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ABSTRACT: Effective resource management in the Internet of Things and fog computing is essential for efficient
and scalable networks. However, existing methods often fail in dynamic and high-demand environments, leading to
resource bottlenecks and increased energy consumption. This study aims to address these limitations by proposing the
Quantum Inspired Adaptive Resource Management (QIARM) model, which introduces novel algorithms inspired by
quantum principles for enhanced resource allocation. QIARM employs a quantum superposition-inspired technique
for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.
In addition, an energy-aware scheduling module minimizes power consumption by selecting optimal configurations
based on energy metrics. The simulation was carried out in a 360-minute environment with eight distinct scenarios.
This study introduces a novel quantum-inspired resource management framework that achieves up to 98% task offload
success and reduces energy consumption by 20%, addressing critical challenges of scalability and efficiency in dynamic
fog computing environments.
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1 Introduction
The exponential growth of the Internet of Things (IoT) has revolutionized the digital domain, allowing

interconnected devices to share and process data with unprecedented efficiency [1,2]. Along with the
growth in IoT devices, the demand for powerful and decentralized data processing solutions has led to
the adoption of fog computing [3,4]. Unlike traditional cloud computing [5], it operates at the edge of a
network [6], providing localized processing, storage, and control services to reduce latency and therefore
improve real-time response [7,8]. This paradigm faces many challenges because, in general, fog nodes are
resource-restricted compared to centralized cloud servers [9,10]. Most existing methods suffer from a lack
of scalability [11], as the dense volume and diversity of IoT devices can rapidly overwhelm processing
resources [12]. In addition, most models include machine learning and deep learning algorithms that are
computationally intensive and thus may impede real-time responsiveness [13,14]. Energy efficiency is another
major concern because most existing models do not balance processing needs with power limitations of edge
devices [15]. With these challenges, the need for innovation in resource management techniques that can
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dynamically adapt to real-time demand is felt without the expense of unnecessary computational and energy
overhead [16,17].

This work is motivated by the development of a framework for resource management to address the
limitations found in existing approaches. Although useful, current methods often suffer from a general
lack of flexibility and efficiency in providing scalable and sustainable IoT fog ecosystems [18]. This research
aims to fill this gap by proposing a new quantum-inspired resource management algorithm [19], able to
work within the limit of limited computing resources and energy availability. The central problem lies in
achieving adaptive, energy-efficient resource allocation that aligns with the dynamic demands of real-time
IoT applications [20]. Therefore, this study poses the following research question: How can a quantum-
inspired adaptive resource management (QIARM) algorithm enhance scalability, energy efficiency, and
adaptability in fog computing environments?

The proposed approach integrates principles from quantum computing, particularly quantum super-
position, and entanglement for resource management in fog computing, as shown in Fig. 1. The proposed
algorithm incorporates a quantum-inspired data structure that enables the simultaneous representation
of multiple states of resource allocation. By simulating superposition, QIARM parallelly explores possible
allocations and is thus much faster in its decisions. In addition, it proposes an entanglement-inspired
mechanism to enable effective resource coordination, which simultaneously synchronizes the resource
status of distributed fog nodes to mitigate redundant allocation and latency issues. In addition to this,
QIARM includes an adaptive learning part that adjusts the strategies for allocation at runtime, according
to network dynamics, and strikes a proper trade-off between performance and energy efficiency. Then,
the integrated energy-aware scheduling model will ensure minimum consumption of power by favoring
low-energy resource states with no sacrifice of computational effectiveness. The main contributions of this
research study can be summarized as follows:

• The proposed algorithm introduces a novel data structure inspired by quantum superposition that
enables simultaneous consideration of multiple resource states.

• A mechanism synchronizes allocation across the nodes and is very effective in terms of not allowing
redundancy of resources, which in turn has a positive impact on the latency performance of a multi-
node fog system. The approach also builds on an entanglement-inspired model for coordinating resource
management across distributed fog nodes.

• QIARM integrates a unique and energy-conscious scheduling component that continuously monitors
resource demand and adapts allocation strategies to minimize power consumption. This feature is par-
ticularly beneficial for IoT-fog environments where energy resources are limited, providing sustainable
operational efficiency.

The structure of this article can be summarized as follows: Section 2 reviews existing approaches to
resource management to identify relevant research gaps. Section 3 introduces the Quantum Inspired Adap-
tive Resource Management (QIARM) approach, detailing its core components and methodology. Section 4
presents the experimental setup and simulation results to evaluate the QIARM performance. Section 6
provides a discussion of the results and their implications. Finally, Section 7 concludes the article.
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Figure 1: The overview of the proposed QIARM approach

2 Related Work
The rapid proliferation of IoT devices has significantly increased the demand for resource-efficient

computing and real-time data processing capabilities. Fog computing, which allows computation at the
edge of the network, has emerged as a solution to address latency and bandwidth constraints in IoT
environments [21,22]. Recent research has focused on developing efficient and adaptive resource man-
agement strategies to optimize performance and ensure responsiveness under varying conditions [23,24].
In fog computing environments, task offloading and resource allocation have become central to reducing
delays and improving the quality of service for IoT applications [25,26]. Advanced resource management
techniques have been proposed to address specific requirements, such as network splitting in 5G and 6G
systems [27,28], retransmission strategies in the Long Range Wide Area Network (LoRaWAN) [29], and
adaptive management of greenhouse environments [30].

Various approaches to resource management leverage machine learning and deep learning techniques
to handle the complexities of IoT networks. For example, lightweight frameworks for distributed computing
aim to balance computational load across IoT nodes, effectively managing resource constraints [31]. In
addition to classifier systems, fog-cloud hybrid models have also been introduced to improve resource
utilization by making intelligent decisions in distributed environments [32]. In Industrial IoT, dual-driven
models have been presented based on reinforcement learning to improve sustainable computing [33]. Digital
twin and blockchain-supported environments have also been suggested [34,35]. Furthermore, reinforcement
learning has been used to enable resource management for deep neural network inference and improve
computational efficiency in IoT networks where real-time analytics plays a key role [36].

Novel adaptive frameworks in IoT are still emerging that will include predictive maintenance and
prioritization of resources to improve the reliability of the service and reduce any interruption to it [37,38].
This has been achieved in resource management on mobile edge computing using a priority mechanism to
optimize resource allocation and achieve low latency for mobile users [26]. Pervasive edge computing models
have also been popular, especially for applications that require very high data transmission rates, including
VR streaming wirelessly in industrial IoT applications [39]. However, it has yet to be overcome concerning
developing a scalable, adaptable, and energy-efficient resource management framework that can cope with
the fluctuating demands of real-time IoT applications.

Another key limitation of existing resource management strategies is that they cannot respond
appropriately to rapid changes in network load and availability, as reflected in predictive maintenance



2644 Comput Model Eng Sci. 2025;142(3)

and priority-based models for mobile edge environments [26,37]. These models also do not consider any
coordination mechanisms required by applications for sharing resources at different nodes, which is typical
of latency-sensitive applications such as virtual reality streaming in industrial IoT [39]. The proposed
QIARM approach aims to address challenges by introducing quantum-inspired resource representation and
entanglement-like coordination mechanisms for runtime adjustments of resources. This allows QIARM to
represent multiple states of allocation in superposition, leading to searching larger solution spaces while
reducing computational overhead and deploying faster resource allocations. Furthermore, the energy-aware
scheduling of QIARM optimizes energy consumption by adapting the allocation according to run-time
conditions, which is not supported by state-of-the-art models. Fig. 2 summarizes the key limitations in
existing methods and underlines how the proposed approach is addressing these challenges.

Figure 2: Comparison of the existing approaches limitations, challenges, and QIARM solutions

3 Proposed QIARM Approach
Quantum-inspired adaptive Resource Management switches on quite a new conceptual framework

toward optimized resource allocation in fog computing environments. Featuring quantum-inspired super-
position and entanglement, QIARM dynamically coordinates the distributed resources over time to make it
adaptive with low latency and energy efficiency. This allows for addressing scalability challenges and enables
real-time responsiveness uniquely for IoT applications over resource-constrained networks.

3.1 Workflow of the Proposed QIARM Approach
The QIARM approach is designed for efficient and adaptive resource allocation in dynamic fog comput-

ing environments. Comprising three major phases, each is tailored for managing resources at different levels:
initialization, real-time adaptation, and real-time adaptation forming a holistic and responsive framework.
The workflow of the QIARM approach is represented in Fig. 3, which depicts an end-to-end process to
initialize, allocate, and dynamically adapt resources across fog nodes.

3.1.1 Initialization Phase
The Initialization Phase sets up the QIARM framework by defining and configuring the resource

states across all fog nodes. This is achieved by providing quantum-inspired representations of resources,
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whereby each node initializes a state from the available computing, storage, and energy resources. Due to the
superposition principles, multiple configurations of resources can be represented at once, forming a large set
of possible states with no extra computation.

Figure 3: Workflow of the QIARM approach

3.1.2 Resource Allocation Phase
After initialization has taken place, the actual assignment of the resources is carried out by the resource

allocation phase. The superposition and entanglement-inspired models enable consideration of resource
states at nodes in a parallel process viewed to be emulating the simultaneous exploration of many options
regarding the allocation of resources. Therefore, superposition allows the system to analyze in parallel several
possible allocations to establish those configurations that will yield maximum efficiency. Entanglement-
inspired mechanisms are used to coordinate resources across nodes, ensuring that distributed resources are
indeed effectively synchronized.

3.1.3 Adaptive Adjustment Phase
The Adaptive Adjustment Phase introduces a continuous monitoring mechanism based on feedback

that determines the adaptation in real-time concerning the resource requirements that are constantly chang-
ing. Monitoring in this phase will include tracking network conditions, usage patterns, and computational
loads by adjusting resource allocation in real-time to receive real-time feedback. Upon detecting shifted
demands, QIARM’s adaptive learning module will reassess the state of the resources and reconfigure them
to meet existing needs on the network.

3.2 System Model
In the proposed QIARM system, the quantum-inspired approach is emphasized, uniquely aligning

resource allocation strategies with real-time network conditions. In Algorithm 1, QIARM workflow is
outlined, detailing the initialization of resource states, the entanglement-inspired resource allocation process,
and the adaptive adjustments to maintain balanced load distribution across fog nodes in real-time.
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Algorithm 1: QIARM Workflow for Fog Computing Environment
Input: Set of IoT devices {D1 , D2, . . . , DN} generating demands di(t) with mean λi(t), Set of fog nodes

{F1 , F2, . . . , FM} with resource capacities (C j , M j , E j)
Output: Optimal resource allocation across fog nodes to handle IoT demands
1 Initialization Phase:
2 foreach fog node Fj( j = 1, . . . , M) do
3 Initialize resource vector Ri j = (Ci j , Mi j , Ei j) for each task i;
4 Establish quantum-inspired superposition states for Ri j
5 end
6 Resource Allocation Phase:
7 Compute the entanglement function Q(Fi , Fj) = exp (−α ∣Ri −R j∣) between fog nodes foreach task i

from IoT device Di do
8 foreach fog node Fj do
9 Calculate resource demand di(t) based on Poisson model with mean λi(t) Compute availability

A j(t) for each Fj as per energy constraint Ej and resource vector Ri j Determine adaptive
matchingM(di , A j) for task i allocation to node j

10 end
11 Assign task i to the fog node j∗ with the highestM(di , A j);
12 end
13 Adaptive Adjustment Phase:
14 while Resource demand or availability changes in real-time do
15 foreach task i do
16 Update λi(t) and di(t) for IoT device Di;
17 Re-evaluate A j(t) for each fog node Fj;
18 AdjustM(di , A j) based on updated di(t) and A j(t) to balance load;
19 Redirect task i if a better Fj with a higherM(di , A j) exists;
20 end
21 end

3.2.1 Objective Function
The overarching goal of the proposed QIARM model is to optimize resource allocation by balancing

latency, energy efficiency, and task offloading success rate. This is achieved by minimizing the objective
function J, defined as:

J = w1 ⋅ L +w2 ⋅ E −w3 ⋅ S

Here, L, E, and S represent latency (ms), energy consumption (kWh) and task success rate (%),
respectively. The weighting factors w1, w2, and w3 allow prioritizing specific metrics, such that w1 +w2 +w3 =
1. These weights can be tuned according to the application requirements to emphasize particular objectives,
such as energy efficiency for green IoT systems or low latency for real-time applications.

3.2.2 Fog Computing Environment
The fog computing environment consists of a set of N IoT devices, {D1 , D2, . . . , DN}, each generating

variable workloads, and a set of M fog nodes, {F1 , F2, . . . , FM}, capable of executing tasks with limited
resources. Each fog node Fj ( j = 1, . . . , M) has computational capacity C j, memory capacity M j, and energy
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restriction E j. To model resource types across fog nodes, let Ri j represent the resource vector for task i at
fog node j, where

Ri j = (Ci j , Mi j , Ei j) , (1)

with Ci j, Mi j, and Ei j denoting the computation, memory, and energy requirements, respectively, for each
task i at node j. The interactions within the fog environment are captured through a quantum-inspired
entanglement function, Q(Fi , Fj), that synchronizes resource management across nodes:

Q(Fi , Fj) = exp (−α ∣Ri −R j∣) , (2)

where α is the scaling parameter that dictates the extent of entanglement concerning resource similarity
between fog nodes. The function furthers the coordinated allocation through dynamic changes of weights
with alterations to that encourage a distributed resource-sharing method that is efficient.

3.2.3 Resource Demand and Availability Modeling
The demand and supply model is adaptive, where real-time demand fluctuations are captured using the

probabilistic framework. Let di(t) denote the demand for resources from the IoT device Di at the instant t
modeled as Poisson random variable with mean λi(t), where:

di(t) ∼ Poisson(λi(t)), (3)

and λi(t) dynamically adjusts based on observed demand patterns. Resource availability for each fog node
Fj is represented by an availability function A j(t), formulated as:

A j(t) = C j ⋅ f (E j , t) −
N
∑
i=1

Ri j , (4)

where f (E j , t) is a time-dependent function representing the energy efficiency of node j hence ensuring
that dynamically updated availability is matched with energy constraints over time. Demand is matched with
availability using the adaptive matching functionM(di , A j) assigning tasks from IoT devices to fog nodes
considering resource constraints and availability probabilities:

M (di , A j) =
Q(Fi , Fj) ⋅ A j(t)
1 + e−β(di(t)−A j(t))

, (5)

where β is an adaptation parameter that controls the sensitivity of task assignments based on real-time
demand and availability.

3.3 Quantum-Inspired Algorithm Design
QIARM is proposed to improve resource management for fog computing environments by the princi-

ples of quantum mechanics. In the following, the proposed framework provides a representation based on
the quantum superposition of resources, an entanglement-inspired mechanism for coordination among the
nodes, an adaptive learning feature, and an energy-sensitive scheduling system.

3.3.1 Resource Representation via Quantum Superposition
In the QIARM model, resource allocation states are represented using a quantum superposition-

inspired approach to enable parallel exploration of multiple configurations. Each fog node Fj is assigned
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a quantum state vector Ψj, which encapsulates all possible allocations simultaneously, allowing for a
probabilistic assessment of each configuration.

Define Ψj as a superposition of the potential resource states ∣ϕk⟩, where each ∣ϕk⟩ corresponds to a
different configuration of the allocation for node j:

Ψj =
K
∑
k=1

α jk ∣ϕk⟩, (6)

where α jk is the amplitude of state ∣ϕk⟩ for node j, representing the likelihood of selecting configuration k.
The values of α jk are normalized such that:

K
∑
k=1
∣α jk ∣2 = 1. (7)

Each state ∣ϕk⟩ in Ψj encodes a vector of resource parameters (Ck , Mk , Ek), where Ck is the computation
capacity, Mk is the memory, and Ek is the energy required for configuration k. We can consider any one of
the resource parameters, say for node j, by taking an expectation value weighted across all configurations:

⟨C j⟩ =
K
∑
k=1
∣α jk ∣2Ck , ⟨M j⟩ =

K
∑
k=1
∣α jk ∣2Mk , ⟨E j⟩ =

K
∑
k=1
∣α jk ∣2Ek . (8)

The quantum-inspired superposition technique enables the system to assess all resource states in parallel
and picks up the best allocation from the measurement of Ψj. The final measurement collapses Ψj to ∣ϕk∗⟩
that represents the best allocation with highest probability:

k∗ = arg max
k
∣α jk ∣2. (9)

This parallel exploration provides a novel and efficient method to handle resource allocation in fog
nodes, where traditional sequential evaluations would be computationally prohibitive.

3.3.2 Entanglement-Inspired Coordination Mechanism
QIARM follows the principles of quantum entanglement for synchronizing resource allocations

across distributed fog nodes. This ensures efficiency in resource management in a nonredundant man-
ner. Entanglement-inspired coordination dynamically models node interdependencies, promoting shared
resource utilization and helping nodes balance resource allocation against dynamic demands in real-time.

Let Φ i j be the entanglement coefficient between two fog nodes, Fi and Fj. It measures the strength of
their resource correlation. The higher the value is, the stronger the resource-sharing potential will be. Now,
define Φ i j as:

Φ i j = exp (−γ ∥Ri −R j∥) , (10)

where γ is a scaling factor, while Ri and R j are the resource vectors for nodes Fi and Fj, respectively, and
the entanglement coefficient Φ i j decreases due to the increasing difference between resource vectors, thus
reducing the intensity of coordination for diverging resource states.
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For correlated allocation, define the vector of the shared resource, Rshared, with components weighted
by contributions of the entangled nodes:

Rshared =
∑i≠ j Φ i jRi

∑i≠ j Φ i j
, (11)

The shared vector Rshared is the aggregated resource state of entangled nodes; this, in effect, aligns
resource availability within the fog environment. Each node, finally, uses Rshared for its local computation to
harmonize its resource distribution.

For task allocation, let us define a coordination function Ci j(t), which in real-time and based on
mutually perceived availability and demand for each other, readjusts resource distribution between entangled
nodes. The function may be expressed as:

Ci j(t) =
Φ i j ⋅ (Ai(t) + A j(t))

1 + e−δ(di(t)−d j(t))
, (12)

where Ai(t), A j(t) are the availability functions of nodes Fi , Fj, respectively, di(t) and d j(t) their respective
demands, δ is a sensitivity parameter modulating response to the real-time demand disparity. Finally, the
resource allocation decision for each node incorporates both local as well as shared resources given by:

Rfinal
i = Ri +∑

j≠i
Ci j(t)Rshared, (13)

3.3.3 Adaptive Learning Component
The Adaptive Learning Component within QIARM continuously adjusts resource allocation based

on evolving network conditions. This adaptive model operates in a feedback-driven loop, where each fog
node dynamically refines its allocation strategy according to observed demand and availability fluctua-
tions, thereby enhancing real-time optimization. In Algorithm 2, the Quantum-Inspired Algorithm Design
for QIARM is outlined, detailing a structured approach for resource representation, entanglement-based
coordination, adaptive learning, and energy-aware scheduling across fog nodes.

Algorithm 2: Quantum-Inspired Algorithm Design for QIARM

Input: Set of fog nodes {Fj}M
j=1; Set of tasks {Ti}N

i=1
Output: Optimized resource allocation with minimized energy consumption
1 Initialize Quantum Superposition for Resource Representation:
2 foreach fog node Fj do
3 Define quantum state vector Ψj = ∑K

k=1 α jk ∣ϕk⟩; Normalize amplitudes α jk such that
∑K

k=1 ∣α jk ∣2 = 1; Compute expected resource parameters ⟨C j⟩, ⟨M j⟩ ,⟨E j⟩
4 end
5 Apply Entanglement-Inspired Coordination Mechanism:
6 foreach pair of entangled fog nodes (Fi , Fj)
7 Calculate entanglement coefficient Φ i j = exp (−γ ∥Ri −R j∥); Determine shared resource vector

Rshared =
∑i≠ j Φ i jR i

∑i≠ j Φ i j
; Adjust allocation based on coordination function Ci j(t);

8 end
9 Implement Adaptive Learning Mechanism:

(Continued)
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Algorithm 2 (continued)
10 foreach fog node Fj do
11 Update learning function L j(t) = η(d j(t) − ⟨d j⟩) + ξ(A j(t) − ⟨A j⟩); Calculate error ε j(t) for

allocation refinement; Update allocation weights wnew
j = wold

j − α ⋅ ε j(t); Adjust learning rate α
based on adaptation functionA j(t)

12 end
13 Execute Energy-Aware Resource Scheduling:
14 foreach fog node Fj do
15 Compute energy cost function E j(t) = ∑K

k=1 ωk ⋅ E jk(t);
16 Calculate scheduling metric S j(t) = A j(t)

E j(t) ; Determine task priority Pi = ηi
E j(t)+λi

; Select optimal

configuration Roptimal
j = arg mink (S j(t) ⋅Pi);

17 end

Define L j(t) as the learning function for fog node Fj at time t, which updates the resource allocation
weights based on historical demand and allocation accuracy. The learning function is initialized as:

L j(t) = η (d j(t) − ⟨d j⟩) + ξ (A j(t) − ⟨A j⟩) , (14)

where η and ξ are adjustment coefficients, d j(t) is the current demand for Fj , and A j(t) represents its current
availability. The terms ⟨d j⟩ and ⟨A j⟩ are the mean demand and availability, respectively, for a measured
period. To refine these allocations, an error function ε j(t)may be calculated as a deviation between desired
vs. actual resource allocation determined by:

ε j(t) =
N
∑
i=1
∣Rdesired

i j −Ractual
i j ∣ , (15)

where Rdesired
i j and Ractual

i j are the desired and actual resource vectors for task i on node Fj. The learning part
takes this error ε j(t) to adapt the weights of future allocations to minimize mismatch in resources over time.
Having gotten the error on resource allocation, the updated weights are computed by a learning rate α that
decides the amount of update to stabilize the converging process:

wnew
j = wold

j − α ⋅ ε j(t). (16)

This adaptive update of weights incorporates into a continuous learning loop, whereby every node would
iteratively adjust its strategy. To further infuse environmental dynamics, let an adaptation function A j(t)
moderate α based on the rate of change of demand and availability:

A j(t) =
1

1 + e−κ( d
dt d j(t)− d

dt A j(t))
, (17)

where κ is a scaling factor that changes the sensitivity of the adaptation function. It allows the learning
component the capability to temporally be responsive to rapid changes and brings α into tune to prevent
over- or under-allocation as conditions evolve.

3.3.4 Energy-Aware Resource Scheduling
The QIARM’s Energy-Aware Resource Scheduling model because of fog computing introduces a

mechanism that minimizes energy consumption while maintaining optimal performance for tasks. The idea
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involves incorporating an energy-based metric in the quantum-inspired framework to select configurations
of resources that yield the lowest energy cost for the required level of performance. Energy cost function,
E j(t), of fog node, Fj, is defined as:

E j(t) = ∑
K
k=1 ωk ⋅ E jk(t), (18)

where ωk is the weight associated with each configuration k and E jk(t) is the energy requirement of
configuration k at time t. These weights, ωk , are dynamic due to real-time demand and bias in those
configurations where performance can be met with low energy consumption.

The energy-aware metric S j(t) is then computed for each fog node as a ratio of available energy to
energy cost to guide the scheduling decision:

S j(t) =
A j(t)
E j(t)

, (19)

where A j(t) represents the availability of resources at that time instant. The higherS j(t), the more desirable
the energy-efficient configuration will be, and it allows the scheduler to choose the node that minimizes
power consumption while still being able to meet the task demand. To implement task heterogeneity, each
incoming task i is endowed with a priority function Pi , considering energy and urgency factors:

Pi =
ηi

E j(t) + λi
, (20)

with η i is the urgency level of task i, and λ i is a scaling factor balancing energy consumption and task
priority. Tasks with higher values ofPi will be scheduled first, ensuring urgent tasks get higher priority while
keeping an energy-efficient allocation. The final selected configuration for each node Fj is done based on the
energy-minimizing schedule, which is updated iteratively as:

Roptimal
j = arg min

k
(S j(t) ⋅Pi) , (21)

This energy-aware scheduling framework allows QIARM to dynamically adapt resource allocation with
an energy-efficient perspective, selecting configurations to reduce overall power consumption.

4 Experimental Simulation and Results
The simulation setup for the QIARM approach was executed on a high-performance computing

platform that had an Intel Core i9 processor, 64 GB RAM, and an NVIDIA RTX 3090 GPU. We have
used MATLAB R2022b as an environment to simulate fog and a multitude of IoT nodes under various
demand conditions. The simulation parameters are designed to represent real-time IoT scenarios to the
task offloading rate and energy consumption, considering the network latency. Table 1 summarizes the
parameters used in our experiments, where we compare QIARM with the state-of-the-art approaches: Fog
Resource-Based Adaptive Task Offloading (FRATO) [25], Adaptive Resource Management for Network Slice
Architectures in 5G and 6G Systems (ADAPTIVE6G) [27], Retransmission-Assisted Resource Management
(R-ARM) ** [29] and IoT-Pi [31]. This section presents an overview of the experimental environment,
and Table 1 describes the simulation parameters to evaluate the performance of QIARM compared to the
state-of-the-art models.
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Table 1: Simulation parameters and descriptions

Parameter Value Description
Processor Intel Core i9 CPU used for running simulations

RAM 64 GB Memory allocated for handling intensive simulations
GPU NVIDIA RTX

3090
GPU utilized for accelerated computation

Simulator MATLAB R2022b Software platform for simulating QIARM and
comparison models

Network latency 5-100 ms Range of latency used to simulate real-time fog and IoT
scenarios

Energy consumption Varies by node Total energy consumed per node per allocation cycle
Task offloading rate 0.1-1 task/s Rate at which tasks are offloaded from IoT devices to fog

nodes
Comparison models FRATO,

ADAPTIVE6G,
R-ARM, IoT-Pi

State-of-the-art approaches used for benchmarking
against QIARM

4.1 Latency Analysis
We conducted the latency analysis by comparing QIARM with four state-of-the-art models, namely

FRATO [25], ADAPTIVE6G [27], R-ARM [29], and IoT-Pi [31]. Each model was simulated under unique
network conditions between stable and oscillating states. All scenarios run for 360 min and capture all
demands for resources from low to peak in both stable and oscillating network conditions. The scenarios
included conditions such as low demand with stable 50% fog node utilization, moderate demand with
fluctuating utilization, high demand with stable and fluctuating utilization, and peak demand with stable
and fluctuating fog node loads. The average latency L represents the total time taken to complete the task,
normalized across all completed tasks in dynamic fog environments.

L = ∑
N
i=1(tcompletion, i − tarrival, i)

Ntasks
(22)

where tcompletion, i is the task completion time, tarrival, i is the task arrival time, and Ntasks is the number
of successfully offloaded tasks. In low-demand scenarios (1 and 4), QIARM exhibited significant latency
advantages, as shown in Fig. 4. For instance, in Scenario 1, QIARM maintained an average latency of 10 ms,
outperforming FRATO’s 15 ms, ADAPTIVE6G’s 18 ms, R-ARM’s 20 ms, and IoT-Pi’s 22 ms. Scenario 2, with
moderate demand, further demonstrated QIARM’s efficiency as it achieved 12 ms latency, lower than FRATO
at 17 ms, ADAPTIVE6G at 20 ms, R-ARM at 22 ms, and IoT-Pi at 24 ms. These results highlight QIARM’s
capability to manage resources effectively even in scenarios with consistent, lower demand.

As demand was higher, so in Scenarios 3 and 6, which are high-loaded scenarios, QIARM remained the
best. In Scenario 3, a high-demand but stable network records an average latency of 15 ms by QIARM, while
FRATO accounted for 22 ms, ADAPTIVE6G accounted for 25 ms, R-ARM accounted for 27 ms, and IoT-Pi
accounted for 29 ms. In fact, under a fluctuating high-demand Scenario 6, QIARM uses its adaptive learning
to maintain the latency at 18 ms, remarkably below FRATO at 24 ms, ADAPTIVE6G at 27 ms, R-ARM at
29 ms, and IoT-Pi at 31 ms. These results underline the efficiency of QIARM’s quantum-inspired approach
under demanding and fluctuating load conditions.
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Figure 4: Latency analysis of QIARM and state-of-the-art approaches across eight scenarios over a 360-minute
simulation period

Under peak-demand scenarios like 7 and 8, their performance was still really strong, scaled up with
efficiency under very extreme conditions. Indeed, during peak demand-Scenario 7-with utilization at 95%
for most of the time, QIARM still maintained an average latency of 20 ms, while FRATO, ADAPTIVE6G, R-
ARM, and IoT-Pi realized 26, 28, 30, and 32 ms, respectively. Scenario 8, corresponding to the peak demand
with fluctuating network conditions, declared latency in QIARM at 21 ms, FRATO at 28 ms, ADAPTIVE6G
at 30 ms, R-ARM at 32 ms, and IoT-Pi at 34 ms.

4.2 Energy Consumption Analysis
To assess the energy efficiency of the proposed QIARM model, we evaluated its performance across eight

distinct scenarios. The energy consumption E quantifies the power used across all fog nodes, incorporating
real-time energy variations during task execution.

E =
M
∑
j=1
∫

T

t=0
Pj(t) dt (23)

where Pj(t) is the instantaneous power of fog node j, M is the number of nodes, and T is the total simulation
time. In Scenario 1, where demand and network utilization were low and stable, QIARM achieved an energy
consumption of 240 kWh, significantly lower than the baseline models, as shown by Fig. 5. In comparison,
FRATO recorded 290 kWh, ADAPTIVE6G consumed 310 kWh, R-ARM used 330 kWh, and IoT-Pi reached
345 kWh. This result proves that QIARM energy-aware scheduling effectively cuts down consumption in
low-demand situations. Along similar lines, Scenario 2 is a moderate-demand environment, in which, with
stable utilization, QIARM kept energy consumption at 260 kWh, while FRATO, ADAPTIVE6G, R-ARM,
and IoT-Pi recorded 310, 330, 355, and 370 kWh, respectively.
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Figure 5: Energy consumption analysis of QIARM and state-of-the-art approaches across eight scenarios over a 360-
minute simulation period

For high-demand conditions in scenario 3, QIARM’s energy efficiency remained robust at 280 kWh,
compared to FRATO’s 340 kWh, ADAPTIVE6G’s 360 kWh, R-ARM’s 380 kWh, and IoT-Pi’s 395 kWh. This
scenario highlights QIARM’s adaptive energy-aware resource allocation as demand intensifies. In Scenario
4, under low demand but fluctuating network utilization, QIARM managed to keep energy consumption
at 250 kWh. Meanwhile, FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi showed higher energy demands,
consuming 300, 325, 345, and 360 kWh, respectively.

As the network load increased in Scenario 5 with moderate demand and fluctuating utilization,
QIARM recorded an energy consumption of 275 kWh, whereas FRATO consumed 330 kWh, ADAPTIVE6G
reached 350 kWh, R-ARM utilized 375 kWh, and IoT-Pi peaked at 390 kWh. In Scenario 6, where both
demand and network utilization were high and variable, QIARM achieved 295 kWh in energy consumption,
outperforming FRATO at 355 kWh, ADAPTIVE6G at 375 kWh, R-ARM at 400 kWh, and IoT-Pi at 415 kWh,
showcasing QIARM’s resilience in handling more intense and dynamic conditions.

In peak-demand Scenario 7, with a stable but high utilization of 95%, QIARM recorded an energy
consumption of 310 kWh, substantially lower than FRATO at 370 kWh, ADAPTIVE6G at 390 kWh, R-ARM
at 415 kWh, and IoT-Pi at 430 kWh. Finally, in Scenario 8, representing the most challenging conditions
of peak demand with fluctuating utilization, QIARM’s adaptive framework achieved 320 kWh in energy
usage. In contrast, FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi recorded higher values of 380, 400, 420, and
435 kWh, respectively.

4.3 Task Offloading Success Rate
To evaluate the task offloading efficiency of QIARM, we analyzed its performance across eight novel

scenarios. The task offloading success rateS measures the efficiency of the system in completing tasks
successfully without resource bottlenecks.

S = Nsuccess

Ntotal
× 100 (24)
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where Nsuccess is the number of successfully offloaded tasks, and Ntotal is the total number of tasks generated.
In scenario 1, QIARM achieved a task offloading success rate of 98%, outperforming FRATO’s 94%,
ADAPTIVE6G’s 92%, R-ARM’s 89%, and IoT-Pi’s 88%, as shown by Fig. 6. This scenario indicates that
QIARM effectively manages low-demand environments by accurately offloading tasks without exceeding
resource limits. Scenario 2, a moderate-demand setting, reflected similar results, with QIARM recording a
success rate of 96%, while FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi attained success rates of 92%, 90%,
88%, and 87%, respectively.

Figure 6: Task offloading success rate analysis of QIARM and state-of-the-art approaches across pre-defined multiple
scenarios

Under high-demand conditions in Scenario 3, QIARM’s success rate was 93%, still higher than FRATO
at 89%, ADAPTIVE6G at 87%, R-ARM at 85%, and IoT-Pi at 83%. This scenario highlights QIARM’s ability to
optimize task management and avoid resource overload, unlike the traditional models which showed higher
failure rates. In Scenario 4, where demand was low but utilization fluctuated, QIARM managed to maintain
a success rate of 95%. In comparison, FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi achieved success rates of
91%, 89%, 87%, and 85%, respectively.

In Scenario 5, QIARM attained a success rate of 94%, while running at a moderate pace and fluctuating
utilization, far ahead of FRATO with 90%, ADAPTIVE6G with 88%, R-ARM with 86%, and IoT-Pi at 84%.
Further, under high and fluctuating demands in Scenario 6, the adaptive mechanism of QIARM yielded
higher results; its success rate stood at 91%, much better compared to FRATO at 87%, ADAPTIVE6G at 85%,
R-ARM at 82%, and IoT-Pi at 80%. These results clearly show how QIARM retains good success rates under
dynamic and stressful conditions. For example, in the peak demand Scenario 7. In the last Scenario, 8, for
peak demand and fluctuating network conditions, the success rate recorded by QIARM was 88%, by FRATO
was 83%, by ADAPTIVE6G was 81%, R-ARM had 79%, and IoT-Pi had 76%.
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4.4 Resource Utilization
The resource utilization efficiency in the proposed QIARM model is studied with the top-performing

approaches. The resource utilization U evaluates the percentage of available resources effectively used during
task allocation cycles.

U =
∑M

j=1∑N
i=1 Ri , j

∑M
j=1 C j

× 100 (25)

where Ri , j is the resource allocated to task i at node j, and C j is the total resource capacity of node j. In
Scenario 1, during low demand or nodes operating at a stable utilization of 50%, the resource utilization rate
in QIARM is 85%, compared to FRATO at 78%, ADAPTIVE6G at 75%, R-ARM at 72%, and IoT-Pi at 70%, as
depicted in Fig. 7. It shows there that QIARM maximizes resource allocation even at low-demand conditions
by appropriately distributing the tasks across the nodes. Scenario 2, on the other hand, is a moderate-demand
scenario; QIARM continued to be the most efficient, reaching an occupancy rate of 87%, while FRATO,
ADAPTIVE6G, R-ARM, and IoT-Pi reached 80%, 77%, 74%, and 72%, respectively.

Figure 7: Resource utilization across scenarios and approaches

For example, under the high-demand Scenario 3, QIARM experienced resource utilization of 89%,
against FRATO, which had 82%, ADAPTIVE6G at 80%, R-ARM at 77%, and IoT-Pi at 75%. This underlines
how QIARM is able to be adaptive to high demand in managing the resources. Efficient distribution becomes
very important during such a situation, as it helps avert bottlenecks of the resources. Under scenario 4,
with fluctuating utilization, QIARM was able to maintain resource utilization at 86%, while outperforming
those reached by FRATO at 79%, ADAPTIVE6G at 76%, R-ARM at 73%, and IoT-Pi at 71%. In scenario 7,
peak demand and utilization stability at 95%, QIARM reached a utilization of 91%, significantly higher when
compared to FRATO at 84%, ADAPTIVE6G at 82%, R-ARM at 79%, and IoT-Pi at 77%. Lastly, in Scenario
8, representing peak demand and fluctuating utilization, QIARM maintained its resource utilization rate
at 90%, whereas FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi reached utilization of 85%, 83%, 80%, and
78%, respectively.
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5 Computational Complexity Analysis
This section evaluates the computational complexity of the QIARM algorithm, focusing on its three core

phases and comparing its overhead with baseline approaches.

5.1 Complexity of QIARM
The initialization of resource vectors and quantum superposition states scales linearly with the number

of fog nodes M and resource configurations K. The complexity is O(M ⋅ K).
The parallel evaluation of resource states and coordination based on entanglement between nodes scale

quadratically with the number of fog nodes M and linearly with tasks N, resulting in O(N ⋅M2).
Iterative updates of allocation strategies based on real-time dynamics introduce a complexity of O(T ⋅

M ⋅ N), where T is the number of adjustment cycles. The overall complexity of QIARM is:

O(M ⋅ K) + O(N ⋅M2) + O(T ⋅M ⋅ N)

5.2 Comparison with Baseline Approaches
- FRATO: Linear complexity of O(N ⋅M) but lacks adaptability and parallelism. - ADAPTIVE6G:

Centralized slicing introduces O(M2) complexity. - R-ARM: Sequential retransmission strategies result in
O(N2). - IoT-Pi: Lightweight learning with O(M ⋅ N) but lacks coordination.

Compared to these models, QIARM’s parallelism significantly reduces execution time while maintain-
ing scalability and adaptability. The added quadratic complexity for entanglement-based coordination is
offset by gains in resource optimization.

6 Discussion
The evaluation of the QIARM model shows notable superiority in resource management efficiency over

some established models, such as FRATO, ADAPTIVE6G, R-ARM, and IoT-Pi. In all scenarios, QIARM can
maintain a much higher task-offloading success rate along with much better resource utilization compared
with other established schemes. Therefore, the performance adaptability and robustness of the QIARM are
confirmed with fluctuating network conditions. While classical schemes fail in general for high-demand or
variable-load conditions, the quantum-inspired algorithms from QIARM achieve sophisticated balancing
of resources with minimal latency and energy consumption. Hence, the performance shows that quantum-
inspired models can attempt to solve some major limitations in the existing resource management techniques
under diverse scenarios and challenging IoT and fog computing conditions.

In addition, the adaptive resource allocation and scheduling mechanisms of QIARM helped achieve
high energy efficiency, represented by the consumption of lower energy in all scenarios compared to baseline
models. The quantum-based framework of QIARM dealt with real-time demands in a very nontraditional
manner with an energy-aware perspective that made it rather different from the traditional models, which
do not possess such responsive adaptability. These results show the feasibility of integrating quantum-
inspired methods in the pursuit of greater efficiency in the IoT, especially in complex systems that are fully
decentralized and require both resource flexibility and energy optimization. Although FRATO achieved a
maximum task load success rate of 94% under low-demand conditions, our QIARM model achieved 98%,
demonstrating superior adaptability. Additionally, QIARM reduced energy consumption by up to 20% across
various scenarios compared to state-of-the-art methods like ADAPTIVE6G and IoT-Pi, which lacked similar
energy-aware scheduling mechanisms. These results underline QIARM’s ability to address the scalability
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and efficiency challenges in fog computing environments, unlike traditional models that fail under dynamic
network conditions.

Although QIARM implements effective optimization in resource allocation, quantum-inspired mech-
anisms may introduce computational overheads that could affect scalability for larger networks. Future
research efforts should be made to further refine and develop these algorithms to reduce computational
overheads so that, in the future, quantum-inspired methods remain viable even for large-scale networks in
the IoT. Furthermore, hybrid solutions that merge quantum-inspired principles with other emerging models
can also be further explored to achieve even higher improvements in performance and energy efficiency.

7 Conclusion
Efficient resource management in IoT and fog computing environments is increasingly critical to

meet the demands of scalable and energy-efficient networks. This study introduced the QIARM model,
designed to optimize resource allocation in dynamic conditions. Unlike conventional methods, QIARM
uniquely leverages quantum principles to balance resource use and energy efficiency through adaptive
scheduling. Practically, this innovation has potential applications in diverse IoT networks, where flexible
resource management is essential. The evaluation showed QIARM’s superior performance, with a task-
offloading success rate reaching 98% under low-demand conditions, compared to 94% for FRATO and
92% for ADAPTIVE6G. Under high-demand scenarios, QIARM maintained a utilization rate of 89%,
outperforming FRATO’s 82% and R-ARM’s 77%. Furthermore, QIARM demonstrated notable energy
efficiency, reducing consumption by up to 20% in all scenarios. Although the QIARM model demonstrates
significant improvements in scalability, energy efficiency, and resource management, it introduces computa-
tional overhead due to the quantum-inspired mechanisms. Future extensions could explore hybrid models,
integrating quantum-inspired principles with machine learning for even greater optimization in complex
IoT environments.
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