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ABSTRACT: Deep Learning-based systems for Finger vein recognition have gained rising attention in recent years
due to improved efficiency and enhanced security. The performance of existing CNN-based methods is limited by the
puny generalization of learned features and deficiency of the finger vein image training data. Considering the concerns
of existing methods, in this work, a simplified deep transfer learning-based framework for finger-vein recognition is
developed using an EfficientNet model of deep learning with a self-attention mechanism. Data augmentation using
various geometrical methods is employed to address the problem of training data shortage required for a deep learning
model. The proposed model is tested using K-fold cross-validation on three publicly available datasets: HKPU, FVUSM,
and SDUMLA. Also, the developed network is compared with other modern deep nets to check its effectiveness. In
addition, a comparison of the proposed method with other existing Finger vein recognition (FVR) methods is also
done. The experimental results exhibited superior recognition accuracy of the proposed method compared to other
existing methods. In addition, the developed method proves to be more effective and less sophisticated at extracting
robust features. The proposed EffAttenNet achieves an accuracy of 98.14% on HKPU, 99.03% on FVUSM, and 99.50%
on SDUMLA databases.
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1 Introduction
Vein patterns in the fingers can be utilized to verify an individual’s identity, making finger vein

biometrics a promising technology in terms of security. Finger vein biometrics has grown in popularity in
recent years due to its significant advantages over conventional biometrics such as fingerprints, palm prints,
and others: High security—the vein pattern is beneath the skin, so it is hard to steal or forge. High stability—
the vein pattern is nearly unaffected by scars, oil, or sweat [1,2]. Liveness detection—only living people’s finger
veins can be captured and recognized [3]. As an emerging technology, biometric technology based on finger
veins is far from flawless. Finger-vein verification can be hindered by internal and external factors, such as
ambient or uneven lighting, light dispersion inside finger tissues, user behavior, and others [4]. Hence, it
is crucial to develop a method for extracting attributes of finger-vein network patterns that is precise and
reliable for recognition and verification. As compared to other vein biometrics such as palm vein and dorsal
vein, the finger vein has some added advantages [5], such as less cross-section area; hence, the size of the
instrument will be less for image capture, making it suitable for both user and employer for smaller areas.
Also, more finger vein images of the same subject, i.e., 4 to 6 fingers of both hands for one subject, resulted
in enhanced security. In addition, finger vein patterns are more confined and complex in a smaller area,
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making it challenging to spoof or forge, providing reasonable security and high accuracy compared to palm
or dorsal veins.

Initially, input image acquisition, data pre-processing, and feature extraction and matching are typical
components of a finger-vein recognition system. The finger vein pattern is imaged using near-infrared (NIR)
technology. The non-invasive, contactless method of getting a finger vein is easy and clean for users. The
most common way to reprocess images is the contrast-limited adaptive histogram equalization (CLAHE)
method [6], which enhances image contrast and noise reduction. One of the most crucial processes, feature
extraction, is inextricably linked to recognition accuracy. Presently, methods employing feature extraction
are broadly of three types: template-based methods that employ finger-vein pattern extraction in the form
of networks [7,8] or template generation form minutia features [9,10] of finger-vein images; representation
based methods employing robust codes generated by using descriptors [11,12], transformers [13,14], or
textures [15,16] to represent vein patterns; and feature learning-based methods that adaptively optimize
the extracted features. However, these methods rely primarily on past knowledge, are profound to noise,
and are difficult to calibrate. Deep learning methods, especially CNN-based, have been widely used in the
biometric field, such as finger-vein verification, due to their superior ability to simultaneously perform
extraction of features, dimension reduction, and classification. Methods such as 05 layer CNN design using
fused convolutional and subsampling [16] on four open-source datasets, deep densely connected CNN [17]
employing composite images of two fingers and input to finger-vein recognition (FVR), and a competitive
order CNN [18] method have demonstrated the CNN model’s potent feature extraction and classification
ability. However, these methods suffer from problems such as vast experiments for designs and training, the
incapability of real-time models running, and less feature extraction capability due to a lack of training data.
In addition, recent works employing vision transformers [19], CNN with correlation-based matching [20],
and large kernel-attention mechanism [21] have shown advantages such as improved feature understanding
capability, generalization, low parameter count, and others, but suffer from challenges such as the need to
focus on the open scenario, low quality and low contrast images misclassification, diverse lighting condition
and higher resource requirement, and others.

An implementation for finger-vein recognition using deep transfer learning and EfficientNet with self-
attention has been done in this study to enhance the dependability and effectiveness of the Finger vein
recognition methods and to address problems in the current literature. The use of self-attention will make
the system focus on salient features to capture the visual structure of finger vein images and reduce the
losses by suppressing the unnecessary features, resulting in increased recognition performance. The self-
attention mechanism gains valuable knowledge regarding the dependencies and complex patterns among
the input data, resulting in an increased understanding of the model. Extensive experiments have been
performed on three publicly available finger vein databases to assess the effectiveness of the proposed
method. The results established superior performance achievement by the proposed method regarding Area
Under the Curve (AUC) metrics. The motivation of this work involves researching potential performance
enhancement deep learning techniques and researching the feasibility of FVR employing a deep learning
approach. This proposed method provides a new direction for deep nets as it is a state-of-the-art model and
has not been researched much. Also, using data augmentation with K-fold cross-validation helps to tackle the
problem of data shortage by maintaining a balance between efficiency and computation cost. This method
can assist the scientific community in better understanding the importance of K-fold cross-validation and
attention mechanisms.
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The significant contributions of the study are as follows:
1. A simplified Transfer Learning-based framework, EFI-SATL, is proposed with the application of

EfficientNets for finger-vein recognition and classification. This is the first time EfficientNets and the
self-attention mechanism for finger-vein biometric recognition are being used.

2. Development of a self-attention based on the network EffAttenNet for identifying prominent features
for improved recognition performance of the network is done, which is a significant accomplishment.

3. K-fold cross-validation is employed for better testing and fair comparison of the results obtained using
the proposed method with modern deep nets.

4. Extensive experimentation of the proposed method on three public databases achieved promising
results with significant recognition accuracy on small datasets.
The paper is organized as follows: Section 2 describes the related work for finger vein

recognition. Section 3 illustrates the background knowledge on transfer learning and EfficientNets
architecture. Section 4 describes the methodology employed, followed by results and analysis
in Section 5. Section 6 includes the discussion, followed by Section 7, which concludes the study with
future considerations.

2 Related Work
Research on deep finger vein recognition systems is classified broadly into various categories based on

the significant objective for which they are employed. One such category classification is presented here, i.e.,
systems focusing on feature extraction, verification, identification, Generative Adversarial Network (GAN),
and attention-based. Methods that use feature extractors are designed to create feature vectors from images
of veins on the finger so that distances between the two can be compared during authentication. Some of
the feature extraction works include the Finger Vein Verification Network (FV-Net) [22], supervised discrete
hashing [23], center loss with dynamic regularisation, and the 3D Finger Vein Verification Network [24].
Image search [25], real-time vein detection [26]. The segmentation-based CNN methods employ learning
semantic segmentation to extract the vein patterns. Recent research on this method is proposed by [27,28].
The main limitation of this approach is the scarcity of labeled data necessary to train the model. Finger vein
image pairs belonging to the same individual are analyzed using verification-based approaches. In order to
distinguish between real and fake pairs of finger vein samples, a CNN network is typically fed two pairs of
finger vein samples as input [29,30]. However, these methods will need the creation of image pairs in order
to perform verification learning.

Methods aiming for identification assign a specific identity to a finger vein. It typically trains the CNN
as a classification problem having more than one class, and then end-to-end identification is performed with
the help of the trained classification network. With the help of template matching algorithms, authors in [31]
achieved a Percentage of Correct Classification (PCC) of 90.72 percent. Kuzu et al. [32] recently researched
a new acquisition architecture that allows for on-the-fly capture of finger vein patterns based on a set of
low-cost cameras and, hence, has proposed a CNN and Recurrent Neural Network (RNN) based recognition
framework. These methods, in general, have been employed for close-set scenarios, i.e., the classifier can only
identify the subjects with which it was trained. GAN-based techniques have recently gained the interest of the
research community. Despite positive results, GAN-based methods have frequently encountered problems in
convergence and training instability [33]. Research is still needed to generate rich quality and miscellaneous
finger vein samples employing GAN with restricted or less training data. Yang et al. [34] proposed FV-GAN
to extract robust patterns from vein images employing CycleGAN, and they achieved promising results.

Lightweight attention networks have gained much limelight recently. These types of models include
spatial, channel, and multi-head attention. They have achieved superior quantitative performance compared
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to other deep learning-based techniques. A semantic similarity learning scheme was introduced in the
literature [35] to learn preserved discrete binary feature learning. Fang et al. [36] proposed a self-attention-
based scheme to enhance authentication. It was a type of Siamese network that gave better results. Their
method involved a 3-layer CNN to model feature maps in the global context. A network using multiple
CNNs (Merge CNN) with different input images was proposed in the literature [37]. The final network that
emerged from the experiment, which gave a superior performance, was based on an enhanced image by
CLAHE and the original image. Lastly, a pre-trained model was used by authors in [38] to extract robust
features for classification. It was based on a depth-wise separable convolution layer. They employed multi-
scale data augmentation to enhance Fingerprint images and curve let transform. Mustafa et al. [39] presented
a self-attention-based verification model for finger verification with their custom-made CNN comprising
Residual blocks with an attention mechanism. However, their method did not perform well on low-contrast
images as they did not use pre-processing or data augmentation techniques. Abdullahi et al. [40] proposed a
filtered spatial and temporal sequence-wise multimodal fingerprint and finger vein network (STMFPFV-Net)
for finger vein and fingerprint recognition. Their method achieved good results by selecting discriminative
contextual sequence features. However, their method did not employ image augmentation before the fusion
of different sequences, which affected recognition performance, and their RelieFS method required expensive
hyperparameter tuning for network optimization.

This study aims to enhance the FVR performance from a logical view of transfer learning, K-fold cross-
validation, and network architecture selection. Although these angles have been conferred in the past, a
thorough examination of these methods is required. As an illustration of how transfer learning techniques
can overcome data scarcity, many studies start their neural networks with ImageNet pre-trained weights
to gain additional prior knowledge. However, the effectiveness of transfer learning mainly relies upon the
source knowledge and the target task. There can be some limitations to using wide-ranging object ImageNet
samples to help identify finger vein images because their data distribution differs significantly from that of
available object ImageNet samples.

3 Theoretical Background

3.1 Transfer Learning
Transfer Learning (TL) has been a crucial part of research since 1995 and is employed in various domains

with various titles such as lifelong learning, knowledge transfer, multitask learning, incremental learning,
meta-learning, and others [41]. Most research and scientific communities believe that transfer learning,
which is a subset of deep learning, can take computational intelligence tasks to further advancement. The
critical difference between Machine Learning (ML) and transfer learning is knowledge transfer, i.e., the
transfer learning model trained on one dataset can be utilized to accurately classify another dataset with
minimum computation. However, in the case of ML, one model can learn for one task only and cannot
perform classification for another task.

Transfer learning in CNNs has been in the limelight recently. CNN models require ample training and
testing data, which is sometimes a difficult task, especially for real-world applications, which is one of the
critical factors owing to the popularity of transfer learning applications in CNNs. Transfer learning is one
of the most well-known ideas in machine learning [42]. Various transfer learning strategies depend upon
the availability of labeled data. Since a pre-trained model is employed in this study, that comes under the
inductive transfer learning method. It takes the background knowledge needed to solve one task and applies
it to other tasks that are similar but not the same despite a similar domain. Initially, the base model, which
is pre-trained for a specific problem and dataset, is taken. The model is then applied to the target dataset
to solve the goal issue [43]. The inductive TL is similar to multitask learning when the source and target
domain are the same and many labeled datasets are available. It is similar to self-taught learning when the
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source and target domain are somehow related but different, with no labeled data available. In addition,
TL can be employed to transfer generic specific knowledge (broader) that is not tied to any specific task or
domain, such as spatial relationships, image texture details, language syntax, and others. In addition, most
TL-based methods employ feature extraction and fine-tuning techniques [44]. In feature extraction, a pre-
trained model with previous weights is utilized to extract fixed features from the input data, which can be
fed to any classifier or model as per the target task. Fine-tuning comprises taking a pre-trained model and
training it further on a target task. During this process, the model weights are updated using the target task’s
data while holding some knowledge from the source task. Fine-tuning is mainly employed in tasks where
the source and target are narrowly related.

3.2 EfficientNets
Recently, Tan et al. [45] investigated the relationship between the width and depth of CNN models. They

proposed a competent way to design CNN models with better classification accuracy and fewer parameters.
They termed their new model EfficientNet and proposed seven new models, namely EfficientNetb0 and
EfficientNet-b7. The EfficientNets outpaced all the previous models in terms of parameters and accuracy
for the ImageNet database [46] by reducing Floating-point Operations per Second (FLOPS) and several
parameters. The EfficientNet architecture is much smaller and has few parameters compared to other modern
deepnets with similar ImageNet accuracy. For example, EfficientNetb0 has only 5,330,564 parameters
compared to 23,534,592 of ResNet50 in the Keras application. Still, EfficientNetb0 underperforms ResNet50.

The key building blocks of EfficientNet include MBConv, Inverted residual connection, and Linear bot-
tleneck. The primary block of the EfficientNet family is mobile inverted bottleneck convolution (MBConv),
which is based on the MobileNet model [47]. One key idea of MobileNets is to use depth-wise separable
convolutions, which comprise depth-wise and point-wise convolution layers connected in a cascade. The
ResidualNets [48] employed skip connections between layers with many channels in the original residual
blocks. The theory of squeeze and excitation (SE) is also used in the MBConv layers, further enhancing
performance. Each channel in a convolution layer output is given different weightage by the SE block
technique instead of treating them all as equal. The EfficientNets use the Swish activation function instead of
other commonly used activations. The Swish function shares good performance advantages with Rectified
Linear Unit (RELU) and LeakyRelu as it has a similar shape to these activation functions but is flatter
comparatively. The Swish activation function equation is defined as follows:

fSwish =
x

1 + e−βx (1)

where β ≥ 0 is a learnable parameter during the CNN training. When β = 0, f Swish will be a linear activation
function, and with β→∞, f Swish behaves similarly to the ReLU function.

As stated previously, the model scaling concept is extremely reliant on the baseline network. The
EfficientNetb0 [45] is the baseline network of the EfficientNet family, and the automatic machine learning
(AutoML) MNAS framework is employed for its creation, as listed in Table 1. AutoML searches automatically
for a CNN model that maximizes precision and efficiency (FLOPS) parameters. The EfficientNetb0 repeat-
edly uses MBConv1 and MBConv6 layers, which are diverse types of MBConv blocks. The illustration [49] of
the MBConv block types (MBConv1 and MBConv6) is shown in Fig. 1. The MBConv blocks include all the
concepts discussed above, including inverted residual connection, depth-wise separable convolution, linear
bottleneck, Swish activation, and Squeeze and Excitation block. MBConv1 was used at the beginning of the
EfficientNet model, and MBConv6 was employed in between several times with different kernel sizes. Also,
each block type varies depending on the size of the filter used in the convolution layers inside and whether
the block contains an inverted residual connection.
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Table 1: EfficientNetb0 architecture

Stage Operation #channels Size
1 Conv 3 × 3 32 224 × 224
2 MBConv1, k 3 × 3 16 112 × 112
3 MBConv6, k 3 × 3 24 112 × 112
4 MBConv6, k 5 × 5 40 56 × 56
5 MBConv6, k 3 × 3 80 28 × 28
6 MBConv6, k 5 × 5 112 14 × 14
7 MBConv6, k 5 × 5 192 14 × 14
8 MBConv6, k 3 × 3 320 7 × 7
9 Conv 1 × 1/Pooling/FC 1280 7 × 7

Figure 1: Illustration of MBConv blocks (a) MBConv1 block, (b) Design of MBConv6 block employing SE block with
inverted residual connection (24→ 144→ 24)
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This study investigates EfficientNets architectures for feature extraction and classification of a finger-
vein biometric. EfficientNet incorporates a simple, extraordinarily effective compound coefficient for scaling
up CNN models in terms of three dimensions, i.e., depth, width, and resolution. The performance of a
model improves by scaling individual dimensions; however, effective performance improvement comes with
a balance between all the dimensions. The scaling of each dimension is done by parameter φ, as per Eq. (2).
This parameter φ is a user-defined coefficient related to the resources available in model scaling, where the
variables α, β, γ are constants experimentally found by a grid search. Other networks can be obtained by
varying φ. For example, φ = 1 gives the EfficientNet-b1, for φ = 2 provides the EfficientNet-b2, and others

depth∶d = αφ (2)
width∶w = βφ (3)
resolution∶ r = γφ (4)
s.t. α ⋅ β2 ⋅ γ2 ≈ 2 (5)
α ≥ 1, β ≥ 1, and γ ≥ 1 (6)

Based on Eq. (5) [45], there is a decent trade-off between computational cost and performance. In this
work out of the EfficientNets family, EffecientNet-b3 was implemented to strike a balance between computing
resources and accuracy.

4 Methodology

4.1 Proposed Framework
The proposed EFI-SATL framework block diagram and the modified EfficientNetb3 model for finger

vein recognition are shown in Fig. 2. This is the first time EfficientNet has employed a self-attention
mechanism for finger vein recognition. Initially, the input image is fed to the network with pre-processing
and data augmentation finger vein images, which increases the database size and facilitates efficient network
training. K-fold cross-validation is employed along with data augmentation to balance out the problem of
less training data for finger vein biometrics. The database is split into K equal parts before inputting the
network for training and testing. Pre-processing, data augmentation, and K-fold cross-validation methods
employed in this study are discussed in the following parts.

The designed framework utilizes transfer learning and fine-tuning of the modified EfficientNetb3
model. Like EfficientNetb0, it uses MBConv1 and MBConv6 layers, as discussed in the previous section. The
model architecture contains one 3× 3 Conv layer followed by Batch normalization and Swish activation, then
two 3 × 3 MBConv1 layers followed by MBConv6 layers with ten 3 × 3 and fourteen 5 × 5 kernel sizes. Finally,
one 1× 1 Conv layer is used before the Global Average Pooling (GAP) layer. Then, one dropout layer is added,
followed by one dense layer. ImageNet weights are used for the initial training of the model with a modified
top to assign knowledge obtained from previous training on the ImageNet dataset to the intermediate layers.
The attention module is added, and the new model is known as ‘EffAttenNet’. The attention module starts
by inputting extracted flattened features from modified EfficientNetb3 into one self-attention layer, followed
by one dense layer, and finally, a dense output layer. The detailed model information about the architecture
of EffAttenNet is shown in Table 2. The total parameters of modified EfficientNetb3 and self-attention are
12,357,423 and 1,367,402, respectively. The use of self-attention layers enhances the feature selection for
classification and helps the network focus on more prominent features that can get skipped without any
attention mechanism, as it gives a weighted sum of values based on the query and key vector similarities.
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Figure 2: The block diagram of the proposed EFI-SATL framework with the modified EfficientNetb3 architecture

Table 2: The EffAttenNet model summary with self-attention mechanism

Modified EfficientNetb3 Attention
Layer (type) Output shape Param # Layer (type) Output Shape Param #

input_1 (InputLayer) (None, 224,
224, 3)

0 Self-attention_1 (None, 512) 1,050,368

efficientnetb3
(Functional)

(None, 7, 7,
1536)

10,783,535 dense_8 (Dense) (None, 512) 262,656

global_average_
pooling2d_1(Global
AveragePooling2D)

(None, 1536) 0 dense_9 (Dense) (None, 106) 54,378

dropout_1 (Dropout) (None, 1536) 0

(Continued)
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Table 2 (continued)

Modified EfficientNetb3 Attention
dense_2 (Dense) (None, 1024) 1,573,888

Total params: 12,357,423 (47.14 MB) Total params: 1,367,402 (5.21 MB)
Trainable params: 12,270,120 (46.81 MB) Trainable params: 1,367,402 (5.21 MB)

Non-trainable params: 87,303 (341.03 KB) Non-trainable params: 0 (0.00 Byte)

The complete process of the EFI-SATL framework is shown in Algorithm 1. All the database images
are initially resized for Region of Interest (ROI) selection using the per-processing method stated above,
followed by intra-class data augmentation operations. These operations involve random (Rand) rotation,
scaling, shear, reflection, and translation of Region of Interest (ROI) images to enhance data generalization.
Then, the data-augmented images are prepared to be fed for model training using ImagedataAugmentor
and K-fold cross-data division. The model is then trained in two configurations, with and without attention
mechanism, i.e., modified EfficientNetb3 and EffAttenNet. Initially, modified EfficientNetb3 is trained, and
features are extracted. Thereafter, the self-attention layer is added to attain more useful information from
the extracted features, followed by fine-truing and optimizing hyperparameters. Hyperparameter tuning is
essential to achieve a trade-off between the complexity and simplicity of the model. Lastly, the models are
tested on test data in two configurations, as mentioned earlier. Then, the scores regarding AUC metrics and
receiver operating curve (ROC) plots for all the databases are computed.

Binary Cross-Entropy, frequently termed the cost function, is utilized as the loss function for the
architecture. Typically, binary cross-entropy is stated by the average cross-entropy across all data samples, as
defined by the equation below:

LCE = −
1
N ∑

N
k=0 [tk log (spk) + (1 − tk) log(1 − spk)] (7)

where spk is the softmax probability for the kth data points, tk is the truth value taking a value 0 or 1, and the
number of scalar values is represented by N in the model output.

Algorithm 1: Proposed framework: EFI-SATL
Require: Input Dataset (ID) ▷FVUSM, HKPU, SDUMLA
Ensure: Finger vein recognition (Y), Performance Parameters (P) ▷ Y (class variable)
1: ROI selection (RS)⇐ ID ▷ Input Data is passed for cropping
2: Image resize (IRS)⇐ RS ▷ Cropped Data is passed to flipping
3: ImagedataAugmentor: Rand rotation, scale (RRS)⇐ IRS ▷ Intra-class DataAugmentation started
4: Rand shear, reflection (RSR)⇐ RRS
5: Rand translation (RT)⇐ RSR
6: Final data prepared (D) ⇐ RT ▷ ImagedataAugmentor output
7: K-fold division (K f D)⇐ D ▷ D is divided using K-fold cross validation for training and testing
8: for i ◂ 1 to 9 do ▷ Repeat the experiment 9 times
9: Modified EfficientNetb3 ⇐ K f Di ▷ Pass dataset to deepnet employed
10: Extract finger vein features Fi using modified EfficientNetb3
11: Self−attention⇐ Fi ▷ Add self-attention layer

(Continued)
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Algorithm 1 (continued)
12: Dense⇐ Fi ▷ Add final dense layer
13: Perform hyper-parameters optimization ▷ Adam is used
14: Compute Y by passing test data to EFI-SATL using optimal parameters
15: Evaluate P
16: end
17: Compute average P
18: Plot ROC

4.2 Self-Attention
The features extracted by the modified EfficientNetb3 deepnet are fed to the attention mechanism

consisting of one self-attention layer. The self-attention mechanism has a significant advantage in working
with computer vision tasks as it gains valuable knowledge regarding the dependencies and complex patterns
among the input sequences, helping the network understand better. Self-attention captures long-range
dependencies by allowing each element to attend to all other elements in a sequence for image classification
tasks between images, producing better results than other attention modules [50]. This helps the model
understand a more comprehensive context while performing parallel computation for efficient and fast
processing, unlike simple attention, which works sequence-to-sequence. Also, self-attention’s ability to
handle variable length sequence data provides extended flexibility to the model to learn various factors in
the same sequence and enhance the model’s overall performance [51]. The major components of the self-
attention mechanism [52] are Query (q), Key (k), and Value (v). These vectors help in calculating weights
and attention output; these are computed as follows:

q = x .wq ; k = x . wk and v = x .wv (8)

where x is the input sequence and wq , wk , wv are the learnable weight matrices. With the help of q and k,
the attention weights Att are calculated as follows:

Att = So f tmax ( qkt
√

dk
) (9)

where dk is the dimensionality of the key vectors. The output O of the attention layer is calculated as:

O = Att .v (10)

The performance classification can be enhanced using attention in CNNs focusing on important regions
after the deepness cannot extract meaningful information anymore [53]. This study employs one self-
attention layer with 512 units for feature selection purposes, followed by a dense layer. The Adam optimizer
with an initial learning rate of 0.0001 is utilized to optimize the learning process. Adam’s algorithm integrates
the momentum principles of feature learning with adaptive learning rates, hence achieving better results.

4.3 Pre-Processing and Data Augmentation
One of the crucial steps in computer vision tasks is pre-processing. This method can help eliminate

unwelcome noise and emphasize features of the image that are beneficial for the recognition work or training
phase to learn image features. The proposed work employs minimum pre-processing tasks to maintain
the original features of the finger vein images. First, ROI extraction from finger vein images is performed
using the Lee Mask [54] method, and then the extracted images are centered horizontally using the Huang
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Normalization [55] method. Secondly, all the images are resized to 224 × 224 to sustain compatibility per the
network architecture. For the HKPU dataset, segmented masks released by the authors [22] are employed
for ROI extraction and alignment of finger vein images. Finally, before giving input to the CNN network, the
pre-processed images are normalized to [−1, 1].

The data augmentation technique is employed to upsurge the training data in case of original data
scarcity, which also helps the network to train better. Data samples are increased by transforming the
original images to keep semantic information intact in the original data images. Deep nets based on
CNN necessitate many data samples to achieve high-performance accuracy. A smaller dataset can result in
overfitting problems where the network performs too well during training and is very poor while testing.
Hence, data augmentation is one of the salient steps. Table 3 shows the various intra-class data augmentation
methods/properties using the ImagedataAugmentor used in this work. Some sample images of all three
databases are shown in the Fig. 3.

Table 3: Data augmentation with parameters

Method/Properties Parameters/Range
RandRotation [−20 20 ]

RandScale [ 1 1 ]
RandXShear [ 0 0 ]
RandYShear [ 0 0 ]

RandXReflection 01
RandYReflection 01

RandXTranslation [−3 3 ]
RandYTranslation [−3 3 ]

Figure 3: (Continued)
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Figure 3: Sample finger-vein images of various databases, (a) FVUSM, (b) SDUMLA, and (c) HKPU

4.4 Evaluation Metrics
Standard assessment metrics were utilized to calculate the performance of the proposed model, which

are precision (Precision), recall (Recall), Sensitivity (Sen), Specificity (Spe), f-score (F1), accuracy (Acc), and
ROC. The ratio of correctly predicted positives vs. all true positives is known as Sensitivity, and the proportion
of correctly predicted negatives vs. all true negatives is termed Specificity. Accuracy gives the rate of correctly
classified samples. Precision is the proportion of correctly predicted positives out of all the positives. These
standard metrics are based on the fundamental indicators, namely, true positive (tp), true negative (tn), false
positive (fp), and false negative (fn). tp provides images classified correctly in each category, whereas tn
represents the sum of correctly classified images in all categories other than the applicable category. fn is the
figure of misclassified images in the related category, while fn represents the number of misclassified images
in all categories other than the relevant. These metrics are defined as follows:

Precision = tp
(tp + f p) (11)

Recal l = tp
(tp + f n) (12)

Senstiv ity = tp
(tp + f n) (13)

Speci f icity = tn
(tn + f p) (14)

F1 − Score = 2x ( precision x recal l
precision + recal l

) (15)

Accurac y = (tp + tn)
(tp + tn + f p + f n) (16)



Comput Model Eng Sci. 2025;142(3) 3015

4.5 K-Fold Cross-Validation
The statistical technique for estimating machine learning models’ competency is called Cross-

validation. It is frequently employed with machine learning algorithms to compare and select models for
a given predictable modeling problem because it is simple to learn and implement and generates estimates
with lower bias than other techniques. This is because the mean estimate of any parameter is less biased
than a one-shot estimate [56]. This type of validation process involves dividing the data into k portions, with
one portion serving as testing data and the remaining k-1 serving as training data. The popular practices by
researchers in the literature use K = 2, 3, 5, 10, and other fold values, but due to the added computation cost of
cross-validation and to maintain balance in computation and performance, K = 3 is used. For K = 3 initially,
fold 1 will be used as test data, and folds 2 and 3 will be utilized to train the model for the first prediction.
After that, fold 2 will be used as test data and folds 1, 3 will be used as train data for another prediction.
Finally, fold 3 will be used as test data, and folds 1 and 2 will be used as train data for the last prediction. The
obtained average performance and standard deviation will be testified. This algorithm is computationally
expensive but does not leave unwanted data behind to validate the results. This is a significant advantage for
solving some problems, such as inverse inference, where the sample number is small.

4.6 Network Initialization and Optimization
Binary Cross entropy (BCE) loss is employed for the model training and validation to define the

preferred illustration of features. Adam optimizer was employed with a 32 as the batch size for training
optimization. The initial learning rate was kept at 0.0001 for all datasets and optimized with a reduction of
10 on the plateau or after 20 epochs. The momentum was set to 0.9 value for accelerating the convergence
of gradient vectors. The max epochs were set as 50, and the training halted with the minimization of the
validation loss. The weights of the pre-trained Imagenet model were employed to initialize the considered
deepnet and assess the effectiveness of transfer learning for this application. Glorot uniform initialization
was employed for the fully connected layer.

5 Results and Analysis

5.1 Employed Databases and Experimental Setup
Experiments were conducted on three different types of publicly available vein databases, namely the

SDUMLA finger vein dataset [57], the HKPU finger vein dataset [58], and the FVUSM database [59], to assess
the strength of the considered architectures under various input types. Before being fed into the recognition
system, all the considered samples were resized to 224× 224 pixels and normalized to 0 means with 1 variance.
The main reason for choosing these particular databases is the current literature, with most researchers
using them, which allows for an accurate comparison of these tried-and-true techniques. Table 4 provides an
overview of the two databases under consideration, and the following subsections provide more information
about them. Different fingers and hands of the same user were categorized as separate classes.

There are 156 male and female volunteers in the HKPU finger vein image database. Hong Kong
Polytechnic University used a contactless imaging device between April 2009 and March 2010. It comprises
3132 Bitmap (BMP) images with a resolution of 513× 256 pixels, taken from 156 subjects. Ninety-three percent
of the subjects in this dataset are under the age of 30, and images of the finger veins of 105 people were
collected over 02 sessions separated by an average of 66.8 days, with a month of minimum interval and six
months of maximum interval. Subjects were asked to bring six images of the index and middle fingers on their
left hands for each session. The remaining 51 subjects have only one data collection session to their name.
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Table 4: Various publicly available finger-vein databases

Database Image size # Subjects # Fingers Images
per

finger

Finger details Sessions Total
images

SDUMLA 320 × 240 106 6 6 Index, middle and
ring fingers of both

hands

1 3816

HKPU 513 × 256 156 2 12 Index and middle
finger of left hand

only

2 3132

FVUSM 640 × 480 123 4 12 Index, and middle
finger of both

hands

2 5904

The Shandong University of China compiled the SDUMLA database. It includes finger vein images
of 636 fingers from 106 people. Six images were captured in grey-level BMP format with 320 × 240 pixel
resolution from the index, middle, and ring fingers of each person’s left and right hands. The University
of Sains Malaysia maintained the FV-USM database. It consists of vein images from 123 subjects’ left and
right index and middle fingers. There are 83 males and 40 females, with an average age of 2052. Images were
collected in two separate sessions, each with six images per finger. The images are all in grayscale BMP format
and have a resolution of 640 480 pixels.

This study performed training and testing with a desktop workstation comprising an Intel CoreTM

Xeon Gold CPU with 64 GB RAM and an NVIDIA Quadro 5000 graphics processing unit (GPU) card
with a graphics memory of 16 GB. Windows 10 OS with MATLAB 2021b was employed for pre-processing.
Training and validation were done using the Tensorflow AI Python framework along with the Anaconda
package manager.

5.2 Performance of the Proposed Method on Various Databases
The effectiveness of the proposed method on the considered databases is discussed in this section. These

datasets were tested as per the K-fold cross-validation process, and the evaluated metrics were reported.
State-of-the-art deepnets, i.e., ResNet18, ResNet50, Xception, Inception, and Dense Net 121, were considered
as stated above for comparison to the proposed method to assess the effectiveness of transfer learning
applied to the model. Two separate networks, EfficientNetb3 and EffAttenNet, are considered to understand
the performance difference of the proposed method with and without attention. As mentioned earlier,
EfficientNetb3 is without attention and EffAttenNet is with the attention mechanism.

The network’s recognition accuracy is evaluated first. The input image is scaled down to 224 × 224 pixels
for the network model. The state-of-the-art models: ResNet18, ResNet50, Xception, Inception, Dense Net
121, and EfficientNetb3 outperform the proposed method EffAttenNet with 98.14% for the HKPU dataset,
99.03% for FVUSM dataset and 99.50% accuracy for SDUMLA dataset, as shown in Fig. 4. It can also be stated
that clear difference in performance can be achieved with the use of attention mechanism, as the accuracy
differ by 1.26% for HKPU, 1.47% for FVUSM and 1.2% for SDUMLA databases, in between EfficientNetb3
and EffAttenNet. These results show that the proposed approach accurately identifies the finger vein images.
In addition, the proposed method’s training and validation accuracy plots for all the databases are shown
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in Fig. 5. The method performed well in the training and validation process except for the HKPU dataset,
with some fluctuations due to low-quality images. In addition, the same can be observed for the loss curves
shown in Fig. 6, which show that the losses are more for the HKPU database than for the SDUMLA and
FVUSM databases.

Figure 4: Recognition accuracy of various deep nets and proposed net on the databases

Figure 5: Training accuracy of the proposed method on all the databases
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Figure 6: Training loss of the proposed method on all the databases

The proposed network model was tested using the K-fold cross-validation dataset and performed
excellently on training data. When performing experiments with the proposed scheme, the dataset is divided
into three equal parts, as K = 3. Each fold alternates between randomly selecting two to be used during
training and one to be used during validation. Compared to other network architectures, the proposed
method metrics, namely, precision, recall, F1-score, Sensitivity, Specificity, and accuracy, are shown in Table 5,
which consists of average values of the three folds for all the databases.

Table 5: The comparative analysis of the proposed method on all the databases

Database Model Precision Recall F1 Accuracy
FVUSM ResNet18 97.11 97.32 97.35 97.24

ResNet50 96.95 97.18 97.20 97.00
Xception 94.57 94.84 94.80 94.63

InceptionV3 94.33 94.55 94.46 94.40
Dense Net 121 95.37 95.57 95.60 95.44
EfficientNetb3 97.27 97.46 97.50 97.56
EffAttenNet 99.18 99.25 99.45 99.03

HKPU ResNet18 96.18 96.30 96.33 96.28
ResNet50 95.97 96.17 96.28 96.10
Xception 93.53 93.76 93.67 93.60

InceptionV3 93.36 93.47 93.60 93.42
Dense Net 121 94.41 94.57 94.36 94.40

(Continued)
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Table 5 (continued)

Database Model Precision Recall F1 Accuracy
EfficientNetb3 96.27 96.53 96.56 96.88
EffAttenNet 98.24 98.46 98.21 98.14

SDUMLA ResNet18 98.21 98.40 98.43 98.35
ResNet50 98.16 98.26 98.30 98.11
Xception 95.67 95.87 95.90 95.70

InceptionV3 95.46 95.69 95.73 95.55
Dense Net 121 96.48 96.66 96.70 96.50
EfficientNetb3 98.39 98.59 98.61 98.40
EffAttenNet 99.47 99.67 99.70 99.50

Also, the various AUC metrics achieved by EffAttenNet on various datasets are shown in Fig. 7, with
the help of a box plot. The box plot is made for all the folds of the experiment and hence shows the average
value of all the folds. The box plot clearly shows that EffAttenNet performed efficiently and accurately
identified the subjects with a Precision, Recall, and F1-score value of 99.18%, 99.25%, 99.45% for FVUSM
dataset and 98.24%, 98.46%, 98.21% for HKPU dataset and finally 99.47%, 99.67%, 99.70% for SDUMLA
dataset, respectively.

Figure 7: The AUC metrics using box plot of various datasets (a) FVUSM, (b) HKPU, and (c) SDUMLA
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In addition, the performance of the proposed EFI-SATL framework is evaluated by plotting the ROC on
various datasets along with state-of-the-art deepnets in Fig. 8. The ROC curve includes the performance of
the proposed method with and without attention mechanism as EfficienNetb3 and EffAttenNet, respectively.
The inclusion of the attention mechanism increases the model’s recognition performance. The main motive
for including deepnets for ROC is to get a clear picture of the method’s performance against the state-of-the-
art deepnets.

Figure 8: The ROC plot obtained of EFI-SATL along with various deepnets on (a) FVUSM, (b) HKPU, and (c)
SDUMLA databases
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In addition, the Cumulative Curve (CMC) plot for various databases is shown in Fig. 9. It clearly shows
the enhanced performance of the proposed method for all the databases and proves its effectiveness for large
variable datasets.

Figure 9: CMC curves showing recognition accuracy vs. rank for all the databases

5.3 Comparing the Existing State-of-the-Art Algorithm
The proposed method was compared in terms of accuracy with other Deep Learning (DL) based finger

vein recognition systems shown in Table 6 to assess the strength of the proposed method and comparatively
analyze the outcome. All three datasets were utilized to compare the performance of the proposed method
and existing finger vein recognition methods. The state-of-the-art existing methods, i.e., CNN, ResNet18,
Finger Vein Generative Adversarial Network (FV-GAN), Semantic Similarity Preserved Discrete Binary
Feature Learning (SSP-DBFL), Self-Attention Convolution (SAC) Siamese Net, Deeply fused CNN, Xception
Net, Self-Attention based Convolutional Neural Network (SA-CNN), Convolutional Auto Encoder (CAE),
and Fusion of Global and Local Feature Network (FGL Net) recognition comparison is listed in Table 5 which
elaborate the enhanced performance of the method over the others.

In addition, the column plots are plotted to compare the existing works with the proposed methods,
as shown in Fig. 10. The plots clearly show that EffAttenNet performed efficiently on SDUMLA, FVUSM,
and HKPU datasets. However, the SSP-DBFL method performed much closer for the HKPU dataset than
the proposed method. Except for this case, for all the other cases, the proposed EFFAttenNet achieved
remarkable performance on the rest of the databases. In addition, the training and testing time analysis
are listed in Table 7, comparing the existing works with the proposed EFI-SATL framework. The proposed
method is computationally efficient compared to the state-of-the-art works and outperforms all work in
computation time.
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Table 6: Finger vein recognition comparison to existing deep learning-based methods on all the datasets

Ref. Year Method HKPU FVUSM SDUMLA
[18] 2019 CNN 96.35% 98.12% 98.00%
[30] 2021 ResNet18 97.05% 98.20% —
[34] 2019 FV-GAN — — 97.30%
[35] 2023 SSP-DBFL 98.08% 98.10% 99.07%
[36] 2023 SAC-Siamese

Net
— 98.14% 99.06%

[37] 2022 Deeply fused
CNN

— 96.15% 96.30%

[38] 2022 Xception Net — — 96.10%
[39] 2023 SA-CNN 97.10% — 98.56%
[60] 2020 CAE — 97.69% 98.60%
[61] 2023 FGL Net — 97.78% —

Proposed
method

98.14% 99.03% 99.50%

Figure 10: (Continued)
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Figure 10: Comparison of the existing works with the proposed method for (a) HKPU, (b) FVUSM and (c) SDUMLA
databases [18,30,34–39,60,61]

Table 7: Training and testing time analysis of existing deep learning-based methods on all the datasets

Ref. Year Method HKPU FVUSM SDUMLA

Training Prediction Training Prediction Training Prediction
[18] 2019 CNN 145.8 s 2.01 s 147.3 s 1.9 s 148.1 s 2.2 s
[30] 2021 ResNet18 128.3 s 1.8 s 127.3 s 1.65 s — —
[34] 2019 FV-GAN — — — — 158.7 s 2.6 s
[35] 2023 SSP-DBFL 124.2 s 1.31 s 126.2 s 1.62 s 134.7 s 1.78 s
[36] 2023 SAC-Siamese Net — — 125.4 s 1.53 s 128.4 s 1.84 s
[37] 2022 Deeply fused CNN — — 134.0 s 1.86 s 137.2 s 1.95 s
[38] 2022 Xception Net — — — — 136.8 s 1.60 s
[39] 2023 SA-CNN 126.6 s 1.22 s — — 129.3 s 1.62 s
[60] 2020 CAE — — 133.5 s 2.15 s 137.5 2.38 s
[61] 2023 FGL Net — — 127.4 s 1.44 s — —

Proposed method 120.5 s 1.0 s 122.0 s 1.24 s 124.1 s 1.36 s

6 Discussion
In this part, the performance of the proposed EFI-SATL method relative to alternative methods is

elaborated using the data from Section 5. The superiority of the approach for identifying and classifying
finger vein images is established in this section. Several factors influence the decision to use deep transfer
learning with a pre-trained EfficientNetb3 model with attention mechanism, data augmentation, and
K-fold cross-validation: (i) inspired by state-of-the-art approaches based on deep transfer learning neural
networks, (ii) data on the minimal size of finger veins available, (iii) to attain an authentication accuracy
level suitable for small datasets. The proposed work began by enhancing and normalizing the raw data using
a data pre-processing method. Then, the data augmentation method expands the sample size of the vein
input image for training. Then, K-fold cross-validation is employed to train and test the model. Lastly, the
pre-trained and modified EfficientNetb3 model is employed for feature information extraction and the self-
attention mechanism to classify or identify finger vein images. The outcomes from Table 5 demonstrate that
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the proposed method (EffAttenNet) outperformed all other methods considered in this work, employing
three distinct databases. The employed method produced good results for all K-fold (K = 3) parameters
examined in this work. For example, the F1 and accuracy are not less than 98.21% and 98.14% on 03 data
fold using three standard FVUSM, HKPU, and SDUMLA datasets. In addition, the ROC curve is elaborated
and demonstrated for model performance; computing the ROC curve indicates the best model out of the 03
folds. Also, it is confirmed that the proposed method beats all other models, as illustrated in Fig. 8, which
shows various ROC plots.

In addition, applying the proposed EfficientNetb3 model in conjunction with the self-attention
mechanism and data augmentation with K-fold cross-validation improves the best accuracy achieved for
identification by 1.2% for SDUMLA, 1.26% for HKPU and 1.47% for FVUSM database. Thus, the proposed
model EffAttenNet can accurately recognize finger vein images provided with limited data. One of the
reasons is that the EfficientNets architecture incorporates MBConv blocks, inverted residual connections,
and squeeze and excitation blocks, significantly improving recognition accuracy [49]. Using the self-attention
mechanism helps to learn more detailed representations from vein images. EfficientNets architecture is
relatively simple to implement compared to other deep Net architectures. It should be considered that the
pre-trained EfficientNetb3 model is initialized using ImageNet weights, a deep transfer learning approach.
This facilitated training the proposed model on finger vein datasets and obtaining good scores. In addition,
the attention mechanism can help to focus on a single context rather than multiple ones to achieve better
results for the cases where CNNs reach a plateau and cannot extract any useful data. Table 6 demonstrates the
superior performance of the proposed method with an increase in recognition accuracy of 0.06% for HKPU,
0.83% for FVUSM, and 0.43% increase for SDUMLA databases compared to the existing works. Also, the
proposed framework is proved to be computationally efficient compared to existing works in Table 7 in terms
of training and prediction time analysis. The proposed model EffAttenNet correctly identifies the individuals
with images showing a clear difference in the vein and non-vein regions for most images. However, some
of the low-quality images with unclear vein regions were misclassified by the approach, as shown in Fig. 11.
The proposed method achieved less accuracy on the HKPU dataset than FVUSM and SDUMLA databases
as compared to existing works, possibly due to the fewer fingers considered while forming the database and
its lower data size.
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Figure 11: Finger vein image pairs with no apparent difference between vein and no-vein regions, (a) FVUSM, (b)
SDUMLA, and (c) HKPU datasets

7 Conclusion and Future Scope
This research provides a novel and simplified method for finger vein biometric detection based on deep

transfer learning. The proposed EFI-SATL framework employs feature extraction and classification with
the help of the deep CNN EfficientNetb3 model, transfer learning to enhance feature extraction of finger
vein biometric images combined with the self-attention mechanism for improved biometric recognition.
In addition, the data augmentation concept is employed to broaden the database size and enhance the
proposed model’s usefulness. The proposed framework is competed with other deep architectures based on
performance using three databases with 3-fold cross-validation. Also, the proposed work is compared to the
state-of-the-art deep learning-based finger vein recognition system. The projected method achieves good
results in terms of accuracy without the need for training from scratch, i.e., achieved an accuracy of 98.14%
on HKPU, 99.03% on FVUSM, and 99.50% on SDUMLA databases with a 0.06% increase for HKPU, 0.83%
for FVUSM and 0.43% increase for SDUMLA databases compared to the existing works, which establishes
its superiority compared to other deep learning systems. However, the proposed model classified some low-
quality images incorrectly due to no apparent difference between vein patterns. Hence, for future work, the
proposed model architecture can employ more advanced deep learning algorithms for pre-processing to
achieve better performance, as the ROI selection with the movement of a finger while image capture is still
an issue. In addition, the proposed method can be researched to fuse with various diverse biometrics for
authentication applications (face, palmprint, finger anatomy, and others) to achieve robust performance.
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