’s Double-Slit Experiment (YDSE)
optimizer [33], Snow Ablation Optimizer (SAO) [34], Artificial Chemical Reaction Optimization Algorithm
(ACROA) [35], Chemical Reaction Optimization (CRO) [36], and so on.
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The fourth class includes human-inspired techniques inspired by human societal activities [9]. An
example is Teaching-Learning-Based Optimization (TLBO) [37], which draws inspiration from the interac-
tion between teachers and learners. TLBO mimics the traditional classroom teaching method, encompassing
teacher and learner phases. In the teacher phase, each student learns from the highest-performing indi-
viduals, while in the learner phase, students acquire knowledge randomly from their peers. Other notable
examples of human-inspired algorithms include War Strategy Optimization (WSO) [38], Growth Optimizer
(GO) [39], Mountaineering Team-Based Optimization (MTBO) [40], Gaining Sharing Knowledge based
algorithm (GSK) [41], Political Optimizer (PO) [42], Human Felicity Algorithm (HFA) [43], Great Wall
Construction Algorithm (GWCA) [44], Coronavirus herd immunity optimizer (CHIO) [45], and more.

Finally, mathematics-based algorithms represent a contemporary category of meta-heuristic algorithms
that do not imitate specific phenomena or behaviors but instead rely on mathematical formulations. A
well-known example is the Sine Cosine Algorithm (SCA) [46], inspired by the properties of the tran-
scendental functions sine and cosine. Another notable algorithm, the Arithmetic Optimization Algorithm
(AOA) [47], utilizes the distribution behavior of the four basic arithmetic operators. Recently developed
mathematics-based algorithms include the Average and Subtraction-Based Optimizer (ASBO) [48], RUNge
Kutta optimizer (RUN) [49], Geometric Mean Optimizer (GMO) [50], Sinh Cosh Optimizer (SCHO) [51],
Topology Aggregation Optimizer (TTAO) [52], and Gradient-Based Optimizer (GBO) [53], among others.
Although mathematics-based algorithms are less prevalent than the previously mentioned categories, their
significance in the optimization process should not be underestimated. These algorithms offer an inno-
vative perspective for developing effective search strategies, distinguishing themselves from conventional
metaphor-based approaches through their unique mathematical formulations.

The Stochastic Fractal Search (SFS) algorithm is an example of a robust mathematics-based meta-
heuristic method developed by Salimi [54] in 2015 based on the mathematical concept of fractals. SFS
leverages the diffusion properties observed in random fractals, enabling its particles to navigate the search
space more effectively. The SFS algorithm process involves two main stages: diffusion and updating [54]. Each
particle disperses from its initial position during diffusion, promoting local exploitation. In the updating
stage, SFS utilizes statistical techniques to refine the position of each agent, enabling the exploration of
more promising areas within the search space. This dynamic allows for efficient information sharing among
particles, facilitating rapid convergence towards optimal solutions [54].

The SFS algorithm has effectively addressed many complex optimization problems, including engineer-
ing design, machine learning, deep learning, energy optimization, feature selection, and image segmentation.
The exceptional performance of SFS has garnered significant attention from researchers, leading to the
development of numerous advanced variants. These variants can effectively tackle single- and multi-objective
problems across discrete and continuous search spaces, addressing challenges associated with unknown and
potentially complex landscapes. Despite the sustained interest and ongoing research in SFS, a comprehensive
literature review is still lacking. We believe that such a review is crucial for several reasons. First, it would
offer researchers a clear and concise summary of the latest advancements in SFS. Second, it would provide
valuable insights and inspiration for exploring future research directions in this domain.

Therefore, this paper provides a comprehensive review of the existing literature on the SFS algorithm,
aiming to identify the most commonly studied problems, significant modifications to its framework, and
prevalent hybridization techniques. Our objective is to assess the current state of SFS research, highlighting
its strengths and weaknesses across diverse problem variants while offering an extensive overview of its
applications. In summary, the primary contributions of this review paper are as follows:
• A detailed overview of SFS, including its mathematical foundations and research trends;
• An examination of all SFS variants to demonstrate the algorithm’s adaptability across several contexts;
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• A presentation of SFS applications in diverse optimization scenarios, as well as its integration with other
optimization algorithms;

• A discussion of the challenges associated with the SFS algorithm, aiding researchers in recognizing key
issues;

• A roadmap of future research directions aimed at guiding subsequent studies toward critical gaps and
emerging trends.

The subsequent sections of the paper are organized as follows: Section 2 provides a concise overview of
the classical SFS algorithm and its core concepts. Section 3 explores the evolution of the SFS algorithm and
its spread in the literature, highlighting the volume of relevant papers and citations published over the past
decade. Section 4 focuses on analyzing and evaluating diverse SFS variants. Section 5 presents a selection
of studies that apply the SFS algorithm across diverse domains. Section 6 introduces open-source software
and online resources related to SFS. Section 7 offers a comparative performance analysis of SFS against the
latest published meta-heuristic algorithms using the CEC’2022 benchmark test. Section 8 identifies ongoing
challenges and potential future research directions for users of the SFS algorithm. Finally, Section 9 concludes
the review paper by summarizing the study and its key findings.

2 Fundamentals of the SFS Algorithm
This section discusses the origins, core theoretical foundations, fundamental structure, shared charac-

teristics, computational complexity, advantages, and limitations of the SFS algorithm.

2.1 Inspiration
The SFS algorithm is a mathematics-based meta-heuristic algorithm inspired by the fractal growth

patterns observed in natural materials, introduced by Salimi in 2015 [54]. Unlike most existing meta-
heuristic algorithms, which often rely on the collective behavior of organisms such as ACO or PSO, SFS’s
optimization principle is based on the mathematical concept of fractals. Fractals are complex geometric
shapes exhibiting self-similarity across different scales, a concept first introduced by Benoît Mandelbrot in
1975 [55]. Common methods for generating fractal shapes include Random fractals [56], Finite subdivision
rules [57], L-systems [58], Strange attractors [59], and Iterated function systems [60]. Among these, Diffusion
Limited Aggregation (DLA) [61] is a widely used method. Salimi was the first to apply DLA to the Fractal
Search (FS) algorithm by modeling DLA growth using Lévy flights and Gaussian walks [54]. Fig. 2 illustrates
a random fractal generated using the DLA method.

Figure 2: Diffusion-limited aggregation fractal
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The SFS algorithm comprises two primary processes: diffusion and updating [54]. Inspired by the FS
algorithm, the diffusion process aims to intensify or exploit the search space by allowing each particle to
diffuse around its current position. This characteristic is crucial for enhancing the likelihood of locating the
global optimum while minimizing the risk of being trapped in local optima. Unlike the basic FS algorithm,
the diffusion process in SFS remains static, preventing a significant increase in active particles [54]. Only the
best-generated particle during the diffusion phase is retained, while the others are discarded. In contrast, the
updating process serves as an exploration phase, during which each particle modifies its position based on
the locations of other chosen particles within the group [54].

2.2 Mathematical Model
The mathematical model of the SFS algorithm comprises three main procedures: initialization, dif-

fusion, and updating, as illustrated in Fig. 3. Initially, a group of particles is generated, each assigned a
predetermined level of electrical potential energy. The diffusion process focuses on exploiting the search
within promising areas, while the updating process prioritizes exploring new regions of the solution space.
These procedures are mathematically defined as follows:

Figure 3: Main processes of the SFS algorithm

2.2.1 Initialization Phase
Like other optimization algorithms, the SFS begins by initializing a set of particles representing a

collection of initial solutions. The population size, denoted as N, defines the number of particles in the
system. Each particle is described as a 1 × D vector, where D corresponds to the number of decision variables
associated with the optimization problem. Random values are assigned to each element of this vector within
the specified lower and upper bounds of each decision variable using the following equation:

Xi j = LBi j + rand (0, 1) × (UBi j − LBi j) (1)

where UBi j and LBi j are the upper and lower bounds of the j-th dimension for the i-th particle, respectively,
and rand(0, 1) is a random number uniformly generated in the interval [0, 1].

2.2.2 Diffusion Phase
During this process, each particle diffuses around its current location to exploit the search space,

increasing the likelihood of discovering better solutions and avoiding local minima. This is achieved by
generating new points using the Gaussian walk, which is mathematically represented by the following
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equations [54]:

GW1 = Gaussian(μXbest , σ) + (rand (0, 1) × Xbest − rand (0, 1) × Xi) (2)
GW2 = Gaussian(μX , σ) (3)

where μXbest and μX represent the means of the Gaussian distribution, with μXbest = ∣Xbest ∣ and μX = ∣Xi ∣.
Furthermore, σ denotes the standard deviation of the Gaussian distribution, defined as follows [54]:

σ = ∣ log (t)
t
× (Xi − Xbest)∣ (4)

where t represents the current iteration number, Xi denotes the i-th particle in the population, and Xbest
represents the global best solution found so far.

2.2.3 Updating Phase
This process involves two statistical procedures designed to explore the search space effectively. In the

initial procedure, all points are ranked based on their fitness values, and a probability value, Pai , is assigned
to each point using the following equation [54]:

Xi , j = Xr1, j − rand(0, 1) × (Xr2, j − Xi , j), i f Pai < rand(0, 1) (5)

where Xr1 and Xr2 denote two randomly selected particles from the existing population, and Pai represents
the selection probability of the i-th particle, which can be calculated using the equation below [54]:

Pai =
rank(Xi)

N
(6)

where rank(Xi) represents the rank of the i-th individual after all individuals in the population have been
ordered based on their fitness values, and N denotes the population size. Individuals with lower fitness values
are more likely to be subjected to the initial update strategy. The probability Pai is subsequently recalculated
using the same equation to determine whether a particle should apply the second update strategy, as shown
in the equation below [54]:

Xi = {
Xi − rand(0, 1) × (X′r1 − Xbest), i f rand(0, 1) ≤ 0.5
Xi + rand(0, 1) × (X′r1 − X′r2), otherwise (7)

where X′r1 and X′r2 are two particles chosen randomly.

2.3 Framework of the SFS Algorithm
Fig. 4 illustrates the flowchart of SFS, which comprises four distinct stages: initialization, diffusion, and

two update processes. Each stage plays a critical role in the overall search process. The initialization phase
randomly establishes the initial population, while the diffusion process focuses on local exploitation. In
contrast, the two update processes prioritize global exploration, enhancing solution accuracy and robustness.
The steps for implementing the SFS are detailed as follows:
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Step 1: Define the relevant parameters and initialize the population using Eq. (1).
Step 2: Compute and evaluate the fitness values of all individuals in the population, then record the

optimal individual.
Step 3: Each individual disperses around its current position. Eqs. (2) and (3) represent the diffu-

sion equations.
Step 4: Determine the updated probability for all individuals in the population using Eq. (6). If Pai is

less than the random number rand(0, 1), each component of every member in the population is updated
according to Eq. (4).

Step 5: The updated probability for the new individual is recalculated using Eq. (6). Likewise, if Pai <
rand(0, 1), the individual is updated according to Eq. (7).

Step 6: Continue repeating steps 2 to 5 until the loop’s termination condition is met.

Figure 4: Flowchart of the SFS algorithm

2.4 Computational Complexity
Understanding algorithmic complexity is crucial for researchers to demonstrate an algorithm’s prac-

ticality and effectiveness. While some algorithms may achieve minimal error rates, extended computation
times limit their applicability. High computational complexity often diminishes an algorithm’s appeal,
impacting its usability and efficiency. Therefore, an algorithm’s effectiveness is not solely defined by error or
convergence metrics; convergence speed and computational efficiency are equally vital considerations. In the
SFS algorithm, computational complexity is primarily influenced by the initialization phase, the diffusion
process, and the first and second update stages. The total computational complexity of SFS can be represented
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as follows:

O(SFS) = O(problem definition) + O(initialization) + O(diffusion process) + O(first updating process)
+O(second updating process)

O(SFS) = O(1) + O(N) + O(T × N ×MDN) + O(T × (N × logN + N)) + O(T × (N × logN + N))
O(SFS) = O(N + T × N ×MDN + 2T × (N × logN + N))
O(SFS) ≅ O(TN × (MDN + 2logN + 2))

(8)

where T denotes the maximum number of generations, D represents the dimensionality of the problem, N
denotes the population size, and MDN represents the maximum diffusion number.

Algorithm 1 gives the pseudo-code of the SFS algorithm.

Algorithm 1: Pseudo-code of the SFS algorithm
1: Input: Initialization of parameters: upper and lower bounds of variables, size of the problem (D), number
of population (N), maximum number of iterations (T), MDN = 2, and Wal k = 0 or 1.
2: Initialize population Xi (i = 1, 2, . . . , N) using Eq. (1).
3: Calculate the fitness of each particle.
4: Initialize the iteration number: t = 1.
5: while t ≤ T do
6: /* Diffusion process */
7: for i = 1 to N do
8: for j = 1 to MDN do
9: if rand(0, 1) <Wal k then
10: Update the current position using Eq. (2).
11: else
12: Update the current position using Eq. (3).
13: end if
14: Check if the new position is within boundaries.
15: Evaluate the current fitness.
16: end for
17: end for
18: /* First updating process */
19: Rank all particles in the population based on their fitness values.
20: Calculate Pai using Eq. (6).
21: for i = 1 to N do
22: if rand(0, 1) > Pai then
23: Select two particles randomly, Xr1 and Xr2, where Xr1 ≠ Xr2 ≠ Xi .
24: Update particle position using Eq. (5).
25: else
26: Keep the particle unchanged.
27: end if
28: Check if the new position is within boundaries.
29: Evaluate the current fitness.
30: end for
31: /* Second updating process */

(Continued)
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Algorithm 1 (continued)
32: Rank all particles in the population based on their fitness values.
33: Calculate Pai using Eq. (6).
34: for i = 1 to N do
35: if rand(0, 1) > Pai then
36: Update particle position using Eq. (7).
37: else
38: Keep the particle unchanged.
39: end if
40: Check if the new position is within boundaries.
41: Evaluate the current fitness.
42: end for
43: t ← t + 1.
44: end while
45: Output: The best solution Xbest .

2.5 Merits and Demerits
The effectiveness of meta-heuristic algorithms in addressing optimization challenges is significantly

influenced by the strategies employed for generating new solutions and the associated parameter settings.
An adaptive approach to parameter tuning is crucial for optimizing algorithm performance, especially
when dealing with complex problems characterized by non-separability, poor conditioning, multimodality,
or high dimensionality. While the SFS algorithm reduces the number of parameters inherent in basic FS,
it still relies on fixed parameter values throughout generations. This reliance on static values can limit
the algorithm’s adaptability, as optimal parameter settings can vary significantly across different problem
types [62]. Furthermore, knowledge sharing between stages within the SFS algorithm remains limited. An
adaptive scheme, leveraging optimal values from high-performing individuals, could enhance the generation
of new solutions and improve the algorithm’s overall performance [63].

Additionally, the update process facilitates exploration, while the diffusion process focuses on exploita-
tion. Achieving an optimal balance between these two stages in terms of function evaluations remains
challenging. Specifically, the diffusion phase requires MDN × N function evaluations, where MDN repre-
sents the maximum number of diffusion steps, while the update phase needs 2 × N function evaluations to
execute both procedures. As a result, each SFS generation demands a minimum of 3 × N function evaluations
to produce N new individuals, assuming MDN = 1. When the population fails to achieve an effective
exploration-exploitation balance, SFS may suffer from premature convergence [64].

3 The Popularity and Growth of the SFS Algorithm in the Literature
The SFS algorithm has garnered considerable attention in recent years due to its simplicity and

versatility. This growing interest is reflected in a noticeable increase in published research and citations related
to the SFS algorithm. To explore this trend, we conducted a comprehensive literature review using the Scopus1

database. Scopus offers advanced search capabilities, including regular expressions and complex query
design, allowing for precise searches based on authors, article titles, and publication dates. The following
criteria guided the search in the Scopus database:

1https://www.scopus.com (accessed on 09 February 2025).

https://www.scopus.com
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• The search query was “Stochastic Fractal Search”.
• Only papers published in English were considered for inclusion.
• The timeframe for the search was restricted to articles published between 2015 and 2024.
• The data were collected on 01 October 2024.

In summary, the comprehensive search query executed in the Scopus database is as follows: (TITLE-
ABS-KEY(“Stochastic Fractal Search”) AND PUBYEAR > 2014 AND PUBYEAR < 2025 AND (LIMIT-TO
(LANGUAGE,“English”))). The results of this search are discussed below:

Based on statistical analysis of data from the Scopus database, Fig. 5 illustrates the cumulative citations
of the foundational SFS paper from 2015 to 2024. The citation count commenced at 2 in 2015 and increased
steadily to 23 in 2016, followed by a sharp rise in subsequent years. By 2019, the cumulative total had reached
52, reflecting the growing recognition and application of the SFS algorithm across numerous domains. The
peak citation count was observed in 2023, with 86 citations, highlighting the algorithm’s significant impact
on research. While the cumulative citation count is projected to exceed 68 in 2024, the overall trend indicates
sustained interest and ongoing research into the algorithm’s applications.

Figure 5: Number of citations of SFS algorithm per year

Fig. 6 illustrates the significant increase in publications related to the SFS algorithm from 2015 to 2024.
Throughout this period, the SFS algorithm has experienced a notable surge in popularity across diverse
research domains. Starting with only one publication in 2015, the number of SFS-related publications steadily
increased to 12 in 2016 and doubled to 24 by 2019, reflecting growing acceptance within the scientific
community. In subsequent years, the SFS algorithm continued to gain momentum, reaching 40 publications
in 2022 and peaking at 45 by the end of 2023. This substantial growth underscores the algorithm’s extensive
applicability across diverse fields, solidifying its position as a robust optimization method. The projected
publication count for 2024 remains strong at 25, indicating sustained interest and ongoing research into the
SFS algorithm among researchers.
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Figure 6: Number of publication of SFS algorithm per year

Fig. 7 graphically illustrates the leading publishers who have published studies on the SFS algorithm
in several journals. Elsevier leads the list with 52 published articles, followed by IEEE with 34 and Springer
with 31. MDPI has contributed 14 papers, while the remaining publications are distributed among diverse
other publishers, as depicted in Fig. 7. The prominent presence of SFS research in reputable publishing
outlets such as Elsevier, IEEE, and Springer underscores the algorithm’s strong theoretical foundation and
notable attributes.

Figure 7: Number of publication of SFS algorithm per publisher

Among the journals, the “Computers Materials and Continua” journal has published the most SFS-
related articles, totaling six publications. Meanwhile, the “Swarm and Evolutionary Computation”, “Neural
Computing and Applications”, and “Energies” journals each have five articles, as depicted in Fig. 8. Addi-
tionally, the “Knowledge Based Systems”, “IEEE Access”, “Engineering Applications of Artificial Intelligence”,
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“Complexity”, and “Canadian Conference on Electrical and Computer Engineering” journals have each
contributed four articles focused on applying the SFS algorithm to numerous optimization problems. On the
other hand, the “Soft Computing” journal has published three articles.

Figure 8: Number of publication of SFS algorithm per journal

Chinese researchers are the most prolific contributors to the SFS algorithm literature, with 47 published
articles. They are closely followed by Indian researchers with 43 publications and Vietnamese researchers
with 35 articles. Egyptian researchers have published 29 articles, while Iranian and Saudi Arabian researchers
have 25 and 23 publications, respectively. Furthermore, Turkish, Malaysian, and Jordanian researchers have
published 19, 16, and 14 articles, respectively, with Algerian researchers contributing 12, as illustrated in Fig. 9.

Figure 9: Number of publication of SFS algorithm per country
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Regarding SFS publications by affiliation, researchers from the “Delta Higher Institute of Engineering
and Technology” have published over 16 studies related to the SFS algorithm, as illustrated in Fig. 10.
Researchers from “Mansoura University,” “Duy Tan University,” and the “Faculty of Engineering” have
each published more than 13 research papers on SFS. Researchers from “Delta University for Science and
Technology” and “Ain Shams University” have contributed 12 and 11 SFS-related studies, respectively. In
contrast, the remaining affiliations listed in Fig. 10 have each published ten or fewer articles.

Figure 10: Number of publication of SFS algorithm per affiliation

Fig. 11 presents the top 10 most prolific researchers applying the SFS algorithm and its variants to
optimization problems. “Ibrahim, A.” and “El-Kenawy, E.S.M.” are the leading contributors, each with 14
publications. They are followed by “Eid, M.M.”, “Abdelhamid, A.A.”, and “Rahman, T.A.Z.”, each of whom has
contributed 10 articles. The remaining authors listed in the figure have published nine or fewer articles.

Finally, the SFS algorithm has been successfully applied to diverse optimization problems. Fig. 12
categorizes these applications into ten primary research areas. According to the Scopus dataset, over 50%
of SFS-related articles are concentrated in engineering and computer science, with the algorithm employed
135 times for computer science challenges and 129 times for engineering-related issues. Furthermore,
the SFS algorithm has been applied 76 times to mathematical problems and 41 times to energy-related
challenges. Other research domains, including chemical engineering, environmental science, decision
sciences, materials science, physics and astronomy, and multidisciplinary studies, have fewer than 30
publications each.

4 Variants of the SFS Algorithm
The original SFS algorithm was developed to tackle numerical optimization problems, with its per-

formance evaluated on standard benchmark functions, similar to other meta-heuristic approaches. Several
enhancements have been introduced to adapt SFS for problems with distinct characteristics or complex
structures, including modified, hybridized, and multi-objective versions. A concise summary of each version
and relevant examples from the literature are provided below.
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Figure 11: Number of SFS algorithm publication per author

Figure 12: Distribution of SFS algorithm application per domain

4.1 Modified Versions of the SFS Algorithm
The effectiveness and robustness of the SFS algorithm in addressing diverse optimization problems

depend significantly on the complexity and intricacies of the search space. To navigate these challenges,
researchers have introduced modifications to the fundamental framework of the SFS algorithm. Table 1
summarizes these modification approaches, which are discussed in detail in the subsequent sections.
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Table 1: Summary of SFS modification techniques

SN Strategy used Advantages References
1 Chaotic map Introduce randomness and explore

the search space more effectively.
[65–77]

2 Fitness-distance balance method Balances exploration and
exploitation and avoiding
premature convergence.

[62,78–83]

3 Refined Faster convergence. [84–88]
4 Multi-surrogate-assisted Improve accuracy and guide the

search process.
[89,90]

5 Fuzzy logic controller Integrates fuzzy logic for improved
decision-making and optimization

in dynamic environments.

[91,92]

6 Penalty-guided Guide the search towards feasible
solutions and avoid infeasible

regions.

[93,94]

7 Binary Adapts for binary optimization
problems.

[95]

8 Eagle strategy Balances exploration and
exploitation.

[96]

9 Disruption operator Improves exploration [97]
10 Opposition based learning Improves diversity by considering

the opposite of existing solutions
[98]

11 Random walk mechanism Introduce randomness to the
search process allowing for

exploration of the search space

[99]

12 Parallel Accelerate the search process [100]
13 Multi-strategy Combines multiple strategies to

improve performance and
robustness.

[101–111]

4.1.1 Chaotic SFS Algorithm
Rahman et al. [65] proposed several modifications to the SFS algorithm to improve its convergence

speed and accuracy for diverse optimization problems. The authors enhanced the localized search through
Gaussian jump adjustments by integrating five chaotic maps, particularly the Gauss/Mouse map. Later,
Rahman et al. [66] introduced the Chaotic SFS (CSFS) algorithm to optimize an AutoRegressive exogenous
(ARX) model for a Twin Rotor System (TRS) operating in hovering mode. The CSFS algorithm outperformed
other SFS variants primarily due to its enhanced diffusion and update processes.

The CSFS algorithm was further employed by Rahman et al. [67] to optimize the parameters of
Support Vector Machines (SVM) for diagnosing ball-bearing conditions. Utilizing vibration data from the
Case Western Reserve University Bearing Data Center, their approach significantly improved the classifier’s
convergence speed and accuracy.
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Expanding their research, Rahman et al. [68] applied the CSFS algorithm to active vibration control
of flexible beam structures. The CSFS algorithm achieved substantial vibration suppression when integrated
with a PID controller. Furthermore, it demonstrated enhanced optimization capabilities for PID and
Proportional-Derivative (PD) fuzzy logic controllers in a twin-rotor system [69].

In 2019, Rahman et al. [70] utilized the CSFS algorithm to model a flexible beam structure with Feed-
forward Neural Networks (FNNs) for active vibration control. This method achieved superior convergence
rates and accuracy compared to other meta-heuristic algorithms. They also explored the application of the
CSFS algorithm for training FNNs in the Structural Health Monitoring (SHM) of aircraft structures [71],
employing experimental spectral testing and Principal Component Analysis (PCA) to enhance vibration
data analysis.

Furthermore, Rahman et al. [72] introduced the CSFS algorithm to optimize an ANN’s weight and
bias parameters for predicting glove transmissibility to the human hand. Through experimental data
collection, their method achieved an impressive average accuracy of 97.67% in estimating the human hand’s
apparent mass.

In another study, Çelik et al. [73] introduced an improved SFS (ISFS) that integrates chaos-based search
mechanisms and a modified cost function to address automatic generation control (AGC) challenges in
power systems. The study optimizes the gains of a PID controller for models such as a two-area non-
reheat thermal system and a three-area hydro-thermal power plant, minimizing a cost function that includes
integral time absolute error (ITAE) along with frequency and tie-line power deviations. The results show that
the ISFS-tuned PID controller outperforms the traditional SFS in terms of settling times and oscillations,
demonstrating improved tuning capabilities and convergence speed, marking a significant advancement in
power system optimization.

Moreover, Bingöl et al. [74] enhanced the SFS algorithm by integrating chaotic map values to improve
accuracy and convergence speed. The authors evaluated the improved SFS against the original using seven
classical mathematical benchmark functions. The main improvement involved modifying the Gaussian walk
function in the diffusion process by adding chaotic map values to optimize the step length for a better
local search. Simulation results showed that seven of the ten chaotic maps tested significantly enhanced the
performance of the original SFS, demonstrating superior convergence and accuracy.

Following this, Nguyen et al. [75] developed the CSFS algorithm to optimize the sizing, placement,
and quantity of distributed generation (DG) units in electrical distribution systems. The method aims to
minimize power losses while meeting constraints such as power balance and voltage limits. By incorporating
chaotic maps into the traditional SFS, the CSFS improves solution accuracy and convergence speed, using ten
chaotic variants to determine the best strategy. Validation on the IEEE 33/69/118-bus systems demonstrated
that CSFS outperformed the original SFS and other optimization methods, showcasing its effectiveness for
optimal DG placement.

Additionally, Tran et al. [76] introduced the CSFS algorithm to address the reconfiguration problem
in distribution systems, focusing on minimizing power loss and enhancing voltage profiles. This method
improves the traditional SFS algorithm by using a Gaussian walk for point generation and an update
mechanism to refine particle positions. The CSFS enhances diffusion efficiency by incorporating chaos
theory, accelerating convergence and solution discovery. Validation on several test systems, including the
33/84/119/136-bus networks, demonstrated that CSFS outperforms existing optimization methods, establish-
ing it as a promising approach for solving the reconfiguration problem in electrical distribution systems.

Finally, Duong et al. [77] proposed the Chaotic Maps Integrated SFS (CMSFS) algorithm to address the
optimal distributed generation placement (ODGP) problem in radial distribution networks. The primary
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objective was to minimize real power losses while adhering to the operational constraints of distributed
generations (DGs) and the network. CMSFS significantly improved solution quality and convergence rates
by enhancing the standard SFS with chaotic maps. Experimental validations on the IEEE 33/69/118-bus
networks demonstrated power loss reductions of 99.21%, 99.43%, and 92.36%, respectively, with opti-
mally placed DGs having non-unity power factors. The results indicate that CMSFS outperforms several
existing optimization methods, positioning it as a promising solution for ODGP challenges in radial
distribution networks.

4.1.2 Fitness-Distance Balance-Based SFS Algorithm
Aras et al. [62] introduced the Fitness-Distance Balance SFS (FDBSFS), an enhanced version of the

SFS algorithm designed to improve the balance between exploration and exploitation. By integrating a
novel diversity operator based on the Fitness-Distance Balance method, FDBSFS effectively addresses
the diversity issues present in the original SFS. Experimental evaluations involving thirty-nine meta-
heuristic algorithms and several test functions demonstrated that FDBSFS significantly mitigated premature
convergence and outperformed other algorithms, showcasing its superior capabilities in solving complex
optimization problems.

Furthermore, Dalcali et al. [78] developed a hybrid model combining multiple linear regression with
a feedforward artificial neural network (MLR-FFANN) to enhance electricity consumption forecasting in
Bursa, Turkey, particularly during the COVID-19 pandemic. The model optimizes polynomial coefficients
and neural network parameters using multiple algorithms, including the SFS-based Fitness Distance Balance
(SFSFDB), slime mold algorithm, equilibrium optimizer, and adaptive guided differential evolution. The
optimized MLR-FFANN model was evaluated using metrics such as root mean square error (RMSE) and
mean absolute error (MAE), showing that the SFSFDB-optimized model outperformed others, effectively
forecasting energy demand during the pandemic and improving resource management in the energy sector.

In another work, Ramezani et al. [79] introduced a Markovian process-based method to enhance the
Reliability-Redundancy Allocation Problem (RRAP), focusing on the reliability of cold-standby systems
with imperfect switching mechanisms. The authors adapted the Fitness-Distance Balance SFS (FDBSFS)
algorithm to address this NP-hard optimization problem. Numerical experiments on benchmark problems
demonstrated the algorithm’s effectiveness, and a practical case study involving a pump system in a chemical
plant further highlighted its applicability in real-world scenarios.

Moreover, Duman et al. [80] introduced the Adaptive Fitness-Distance Balance Selection-based SFS
(AFDB-SFS) algorithm to optimize the complex optimal power flow (OPF) problem in power systems with
renewable energy resources (RESs). Evaluated under diverse scenarios involving tidal, small hydro, solar,
wind, and thermal systems, the AFDB-SFS algorithm effectively addressed load demand uncertainties. Statis-
tical comparisons showed that AFDB-SFS achieved cost optimization improvements ranging from 0.0954%
to 7.6244% over other algorithms. It also offered faster convergence to optimal solutions, highlighting its
effectiveness in enhancing efficiency and reliability in modern power systems.

Following this, Bakir et al. [81] introduced the Fitness-Distance Balance-based SFS (FDB-SFS) algorithm
to improve solar PV system performance by accurately estimating the electrical parameters of solar cells.
Compared with PSO, SPBO, and AGDE, the FDB-SFS achieved the lowest RMSE values, demonstrating
superior accuracy. This study highlights FDB-SFS as an effective method for parameter extraction, enhancing
efficiency in solar energy applications.

In a related study, Bakir et al. [82] introduced an optimized power flow (OPF) model that integrates
renewable energy sources with voltage source converter-based multiterminal direct current (VSC-MTDC)
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transmission lines. To tackle the OPF problem, the authors utilized several meta-heuristic algorithms,
including atom search optimization, marine predators algorithm, adaptive guided differential evolution, SFS
algorithm, and FDB-SFS. Their study on a modified IEEE 30-bus power network revealed that FDB-SFS
outperformed SFS and other algorithms in minimizing fuel costs, emissions, voltage deviation, and power
loss. Statistical tests validated FDB-SFS’s superior performance and robustness for OPF optimization.

Finally, Kahraman et al. [83] introduced an enhanced SFS algorithm with a dynamic fitness-distance
balance (dFDB) selection method to improve optimization capabilities. Six dFDB-SFS variants were devel-
oped to balance exploration and exploitation, replicating natural selection processes. Tested on CEC 2020
benchmark functions, the best-performing variant was identified and applied to parameter estimation for
PV modules. The dFDB-SFS outperformed existing algorithms in accuracy and robustness for single and
double-diode models, demonstrating its potential in PV system design and engineering applications.

4.1.3 Refined SFS Algorithm
Nguyen et al. [84] proposed a modified SFS algorithm (MSFS) to optimize reactive power dispatch

(ORPD) by minimizing the L-index, voltage deviation, and power loss. Key enhancements include sim-
plifying the diffusion process and refining solution updates, resulting in fewer solutions per iteration and
improved execution time and solution quality. Tests on IEEE 30/118-bus systems demonstrated that MSFS
outperformed other optimization methods, such as PSO and GA, confirming its robustness and efficiency
in solving ORPD problems.

Furthermore, Pham et al. [85] introduced the MSFS to tackle the economic load dispatch (ELD) prob-
lem, addressing complexities such as prohibited operating zones and valve-point effects. Key modifications
include a new strategy for generating solutions and an update mechanism prioritizing the worst solutions
first. Testing on 3/6/10/20-unit configurations showed that MSFS outperformed conventional SFS and other
methods in terms of solution quality, stability, and convergence speed, highlighting its potential as a robust
optimization technique for ELD and related electrical engineering applications.

In another work, Nguyen et al. [86] introduced an improved version of the SFS algorithm (ISFSA) to
optimize the optimal power flow (OPF) problem by addressing five single objectives while satisfying key
system constraints. ISFSA improves upon the original SFS by refining its diffusion and update processes,
enhancing the algorithm’s ability to find optimal solutions. Tested on three standard IEEE power systems,
ISFSA outperformed conventional SFS and other existing methods in terms of solution quality, speed, and
success rate. The results indicate that ISFSA effectively reduces fuel costs, power losses, and emissions while
improving voltage profiles, making it a recommended approach for high-voltage power systems.

Following this, Van et al. [87] introduced an improved SFS optimization algorithm (ISFSOA) to tackle
the ORPD problem, minimizing total voltage deviation and total power loss while enhancing voltage stability.
By improving the diffusion process of the original SFS algorithm, ISFSOA achieves more effective exploration
of large search spaces and better exploitation of local zones. Comparative analysis using the IEEE 30-bus
system demonstrated that ISFSOA outperforms standard SFSOA and other methods in terms of solution
quality, stability, and robustness, making it highly suitable for complex engineering optimization tasks.

Finally, Xu et al. [88] developed a modified SFS algorithm to accurately estimate the unknown
parameters of solar cell models, including single- and double-diode models. Key enhancements include
adjustments to the diffusion and update processes and a mechanism to reduce population size, thereby
improving implementation and performance. The modified algorithm was tested on three benchmark cases
and compared with seven advanced algorithms, demonstrating superior accuracy, faster convergence, and
enhanced stability. It consistently achieved optimal solutions with low root mean square error (RMSE)
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values across several photovoltaic modules, highlighting its effectiveness for parameter estimation in solar
energy applications.

4.1.4 Multi-Surrogate-Assisted SFS Algorithm
Cheng et al. [89] introduced a multi-surrogate-assisted SFS (MSASFS) algorithm to address

high-dimensional, computationally intensive problems. Key enhancements include an improved surrogate-
assisted differential evolution (SDE) updating mechanism combining coordinate systems for better
exploration and a pre-screening strategy using a Gaussian process model to identify promising solutions.
Additionally, two surrogate models are employed to enhance robustness. Numerical experiments demon-
strated that MSASFS outperforms other surrogate-assisted algorithms, particularly in high-dimensional
problems and chaotic system parameter estimation.

In another study, Cheng et al. [90] introduced the scale-free network-based multi-surrogate-assisted SFS
(SF-MSASFS) algorithm. This variant integrates multiple surrogate models, such as Radial Basis Function
(RBF) and Kriging, to boost robustness and efficiency. Leveraging a scale-free network topology, SF-
MSASFS enhances particle interaction and offspring generation. An adaptive mechanism with three update
strategies based on reward values further increases adaptability. Tested against advanced surrogate-assisted
meta-heuristic algorithms, SF-MSASFS demonstrated superior performance on high-dimensional expensive
optimization problems.

4.1.5 Fuzzy Logic Controller-Based SFS Algorithm
Lagunes et al. [91] developed the Stochastic Fractal Dynamic Search (SFDS) algorithm that incorporates

a fuzzy inference system for the dynamic adjustment of the diffusion parameter within the SFS algorithm.
This innovation enhances SFS’s adaptability and performance, as shown in tests against the CEC 2017 bench-
mark functions. The results demonstrated that SFDS significantly improved SFS’s optimization capabilities,
highlighting its robustness and versatility for complex optimization tasks.

Similarly, Lagunes et al. [92] introduced the Dynamic SFS (DSFS), an enhanced version of the SFS
algorithm that uses fuzzy logic to manage the diffusion parameter adaptively. The DSFS incorporates chaotic
stochastic diffusion and type-1 and type-2 fuzzy inference models to dynamically adjust the diffusion
parameter based on particle diversity and iteration. Tested on multimodal, hybrid, and composite benchmark
functions, DSFS demonstrated improved adaptability and performance, effectively generating new fractal
particles for complex optimization tasks.

4.1.6 Penalty-Guided SFS Algorithm
Mellal et al. [93] introduced the penalty-guided SFS algorithm for reliability optimization problems,

tested on ten case studies, including redundancy and reliability allocation. The results showed that this
approach outperformed previous methods in terms of solution accuracy, robustness, and computational
efficiency. With smaller standard deviations and fewer function evaluations, the penalty-guided SFS proved
highly effective in optimizing system reliability across diverse scenarios.

In another work, Mellal et al. [94] introduced the penalty-guided SFS (PSFS) algorithm to address
the reliability-redundancy allocation problem. Compared to GA and cuckoo optimization with penalty
functions (PFCOA), PSFS demonstrated superior performance in system reliability and execution efficiency.
The use of dynamic penalty factors in PSFS was a key advantage, enhancing its effectiveness for this
optimization problem, particularly in systems with ten and thirty subsystems in series.
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4.1.7 Binary SFS Algorithm
Hosny et al. [95] introduced an algorithm for classifying galaxy images that leverages quaternion polar

complex exponential transform moments (QPCET) to capture color information. The authors used a binary
SFS algorithm combined with Extreme Machine Learning (EML) to optimize feature selection, enhancing
classification accuracy. Testing on the EFIGI galaxy dataset demonstrated that this method outperformed
existing approaches, achieving high accuracy.

4.1.8 Eagle Strategy-Based SFS Algorithm
Das et al. [96] introduced a fuzzy clustering methodology that integrates a two-stage Eagle Strategy with

SFS for better segmentation of white blood cells (WBC) in Acute Lymphoblastic Leukemia (ALL) images.
This method overcomes the limitations of classical clustering techniques, such as Fuzzy C-means and K-
means, which are sensitive to noise and local optima. By incorporating morphological reconstruction, the
approach enhances noise immunity and cluster robustness. Comparative experiments demonstrated that the
ES-SFS-based method outperformed traditional clustering techniques in terms of accuracy, computational
efficiency, and robustness.

4.1.9 Disruption Operator-Based SFS Algorithm
Xu et al. [97] introduced an Improved SFS algorithm (ISFS) for optimizing the joint operation of cascade

reservoirs, aiming to improve flood control and maximize hydropower generation. ISFS effectively manages
the complex, high-dimensional challenges of long-term hydropower operations by incorporating a disrup-
tion operator. Tested on 13 benchmark functions, ISFS demonstrated superior optimization capabilities, and
simulations on the Yangtze River cascade reservoirs showed faster convergence and higher solution quality,
enhancing overall power generation.

4.1.10 Opposition-Based Learning SFS Algorithm
Gonzalez et al. [98] introduced a hybrid optimization technique that combines the SFS algorithm with

an opposition-based learning strategy to design high-quality substitution boxes (S-boxes) for cryptographic
systems. The method uses a sequential model algorithm configuration for parameter tuning, focusing on
maximizing nonlinearity. Validated against cryptographic criteria such as bijectivity and the strict avalanche
criterion, the designed S-boxes demonstrated superior performance, enhancing cryptographic security
and robustness.

4.1.11 Random Walk Mechanism-Based SFS Algorithm
Pham et al. [99] introduced the SFS algorithm to address the economic load dispatch (ELD) problem,

proposing two variants: SFS-Gauss, which uses a Gaussian random walk, and SFS-Lévy, which employs a
Lévy flight random walk. Tested on three systems with varying units, both variants outperformed standard,
modified, and hybrid optimization methods, delivering high solution quality and faster convergence for the
ELD problem.

4.1.12 Parallel SFS Algorithm
Najmi et al. [100] introduced the parallel SFS algorithm to solve the reliability-redundancy allocation

problem (RRAP) within a realistic framework that accommodates heterogeneous components and tailored
redundancy strategies for each subsystem. Using an exact Markov model to calculate subsystem reliability,
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the approach was tested on three benchmark cases, demonstrating significant improvements over existing
models and proving effective in enhancing system reliability through stochastic fractal search.

4.1.13 Multi-Strategy SFS Algorithm
Lin et al. [101] proposed a hybrid SFS (HSFS) algorithm for parameter identification in fractional-

order chaotic systems. This algorithm integrates several advanced techniques to enhance optimization
performance, such as the opposition-based learning method to improve population diversity and accelerate
convergence, and the differential evolution algorithm for better exploitation in the search process. Addi-
tionally, a re-initialization mechanism is employed to avoid local optima. The HSFS was tested on three
fractional-order chaotic systems, and numerical simulations showed that it outperforms existing methods
in global optimization.

Furthermore, Pang et al. [102] developed an adaptive decision-making framework to optimize conflict
resolution strategies for unmanned aircraft systems (UAS) in urban environments. The framework addresses
low-altitude air traffic management through a double-layer problem incorporating rerouting, speed adjust-
ment, and scheduling. It enhances the SFS algorithm with a conflict penalty-guided fitness function that
prioritizes solutions with fewer flight conflicts. It also incorporates an exploration and exploitation balance
strategy to improve search diversity. Simulation results demonstrate significant optimization of 4D flight
routes, reducing operational costs, flight conflicts, and delays while showcasing the effectiveness of the
improved SFS algorithm across varying traffic densities.

In another study, Zhou et al. [103] developed an improved Stochastic Fractal Search algorithm (ISFS)
to solve the protein structure prediction (PSP) problem, which is crucial for biological research and drug
development. By transforming the prediction into a non-linear programming problem using an AB off-lattice
model, ISFS addresses the limitations of traditional SFS by incorporating Lévy flight strategies and internal
feedback mechanisms to enhance search efficiency. Simulations on Fibonacci and real peptide sequences
showed that ISFS significantly improved performance, demonstrating greater robustness in finding global
minima while avoiding local traps, highlighting its potential for complex optimization challenges in biology.

Moreover, Mosbah et al. [104] developed a modified SFS (M-SFS) technique to enhance accuracy and
computational efficiency in power system state estimation (PSSE). Key modifications include replacing
the logarithmic function in the diffusion process with benchmark functions and incorporating chaotic
maps instead of uniform distribution parameters during the diffusion and updating phases. These
enhancements significantly improved algorithm performance. Validated on IEEE 30/57/118-bus systems,
M-SFS demonstrated superior accuracy and faster computational times than the original SFS technique.

Following this, Lin et al. [105] introduced an improved SFS (ISFS) algorithm to address the complex
multi-area economic dispatch (MAED) problem, characterized by high non-linearity and non-convexity.
The ISFS enhances the exploration-exploitation balance through opposition-based learning for population
initialization and generation jumping. It incorporates a hybrid diffusion process using differential
evolution to improve local search capabilities. A repair-based penalty approach is also integrated to
generate feasible solutions efficiently. Tested on systems with 16 to 120 generating units, ISFS outperformed
state-of-the-art algorithms in solving MAED problems effectively and robustly.

Additionally, Chen et al. [106] proposed the perturbed SFS (pSFS) algorithm to improve parameter
estimation in PV systems, addressing challenges related to non-linearity and multi-modality. This innovative
meta-heuristic integrates unique searching operators to balance global exploration with local exploita-
tion. Furthermore, pSFS employs a chaotic elitist perturbation strategy to enhance search performance.
Demonstrated across three PV estimation scenarios, experimental results showed that pSFS significantly
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outperformed several recent algorithms, achieving higher estimation accuracy and robustness in solar
PV modeling.

In other research, Nguyen et al. [107] introduced the Improved SFS (ISFS) algorithm, incorporating
Chaotic Local Search (CLS) and Quasi-opposition-Based Learning (QOBL) mechanisms to tackle the
optimal capacitor placement (OCP) problem in radial distribution networks (RDNs). This approach min-
imizes the total annual cost while meeting operational constraints. Tested on IEEE 69/119/152-bus RDNs,
ISFS outperformed the original SFS and other methods, particularly in large-scale, complex networks,
demonstrating high-quality solutions and robust performance.

Similarly, Kien et al. [108] introduced a modified SFS (MSFS) algorithm to optimize capacitor bank
placement and sizing in distribution systems comprising 33/69/85 buses. To minimize power loss and total
costs, MSFS incorporates three enhancements, including an innovative diffusion approach and two update
strategies to improve the standard SFS. The results showed that MSFS achieved up to a 3.98% reduction in
power loss and more significant cost savings, converging to global optima faster than SFS and other methods,
underscoring its effectiveness in capacitor optimization for power distribution systems.

In another study, Huynh et al. [109] proposed an Improved SFS (ISFS) algorithm to enhance PV power
generation by accurately estimating key PV module parameters. This method frames parameter estimation
as an RMSE minimization problem. It incorporates two modifications to improve SF,S including replacing
the logarithmic function with an exponential function to enhance exploration and using a sine map
instead of a uniform distribution for optimized diffusion and update processes. The results show that ISFS
outperforms traditional meta-heuristic algorithms, including the original SFS and PSO, in achieving accurate
model parameters and maximum power points (MPPs) for PV optimization.

Besides that, Alkayem et al. [110] introduced the SA-QSFS algorithm for structural health monitoring
and damage identification. This approach combines a triple modal-based objective function and an
improved self-adaptive framework to enhance damage detection accuracy, alongside quasi-oppositional
learning to strengthen exploration at diverse stages. The SA-QSFS algorithm showed superior performance
in diverse damage scenarios under noisy conditions and proved effective for continuous optimization in
structural damage assessment.

Finally, Isen et al. [111] introduced the FDB-NSM-SFS-OBL algorithm, which enhances parameter
extraction for renewable energy sources by incorporating Opposite-Based Learning (OBL), Fitness Dis-
tance Balance (FDB), and Natural Survivor updating Mechanism (NSM) within the SFS framework.
Experimental results demonstrated improved accuracy in optimizing parameters for photovoltaic cells,
PEMFCs, and Li-Ion batteries.

4.2 Hybrid Versions of the SFS Algorithm
A hybrid algorithm combines two or more algorithms to solve a given problem, aiming to mitigate

weaknesses and enhance computational speed and accuracy. Researchers have improved the performance
of SFS by integrating it with other established heuristics and meta-heuristic algorithms. Table 2 provides an
overview of hybridized SFS variants, with the following sections offering detailed insights into integrating
SFS with diverse meta-heuristic and local search algorithms.

Awad et al. [64] introduced a hybrid approach that combines Differential Evolution (DE) with the SFS
algorithm to enhance optimization performance. This method leverages the diffusion properties of fractal
search and incorporates two innovative update processes to improve exploration. The algorithm enhances
exploration by replacing random fractals with a DE-based diffusion process while reducing computational
costs. Validated against 30 benchmark functions from the IEEE CEC2014 competition, the hybrid algorithm
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outperformed the original SFS and other contemporary techniques, particularly in hybrid and composite
test functions.

In another study, Awad et al. [112] introduced an enhanced evolutionary algorithm that combines DE
algorithm with the SFS framework, termed SFS-DPDE-GW, to tackle complex optimization challenges.
This approach improves the traditional SFS diffusion process by integrating DE and Gaussian Walks,
enhancing search efficiency. Evaluated using 30 functions from the CEC’2014 test suite, SFS-DPDE-GW
outperformed the standard SFS and other well-known algorithms, demonstrating its potential for solving
diverse optimization problems.

Furthermore, Ashraf et al. [113] developed a hybrid biogeography-based optimization (BBO) algorithm
enhanced with SFS to tackle vendor-managed inventory (VMI) systems with various supplier-retailer
configurations, aiming to minimize total costs. The algorithm significantly improved search and exploita-
tion capabilities by integrating SFS’s diffusion process into BBO. The hybrid algorithm outperformed
conventional methods in multiple VMI configurations, effectively addressing this complex nonlinear
optimization problem.

Moreover, Sivalingam et al. [114] introduced a hybrid optimization technique that combines the SFS
algorithm with Local Unimodal Sampling (LUS) for tuning a multistage Proportional Integral Derivative
(PID) controller to improve Automatic Generation Control (AGC) in power systems. Initially, SFS optimized
parameters for a single-area, multi-source system, outperforming methods like DE and TLBO. The addition
of LUS further enhanced performance. When extended to complex multi-area systems, the approach
demonstrated the superiority of the hybrid SFS-LUS algorithm in managing nonlinearities such as generation
rate constraints and time delays.

Following this, Mosbah et al. [115] introduced a hybrid approach that combines the SFS algorithm
with Simulated Annealing (SA) to solve distributed multi-area state estimation (SE) problems. The method
operates at two levels: local SE using SFS for individual area data, and coordination SE using SA to exchange
boundary information for overall state estimation. Tested on the IEEE 118-bus system divided into four areas,
the approach significantly reduced computational time, demonstrating its efficiency in distributed SE.

Additionally, Yu et al. [116] proposed a hybrid approach for path planning in autonomous unmanned
vehicles by integrating the A* algorithm with the SFS algorithm. This method considers the vehicle’s front-
wheel-drive model and mechanical constraints to enhance path calculation. The A* algorithm identifies the
shortest path on a raster map, which SFS then refines to generate the vehicle’s trajectory based on status
information. Simulation results in MATLAB R2012a show that this composite algorithm effectively addresses
path-planning challenges in complex urban environments.

In other research, El-Kenawy et al. [117] introduced a Modified Binary Grey Wolf Optimizer (MbGWO)
that integrates the SFS algorithm to enhance feature selection by balancing exploration and exploitation.
MbGWO features an exponential iteration scheme to expand the search space and incorporates crossover
and mutation operations to increase population diversity. SFS’s diffusion mechanism employs a Gaussian
distribution for random walks to refine the solutions, converting continuous values into binary for fea-
ture selection. Tested on nineteen UCI machine learning datasets using K-Nearest Neighbor (KNN), the
MbGWO-SFS algorithm outperformed several state-of-the-art optimization techniques, with results found
to be statistically significant at the 0.05 level.

Similarly, Chen et al. [118] proposed a novel method for task allocation in heterogeneous multi-UAV
systems by integrating an enhanced SFS mechanism into a modified Wolf Pack Algorithm (WPA). The
authors categorized complex combat tasks into reconnaissance, strike, and evaluation, enabling a tailored
task allocation model based on UAV load capacities. The chaotic Wolf Pack Algorithm with enhanced SFS



Comput Model Eng Sci. 2025;142(3) 2363

(MSFS-CWPA) employs Gaussian walking optimized through chaos to improve adaptive task assignment.
Performance evaluations show that MSFS-CWPA outperforms the standard WPA and other variants in
convergence accuracy, highlighting the robustness of SFS in multi-UAV task allocation strategies.

In another study, Alsawadi et al. [119] introduced an advanced method for skeleton-based action
recognition using the BlazePose system, which models human body skeletons as spatiotemporal graphs. They
enhanced the Spatial-Temporal Graph Convolutional Network (STGCN) by integrating the SFS-Guided
Whale Optimization Algorithm (GWOA), leveraging SFS’s diffusion process for optimization. This approach
achieved accuracies of 93.14% on X-View and 96.74% on X-Sub using the Kinetics and NTU-RGB+D
datasets, surpassing existing techniques.

Additionally, Bharani et al. [120] proposed a novel method for exoplanet detection using the Kepler
dataset, combining the Grey Wolf Optimizer (GWO) with an Enhanced SFS Algorithm (ESFSA) for
feature selection. This hybrid approach reduced input features and classified exoplanets into False Positive,
Not Detected, and Candidate categories using a Random Forest (RF) model. The GWO-ESFSA method
outperformed existing techniques, achieving high performance across recall, specificity, accuracy, sensitivity,
precision, and F1-score.

In addition, El-Kenawy et al. [121] proposed a novel digital image watermarking method that combines
the SFS algorithm, Dipper-Throated Optimization (DTO), Discrete Wavelet Transform (DWT), and Discrete
Cosine Transform (DCT). The technique uses DWT to decompose the cover image, followed by DCT for
frequency-domain transformation. To optimize the scale factor for embedding, they introduced the DTOSFS
algorithm. Rigorous evaluations using metrics like Image Fidelity (IF), Peak Signal-to-Noise Ratio (PSNR),
and Normalized Cross-Correlation (NCC) demonstrated the method’s robustness against attacks and its
superiority over traditional watermarking techniques, improving watermark quality and resilience.

In related research, El-Kenawy et al. [122] proposed a novel method for diagnosing COVID-19 using
chest CT scans that integrates the SFS algorithm within a feature selection framework. The approach
consists of three phases: extracting features from CT scans using the AlexNet Convolutional Neural Network
(CNN), selecting relevant features with an enhanced Guided Whale Optimization Algorithm (Guided WOA)
integrated with SFS, and balancing the features. A voting classifier, utilizing a PSO-based method, aggregates
predictions from classifiers such as Decision Trees (DT), k-Nearest Neighbor (KNN), Neural Networks
(NN), and Support Vector Machines (SVM). The framework achieved an area under the curve (AUC)
of 0.995 on COVID-19 datasets, demonstrating the effectiveness of the SFS-Guided WOA in enhancing
diagnostic processes.

Likewise, Zhang et al. [123] introduced a hybrid algorithm named GBSFSSSA, which combines the
Gaussian Barebone SFS algorithm with the Salp Swarm Algorithm (SSA) to enhance image segmentation.
This approach improves the balance between local and global search capabilities, addressing the limitations of
the basic SSA. Tested on the CEC2017 dataset and applied to COVID-19 CT image segmentation, GBSFSSSA
outperformed other algorithms in PSNR, SSIM, and FSIM metrics, making it a reliable solution for multi-
threshold image segmentation in medical imaging.

Furthermore, Xu et al. [124] introduced an improved SFS (ISFS) algorithm to optimize cascade reservoir
operations in the Yalong River, considering the complexities of the Lianghekou Reservoir’s multiyear
regulation capacity. Inspired by PSO, the ISFS algorithm integrates global and individual best points and
employs an adaptive variation rate (Fw) to enhance convergence. The study evaluated power generation and
water abandonment across three operational modes using inflow data from five years. Results indicated that
ISFS outperformed traditional SFS and PSO in both speed and accuracy, with the global joint operation
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mode being most effective in high-inflow scenarios, highlighting the significance of operational strategies in
reservoir management.

In another study, Salamai et al. [125] developed a hybrid algorithm combining the SFS algorithm and the
Guided Whale Optimization Algorithm (WOA) to optimize e-commerce sales forecasting. This method fine-
tunes the parameter weights of Bidirectional Recurrent Neural Networks (BRNN) for time series demand
forecasting. The hybrid algorithm outperformed other techniques, including PSO, WOA, and GA, achieving
significantly lower RMSE, with results validated through ANOVA analyses.

Moreover, Eid et al. [126] introduced an innovative hybrid method combining the SFS algorithm
and Guided WOA to optimize electroencephalography (EEG) channel selection for motor imagery clas-
sification and seizure detection. The SFS-Guided WOA effectively identifies relevant features, enhancing
Brain-Computer Interface (BCI) systems by reducing dataset complexity and improving machine learning
performance. The algorithm outperformed others in statistical tests, including ANOVA and the Wilcoxon
rank-sum test.

Following this, Saini et al. [127] proposed a hybrid optimization approach that combines the SFS
algorithm with Pattern Search (PS) to optimize PID controller parameters for DC motor speed control. Using
ITAE as the objective function, the method leverages SFS’s diffusion property alongside PS’s derivative-free
technique to enhance local search while maintaining robust global exploration. Simulation results demon-
strated that the hybrid SFS-PID controller outperformed recent techniques, providing faster, smoother
dynamic responses with reduced oscillations.

Additionally, Eid et al. [128] proposed a weighted average ensemble model for predicting hemoglobin
levels from blood samples, which is critical for diagnosing conditions like anemia. The authors used a
sine cosine algorithm combined with SFS (SCSFS) to optimize the ensemble weights. This hybrid method
effectively fine-tuned model parameters, and comparisons with traditional machine learning techniques such
as Decision Trees, MLP, SVR, and Random Forest, demonstrated that the SCSFS model significantly outper-
formed existing models, providing accurate hemoglobin level estimates and highlighting the effectiveness of
SFS in optimizing ensemble learning for medical applications.

In other research, Cheraghalipour et al. [129] proposed optimizing a closed-loop agricultural supply
chain with an eight-echelon logistics network, including suppliers, farms, and biogas centers. The authors
developed a bi-level programming model to minimize costs and maximize profits from biogas and compost
sales. To address the NP-hard nature of the problem, they used meta-heuristic algorithms, specifically
SFS and GA, along with hybrid approaches (GA-SFS and SFS-GA). The SFS-GA hybrid outperformed
other methods, demonstrating its effectiveness in supply chain optimization. The study highlights the
benefits of incorporating biogas and compost production, reducing pollution while enhancing profitability
in agricultural-dependent countries.

Similarly, Abdelhamid et al. [130] enhanced speech emotion recognition by augmenting datasets
with noise and optimizing a CNN-LSTM deep learning model’s hyperparameters using a hybrid method
that combines the SFS algorithm and Whale Optimization Algorithm (WOA). This approach improved
recognition accuracy on four datasets such as IEMOCAP, Emo-DB, RAVDESS, and SAVEE, to 98.13%,
99.76%, 99.47%, and 99.50%, respectively, outperforming existing methods.

In another study, Abdel-Nabi et al. [131] developed eMpSDE, a hybrid optimization framework combin-
ing the SFS algorithm with Success-History based Adaptive Differential Evolution (SHADE) to address local
minima and premature convergence issues. The three-phase structure includes a local search to enhance
solution quality and convergence speed. Evaluations across several optimization problems showed that



Comput Model Eng Sci. 2025;142(3) 2365

eMpSDE is competitive with contemporary algorithms, demonstrating the effectiveness of integrating SFS
with adaptive techniques for improved optimization performance.

Additionally, Saini et al. [132] introduced a hybrid SFS (HSFS) algorithm that combines pattern search
optimization with a fractional-order proportional-integral-derivative (FOPID) controller to improve DC
motor speed control. The HSFS algorithm optimizes the FOPID controller parameters by minimizing the
integral time multiplied by the absolute error (ITAE). The HSFS-FOPID approach demonstrates enhanced
performance in motor control, outperforming existing methods in metrics such as rise time, settling time,
overshoot, and overall ITAE, highlighting its effectiveness in this application.

In related research, El-Kenawy et al. [133] proposed a hybrid model integrating Grey Wolf Optimization
and SFS (GWO-SFS) with a Random Forest regressor to predict sunshine duration accurately. Using
meteorological data and a pre-feature selection process, the model reduced prediction errors by over 20%
and achieved correlation coefficients above 0.999, outperforming previous models in accuracy and precision.

In addition, Tarek et al. [134] developed an optimization method combining the SFS algorithm and
PSO to enhance wind power generation predictions using an optimized Long Short-Term Memory (LSTM)
network. The authors constructed several regression models and utilized a dataset of 50,530 instances. The
SFS-PSO optimized LSTM model achieved a coefficient of determination (R2) of 99.99%, outperforming
other approaches in accuracy.

Likewise, Zhang et al. [135] developed the SFS-HGSO algorithm, an enhanced version of Henry’s Gas
Solubility Optimization (HGSO), to improve feature selection and engineering optimization. It incorporates
SFS strategies, such as Lévy flight and Gaussian walk, to enhance search diversity and local search capabilities.
The algorithm effectively addresses slow convergence issues and was validated on 20 UCI benchmark
datasets, outperforming other algorithms such as Whale Optimization and Harris Hawks Optimization.

Furthermore, Khafaga et al. [136] introduced a hybrid approach that combines Long Short-Term
Memory (LSTM) units with the SFS algorithm and Dipper-Throated Optimization (DTO) to improve
energy consumption forecasting. The dynamic DTO-SFS algorithm optimizes LSTM parameters, resulting
in enhanced accuracy. Comparative analyses with five benchmark algorithms showed that the proposed
model achieved an RMSE of 0.00013, indicating its effectiveness in energy prediction, further supported by
statistical validation of its performance.

In another study, Abdel-Nabi et al. [137] introduced a hybrid algorithm called 3-sCHSL, which integrates
the SFS algorithm with L-SHADE to tackle real-parameter, single-objective numerical optimization. This
approach enhances diversity and reduces stagnation through a guided initialization strategy. Tested on
the CEC 2021 benchmark suite, 3-sCHSL demonstrated superior performance in handling complex trans-
formations and achieved competitive results in two engineering design problems, surpassing well-known
optimization algorithms.

Moreover, Rahman et al. [138] developed the Chaotic SFS-GTO (CSGO) algorithm to solve flow-
shop scheduling problems (FSP). Combining features from the SFS algorithm, the Artificial Gorilla Troops
Optimizer (GTO), and the Marine Predators Algorithm (MPA) with chaotic operators, the algorithm aims
to minimize processing costs on non-identical parallel machines. Tested on ten benchmark FSPs, CSGO
demonstrated strong performance in lower-dimensional problems but faced challenges in scalability as
problem dimensions increased, showing reduced accuracy compared to earlier algorithms.

Following this, Abdel-Nabi et al. [139] developed the Iterative Cyclic Tri-strategy with an adaptive
Differential Stochastic Fractal Evolutionary Algorithm (Ic3-aDSF-EA) to solve numerical optimization
problems. This novel evolutionary algorithm combines SFS with a DE variant to improve exploration and
exploitation. Operating in iterative cycles, it focuses on the best-performing strategies while incorporating
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diverse contributions. The algorithm was tested on 43 benchmark problems, demonstrating high-quality
solutions, scalability, and potential for addressing real-world optimization challenges.

Additionally, Zhang et al. [140] developed a framework for diagnosing Alzheimer’s disease (AD) and
mild cognitive impairment (MCI) using MRI data. The authors enhanced a Fuzzy k-nearest neighbor
(FKNN) model with a hybrid algorithm, SSFSHHO, which combines the Sobol sequence, Harris Hawks
Optimizer (HHO), and SFS algorithm. This approach improves initial population diversity and helps avoid
local optima. The SSFSHHO-FKNN model achieved high accuracy on the ADNI dataset, surpassing other
algorithms and demonstrating its potential for early diagnosis.

In other research, Zaki et al. [141] developed a hybrid optimization method combining SFS and PSO to
improve the K-Nearest Neighbors (KNN) algorithm in wireless sensor networks. This approach optimizes
KNN by adjusting particle positions and velocities, significantly reducing the RMSE to 0.00894 and the mean
MAE. The results highlight the effectiveness of SFS-PSO in enhancing KNN’s predictive performance for
data collection applications.

In another study, Xu et al. [142] proposed an enhanced SFS algorithm to improve energy efficiency
and security in clustering for mission-critical IoT-enabled WSNs. The authors introduced a multitrust
fusion model using an entropy weight method (EWM) to evaluate sensor trustworthiness. The improved
SFS algorithm employs differential and adaptive mutation factors to select optimal cluster heads based on
residual energy, integrated trust, and distance to the base station. Experimental results show that this model
significantly outperforms existing clustering protocols in energy efficiency and security.

Besides that, Alsawadi et al. [143] developed an action recognition method integrating BlazePose skeletal
data with a hybrid optimization technique combining the SFS algorithm and WOA. This approach optimizes
the graph structure used in spatial-temporal graph convolutional networks, enhancing action recognition
performance. The method was tested on the NTU-RGB+D and Kinetics datasets, showing competitive results
compared to traditional techniques.

In another study, Bandong et al. [144] introduced a method to optimize gantry crane automation control
by integrating the SFS algorithm with the Flower Pollination Algorithm (FPA) for PID controllers. The
approach focused on enhancing position control and minimizing sway angle during crane operation, which
is crucial for reducing damage and safety risks in port and construction settings. Results showed that the
SFS-FPA method outperformed the PSO-based PID controller in terms of speed response and positional
accuracy, although there were trade-offs in settling time.

Finally, Alhussan et al. [145] proposed a diabetes classification model combining the Waterwheel Plant
Algorithm with SFS (WWPASFS) to optimize Long Short-Term Memory (LSTM) networks. Using clinical
data from the Pima Indians Diabetes Database, the model achieved 98.2% accuracy, outperforming various
machine learning techniques. The approach also utilized binary WWPASFS for feature extraction, enhancing
classification performance. Statistical analyses validated the model’s effectiveness, highlighting the role of the
SFS algorithm in healthcare diagnostics.

Table 2: Summary of the hybridized SFS variants

SN Hybridized techniques or their operators Category Ref.
1 Wolf pack algorithm Swarm-based [118]
2 Whale optimization algorithm Swarm-based [119,122,125,126,130]
3 Grey wolf optimizer Swarm-based [117,120,133]
4 A* algorithm Heuristic-based [116]

(Continued)
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Table 2 (continued)

SN Hybridized techniques or their operators Category Ref.
5 Dipper-throated optimization Swarm-based [121,136]
6 Differential evolution Evolutionary-based [64,112,131,137,139,142]
7 Biogeography-based optimization Evolutionary-based [113]
8 Local unimodal sampling Sampling-based [114]
9 Simulated annealing Physics-based [115]
10 Salp swarm algorithm Swarm-based [123]
11 Particle swarm optimization Swarm-based [124,134,141]
12 Pattern search Direct search [127,132]
13 Sine cosine algorithm Mathematics-based [128]
14 Genetic algorithm Evolutionary-based [129]
15 Henry’s gas solubility optimization Physics-based [135]
16 Artificial gorilla troops optimizer Swarm-based [138]
17 Harris hawks optimization Swarm-based [140]

4.3 Multi-Objective Versions of the SFS Algorithm
In contrast to single-objective optimization, multi-objective optimization involves addressing multiple

conflicting objectives. Achieving a single optimal solution is often impractical, as improving one objective
compromises others. Instead, a balance or trade-off among objectives is achieved to identify the most
satisfactory solution. This complexity makes multi-objective optimization a particularly challenging area in
optimization. Given the strong performance of the SFS algorithm in single-objective tasks, numerous studies
have investigated its potential for solving multi-objective problems.

Dubey et al. [146] introduced the SFS algorithm to address the multi-objective economic and emission
dispatch (MOEED) problem. By leveraging self-repeating patterns from nature, SFS explores the problem
space for optimal solutions, generating fractals that guide particles through random diffusion. The Technique
for Order Preference by Similarity to the Ideal Solution (TOPSIS) is employed to evaluate the fitness of
multiple Pareto-optimal solutions. Validation on 10- and 13-unit generating systems demonstrated that the
SFS algorithm combined with TOPSIS (SFS_TOP) significantly outperforms the weighted sum method
(SFS_WS), highlighting its effectiveness in solving MOEED problems.

Furthermore, Labato et al. [147] investigated using the SFS algorithm within a multi-objective optimiza-
tion framework to solve inverse problems related to the COVID-19 pandemic. The authors employed the
SIDR model to simulate virus dynamics, focusing on parameter estimation under uncertainty. The study
minimized uncertainties and enhanced robustness by integrating the Multi-objective SFS algorithm with the
Effective Mean concept. This approach yielded reliable results using real-world epidemic data from China,
demonstrating the effectiveness of SFS in addressing complex models.

In another study, Khalilpourazari et al. [148] introduced the Multi-Objective SFS (MOSFS) algorithm
for tackling complex multi-objective problems. The algorithm utilizes an external archive to store Pareto-
optimal solutions and incorporates dominance rules and grid mechanisms to approximate the Pareto front.
Testing on nine benchmark functions demonstrated superior convergence and coverage compared to other
algorithms. Additionally, MOSFS effectively addressed a real-world engineering problem, with statistical
validation at a 95% confidence level confirming its efficiency in delivering optimal solutions.
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Similarly, Khalilpourazari et al. [149] introduced the SFS algorithm to optimize grinding processes by
addressing multiple objectives and constraints to enhance surface quality and production rates while mini-
mizing costs. They combined the Taguchi method for parameter tuning with advanced constraint-handling
techniques. Experimental results showed that SFS outperformed traditional methods and contemporary
algorithms like MPEDE and HCLPSO, demonstrating its effectiveness in grinding optimization.

Moreover, Tran et al. [150] developed the Non-dominated Sorting SFS (NSSFS), a multi-objective
algorithm tailored for distributed network reconfiguration (DNR) and the optimal placement of distributed
generation (DG) in radial distribution networks (RDNs). This enhanced SFS algorithm incorporates
advanced non-dominated sorting and selection strategies to identify optimal solutions efficiently. Following
validation on eight benchmark functions, NSSFS was employed to optimize real power loss and voltage
stability in DNR-DG scenarios. It outperformed other techniques, demonstrating significant improvements
in system performance.

Subsequently, Ghasemi et al. [151] proposed a two-stage optimization model for distribution center
location, vehicle routing, and inventory management in earthquake scenarios. The first stage addresses
the location of distribution centers and inventory management, while the second stage optimizes vehicle
routing using a multi-objective SFS algorithm. Inspired by fractal growth and incorporating cooperative
game theory, the model aims to enhance transportation efficiency and reduce relief time. Validation through
a real case study in Tehran demonstrated its effectiveness in capturing real-world performance during
disaster scenarios.

Additionally, Xu et al. [152] proposed a multi-objective SFS algorithm for Neural Architecture Search
(NAS) to optimize classification accuracy and network complexity. The approach minimizes classification
error and network parameters using a decomposition-based SFS method, which enhances local and global
search capabilities. Experimental results demonstrated competitive performance across six benchmark
datasets, providing a parameter-efficient solution for deep network architecture design.

In another study, Hajghani et al. [153] proposed a multi-objective mixed-integer linear programming
model for the location-routing problem in supply chain management, addressing economic, environmental,
and social objectives. To tackle this NP-hard problem, they employed the Non-dominated Sorting Genetic
Algorithm (NSGA-II) and the Multi-Objective SFS (MOSFS) algorithm. Validation using the Augmented
Epsilon Constraint method and CPLEX revealed that MOSFS outperformed NSGA-II in terms of solution
diversity and spacing, demonstrating its effectiveness for medium- to large-scale optimization problems.

Similarly, Darvish et al. [154] proposed an innovative method for generating staircase sinusoidal voltage
in a Dynamic Voltage Restorer (DVR) using a DC-DC boost converter and a DC-AC multilevel inverter.
Designed to improve power quality by mitigating voltage disturbances, the system employs a photovoltaic-
powered boost converter for high-gain voltage and a multilevel inverter for producing a high-step sinusoidal
output with minimal switches. An interval type-2 fuzzy controller, fine-tuned using a multi-objective SFS
algorithm, enhances control precision. Simulation results confirm the system’s effectiveness in compensating
for asymmetrical voltage disturbances.

Finally, Xu et al. [63] proposed a reference vector-guided SFS (RVSFS) algorithm for multi-objective
optimization. The algorithm enhances exploration and convergence by integrating decomposition strategies
with Gaussian walks and Lévy flights. An adaptive mechanism further accelerates convergence while
maintaining solution diversity. Testing on 45 benchmark problems demonstrated that RVSFS outperformed
several state-of-the-art algorithms.
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5 Applications of the SFS Algorithm
The SFS algorithm has been successfully applied to a wide range of real-world challenges in both science

and engineering. Effectively addressing these applications requires the careful formulation of objective
functions and the selection of relevant variables. This review categorizes SFS applications into key areas,
including power and energy, engineering, machine learning, medical and bioinformatics, image processing,
environmental modeling, and economics and finance, among others. Table 3 provides an overview of
these diverse applications, while the subsequent sections offer detailed discussions on specific uses of the
SFS algorithm.

Table 3: Applications of the SFS algorithm across various domains

Domain References
Power and energy applications [155–182]

Engineering applications [183–208]
Machine learning applications [209–215]

Medical and bioinformatics applications [216–221]
Image processing applications [222–227]

Economic and financial applications [228–232]
Others [233–235]

5.1 Power and Energy Applications
Mosbah et al. [155] introduced the SFS algorithm for tracking state estimation in power systems

to improve security contingency predictions. The study evaluated SFS on various IEEE bus systems,
demonstrating its superior accuracy in state estimation compared to traditional methods like GA and PSO,
particularly under measurement uncertainty conditions.

Furthermore, Saha et al. [156] applied the SFS algorithm to optimize an integral-minus-proportional-
derivative (I-PDF) controller for automatic generation control in a complex three-area power system. The
SFS-optimized controller outperformed conventional methods, and integrating FACTS devices and energy
storage systems further enhanced system stability and response, especially in damping frequency oscillations.

In another study, El-Fergany et al. [157] applied the SFS algorithm to optimize relay coordination in
meshed power networks. The objective was to minimize the total operating time of primary and backup relays
while adhering to coordination constraints across three design variables. Testing on various power systems
demonstrated that SFS efficiently produced competitive optimal relay settings within a reasonable timeframe.

Additionally, Saha et al. [158] employed the SFS algorithm to optimize automatic generation control
in a three-area system comprising thermal, wind, and combined-cycle gas turbine units. The study showed
that two-degrees-of-freedom PID controllers outperformed conventional PID controllers. SFS successfully
managed system parameters despite communication delays and generation constraints, demonstrating
robustness under varying conditions without recalibration.

Subsequently, Khadanga et al. [159] proposed an SFS-optimized PID controller for frequency regulation
in an islanded AC microgrid with diverse distributed energy resources. The SFS-based controller effectively
mitigated frequency instability caused by load variations and fluctuations in renewable energy generation,
significantly outperforming a traditional PI controller in maintaining frequency stability.

Furthermore, Saha et al. [160] introduced a method for Automatic Generation Control (AGC) in a
combined-cycle gas turbine (CCGT) system operating within a complex thermal framework. Using the
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SFS algorithm, they optimized an integral-minus-proportional-derivative (I-PDF) controller with a first-
order filter. The findings revealed that the SFS-optimized controller efficiently handled system dynamics and
demonstrated robustness under varying loading conditions, emphasizing its potential for enhancing AGC
performance in intricate power systems.

In other research, Saha et al. [161] introduced the SFS-optimized integral-minus-proportional-derivative
with first-order filter (I-PDF) controller to improve automatic generation control (AGC) in a combined
cycle gas turbine (CCGT)–hydro-thermal power system. The study highlighted the integration of redox
flow batteries (RFB) and capacitive energy storage (CES), demonstrating that the I-PDF controller out-
performed other controller types. Additionally, RFB placement significantly enhanced oscillation damping,
underscoring the controller’s effectiveness in improving system stability.

Similarly, Çelik et al. [162] employed the SFS algorithm to optimize PID parameters in automatic voltage
regulator (AVR) systems, achieving enhanced efficiency, accuracy, and convergence speed. The SFS method
outperformed other algorithms in tuning gains (Kp, Ki, Kd) and demonstrated improved system stability
and voltage regulation, confirming its robustness in AVR applications.

In another study, Nguyen et al. [163] proposed the SFS algorithm for the optimal allocation of distributed
generators (OADG) in radial distribution systems (RDSs). This approach improves voltage profiles and
stability while adhering to operational constraints. The SFS algorithm is efficient and easy to implement,
requiring few control parameters. Evaluations on the IEEE 33-bus, 69-bus, and 118-bus systems showed
superior performance compared to other optimization methods, demonstrating its effectiveness for the
OADG problem.

In related research, Saha et al. [164] proposed an SFS-optimized control strategy for load frequency
regulation in combined cycle gas turbine (CCGT) systems within a three-area interconnected power model.
The approach integrates air flow and temperature controllers to minimize control errors and manage system
dynamics during load disturbances. The SFS algorithm optimized control parameters, including PI and
PID gains. Simulations demonstrated that the SFS-optimized PID controller significantly improved system
stability and robustness while offering a cost-effective solution for governor control.

In addition, Mosbah et al. [165] developed a KF-MLP-based SFS method that integrates Kalman
filtering with SFS-optimized neural network parameters for state estimation in power systems. This approach
enhances the Kalman filter by improving accuracy and reducing divergence through optimized multilayer
perceptron (MLP) parameters. It effectively detects anomalies and data errors during fluctuating loads. The
method outperformed traditional Kalman filtering techniques when applied to the IEEE 57-bus system,
highlighting its potential in complex power system state estimation.

Besides that, Saha et al. [166] proposed an automatic generation control method for a two-area
interconnected system, optimizing gains and parameters using the SFS algorithm. Area 1 includes two
thermal units with distributed energy generation (DG), while Area 2 has one hydro and one thermal unit.
The study addresses nonlinear dynamics and employs classical controllers to mitigate control errors from
intermittent DG sources. The SFS-optimized Proportional-Integral-Derivative with first-order filter (PIDN)
controller outperformed standard PID controllers, effectively managing frequency and tie-power deviations
in response to random inputs.

Likewise, Duong et al. [167] used the SFS method to address the Optimal Reactive Power Flow
(ORPF) problem, focusing on minimizing power losses, voltage deviation, and stability index. The SFS
algorithm efficiently handled constraints in ORPF. Tested on IEEE 30/118-bus systems, SFS provided rapid,
practical solutions, showcasing its potential for solving ORPF issues and suggesting further improvement
opportunities.
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Furthermore, Saini et al. [168] used the SFS algorithm to optimize parameters in two Proportional-
Integral (PI) controllers for Automatic Generation Control (AGC) in thermal power systems. Their approach
minimized the Integral of Time-weighted Absolute Error (ITAE), resulting in significantly improved
performance, including reduced settling times and smoother dynamic responses compared to established
optimization techniques.

In another study, Alomoush et al. [169] applied the SFS algorithm to optimize the Combined Heat
and Power Economic Dispatch (CHPED) problem, aiming to minimize operational costs while addressing
various constraints. The SFS algorithm demonstrated superior performance in handling non-convexities and
achieving near-global solutions more efficiently than other methods.

Moreover, Tran et al. [170] used the SFS algorithm to optimize distribution network reconfiguration
(DNR) with distributed generations (DGs). The authors first employed the loss sensitivity factor (LSF) to find
optimal DG placements and then applied SFS to determine the best DG sizes and network configurations.
The method outperformed other techniques across various bus distribution networks, highlighting the
effectiveness of SFS in solving DNR problems.

Following this, Rezk et al. [171] applied the SFS algorithm to improve the performance of PV systems
under partial shading. SFS effectively tracked the global maximum power point (MPP) of triple-junction
solar cells, outperforming traditional maximum power point tracking (MPPT) methods that struggle with
multiple peaks. The algorithm showed fast convergence and superior performance compared to other
optimization techniques, demonstrating its robustness in optimizing PV system performance.

To minimize power loss, Nguyen et al. [172] used the SFS algorithm to optimize capacitor and PV system
installations in distribution networks. Their study, involving simulations on 33-node and 69-node networks,
found that the SFS algorithm outperformed existing methods in determining optimal sizes and locations
for these components. The results emphasized the effectiveness of integrating capacitors and PV systems to
enhance voltage profiles and reduce active power losses.

Additionally, Alomoush et al. [173] used the SFS algorithm to optimize the bi-objective combined heat
and power economic dispatch (CHPED) problem, which involves balancing thermal and electrical energy
production from CHP systems. By employing a compromise programming method to address non-convex
outputs and constraints, SFS achieved superior near-global solutions compared to traditional optimization
techniques, showcasing its effectiveness in complex energy optimization scenarios.

In other research, Rezk et al. [174] introduced a robust method for estimating solar PV parameters using
the SFS algorithm. This approach enhances the modeling of PV cells by fitting parameters based on measured
current-voltage (I-V) data. Testing various PV models, such as single-diode, double-diode, and PV module
models, across different case studies showed that the SFS method outperformed other techniques in accuracy
and reliability, underscoring its potential to improve the efficiency and control of PV systems.

Similarly, Elrachid et al. [175] introduced a method for optimizing the dual-input Power System Stabi-
lizer (PSS) using the SFS algorithm within a nonlinear Single Machine Infinite Bus (SMIB) system. This study
involved fine-tuning stabilizer parameters and evaluating system performance under different conditions,
particularly during three-phase ground faults. The results showed improved system stability, demonstrating
the effectiveness of the SFS algorithm in optimizing PSS parameters and enhancing overall performance.

In another study, Van et al. [176] developed the SFS algorithm to optimize environmental and economic
dispatch in power systems, focusing on fuel cost, emissions, and economic emissions while meeting load
and generation constraints. Testing on various configurations, including the IEEE 30-bus system with wind
turbines, showed that the SFS algorithm effectively balanced environmental optimization and operational
stability, outperforming established algorithms.
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In related research, Saeed et al. [177] proposed the BERSFS algorithm, which combines the al-Biruni
Earth radius (BER) algorithm with the SFS algorithm to enhance wind power forecasting. The BERSFS
approach was utilized for feature selection and optimization within an ensemble model. Evaluations against
various optimization methods and machine learning models, such as LSTM and k-nearest neighbors,
showed that the BERSFS model significantly outperformed others, proving its effectiveness and robustness
in improving prediction accuracy.

In addition, Darvish et al. [178] introduced a Dynamic Voltage Restorer (DVR) to improve power quality
in distribution systems. Key innovations include an Upside-Down Asymmetrical Multi-Level Inverter
(UDAMLI) for efficient voltage generation, a Fractional Order Interval Type-2 Fuzzy System (FOIT2FS) for
control, and SFS algorithm. These enhancements allow the DVR to effectively address voltage disturbances
like sags and swells, achieving superior performance and reduced Total Harmonic Distortion (THD)
compared to traditional solutions.

Besides that, Van et al. [179] developed an SFS algorithm to optimize energy resource allocation in
electricity production, aiming to maximize profits from power plants. Applied to systems with 10 and 40
elements, the SFS algorithm outperformed other optimization methods, demonstrating its effectiveness in
addressing complex energy management challenges in power systems.

Likewise, Huynh et al. [180] introduced a method for accurately estimating solar photovoltaic (SPV)
cell model parameters, including single-diode, double-diode, and triple-diode configurations. The authors
transformed the estimation into an optimization problem solved by the SFS algorithm, known for its ability
to find global optima. Unlike PSO and Chaos PSO, SFS demonstrated superior performance, achieving more
accurate parameter estimations for SPV cell models in various applications.

Furthermore, Kumar et al. [181] proposed an innovative hybrid SFS Network (SFSN) for energy
management in all-electric ships, utilizing fuel cells and batteries for optimized power distribution. The
system combines Deep Neural Networks with SFS optimization to predict fuel cell output and adjust energy
usage based on demand. Simulation results indicate improved efficiency and reliability in managing energy
for marine applications.

Finally, Bacha et al. [182] developed a model to optimize a stand-alone hybrid energy system with
photovoltaic sources, wind turbines, storage systems, and diesel generators for isolated rural areas. Utilizing
actual weather data from Biskra, Algeria, they analyzed various configurations to minimize electricity costs.
The SFS algorithm, alongside SOS and PSO, was employed for optimization. The results indicated that SFS
significantly reduced the levelized cost of energy (LCOE) across all scenarios, demonstrating its effectiveness
in optimizing hybrid energy systems for rural applications.

5.2 Engineering Applications
Khanam et al. [183] applied the SFS algorithm to tune PID controller parameters for DC motor control

systems. Using the integration of time multiplied by absolute error (ITAE) as the objective function, the SFS-
optimized PID controller achieved zero overshoot and improved settling and rise times compared to existing
methods. The robustness analysis demonstrated the effectiveness of the SFS/PID approach under varying
motor parameters, highlighting its adaptability and efficiency.

Furthermore, Khanam et al. [184] employed the SFS algorithm for order reduction in large-scale
single-input single-output (SISO) linear time-invariant (LTI) systems. The algorithm minimizes the integral
square error (ISE) between the original reduced-order and higher-order systems. The study compares both
systems’ step and frequency responses, demonstrating that SFS outperforms existing techniques in effectively
reducing system order.
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Moreover, Li et al. [185] applied the SFS algorithm to unmanned aerial vehicle (UAV) path planning,
addressing complex optimization tasks with specific constraints. The study showcased SFS’s superior search
accuracy and convergence speed in continuous function optimization. Experimental results indicated that
SFS effectively identified feasible paths between start and end points, demonstrating robust real-time
performance under various environmental conditions.

Following this, Liu et al. [186] developed a hierarchical optimization framework to enhance UAV
aerial photography route planning amidst real-world uncertainties. The framework accounts for interval
uncertainties affecting flight quality, leading to varying potential outcomes. A criterion was established
to evaluate and rank candidate flight routes based on efficiency and robustness. The SFS algorithm was
utilized to navigate the optimization landscape effectively. This approach improves the reliability of UAV
route planning, contributing to better data collection and photography quality across various applications.

Additionally, Bhatt et al. [187] applied the SFS algorithm to approximate and control linear time-
invariant (LTI) systems. They derived low-order systems from higher-order counterparts and optimized DC
motor speed control using PID controllers. SFS effectively explored the search space, achieving minimal
overshoot and improved performance metrics. The results demonstrated that SFS maintained system
characteristics while outperforming traditional system approximation and motor control methods.

In other research, Çelik et al. [188] developed the PI + DF controller, enhancing PID control by
integrating a derivative path with a low-pass filter. The authors optimized the controller’s gains using the
SFS algorithm, demonstrating superior performance in simulations and experiments on a DC servo system.
The SFS-tuned controller outperformed traditional methods, highlighting its effectiveness in refining PID
controller design for advanced control applications.

Similarly, Huang et al. [189] addressed reliability-redundancy allocation problems using survival signa-
ture theory to optimize system reliability while meeting constraints. They introduced an adaptive penalty
function to convert the constrained problem into an unconstrained one, which was then solved using the
SFS algorithm. This method also evaluates component importance for effective redundancy allocation. It
simplifies the optimization process by requiring only one survival signature calculation, enhancing the
understanding of reliability-redundancy allocation in systems.

In another study, Zafrane et al. [190] developed a multidisciplinary design optimization strategy for
launch vehicle satellites using a three-stage liquid propellant system. The approach enhances solution quality
and convergence speed by integrating heuristic algorithms like GSA and SFS. This strategy addresses complex
design challenges and emphasizes using virtual reality tools to streamline the design process, ultimately
reducing analysis time and costs in aerospace development.

In related research, Mandala et al. [191] proposed the SFS algorithm to optimize the parameters of a two-
degree-of-freedom PID controller, aiming to enhance control actions in complex quadrotor systems. In their
study, the performance of the SFS algorithm was compared with that of the PSO algorithm for parameter
tuning. The results demonstrated that the SFS algorithm outperformed PSO, showcasing its effectiveness as
an optimization tool for this specific control application.

In addition, Juybari et al. [192] introduced the SFS algorithm to address the reliability-redundancy
allocation problem, aiming to maximize system reliability by optimizing redundancy levels and component
reliability. Focusing on a cold-standby strategy, the SFS algorithm was applied to various benchmark
problems, yielding improved configurations with enhanced reliability values. The results demonstrated the
algorithm’s superior solution quality and robustness in cold-standby redundancy scenarios compared to
previous methods.
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Besides that, Dobani et al. [193] developed a new approach to the reliability-redundancy allocation
problem (RRAP) by incorporating component mixing and treating reliability as a decision variable within a
heterogeneous framework. The authors applied the SFS algorithm to solve the mixed-integer nonlinear pro-
gramming (MINLP) models, achieving superior reliability structures and significantly improved reliability
values in benchmark tests compared to prior studies.

Likewise, Lagunes et al. [194] introduced a multi-meta-heuristic optimization model that combines
various algorithms, including the SFS algorithm, to optimize fuzzy system membership functions for
autonomous mobile robot navigation. The approach outperformed existing techniques, demonstrating its
effectiveness in solving complex control challenges.

Furthermore, Li et al. [195] enhanced a multi-support vector regression (SVR) model for predicting
the remaining useful life (RUL) of rolling bearings by using the SFS algorithm to optimize SVR parameters.
This method improved prediction accuracy by extracting time-domain features, reducing noise with a
Butterworth filter, and applying principal component analysis for dimensionality reduction. Validated on
IMS experimental datasets, the approach demonstrated strong alignment with actual RUL values and
outperformed other prediction techniques in terms of accuracy and convergence.

Moreover, Jing et al. [196] developed a method to optimize the parameters of the Adaptive Neuro-Fuzzy
Inference System (ANFIS) using the SFS algorithm for predicting uniaxial compressive strength (UCS) in
geotechnical projects. Evaluated with data from the Pahang–Selangor freshwater tunnel in Malaysia, the
SFS-ANFIS model achieved a high coefficient of determination (R2 = 0.981) and outperformed other hybrid
methods like GA-ANFIS, DE-ANFIS, and PSO-ANFIS in prediction accuracy.

Bendaoud et al. [197] introduced a method for identifying nonlinear synchronous generator parameters
using the SFS algorithm, which minimizes a quadratic criterion based on the differences between simu-
lated and actual outputs. Compared to PSO, the SFS algorithm demonstrated better stability, robustness,
estimation accuracy, and convergence speed, proving its effectiveness for this application.

Following this, Mai et al. [198] introduced an optimization method for Fuzzy PD controllers in a
two-link robot manipulator system, utilizing the SFS algorithm to enhance control performance. The
system’s dynamics were modeled using the Lagrangian method, and simulations in MATLAB showed
that SFS outperformed GA and the modified Neural Network Algorithm, achieving superior accuracy,
responsiveness, and stability.

Additionally, Sasmito et al. [199] addressed the permutation flow shop scheduling problem by using the
SFS algorithm to optimize job sequences and minimize makespan. Their rigorous testing against Taillard’s
benchmark problems showed that SFS consistently outperformed other optimization algorithms, delivering
near-optimal solutions and effectively solving complex scheduling challenges.

In other research, Hasan et al. [200] introduced a load-balanced workflow allocation method using the
SFS algorithm to optimize resource utilization in an Infrastructure-as-a-Service (IaaS) cloud environment.
This approach effectively addresses the NP-hard workflow allocation problem by minimizing load imbal-
ance on virtual machines. Performance analysis in MATLAB showed that the SFS strategy outperformed
PSO, providing more efficient solutions for balancing workflows and enhancing resource utilization in
cloud computing.

Similarly, Ye et al. [201] proposed a hybrid evolutionary model that integrates an adaptive neuro-fuzzy
inference system (ANFIS) with the SFS algorithm to predict air overpressure (AOp) caused by rock blasting.
The study compares the ANFIS-SFS model with the ANFIS-PSO and ANFIS-GA models using data from
four granite quarry sites. The results show that the ANFIS-SFS model, with the lowest root mean square error
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(1.223 dB), outperforms the other models, demonstrating SFS’s superior ability to predict AOp and improve
accuracy in open-pit mining applications.

In another study, Meredef et al. [202] developed a method to stabilize Takagi-Sugeno fuzzy systems
using an integral Lyapunov fuzzy candidate (ILF) and solved linear matrix inequalities (LMIs) with the
SFS algorithm. This approach reduces conservatism and enables broader stability conditions compared to
traditional methods. A numerical example demonstrated that the ILF method offers improved feasibility for
stabilization over other Lyapunov-based techniques.

In related research, Houili et al. [203] compared six meta-heuristic algorithms, including the SFS
algorithm, for estimating induction motor parameters. The performance was measured using the sum
of absolute differences (SAD) between actual and predicted outputs. CGO outperformed the others with
a SAD of 1.1045, while SFS achieved a competitive SAD of 1.1063, demonstrating its effectiveness in
parameter estimation.

In addition, Liu et al. [204] developed a two-step method for accurately localizing low-velocity impacts
in composite plate structures using wavelet packet energy characteristics. Using a fiber Bragg grating (FBG)
sensing system, the method first identifies the impact area and then applies the SFS algorithm for precise
localization. Experimental results demonstrated that integrating the SFS algorithm significantly enhanced
localization accuracy for impacts on carbon fiber-reinforced plastic (CFRP) materials.

Besides that, Zheng et al. [205] enhanced the performance of permanent magnet synchronous linear
motors (PMSLM) by developing a high-accuracy inductance model using analytic kernel-embedded elastic-
net regression (AKER). The authors optimized the motor’s performance with the SFS algorithm, which
iteratively solved the optimization function. The AKER model was shown to be more accurate and faster
than finite element methods, demonstrating the effectiveness of SFS in PMSLM optimization.

Likewise, Chengquan et al. [206] introduced the SFS algorithm to predict the compressive strength
of concrete (CSC) using a dataset of 1030 specimens. The authors optimized parameters such as fly ash,
cement, and water content. Their results showed that the SFS-enhanced multi-layer perceptron (SFS-MLP)
outperformed the MVO and VSA algorithms, achieving high accuracy (R2 of 0.99942) and low error rates
(RMSE of 0.24922).

Furthermore, Zhou et al. [207] introduced the SFS-enhanced multi-layer perceptron neural network
(SFS-NN-MLP) for predicting concrete slumps. This model improves upon traditional measurement meth-
ods by utilizing machine learning techniques, accurately predicting slump based on ingredient proportions
and curing age. It outperformed other optimization algorithms, demonstrating superior mean square error
and Pearson correlation coefficient accuracy. The SFS-NN-MLP model shows promise for cost-effective
slump prediction in concrete applications.

Finally, Wang et al. [208] developed an artificial neural network (ANN) model enhanced by integrating
the SFS algorithm with vortex search (VS) and multi-verse optimizer (MVO) techniques to predict cooling
load requirements in eco-friendly buildings. The study addressed the complexities of estimating non-linear
heat loss in sustainable structures. The SFS-ANN model outperformed the VS-ANN and MVO-ANN models,
achieving an R2 value of 0.99827 and an RMSE of 0.00619. These results demonstrate the effectiveness of SFS
in optimizing neural network performance, enhancing prediction accuracy, and improving energy efficiency
in building design and operation.

5.3 Machine Learning Applications
Mosavi et al. [209] proposed using the SFS algorithm to train Radial Basis Function Neural Networks

(RBF NNs), enhancing convergence speed and mitigating issues related to local minima. SFS improves search
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space exploration through its fractal diffusion properties. Evaluations on benchmark and sonar datasets
showed that SFS-trained RBF networks achieved better classification accuracy and faster convergence than
traditional training methods.

Furthermore, Mosbah et al. [210] developed the SFS algorithm to optimize the parameters of multilayer
perceptron (MLP) neural networks for dynamic state estimation (DSE). The SFS method effectively identifies
optimal weights and thresholds, enhancing accuracy and preventing local minimum traps. Results showed
significant precision and computational efficiency improvements compared to GA and PSO, highlighting its
effectiveness for real-time power system monitoring and forecasting.

Besides that, Khishe et al. [211] applied the SFS algorithm to train multilayer perceptron neural networks,
introducing the Chaotic Fractal Walk Trainer (CFWT) to enhance convergence speed and avoid local
minima. Their classifier outperformed four established meta-heuristic trainers on benchmark and sonar
datasets, and FPGA implementation demonstrated effective real-time processing for complex problems.

In addition, Mosbah et al. [212] developed a hybrid method combining Multilayer Perceptron Neu-
ral Networks (MLP) with the SFS algorithm to improve state estimation in power grids using phasor
measurement units (PMUs). The approach utilizes MLP for initial state calculations and SFS for refining
estimates. Testing on IEEE 14, 30, and 57-bus systems showed enhanced accuracy with adding more PMUs,
demonstrating the effectiveness of the hybrid MLP-SFS method over standalone approaches.

In another work, Moayedi et al. [213] proposed an innovative hybrid model combining artificial neural
networks (ANN) with the SFS algorithm to enhance cooling load predictions in residential buildings. Com-
pared to the GOA and FA, the SFS-ANN model achieved over 90% correlation in optimizing predictions,
significantly reducing prediction error by 36%, while GOA and FA achieved reductions of 23% and 18%,
respectively. This study demonstrates the superior effectiveness of the SFS-ANN model for early cooling
load predictions.

Similarly, Neelakandan et al. [214] proposed combining the SFS algorithm with a modified deep learning
neural network (DLMNN) to enhance e-commerce sales forecasting. The SFS algorithm optimized the
DLMNN parameters, improving prediction accuracy across product categories. Evaluations on a time series
dataset showed that the SFS-optimized DLMNN outperformed traditional non-deep learning methods in
terms of RMSE and other metrics, highlighting its effectiveness for online sales forecasting.

Finally, Yang et al. [215] used the SFS algorithm for hyperparameter tuning in predictive modeling
of membrane distillation processes. Analyzing a dataset with over 5,000 data points from computational
fluid dynamics, they evaluated three regression models: SVM, DNN, and KRR. SFS effectively optimized
the model parameters, achieving a high R2 score of 0.99839 for SVM and a low RMSE of 0.77001 for DNN,
demonstrating its potential to enhance predictive accuracy in complex systems.

5.4 Medical and Bioinformatics Applications
Hinojosa et al. [216] applied the SFS algorithm to image thresholding in breast histology imagery

to enhance segmentation for early breast cancer diagnosis. The SFS algorithm was evaluated using three
entropy-based objective functions, Kapur, Minimum Cross Entropy, and Tsallis, and it was compared to
ABC and DE. The results demonstrated that combining SFS with Minimum Cross Entropy achieved the
highest-quality segmentation, highlighting SFS’s potential in medical image analysis.

Furthermore, Bingöl et al. [217] utilized the SFS algorithm to optimize threshold values for improving
skin cancer lesion detection from dermoscopic images. The study applied five entropy-based methods
to achieve accurate lesion delineation, including Minimum Cross, Renyi, Charvat, Havrda, Tsallis, and
Kapur. SFS significantly improved threshold optimization for each method, resulting in enhanced detection
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accuracy. The approach was validated on the PH2 dataset of skin lesion images, showcasing the potential of
SFS in dermatological medical imaging.

Similarly, Dhal et al. [218] applied the SFS algorithm to improve blood image segmentation for leukemia
detection. Unlike conventional clustering techniques, which are sensitive to initial positions and prone to
false positives, SFS effectively addressed segmentation complexities. Experimental results demonstrated that
SFS outperformed other methods’ accuracy, efficiency, and segmentation quality, highlighting its potential
to advance early leukemia diagnosis through automated pathology systems.

In addition, Khafaga et al. [219] developed a computer-aided diagnosis framework for monkeypox,
addressing challenges related to the low visual resolution of images. This hybrid approach combines
convolutional neural networks (CNNs) with an optimization technique called the Al-Biruni Earth Radius
Optimization-based SFS algorithm (BERSFS). The framework first employs CNNs to extract image features,
followed by an optimized classification model utilizing a triplet loss function to differentiate monkeypox
cases. Tested on skin disease images from an African hospital, the BERSFS framework significantly outper-
formed existing methods in effectiveness and stability, as validated by statistical tests such as Wilcoxon and
ANOVA. This research highlights the potential of SFS variants in advancing medical image classification.

In related research, Abdellatif et al. [220] investigated dynamic systems for diabetes control and its socio-
economic impacts by implementing various local search AI methods, particularly meta-heuristic algorithms.
The SFS algorithm generated continuous and cost-effective control strategies among the tested algorithms,
including BA, FA, and GA. The study highlights the effectiveness of SFS in producing efficient solutions
that alleviate socio-economic burdens while adhering to budget constraints, offering valuable insights into
diabetes management.

Finally, Khalilpourazari et al. [221] proposed the SFS algorithm integrated with a mathematical model to
forecast COVID-19 trajectories, aiding policymakers in developing effective containment strategies. Applied
to public datasets, the model predicted symptomatic and asymptomatic infections, recoveries, and fatalities
in Canada. The findings highlighted the significant impact of asymptomatic cases on transmission dynamics
and underscored the importance of enhanced testing capacity. Sensitivity analyses evaluated the influence of
transmission rate variations on pandemic growth, offering valuable insights for future case projections and
practical recommendations to reduce community transmission.

5.5 Image Processing Applications
Luo et al. [222] developed LI-SFS, a hybrid approach combining the SFS algorithm and lateral inhibition

(LI) for template matching in image processing. By leveraging the strengths of both methods, LI-SFS
improves accuracy and robustness, demonstrating superior performance over other LI-based algorithms
in simulations.

Furthermore, Li et al. [223] proposed a target-matching approach using edge features and the SFS algo-
rithm to optimize geometric transformations inspired by particle interactions. By treating pixels as groups
of atoms, the method seeks optimal matches through numerical optimization. Comparative simulations
demonstrated the SFS algorithm’s effectiveness in identifying multiple correct targets in test images, with
theoretical analyses suggesting its alignment with existing image enhancement techniques, such as lateral
inhibition, thus laying a foundation for more efficient target-matching methods.

In another study, Betka et al. [224] introduced a block-matching algorithm using the SFS technique to
enhance motion estimation in video processing. By addressing the long computation times of traditional
algorithms, the authors implemented a parallel processing approach with a multi-population model of SFS.
Key enhancements included fixed-pattern initialization, a new fitness function combining two matching



2378 Comput Model Eng Sci. 2025;142(3)

criteria, and an adaptive window size strategy. Evaluated across nine video sequences, the algorithm
demonstrated significant improvements in estimation accuracy and computational efficiency compared to
established methods, establishing its superiority in the field.

Moreover, Dhal et al. [225] integrated the SFS algorithm with a fuzzy entropy-based multi-level
thresholding model to improve the segmentation of color satellite images. The authors addressed the
computational challenges of traditional thresholding techniques, demonstrating that SFS outperformed four
established algorithms such as PSO, CS, HS, and ABC, in terms of image quality, fitness value, and efficiency.
Specifically, SFS was 2.5% faster than CS and significantly quicker than the others for the same number of
function evaluations, underscoring its effectiveness in image segmentation.

Following this, Charef et al. [226] proposed the SFS algorithm for visual tracking, addressing the
challenges of local minimum convergence in existing methods. By leveraging SFS for localization, the
algorithm explores the search space to find candidates that match a predefined template, using a kernel-
based spatial color histogram and Bhattacharyya distance for the fitness function. Evaluated on 20 video
sequences from the OTB-100 dataset and compared to 11 advanced tracking algorithms, the SFS tracker
demonstrated superior quantitative and qualitative performance, showcasing its robustness and effectiveness
in visual tracking tasks.

Finally, Das et al. [227] developed a Histogram-based Fast and Robust Crisp Image Clustering (HFR-
CIC) technique enhanced by the SFS algorithm. This method addresses noise sensitivity and local optima
issues in conventional K-means clustering by integrating morphological reconstruction and clustering
based on gray levels. The use of SFS to optimize cluster centers boosts performance. Experimental results
on synthetic and real-world images, including white blood cell segmentation, showed that HFRCIC-SFS
outperforms other segmentation and clustering algorithms.

5.6 Environmental Modeling Applications
Alomoush et al. [236] applied the SFS algorithm to solve the environmental-economic dispatch problem

in power systems, addressing generator constraints, emissions, and transmission losses. Benchmarking
against eight optimization methods, including GA and PSO, demonstrated that the SFS algorithm achieves
lower production costs and outperforms traditional techniques in finding global optimal solutions efficiently.

Furthermore, Van et al. [237] utilized the SFS algorithm for the economic emission dispatch (EED)
problem, balancing environmental and economic goals amid limited fossil fuel resources. Tested on a 6-
generator system and the IEEE 30-bus system, the SFS algorithm demonstrated competitive performance,
enhancing both profitability and emissions reduction for power plants.

In another study, Xu et al. [238] developed a runoff forecasting model using the SFS algorithm, Gated
Recurrent Unit (GRU), and Variational Mode Decomposition (VMD) within a DIP framework. Tested on
runoff data from the Upper Yangtze River Basin, the model showed improved prediction accuracy and
training efficiency, outperforming other hybrid models.

Similarly, Zhang et al. [239] developed neuro meta-heuristic models integrating the Sunflower Opti-
mization Algorithm, Vortex Search Algorithm, and SFS algorithm with neural networks to improve pan
evaporation predictions. Tested with climate data, the SFS-MLPNN model achieved the best results, with
a mean absolute error of 0.0997 and a Pearson correlation of 0.9957, demonstrating significant promise for
environmental modeling.
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Finally, Ahmadi et al. [240] compared optimization techniques, including the SFS algorithm, to improve
ANN models for predicting landslide susceptibility. Using data from eastern Azerbaijan and Iran, the SFS-
MLP model achieved the highest accuracy, outperforming other models and demonstrating the effectiveness
of SFS for environmental risk mapping.

5.7 Economic and Financial Applications
Khalilpourazari et al. [228] proposed a constrained multi-product economic production quantity

model to minimize total inventory costs while allowing for shortages and partial backordering. The model
incorporates various constraints, including a stochastic budget constraint. The authors utilized several
solution methods, including the SFS algorithm, which performed well in optimizing objective values and
minimizing CPU time. Sensitivity analyses highlighted the significant impact of production rates on the
objective function, demonstrating the effectiveness of the SFS algorithm in complex inventory management.

In another study, Dinh et al. [229] analyzed factors affecting undergraduate employability for business
and economics students in Ho Chi Minh City, Vietnam, considering Industry 4.0. The authors identified key
determinants such as human capital, social capital, and identity, through in-depth interviews and used the
SFS algorithm for ranking. The study highlighted the critical role of human capital, particularly attitude, and
emphasized the significance of social capital while noting the emerging relevance of identity. The findings
inform strategies to enhance employability in a changing job market.

Similarly, Shahid et al. [230] introduced a risk-budgeted portfolio selection strategy using the SFS
algorithm to optimize investment decisions in capital markets. The SFS algorithm utilizes a fractal search
mechanism to maximize the Sharpe ratio while managing risk for risk-averse investors. An experimental
study using data from the S&P BSE Sensex of the Indian stock exchange demonstrated the superior
performance of the SFS strategy compared to GA, highlighting its potential in financial decision-making and
risk management.

In related research, Shahid et al. [231] proposed a portfolio selection model using the SFS algorithm to
optimize investments in capital markets. The model focuses on maximizing the Sharpe ratio while managing
risk constraints. Evaluated against traditional methods like GA and PSO using real datasets from Indian and
global stock exchanges, the SFS approach significantly outperformed its counterparts, marking a pioneering
contribution to portfolio optimization, validated through statistical analysis.

Finally, Shahid et al. [232] proposed a portfolio selection model using the SFS algorithm to enhance
the Sharpe ratio. The model addresses challenges in portfolio optimization, including constraints like
cardinality and transaction costs, and outperforms traditional methods such as Markowitz’s mean-variance
optimization. Tested against GA and SA with data from the Bombay Stock Exchange, the SFS model
demonstrated superior performance, proving its effectiveness in optimizing portfolio selection in complex
financial environments.

5.8 Others
5.8.1 Wireless Sensor Network Applications

Hriez et al. [233] proposed a clustering protocol for Wireless Sensor Networks (WSNs) that integrates a
trust model to enhance data reliability in IoT applications. The protocol uses the SFS optimization method to
identify trusted nodes by evaluating parameters such as remaining energy and node density while promoting
balanced cluster formation. Experimental results indicate that it significantly outperforms existing energy
efficiency and trustworthiness models, particularly in mission-critical scenarios.
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Similarly, Yang et al. [234] developed a radar task scheduling method using the SFS algorithm within
the Q-RAM framework to improve mission effectiveness in radar resource management. Their approach
achieves near-optimal scheduling with reduced computation time compared to traditional methods, show-
casing the potential of SFS in complex radar scheduling tasks.

5.8.2 Cybersecurity Applications
Duhayyim et al. [235] developed the SFSA-DLIDS, a cybersecurity model that combines the SFS

algorithm with deep learning to enhance intrusion detection in cloud-based cyber-physical systems. By
optimizing feature selection and classification using the SFS algorithm and chicken swarm optimization,
respectively, the model achieved superior detection accuracy compared to recent alternatives, thereby
improving CPS network security.

6 Open Source Software for the SFS Algorithm and Online Lectures
To provide a comprehensive review that serves both theoretical and practical purposes for researchers,

we present the open-source code for the SFS algorithm, developed by its founder and subsequent contribu-
tors, as follows:

• The original implementation of the SFS algorithm, written in MATLAB, can be found at the follow-
ing URL: https://www.mathworks.com/matlabcentral/fileexchange/47565-stochastic-fractal-search-sfs
(accessed on 20 October 2024).

• The original implementation of the SFS algorithm, written in Python, can be found at the following
URL: https://github.com/mohammed-elkomy/stochastic-fractal-search-python (accessed on 20 Octo-
ber 2024).

• The SFS algorithm for economic dispatch, implemented in MATLAB, is avail-
able at the following URL: https://www.mathworks.com/matlabcentral/fileexchange/
159431-stochastic-fractal-search-for-economic-dispatch (accessed on 20 October 2024).

• The Dynamic Fitness-Distance Balance-based SFS, implemented in MATLAB, can be
found at the following URL: https://www.mathworks.com/matlabcentral/fileexchange/
156762-an-improved-stochastic-fractal-search-algorithm-dfdb-sfs (accessed on 20 October 2024).

• The Adaptive Fitness-Distance Balance-based SFS algorithm, implemented in MATLAB, can be found at
the following URL: https://www.mathworks.com/matlabcentral/fileexchange/118485-afdb-sfs (accessed
on 20 October 2024).

• The Natural Survivor Method-based SFS algorithm (NSM_SFS), developed using MATLAB, is acces-
sible at the following URL: https://www.mathworks.com/matlabcentral/fileexchange/125920-nsm_sfs
(accessed on 20 October 2024).

• The Multi-Surrogate-Assisted SFS algorithm, implemented in MATLAB, can be found at the following
URL: https://github.com/xiaodi-Cheng/SF-MSASFS (accessed on 20 October 2024).

Furthermore, several publicly available lectures provide detailed explanations of the procedure of the
original SFS algorithm, as outlined below:

• Lecture 1: Presented by Simulation Tutor, this lecture examines the SFS algorithm code and its appli-
cation in load flow analysis. It is available at the following URL: https://www.youtube.com/watch?v=
0nGLqydECRI (accessed on 20 October 2024).

• Lecture 2: Presented by Logsig Solutions, this lecture investigates the application of distributed genera-
tion and capacitor placement using the Chaotic SFS algorithm. It can be accessed at the following URL:
https://www.youtube.com/watch?v=dmb8n79SmCU (accessed on 20 October 2024).

https://www.mathworks.com/matlabcentral/fileexchange/47565-stochastic-fractal-search-sfs
https://github.com/mohammed-elkomy/stochastic-fractal-search-python
https://www.mathworks.com/matlabcentral/fileexchange/159431-stochastic-fractal-search-for-economic-dispatch
https://www.mathworks.com/matlabcentral/fileexchange/156762-an-improved-stochastic-fractal-search-algorithm-dfdb-sfs
https://www.mathworks.com/matlabcentral/fileexchange/118485-afdb-sfs
https://www.mathworks.com/matlabcentral/fileexchange/125920-nsm_sfs
https://github.com/xiaodi-Cheng/SF-MSASFS
https://www.youtube.com/watch?v=0nGLqydECRI
https://www.youtube.com/watch?v=dmb8n79SmCU
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7 Performance Evaluation of the SFS Algorithm
Since its introduction in 2015, numerous meta-heuristic algorithms have been developed to tackle real-

world optimization challenges. To provide a comprehensive assessment of the SFS algorithm’s performance
compared to recently proposed meta-heuristic algorithms, this section analyzes optimization outcomes using
a diverse set of benchmark functions from the CEC’2022 benchmark test, including unimodal, multimodal,
composite, and hybrid functions. Table 4 provides an overview of the CEC’2022 benchmark functions
and their optimal solutions. Additional detailed information about these functions can be found in the
literature [241]. This set of functions is designed to evaluate various aspects of optimization algorithms:
unimodal functions test exploitation ability, multimodal functions assess global exploration proficiency, and
composite and hybrid functions offer a comprehensive evaluation of algorithm performance.

Table 4: Description of CEC’2022 benchmark functions

F Name Dimension Range fBest

Unimodal

1 Shifted and full Rotated Zakharov 10, 20 [−100, 100] 300

Multimodal

2 Shifted and full Rotated
Rosenbrock’s

10, 20 [−100, 100] 400

3 Shifted and full Rotated Expanded
Schaffer’s

10, 20 [−100, 100] 600

4 Shifted and full Rotated
Non-Continuous Rastrigin’s

10, 20 [−100, 100] 800

5 Shifted and full Rotated Lévy 10, 20 [−100, 100] 900

Hybrid

6 Hybrid 2 (N = 3) 10, 20 [−100, 100] 1800
7 Hybrid 3 (N = 6) 10, 20 [−100, 100] 2000
8 Hybrid 3 (N = 5) 10, 20 [−100, 100] 2200

Composition

9 Composition 1 (N = 5) 10, 20 [−100, 100] 2300
10 Composition 2 (N = 4) 10, 20 [−100, 100] 2400
11 Composition 3 (N = 5) 10, 20 [−100, 100] 2600
12 Composition 4 (N = 6) 10, 20 [−100, 100] 2700

This section compares the SFS algorithm with eight recently introduced optimization algorithms
published within the last three years. These algorithms include: the Elk Herd Optimizer (EHO) 2024 [23],
White Shark Optimizer (WSO) 2022 [26], Dream Optimization Algorithm (DOA) 2025 [242], Newton Raph-
son Based Optimizer (NRBO) 2024 [243], Optical Microscope Algorithm (OMA) 2023 [244], Chernobyl
Disaster Optimizer (CDO) 2023 [245], Artificial Lemming Algorithm (ALA) 2025 [246], and the Memory,
evolutionary operator, and local search-based improved Grey Wolf Optimizer (MELGWO) 2023 [247]. These
algorithms’ parameters and corresponding values were sourced directly from their original publications.

To ensure a fair comparison, all algorithms are executed under the same initial conditions. The solution
space is set to a dimensionality of D = 20, with a fixed population size of 50 and 1000 iterations. To minimize
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the influence of random factors within the algorithms, each is independently run 30 times per function, and
the best, worst, mean values, standard deviation, and rankings are computed. These results are displayed
in Table 5. Additionally, two parametric statistical tests, namely the Friedman mean rank test and the
Wilcoxon rank sum test, are employed to evaluate the performance of these algorithms.

Table 5: The results of the nine methods for CEC2022 test functions

Fun Indice EHO WSO MELGWO DOA NRBO OMA CDO ALA SFS

F1 Best 3.0061E+02 1.2000E+03 6.2198E+02 3.0004E+02 5.2611E+04 2.0647E+03 2.4118E+04 3.0078E+02 3.0000E+02
Worst 1.2619E+05 9.3431E+03 1.0484E+04 1.4451E+03 2.1407E+05 8.9477E+03 2.6631E+04 3.3735E+02 3.0001E+02
Mean 3.6814E+04 4.6930E+03 3.7185E+03 5.1026E+02 1.6214E+05 5.1432E+03 2.5057E+04 3.1437E+02 3.0000E+02

Std 3.4368E+04 2.3658E+03 2.4364E+03 2.7910E+02 4.4939E+04 1.9387E+03 7.4956E+02 9.1820E+00 1.2759E-03
Rank 8 5 4 3 9 6 7 2 1

F2 Best 4.0283E+02 4.3017E+02 4.0059E+02 4.0007E+02 2.6916E+03 4.4593E+02 1.9921E+03 4.0477E+02 4.0008E+02
Worst 4.7493E+02 5.9320E+02 5.3836E+02 4.4910E+02 7.1884E+03 5.9074E+02 2.1403E+03 4.6984E+02 4.4908E+02
Mean 4.3757E+02 4.8718E+02 4.7092E+02 4.4033E+02 5.1861E+03 4.8777E+02 2.0342E+03 4.4591E+02 4.3613E+02

Std 2.7163E+01 3.5720E+01 2.6248E+01 1.6427E+01 1.1399E+03 3.5347E+01 3.9012E+01 1.1771E+01 2.0968E+01
Rank 2 6 5 3 9 7 8 4 1

F3 Best 6.0001E+02 6.0330E+02 6.1396E+02 6.0001E+02 6.9215E+02 6.0038E+02 6.5063E+02 6.0003E+02 6.0000E+02
Worst 6.0508E+02 6.4541E+02 6.5835E+02 6.0003E+02 7.2236E+02 6.1697E+02 6.6759E+02 6.0253E+02 6.0000E+02
Mean 6.0071E+02 6.1555E+02 6.2680E+02 6.0001E+02 7.1043E+02 6.0400E+02 6.6022E+02 6.0049E+02 6.0000E+02

Std 1.2313E+00 1.0344E+01 9.6632E+00 6.9646E-03 9.4823E+00 4.3467E+00 4.2272E+00 5.8088E-01 7.9048E-09
Rank 4 6 7 2 9 5 8 3 1

F4 Best 8.1990E+02 8.1493E+02 8.3586E+02 8.3084E+02 9.9036E+02 8.4372E+02 9.2473E+02 8.2089E+02 8.2388E+02
Worst 9.2215E+02 8.4478E+02 9.0649E+02 8.8855E+02 1.0638E+03 9.1177E+02 9.6910E+02 8.9459E+02 8.9353E+02
Mean 8.4613E+02 8.3134E+02 8.5984E+02 8.5050E+02 1.0373E+03 8.7007E+02 9.4484E+02 8.5133E+02 8.4550E+02

Std 2.3824E+01 7.4591E+00 1.8611E+01 1.3203E+01 1.9457E+01 1.4201E+01 1.1636E+01 1.6861E+01 1.7235E+01
Rank 3 1 6 4 9 7 8 5 2

F5 Best 9.0145E+02 9.6857E+02 1.0209E+03 9.2629E+02 5.5024E+03 9.0362E+02 2.9197E+03 9.0100E+02 9.0000E+02
Worst 1.9958E+03 2.0595E+03 2.0033E+03 2.1483E+03 8.8488E+03 1.1210E+03 3.8217E+03 1.0993E+03 9.9753E+02
Mean 1.0464E+03 1.3894E+03 1.4954E+03 1.1972E+03 6.5808E+03 9.6616E+02 3.3487E+03 9.3644E+02 9.0411E+02

Std 2.5835E+02 3.0338E+02 2.9531E+02 2.9664E+02 8.4668E+02 6.4796E+01 2.6335E+02 4.0205E+01 1.8243E+01
Rank 4 6 7 5 9 3 8 2 1

F6 Best 1.8881E+03 1.8417E+03 2.0821E+03 1.8693E+03 1.4567E+09 1.9030E+03 8.7898E+08 2.0375E+03 1.8106E+03
Worst 1.1640E+04 8.4653E+03 2.0805E+04 1.1473E+04 1.0534E+10 1.5044E+04 5.9546E+09 2.3833E+04 1.8516E+03
Mean 4.5562E+03 2.1201E+03 6.7754E+03 3.0981E+03 5.9826E+09 4.5225E+03 4.2218E+09 6.0472E+03 1.8251E+03

Std 2.7141E+03 1.2040E+03 5.3240E+03 2.2861E+03 2.2026E+09 3.3666E+03 2.2519E+09 6.3572E+03 9.0360E+00
Rank 5 2 7 3 9 4 8 6 1

F7 Best 2.0236E+03 2.0252E+03 2.0320E+03 2.0190E+03 2.2869E+03 2.0372E+03 2.2412E+03 2.0234E+03 2.0012E+03
Worst 2.1601E+03 2.0703E+03 2.2494E+03 2.0816E+03 2.5285E+03 2.1014E+03 2.4569E+03 2.1682E+03 2.0374E+03
Mean 2.0558E+03 2.0411E+03 2.1087E+03 2.0352E+03 2.4139E+03 2.0687E+03 2.3281E+03 2.0568E+03 2.0182E+03

Std 2.7020E+01 1.1433E+01 4.7659E+01 1.6441E+01 7.0769E+01 1.5684E+01 4.1378E+01 3.4009E+01 1.1689E+01
Rank 4 3 7 2 9 6 8 5 1

F8 Best 2.2211E+03 2.2135E+03 2.2241E+03 2.2203E+03 2.6904E+03 2.2284E+03 2.2378E+03 2.2220E+03 2.2207E+03
Worst 2.2540E+03 2.2475E+03 2.3655E+03 2.2220E+03 1.1382E+04 2.3529E+03 2.2730E+03 2.2378E+03 2.2249E+03
Mean 2.2278E+03 2.2289E+03 2.2574E+03 2.2211E+03 3.9481E+03 2.2383E+03 2.2491E+03 2.2270E+03 2.2229E+03

Std 8.1216E+00 5.0964E+00 4.8880E+01 4.3166E-01 1.8043E+03 2.1803E+01 8.5472E+00 3.7259E+00 1.0533E+00
Rank 4 5 8 1 9 6 7 3 2

F9 Best 2.4654E+03 2.4813E+03 2.4811E+03 2.4808E+03 3.0794E+03 2.4808E+03 3.2482E+03 2.4808E+03 2.4808E+03
Worst 2.4676E+03 2.4980E+03 2.5477E+03 2.4811E+03 4.8576E+03 2.4841E+03 3.5372E+03 2.4808E+03 2.4808E+03
Mean 2.4658E+03 2.4879E+03 2.4912E+03 2.4809E+03 3.7145E+03 2.4813E+03 3.4663E+03 2.4808E+03 2.4808E+03

Std 4.2194E-01 5.2892E+00 1.4681E+01 1.1546E-01 4.2432E+02 7.1749E-01 5.5821E+01 2.2360E-04 3.3717E-09
Rank 1 6 7 4 9 5 8 3 2

F10 Best 2.5005E+03 2.5009E+03 2.5007E+03 2.4002E+03 3.2927E+03 2.5005E+03 2.6520E+03 2.5004E+03 2.5003E+03
Worst 4.3339E+03 3.1035E+03 4.6947E+03 2.6373E+03 8.2521E+03 2.6482E+03 6.7348E+03 4.3753E+03 2.6396E+03
Mean 3.2220E+03 2.6052E+03 3.4869E+03 2.4234E+03 7.4524E+03 2.5059E+03 5.7717E+03 3.4506E+03 2.5092E+03

Std 5.5223E+02 1.6046E+02 8.2059E+02 5.2652E+01 1.2990E+03 2.6895E+01 1.0067E+03 7.4044E+02 3.3369E+01
Rank 5 4 7 1 9 2 8 6 3

(Continued)
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Table 5 (continued)

Fun Indice EHO WSO MELGWO DOA NRBO OMA CDO ALA SFS

F11 Best 2.6000E+03 2.6156E+03 2.6067E+03 2.6003E+03 8.0868E+03 2.6614E+03 8.4430E+03 2.6000E+03 2.6000E+03
Worst 3.0000E+03 3.3788E+03 3.3579E+03 2.9006E+03 1.0837E+04 3.2876E+03 8.6474E+03 3.0000E+03 3.0000E+03
Mean 2.9100E+03 3.0544E+03 3.0471E+03 2.7804E+03 1.0245E+04 2.9366E+03 8.4928E+03 2.9167E+03 2.9200E+03

Std 7.1197E+01 2.0794E+02 1.7297E+02 1.4943E+02 6.0584E+02 1.0223E+02 4.0129E+01 7.4664E+01 7.6112E+01
Rank 2 7 6 1 9 5 8 3 4

F12 Best 2.9000E+03 2.9601E+03 2.9473E+03 2.9373E+03 3.2006E+03 2.9546E+03 3.4394E+03 2.9357E+03 2.9372E+03
Worst 2.9000E+03 3.1825E+03 3.0174E+03 2.9712E+03 3.6822E+03 3.0124E+03 3.6550E+03 2.9837E+03 2.9695E+03
Mean 2.9000E+03 3.0499E+03 2.9751E+03 2.9468E+03 3.3957E+03 2.9853E+03 3.5261E+03 2.9501E+03 2.9483E+03

Std 9.5022E- 05 5.0125E+01 2.0188E+01 6.8703E+00 1.2209E+02 1.6161E+01 3.9261E+01 1.3019E+01 7.4706E+00
Rank 1 7 5 2 8 6 9 4 3

Mean rank 3.5833 4.8333 6.3333 2.5833 8.9167 5.1667 7.9167 3.8333 1.8333

Friedman rank 3 5 7 2 9 6 8 4 1

Note: Bold values represent the best results.

Table 5 presents detailed statistics on the best, worst, mean, standard deviation, and rank metrics
based on analyzing thirty fitness values generated by each algorithm across thirty independent runs on the
CEC’2022 benchmark. The table shows that SFS achieves the lowest mean value on six functions (F1, F2, F3,
F5, F6, and F7) and ranks second on three functions (F4, F8, and F9). In contrast, the DOA algorithm secures
the top rank on three functions (F8, F10, and F11). Similarly, the EHO algorithm ranks first on two functions
(F9 and F12), while the WSO algorithm achieves the top rank on the F4 function.

Furthermore, to validate the effectiveness and reliability of the SFS algorithm, the Friedman rank test
was conducted for each benchmark function, with the results presented in the final row of Table 5. The
Friedman rank compares algorithm performance across all functions, whereas a lower rank indicates better
overall performance. The table shows that the SFS algorithm achieves the lowest Friedman rank, reflecting
its superior average performance, followed by DOA in second place. In contrast, NRBO records the highest
Friedman rank, indicating weaker overall performance. The SFS algorithm consistently delivers competitive
results, achieving low mean values and favorable rankings across multiple functions, outperforming or
matching the performance of other algorithms in most cases. These findings highlight the efficiency and
dominance of the SFS algorithm in solving optimization challenges.

The Wilcoxon rank test was applied to assess the statistical significance of differences between the SFS
algorithm and its competing algorithms. The results for the CEC’2022 test set are summarized in Table 6,
where the p-values comparing SFS with each method are reported. A p-value below 5% indicates a statistically
significant difference between SFS and the other methods. As shown in Table 6, SFS demonstrates statistically
substantial differences from most competitors across most functions. For instance, SFS significantly differs
from WSO, MELGWO, NRBO, OMA, and CDO across all functions. Additionally, SFS differs from DOA on
all functions except F4, F9, and F12 and from EHO on all functions except F4, F8, F11, and F12, based on the
results for the CEC’2022 benchmark suite. Furthermore, some p-values equal 1.0000E + 00, indicating that
the methods perform similarly to SFS on these specific functions. These functions lack sufficient complexity
to produce statistically significant differences. Values indicating no significant difference between SFS and
other algorithms are highlighted in bold within the table. Overall, the results in Table 6 confirm that SFS
performs strongly on most CEC’2022 test functions.
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Table 6: Results of the Wilcoxon rank-sum test on CEC’2022

Fun EHO WSO MELGWO DOA NRBO OMA CDO ALA
F1 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5052E-11 1.5099E-11 1.5099E-11 1.5099E-11
F2 6.6273E-01 7.7286E-10 4.9144E-08 2.5418E-03 1.5090E-11 9.7783E-11 1.5090E-11 4.0723E-05
F3 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11
F4 7.5619E-01 9.9967E-01 1.1900E-03 8.7710E-02 1.5099E-11 3.7996E-07 1.5099E-11 1.0547E-01
F5 3.9328E-10 1.2968E-11 1.1718E-11 2.6209E-11 1.1718E-11 2.9661E-10 1.1718E-11 1.1920E-09
F6 1.5099E-11 3.0329E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11
F7 3.3610E-10 4.6301E-09 2.0386E-11 1.6840E-04 1.5099E-11 1.6692E-11 1.5099E-11 2.9837E-09
F8 2.3985E-01 1.5984E-09 2.2522E-11 1.0000E+00 1.5099E-11 1.5099E-11 1.5099E-11 4.4205E-07
F9 1.0000E+00 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 1.5099E-11 8.5338E-01
F10 1.7371E-10 5.8687E-10 1.3049E-10 1.0000E+00 1.5099E-11 1.4157E-08 1.5099E-11 2.7664E-08
F11 1.0000E+00 8.3943E-05 1.2141E-05 3.7899E-01 1.5033E-11 1.2485E-03 1.5033E-11 3.0975E-04
F12 1.0000E+00 1.8449E-11 2.5461E-08 3.2553E-01 1.5090E-11 5.4683E-11 1.5099E-11 6.1001E-01

Note: Bold indicates the p-value greater than 5%.

On the other hand, Fig. 13 illustrates the convergence curves of the nine algorithms applied to the
CEC’2022 benchmark suite, providing a visual representation of their convergence behavior. The SFS
convergence curves are highlighted in red to facilitate performance evaluation. As shown in Fig. 13, SFS
exhibits rapid convergence during the early iterations. It consistently progresses toward the optimal solution,
demonstrating its ability to explore the search space and approach the global optimum efficiently. The
convergence curves of the other algorithms are also displayed, allowing for a comprehensive comparison
of their convergence patterns. This analysis provides valuable insights into the relative performance of
each algorithm on the CEC’2022 benchmark suite. Overall, the convergence analysis highlights SFS’s ability
to converge quickly and achieve near-optimal solutions, with the convergence curves offering a detailed
evaluation of its performance relative to the other algorithms.

Finally, Fig. 14 depicts the boxplot results of the nine algorithms on the CEC’2022 test set. The central
line within each box represents the data median, while the upper and lower edges correspond to the upper
and lower quartiles, respectively. The height of each box reflects the variability within the sample data.
The lines extending beyond the box indicate the maximum and minimum values in the dataset, with any
points outside these lines considered outliers. These boxplots provide an intuitive view of data variability
and concentration trends, enabling an assessment of the algorithms’ solution stability. As shown in Fig. 14,
the SFS boxplots are generally narrower and positioned lower for most functions, indicating that the SFS
algorithm demonstrates strong stability and high solution accuracy.

8 Discussion and Future Works
While the SFS algorithm has been successfully applied across diverse domains, it faces several challenges

and presents significant opportunities for further exploration. Despite its growing popularity and practical
applications, critical issues need additional attention. Researchers and scholars are encouraged to invest
further effort in addressing these challenges and developing innovative SFS methodologies to enhance its
performance and expand its applicability. Drawing from the reviewed literature, Section 8.1 summarizes the
key findings of this review paper. In contrast, Section 8.2 highlights critical issues and related topics within
the SFS field that require further exploration by the research community. Furthermore, Section 8.3 suggests
potential research directions, such as developing new SFS variants and applications.
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Figure 13: Convergence curves of the nine algorithms for solving CEC’2022
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Figure 14: Boxplots of the nine algorithms for solving CEC’2022

8.1 Key Findings
• Researchers have successfully applied the SFS algorithm across diverse domains. As illustrated in Fig. 15,

the distribution of SFS-based studies reveals that power and energy applications and engineering
each constitute the largest share at 33%. Other significant application areas include machine learning
(8%), medical and bioinformatics (7%), image processing (7%), environmental modeling (6%), and
economic and financial applications (6%). This distribution underscores the broad applicability of the
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SFS algorithm and its potential to effectively address complex optimization challenges in established and
emerging research fields.

• Fig. 16 illustrates the distribution of various SFS algorithm variants employed in different optimization
challenges. The data reveals that the standard version of SFS remains the most prevalent, accounting for
49% of applications. This indicates that classical SFS remains the preferred choice among researchers
and practitioners. Additionally, 27% of applications utilized modified SFS versions, highlighting a strong
interest in tailoring the algorithm to address specific problem requirements. Hybrid variants of SFS,
which integrate the algorithm with other optimization techniques, were employed in 18% of cases. Lastly,
6% of studies focused on multi-objective versions of SFS, specifically designed to optimize multiple
objectives simultaneously. These results underscore the diversity of approaches and preferences within
the research community, emphasizing the significant adoption of SFS’s modified, hybridized, and multi-
objective variants, reflecting the algorithm’s ongoing evolution in addressing the complexities of various
optimization problems.

• Section 4 of this review on SFS variants underscores the pivotal role of various enhancement tech-
niques in advancing SFS performance. These techniques encompass chaotic maps, fitness-distance
balance methods, multi-surrogate-assisted approaches, fuzzy logic controllers, penalty-guided methods,
binary adaptations, eagle strategies, disruption operators, opposition-based learning, random walk
mechanisms, parallel implementations, and multi-strategy integrations. Additionally, SFS has been
effectively combined with other meta-heuristic algorithms from evolutionary and swarm intelligence
categories. Modified and hybrid approaches tackle key challenges in SFS, such as overcoming local
optima, enhancing population diversity, and balancing exploration and exploitation. These advanced
SFS variants frequently demonstrate superior performance due to the strategic implementation of these
optimization techniques.

• A review of various SFS variants reveals that chaotic maps, fitness-distance balance method, and
multi-strategy integrations are among the most frequently employed enhancements. These techniques
significantly improve the algorithm’s balance between exploitation and exploration, making it well-
suited for complex optimization challenges. Additionally, GWO, WOA, and DE are commonly used
as hybridization algorithms. Combining SFS with evolutionary and swarm-based meta-heuristic algo-
rithms leverages the strengths of both algorithms, leading to enhanced convergence rates and solution
accuracy, especially in cases requiring advanced search strategies.

• Based on the performance evaluation updates of the SFS algorithm presented in Section 7, it can be
concluded that, after a decade of continuous development and refinement, the SFS algorithm still
consistently outperforms many recently published meta-heuristic algorithms across various categories.
The comparative analysis, using the CEC’2022 benchmark test suite, confirms the superiority of SFS in
terms of convergence speed, solution quality, and robustness.

• Despite its advantages, this comprehensive review has several limitations. First, the study is limited to
peer-reviewed journal articles, excluding unpublished research, such as preprints, which may contain
valuable insights. Second, language restrictions were imposed, excluding studies published in languages
other than English, which could introduce language bias. Furthermore, the quality and limitations of
the included studies varied, potentially impacting the reliability of the overall conclusions. Additionally,
the authors’ subjective decisions influenced the study inclusion and exclusion criteria, as well as data
extraction and quality assessments.
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Figure 15: Proportional distribution of SFS applications across different domains

Figure 16: Distribution of SFS variants in various optimization problems

8.2 Open issues
• The literature review reveals a growing trend in the volume of publications and citations related to the

SFS algorithm. Future research on SFS is anticipated to increasingly emphasize its applications across
diverse domains, shifting the focus away from its foundational principles. However, several fundamental
challenges within existing SFS techniques still require in-depth examination. Researchers prioritize two
key areas: the automation of techniques and the generalization of SFS-based algorithms. Addressing
these areas is crucial for overcoming the challenges faced by optimization methods.

• The majority of SFS algorithm modifications documented in the literature predominantly evaluate
their effectiveness and efficiency on relatively small datasets. This approach overlooks the complexities
inherent in contemporary big data scenarios. While modified SFS variants have exhibited promis-
ing performance on smaller datasets, their ability to effectively handle large-scale datasets remains
largely unproven.

• The increasing demand for statistically validated results has garnered significant attention within
the knowledge engineering community, primarily driven by the widespread practical applications of
optimization algorithms. However, researchers proposing modifications to the SFS often neglect to
employ inferential statistics to ascertain significant differences between the modified SFS and the
original version. Typically, comparisons are based solely on error rates and convergence times, with the
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algorithm exhibiting the lowest error and fastest convergence deemed superior. However, estimation
errors can substantially influence these observed differences. Therefore, conducting rigorous statistical
tests with appropriate confidence intervals is crucial to determine whether the modified SFS outperforms
the original SFS accurately. This ensures that observed differences are not merely artifacts of the
estimation process.

• A fundamental limitation inherent in the SFS algorithm, shared with other optimization algorithms, is
related to the No Free Lunch theorem [248]. This theorem suggests that no single optimization algorithm
can consistently outperform all others across all possible optimization problems. Consequently, the
convergence behavior of SFS is significantly influenced by the specific characteristics of the search space
associated with a particular problem. In scenarios involving unknown or highly complex search spaces, it
becomes crucial to adapt SFS or integrate it with complementary techniques to address the optimization
task at hand effectively.

• The diffusion process in the SFS algorithm requires MDN × N function evaluations, and the update
process requires 2 × N function evaluations. As a result, each generation in SFS demands a minimum
of 3 × N function evaluations to produceN new individuals (assuming MDN = 1). This relatively high
computational cost can be a limitation, particularly when dealing with large-scale or computationally
expensive problems.

• Achieving an effective balance between exploration and exploitation in the SFS algorithm remains a
significant challenge, as no systematic approach has yet been established to manage these components
effectively. Despite numerous modifications to SFS, researchers have not proposed a coherent strategy to
optimize this balance. While SFS is recognized as a nature-inspired algorithm that attempts to balance
exploration and exploitation, there is still substantial potential for improvement in this area.

• While the SFS algorithm is generally less sensitive to parameter settings than many other meta-heuristic
algorithms, the challenge of parameter tuning remains. This is primarily due to the user-defined nature
of these parameters, as there is no guarantee that specific configurations will yield optimal performance
across all problem types. Consequently, the effectiveness of SFS is still dependent on the chosen
parameter settings, which may limit its overall efficiency and performance.

8.3 Future Prospects
• As discussed in Section 4.2, SFS has proven effective in solving various real-world applications. However,

significant potential remains for expanding SFS to address a wider range of optimization challenges,
including applications in the traveling salesman problem, drone swarm technology, smart homes, work
scheduling, robotics, and chemical engineering.

• Recent research suggests that adjusting population size can enhance algorithm performance [249]. A
larger population size is generally advantageous in the early stages, promoting extensive search space
exploration. Conversely, smaller populations are more effective in later stages, enabling finer tuning
near the optimal region. The linear population reduction [250] has shown promising results. Further
investigation into adaptive population sizing is essential to assess its potential benefits across various
optimization contexts, particularly for single-objective problems.

• The challenges associated with high-dimensionality in optimization problems have raised concerns
about the effectiveness of SFS in handling large datasets and computationally intensive tasks. While
SFS has shown promise in feature selection, applying it to datasets with tens of thousands of features
remains challenging due to the vast search space. Consequently, innovative strategies such as Principal
Component Analysis (PCA) [251] are required to effectively minimize the number of selected features
while maximizing classification accuracy.
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• Over the past decade, numerous innovative meta-heuristic algorithms have been developed. This review
reveals that most hybrid versions of SFS have focused on combining SFS with evolutionary and swarm-
based approaches. Exploring the hybridization of SFS with other mathematics-based or human-based
meta-heuristic algorithms could present promising research opportunities. Additionally, leveraging the
potential of a knowledge space to provide multiple information sources could enhance SFS performance
when integrated with other meta-heuristic techniques.

• A promising avenue for future research in the SFS algorithm involves investigating alternative population
structures. While SFS has demonstrated strong performance, refining its population dynamics could
significantly enhance its efficiency. Implementing structured population techniques, such as the island
model, hierarchical model, and cellular automata models, which have proven successful in other
evolutionary algorithms [252], could potentially improve the diversity and convergence behavior of the
SFS algorithm, leading to more robust and practical solutions.

• As discussed in Section 4.3, SFS has been successfully applied to multi-objective optimization problems,
demonstrating impressive results. However, many real-world optimization problems involve more than
three objective functions. Therefore, extending multi-objective variants of SFS to address many-objective
problems effectively represents a challenging and valuable direction for future research.

• Numerous real-world problems are dynamic, involving changes in search and/or objective space vari-
ables over time. As a result, optimization algorithms must rapidly and efficiently track moving optima or
Pareto fronts in these dynamic environments. Integrating incremental learning techniques or predictive
strategies into SFS to address dynamic optimization problems with time-varying objective functions
presents a promising avenue for future research.

• In the field of meta-heuristic optimization, there is a notable lack of guidelines for selecting the most
suitable optimization algorithm based on problem characteristics. This challenge is particularly relevant
for real-world optimization issues. A systematic investigation is needed to understand how decision
variables should interact and identify which problem features make SFS applicable to specific objective
functions. Unfortunately, such comprehensive studies have not been adequately conducted to assist in
selecting appropriate SFS variants based on problem characteristics. The diverse nature of real-world
problems within the search space further complicates this challenge.

9 Conclusions
This review paper presents a comprehensive analysis of SFS-related articles since the algorithm’s incep-

tion, systematically synthesizing advancements, trends, and innovations to establish a robust framework for
future research. By evaluating publications spanning from 2015 through the latter half of 2024, this study
highlights the SFS algorithm’s expansive applicability and versatility across diverse fields, including power
and energy, engineering, machine learning, medical and bioinformatics, image processing, environmental
modeling, and economics and finance. These findings demonstrate the widespread adoption of SFS, driven by
its advantageous characteristics. On the other hand, numerous modifications have been proposed to enhance
its performance in addressing diverse optimization problems, including improved initialization strate-
gies, adaptation of control parameters, and exploration of diverse neighborhood topologies. Furthermore,
hybridizations with other algorithms and multi-objective implementations have significantly expanded their
applicability to complex and conflicting optimization tasks. The performance of SFS was also evaluated
against recently published meta-heuristic algorithms using the CEC’2022 benchmark test, where results
highlighted its outstanding performance, establishing it as a top-performing algorithm among the eight
meta-heuristics evaluated.
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Looking ahead, the SFS algorithm is expected to continue evolving through ongoing adaptations
and hybridizations designed to enhance its efficiency in addressing optimization problems. This trend
is driven by the growing interest among researchers and the algorithm’s demonstrated performance in
tackling engineering challenges. The increasing number of SFS adaptations indicates a promising future
for the algorithm. This review aims to assist experienced and novice researchers in developing future SFS
modifications by providing valuable insights and inspiration.
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Nomenclature
ANN Artificial Neural Network
CSFS Chaotic Stochastic Fractal Search
DE Differential Evolution
FDB Fitness-Distance Balance
FS Fractal Search
GA Genetic Algorithm
GWO Grey Wolf Optimizer
MAE Mean Absolute Error
ORPD Optimal Reactive Power Dispatch
PID Proportional-Integral-Derivative
PSO Particle Swarm Optimization
RESs Renewable Energy Sources
RMSE Root Mean Square Error
SFS Stochastic Fractal Search
WOA Whale Optimization Algorithm
WSN Wireless Sensor Networks
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