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ABSTRACT: This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.
The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different
stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments. The study analyzes the pairwise
synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and
clock frequency. A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.
Steady and convergence analyses are then presented for the synchronization, with frequency adaptations done using
least mean square (LMS), the Newton search, the gradient descent (GraDes), the normalized LMS (N-LMS), and the
Sign-Data LMS algorithms. Results obtained from real-time experiments showed a better performance of our protocols
as compared to the Average Proportional-Integral Synchronization Protocol (AvgPISync) regarding the impact of
quantization error on synchronization accuracy, precision, and convergence time. This generalized approach to time
synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications.
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1 Introduction
Wireless sensor networks (WSNs) are distributed control systems utilized for a variety of sensing

and instrumentation applications. A precise, adaptable, and reliable time synchronization protocol for
WSNs is required due to a number of reasons, such as the close connection between sensors and the
physical environment [1], the lack of power for stationed nodes, the requirement for large-scale deployment,
decentralized topologies, and unpredictable and intermittent connectivity between network nodes [2,3].
Large WSNs need sophisticated time synchronization techniques, especially if the network experiences
dynamic changes from time to time and communication among WSN nodes is unstable, resulting in
packet losses.

Time delays between node clocks which are caused by transmission and reception, media access,
channel propagation, interrupt management, encoding and decoding, and byte alignment, all contribute to
synchronization issues between WSN nodes. Therefore, several time synchronization protocols have been
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implemented as discussed in the literature [4–8]. The protocols can be divided into two variants based
on the network architectures adopted in the synchronization. They include centralized protocols (CPs)
and distributed protocols (DPs). The centralized and structured algorithms can be further divided into
tree-structured and cluster-structured protocols. CPs often accomplish global network synchronization in
time by synchronizing all network nodes to a leader node in a hierarchical tree structure or by utilizing
network clusters. In most CPs, this leader node gets elected after the preceding one fails. In DPs, nodes
communicate clock parameters in their neighborhoods and agree on a global time via trees, clusters, or a
leader node. The following section examines various relevant and current centralized and distributed time
synchronization techniques.

1.1 Review of Centralized Protocols
The Flooding Time Synchronization Protocol (FTSP) [9] is an ad hoc and multi-hop time synchroniza-

tion strategy. This protocol assumes the base node as the node with the lowest identity value; the rest of the
nodes use its clock value as their reference time. The synchronization packets are transmitted regularly by the
root node to all network nodes, containing their local time. FTSP uses linear regression to adjust for drifts
between nodes and reference nodes. However, the main issue with this approach is that the resynchronization
time is relatively short, requiring a high overhead and as a huge bandwidth during each resynchronization
phase, resulting in a significant energy cost.

Chen et al. [10] proposed a closed-loop feedback-based synchronization protocol that implements
a proportional-integral (PI) controller to compensate for clock drift. The accuracy of this method is
determined by the output and transient times. This technique requires a base node and is synchronized via
a tree, hence it is susceptible to connection and node malfunctions.

Yildirim et al. [11] demonstrated that the synchronization accuracy and scalability of WSNs are
significantly reduced by the slower flooding transmission speed used in FTSP. In addition, they observed the
fact that the PulseSync protocol’s speedy flooding has several disadvantages [12]. They created a procedure
that eliminates the negative aspects of delayed flooding in FTSP without changing the flood’s propagation
rate. Through tests, they demonstrate that the synchronization accuracy and slow-flooding scaling could be
significantly improved using the proposed clock speed agreement technique.

FloodPISync and PulsePISync time synchronization algorithms were introduced in [13] to improve the
PulseSync protocol. The techniques represent and change node clocks as a PI controller. The algorithms’
calculations, simulations, and experimental investigations efficiently synchronizes the nodes. Using Flood-
PISync, the PI analogy changes the nodes clock drift and offset to improve the synchronization of all nodes to
the reference node. A similar concept is applied for PulsePISync with the quick flooding technique adapted
based on the PulseSync protocol.

Lee et al. [14] presented a novel time synchronization technique that uses a dual-clock delayed message
mechanism. The clock synchronization system uses the flooding time-sync approach with one-way timing
messages to ensure low power consumption for WSN nodes. The maximum-likelihood technique for time
parameters is then employed to calculate the time parameters, such as clock drift and offset. However, because
the flooding strategy necessitates transmitting many packets in order to accomplish synchronization, it is
inefficient for extensive networks.

1.2 Review of Distributed Protocols
Apicharttrisorn et al. [15] introduced an energy-efficient gradient protocol which is efficient in terms of

power and diffused. The technique implements progressive mean estimation and drift prediction to achieve
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temporal convergence and slope. Because the protocol broadcasts continuously, it produces small trends that
use much energy from WSNs. Each node computes the continuous averaging of clock values immediately
after it receives the broadcast packet from one of its neighbors. The global time increases as the stepwise
averaging is decreased.

Schenato et al. [16] introduced the Average Time Sync (ATS) consensus algorithm. The mechanism
works by averaging the nodes’ local times in order to achieve global synchronization in the network. In
addition, two consensus approaches are cascaded to compute the clock properties as the clock convergence
to a specific value.

Consensus Clock Synchronization (CCS) [17] employs the average consensus technique to compute
and adjust each node’s clock offset. The drifted values of each node’s clock from the global consensus time
is calculated by accumulating clock offset errors. The drifted values of each node’s clock from the global
consensus time are calculated by accumulating clock offset errors. The errors are removed in each iteration
from the offset compensation. The clock drift is adjusted by using those data. This system, such as the ATS,
is entirely distributed, although it converges somewhat slowly.

Cheng et al. [18] proposed the Maximum Time Synchronization (MTS) protocol which is aimed to
maximize local time for global synchronization. Compared to previous methods, this approach has a faster
convergence speed. The technique adjusts the skew or offset clock values by defining a finite value. The
protocol is entirely distributed, asynchronous, and resilient to node failure. The approach is also feasible for
replacing or adding additional nodes. The same study suggested another approach, the Weighted Maximum
Time Synchronization Protocol, which addresses the delay issue related to receipt and broadcast packets.

Wu et al. [19] introduced a clustered consensus time synchronization (CCTS) protocol for synchronizing
nodes’ clocks in WSNs. The method is distributed in operation and relies on consensus. This CCTS technique
was classed as intracluster or intercluster time synchronization. The simulation findings revealed that the
node’s communication traffic is reduced. However, the node could be subjected to failures due to dynamic
topologies which is caused by the leader nodes.

Yildirim et al. [13] introduced Proportional Integral Synchronization (PISync), a distributed time
synchronization technique based on a proportional-integral (PI) controller. They introduced the AvgPISync
protocol, an average consensus-based and completely distributed PISync protocol based on the PISync
algorithm, and conducted real-world tests and simulations to assess its performance. They reported that the
AvgPISync protocol has some advantages compared to current techniques because it possesses a minimal
code footprint, requires minimal data to be exchanged, has not much overhead associated with memory
allocation and CPU, stores no unique time information, and has highly scalable steady-state condition and
global clock error.

A technique to synchronize poor infrastructure sensor networks in severe environments was proposed
in the literature [20,21]. The studies presented three novel asynchronous, decentralized, and energy-efficient
time synchronization techniques that only require a single hop of sparse communication with unlabeled
network nodes to determine the time of the gateway node. The time of a node in a discrete system can be
observed as a changing factor whose growth is either inhibited or initiated asynchronously by a different
dynamic switching process. The protocols are designated as Unidirectional Asynchronous Flooding (UAF),
Bidirectional Asynchronous Flooding (UAF), and Timed Sequential Asynchronous Update (TSAU). After
substantial modeling, the protocols are developed and tested on the MICAz sensor node platform. The energy
usage of the suggested protocols, memory needs, convergence time, and local and global synchronization
flaws are evaluated compared to Flooding Time Synchronization Protocol (FTSP) and FloodPISync. The
findings suggested that the procedures outperform the well-known methods.
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An Energy Efficiency Time Synchronization Protocol (EETS) for WSNs was presented in the lit-
erature [22]. This protocol was demonstrated to take advantage of the pairing of the Auto Regressive
Moving Average (ARMA) model and the Kalman filter model in time series prediction, which can both
address the shortcomings of the Kalman filter prediction and the low prediction accuracy of ARMA in
complex environments. The validation results demonstrate energy efficiency for WSNs and validate the
effectiveness of EETS, which was done by the authors using a prototype system. However, this protocol was
not evaluated against existing protocols for real-time performance using parameters such as memory usage,
synchronization precision, and convergence time.

In a newer study, the unique synchronization technique proposed in the literature [23] takes advantage
of both the CP and DP architectures. The hybrid time synchronization protocol (HTSP) technique uses a
temporary reference node to drastically shorten convergence times, while an average-based consensus is
used in regular operations to handle node failures. The protocol is distributed, but each node is programmed
to switch between the reference and consensus modes while in operation. Despite performing better than
specific established protocols such as FTSP and GTSP, this protocol exhibited greater global synchronization
error values. In addition, more real-time experimental work is required to verify enhanced synchronization
accuracy and convergence time claims.

Abdul-Rashid et al. [24] presented a new time synchronization protocol for wireless sensor networks
(WSNs). The authors addressed the challenges of achieving accurate synchronization in unstructured multi-
hop networks by formulating the problem as an optimization task. They utilized the Butterfly Optimization
Algorithm (BOA) to optimize clock parameters and achieve global synchronization across the network. The
proposed protocol was experimentally evaluated against two existing protocols: the Newton Inspired Time
Synchronization protocol and the Average Proportional Integral Synchronization protocol. Results indicated
that the new protocol significantly outperformed these alternatives in terms of synchronization accuracy.
The study highlighted the effectiveness of BOA in enhancing time synchronization in WSNs and suggested
potential directions for future research in this area.

Recently, numerous attempts have been made to improve the convergence rate and synchronization
error. The studies [25–27] utilized the concept of Packet-Coupled Oscillators (PkCOs). The Minimum
Variance Time Synchronization (MVTS) algorithm in the literature [24] uses output feedback to reduce
the noise on the accumulation of synchronization errors. Static feedback control using H∞ design solution
is utilized to adjust the clock drift, which works well in the 21-node network using a 32.768 MHz clock
rate as implemented in [27]. Both solutions adopted the Linear Matrix Inequality optimization framework
for the proposed synchronization algorithms. However, the PkCOs approach was criticized in [3] as
the performance degrades when adopted at a lower clock rate, which is widely used in most existing
industrial applications.

1.3 Distributed and Centralized Protocols
In general, DPs have a steady state value and are resilient and adaptable to changes in the network

topology. They are also impacted by network propagation delays and noise, just as other protocols. Since
surrounding nodes can communicate with one another to reach the consensus point based solely on the
initial analysis, the protocols are distinguished by low-complexity repetitive procedures, eliminating the
requirement to transfer information to a reference node. Conversely, CPs are typically simple to set up and
consist mainly of pairwise synchronization followed by global network synchronization. The protocols do,
however, have a number of shortcomings, including the substantial overhead associated with building the
entire tree structure, which makes them unsuitable for use in networks with dynamic topologies and typically
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adds extra time and overhead. At the same time, another node is connected to the network, or a reference
election is necessary.

1.4 Contribution
In the literature [13], the protocol uses two dynamic control parameters called proportional and integral

gains, α and β, to update clock parameters that present stability issues in the synchronization. These
parameters are assumed to be constant in the formulation of the synchronization problem in [28], but
actually, they must be updated as well prior to the update of clock parameters. The convergence of the
control parameters was also shown to depend on the network topology. In [29], the clock rate update
is done using only GraDes, which is known to have some disadvantages such as sensitivity to initial
parameters, differentiable cost function, local minima traps, and over-fitting. The proposed framework can
trade off between WSN applications, requirements, and the advantages of different stochastic algorithms for
time synchronization.

In more recent approaches like EETS [22], using Kalman Filters and the ARMA model will render
the synchronization protocol ineffective in real-world WSN applications. Although Kalman filtering offers
precise state estimation and noise reduction capabilities, its computational demands, sensitivity to model
inaccuracies, scalability challenges, and implementation costs make it less suitable for clock synchroniza-
tion. Simpler and more energy-efficient synchronization algorithms, such as gradient-based or distributed
consensus algorithms, can be better alternatives for highly constrained or large-scale WSNs [30]. Also, the
HTSP protocol [23] is expected to have a significant overhead due to the combined operations of the much
older protocols of FTSP and Gradient Time Synchronization Protocol (GTSP), and hence its adaptivity to
changes in network dynamics remains to be proven.

The proposed synchronization framework improves the methods in [28,29] with a more general and
optimized approach. The proposed framework can trade off between WSN application requirements and the
advantages of different stochastic algorithms for time synchronization.

This study outlines the following contribution:

1. A novel adaptive framework is proposed for WSN time synchronization that uses the advantages of
different stochastic gradient algorithms for clock frequency adjustments.

2. Generalized conditions are derived for which any stochastic gradient-based synchronization algorithm
will converge and closed-form asymptotic variance for synchronization precision comparisons between
different stochastic gradient algorithms.

3. Design and implement a light-weight multi-hop time synchronization protocol based on the sug-
gested framework.

4. Evaluate the proposed protocol using several stochastic gradient algorithms through real-time experi-
ments and compare performances against AvgPISync.

The remainder of the paper is structured as follows: Section 2 covers the system concept; Section 3
presents the proposed clock synchronization architecture; Section 4 describes the convergence analysis of
the proposed synchronization strategy; Section 5 explains the analytical performance of different stochastic
gradient algorithms based on the suggested framework; Section 6 presents the experimental comparative
evaluation of the synchronization protocols. Lastly, Section 7 concludes the paper.

2 System Model
Ordinary nodes dispersed throughout a comparatively small region or sensor field regularly send

readings to a base or gateway node in a sparsely distributed WSN. Most base nodes possess many resources,
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in contrast with ordinary nodes with smaller power, communication rate, and memory. In addition, the
gateway node in many WSNs is connected to a reliable and precise time reference, like a GPS receiver. For
clarity in the presentation of the proposed framework, this study provides a glossary of terms and symbols
used in Appendix A to improve readability and accessibility.

Fig. 1 indicates that all the other sensor nodes synchronize with the hardware clock of the gateway node
τG in the absence of exterior time input. In this model, nodes i and j are 1-hop neighbors of the gateway
node, G, and periodically receive clock values from the gateway, G, and exchange clock values with their 1-
hop neighbors. After a set period of packet exchanges, each node uses a chosen stochastic gradient algorithm
to update its clock value using the current clock value and received neighborhood clock values. This process
will update the clock value to the latest update time, tk , at the communication instant, k, which updates
to the next logical clock, c(tk), in the neighborhood, as discussed further in Section 2.3. Global network
synchronization is then expected within accepted error margins after several clock update rounds.

Figure 1: Time synchronization network concept in which nodes share neighboring clock data to synchronize their
clocks to that of a gateway node, τG

2.1 Network Model
A WSN with symmetric connections is assumed, which can be depicted as an undirected graph G =

(V , E ). The sensor nodes in the network are represented as the set of vertices, V = {vi ∣i = 1, 2, . . . , N}, where
N = ∣V ∣ denotes the number of vertices in V , and the operational network links between the nodes are
represented as an edge set, E , such that (vi , v j) ∈ E if nodes i and j can exchange information. Nodes that
directly communicate with node i are known as the neighboring nodes of i and can be denoted by the set
Ni = {v j∣Ei , j ∈ E }.
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2.2 Clock Model
In a Wireless Sensor Network (WSN), each node is furnished with a hardware clock, denoted as τ, which

is constructed using a crystal oscillator. As the nominal frequencies of the oscillators can vary due to factors
like temperature fluctuations and aging, the hardware clocks experience drifts. Following the definition
of a hardware clock provided in [21], the hardware clock τi of any given WSN node i at a time t > t0 is
characterized by an initial clock value τi(t0) and the oscillator frequency f (ζ) ∈ [ f̂ − fmax , f̂ + fmax].

τi(t) = τi(t0) + ∫
t

t0
f (ζ)dζ (1)

where fmin and fmax are the oscillator’s fundamental frequency’s lowest and greater bounds, f̂ , and the clock’s
drifting behaviors are represented as follows:

f (t) = f̂ + r(t) (2)

where r(t) ∼ U(− fmax , fmax) [13].

2.3 Generalized Update of Clock Parameters
Because the clock parameters of a physical clock are incapable of being modified, every network node

additionally retains a logical clock parameter that is a function of the present physical clock value, τi(t), and
a logical clock rate, δ(t). The representation of this logical clock c(t) is

c(t) = c(t0) + Δ(t)[τ(t) − τ(t0)] (3)

Using the distributed network architecture shown in Fig. 1 as a basis, we may express this update rule
as follows [31]: at a transmission moment, k and the most recent update time, tk a node, i ∈ V changes its
subsequent logical clock as

ci(t+k ) = ci(tk) + Δ i(t+k )[τi(t+k ) − τi(tk)] (4)

As for the logical clock speed, Δ i(tk) = d
d tk
[ci(tk)], whether it gradually slows or accelerates depends

on its present value which is an estimate of the relative frequency f̂
f i(t) . The clocks of the WSN nodes can be

kept synchronized utilizing this progressing model by recursively updating the logical clock of node i using
every update of the offset value, ci(tk), and the clock rate, Δ i(tk). The adjustment of Δ i is accomplished
using an adaptive approach, as seen in Fig. 2, to establish a resilient synchronization model. Eq. (4) can be
expressed as follows:

c̄ i(tk) = Δ i(t+k )τ̄i(tk) (5)

where c̄ i(tk) = ci(t+k ) − ci(tk) and τ̄i(tk) = τi(t+k ) − τi(tk).
Considering that M < N = ∣V ∣ nodes modify their clocks at tk , a shortened version of (5) can be

expressed as follows, abusing notation a little bit, say k = tk for convenience.

C(tk) = Δ̄(tk)T(tk) (6)

where T(tk) = [τ̄1(tk), . . . , τ̄M(tk)], C(tk) = [c̄1(tk), . . . , c̄M(tk)] and Δ̄(tk) = [Δ1(tk), . . . , ΔM(tk)].



2592 Comput Model Eng Sci. 2025;142(3)

Figure 2: Suggested clock setup for node synchronization

3 Proposed Framework for Clock Synchronization
In the proposed framework, Since the gateway clock, τG(tk) ((7)), is presumed to be precisely ticking

at every point in time k, every node must attempt to monitor and predict it. The above synchronization
challenge can be thought of as an estimation problem.

τG(tk) = k × 1
f̂
= tk (7)

where B is the resynchronization period of nodes. A linear dynamic update strategy may be derived from
this mechanism, using a training set {x(tk), d(tk)} ≡ {T(tk), τ̂g(tk)} for the WSN’s update and global
synchronization. Fig. 3 illustrates this generalization. For the dynamic update of clock variables in this
framework, we employ the deviation, ei(tk), between each node’s logical clock and the gateway clock, as
stated in (8).

ei(tk) = c̄ i(tk) − τG(tk) (8)

Figure 3: Model framework for clock synchronization for the sake of illustration k is used for tk in the model
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Thus, an apparent comparability is found between the synchronization problem and the adaptive filter
in Fig. 3. This comparability is shown by

d(tk) ≡ τG(tk)1; w(tk) ≡ Δ̄(tk); x(tk) ≡ T(tk); y(tk) ≡ C(tk) (9)

where 1 = [1, 1, . . . , 1]T . This abstraction matters because it allows the clock’s speed to be modified using any
stochastic gradient technique. The evolving logical clock has to be updated by first updating the clock rate
using a stochastic gradient algorithm to carry out clock synchronization, as shown in Fig. 2. Given a desired
output, τ̂g(tk), the problem of synchronization could be described as estimating τ̂g(tk) from τ̂i(tk) so as
to minimize the cost function. Assuming we define the square of the neighborhood error defined in (8) as a
cost function given by

J(Δ i) = e2(Δ i(tk)) (10)

The goal of the synchronization algorithm is to achieve in each pooling cycle, an optimal clock rate Δ⋆i
corresponding to, Jmin .

Δ⋆i = argmin
Δ i

J(Δ i(tk)) (11)

The update of Δ i should be such that J(Δ i(tk)) < J(Δ i(tk+1)). Hence, a stochastic gradient algorithm
can be emplyed to search for the optimal clock rate, Δ⋆i over several iterations using a step size, μ. To perform
the clock rate update based on the model in Fig. 3, this study adopts a generic form of stochastic gradient
algorithms, with update equations having a linear or non-linear function of the logical clock input, T(tk)
represented as follows:

Δ̄(tk+1) = Δ̄(tk) − μg[T(tk)]e(tk) (12)

where g[.] is some positive function of the input, i.e., g[.] > 0 and μ ∈ R is the step size. The generic equation
given in (12) can be used to represent different algorithms such as the least mean square (LMS) algorithm,
the Newton search algorithm, the GraDes algorithm, the normalized-LMS (N-LMS) algorithm and the
simplified form of LMS named Sign-Regressor LMS or Sign-Data LMS which can all be used for the update of
the logical clock rate. The derivation of g[τ̄ i(tk)] for each algorithm is given in Appendix B and summarized
in Table 1.

Table 1: Representation of different stochastic gradient algorithms for logical clock rate Δ i (frequency, fi ) adjustments

Algorithm Recursion g[τ̄i(tk)]

GraDes Δ i(tk+1) = Δ i(tk) − μ∇e2
i (tk) 2τ̄i(tk)

Newton Δ i(tk+1) = Δ i(tk) − μ [ ∂2 J(Δ i)
∂Δ2

i
]
−1 ∂J(Δ i)

∂Δ i

1
τ̄ i(tk)

LMS Δ i(tk+1) = Δ i(tk) − μ∇E[e2
i (tk)] τ̄i(tk)

N-LMS Δ i(tk+1) = Δ i(tk) − μ [γ + ∂2 J(Δ i)
∂Δ2

i
]
−1 ∂J(Δ i)

∂Δ i

e i(tk)τ̄ i(tk)
γ+τ̄2

i (tk)

Sign-Data LMS Δ i(tk+1) = Δ i(tk) − μsign[τ̄i(tk)]ei(tk) sign[τ̄i(tk)]
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4 Convergence and Steady State Analysis
The piece-wise form of the clock rate update in (12) can be written for some node i as follows:

Δ i(tk+1) = Δ i(tk) − μg[τ̄i(tk)]ei(tk) (13)

Considering that there is a delay in transmission and node i is inside the communication distance of
the gateway node, G, or {G∣Ei , g ∈ E } of β between i and G, the synchronization error at i with respect to G
at packet reception time tk = Δk, can be computed using

ei(tk) = ci(tk) − τg(tk) = ci(tk) − tk − βk (14)

Then node i updates its logical clock value with the error offset given by

ci(tk+1) = ci(tk) − ei(tk) = tk + βk . (15)

At the second packet reception time tk+1 following this correction, the synchronization error ei(tk)will
primarily be caused by the different hardware clock frequency of node i. Hence the error function given
in (8) can be generalized as

ei(tk) = ci(tk) − kB − βk = Δ i(t+k )τ̄i(t+k ) − kB − βk (16)

Lemma 4.1. βk is modeled as a zero-mean Gaussian distributed random variable with variance by
applying the central limit theorem, σ 2

β [21].

4.1 Asymptotic Convergence and Steady-State in the Mean Sense
For simplicity, we assume ei(tk) = ei(tk) and Δ i(tk) = Δ i(tk). We then define e(tk+1) and Δ i(tk+1)

based on the update Eqs. (15) and (16) as follows:

e(tk+1) = Δ i(tk)τ̄i(tk) − (B + βk+1 − βk) (17)

Δ i(tk+1) = Δ i(tk) − μg[τ̄i(tk)][Δ i(tk)τ̄i(tk) − (B + βk+1 − βk)]
Δ i(tk+1) = Δ i(tk)[1 − μg[τ̄i(tk)]τ̄i(tk)] − μg[τ̄i(tk)](B + βk+1 − βk)] (18)

Combining (17) and (18) into a state representation yields (19).

[ e(tk+1)
Δ i(tk+1)

] = [0 τ̄i(tk)
0 1 − μg[τ̄i(tk)]τ̄i(tk)

] [ ei(tk)
Δ i(tk)

] + (B + βk+1 − βk) [
−1

μg[τ̄i(tk)]
] (19)

Definition 4.1 (L p Convergence). A sequence of F -measurable random variables x(n) ∶ n ∈ N is said
to converge to an F -measurable random variable x in L p sense if

lim
n→∞

E[∣x(n) − x∣p] = 0
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Theorem 4.1. The update of the logical clock rate of a node i ∈ V , (i , G) ∈ E using a stochastic gradient
algorithm of the form (13) will converge in the L p sense to an asymptotically stable point if and only if the
step size μ is chosen in the range, (0, 2

P1
), i.e., μ must be chosen based on the inequality

0 < μ < 2
P1

(20)

where p = 1, P1 = E[g[τ̄i(tk)]τ̄i(tk)] and E[.] denotes an expectation operation.

Proof of Theorem 4.1. To assess the pairwise convergence of the proposed generalized algorithm for
clock synchronization in the mean-sense, we evaluate L p, p = 1 convergence of (19) by taking the expectation
of (19).

[ E[e(tk+1)]
E[Δ i(tk+1)]

] = [0 B f̂
0 1 − μE[g[τ̄i(tk)]τ̄i(tk)]

] [E[ei(tk)]
E[Δ i(tk)]

] + [ −B
μBE[g[τ̄i(tk)]]

] (21)

For the technique to asymptotically converge in the mean-sense, a unit circle must contain the modes
λ1 , λ2 of E[Φ(tk)] = Φ̄(tk). It finds the eigenvalues as [λ1 , λ2] = [0, (1 − μE[g[τ̄i(tk)]τ̄i(tk)])] according
to the premise ∣λI − Φ̄(tk)∣ = 0. Consequently, 0 < μ < 2

E[g[τ̄ i(tk)]τ̄ i(tk)]
is a necessary and sufficient condition

for asymptotic convergence in the mean-sense. ∎
Based on Theorem 4.1, our proposed system can converge to an asymptotically stable points of error

and rate define as

[ limk→∞E[ei(tk)]
limk→∞E[Δ i(tk)]

] = [ e(∞)
Δ i(∞)] (22)

Theorem 4.2. The evolving pairwise synchronization error, ei and the clock rate, Δ i for node i
synchronizing to the clock of a perfectly ticking gateway node, G converge to the steady state values ei(∞) =
B (B f̂ × P2 − 1) and Δ i(∞) = B × P2, respectively, where P2 = E[g[τ̄ i(tk)]]

E[g[τ̄ i(tk)]τ̄ i(tk)]
.

Proof of Theorem 4.2. To assess the pairwise convergence of the proposed framework for clock
synchronization in terms of the synchronization error and the clock rate, we utilize (17) and (18). Each
algorithm used for the rate update aims to converge to a rate that achieves a zero synchronization error.

From (17), it can write the steady state error as follows:

ei(∞) = B f̂ Δ̂ i(∞) − B, (23)

and the asymptotic clock rate is given by

Δ i(∞) = (1 − μE[g[τ̄i(tk)]τ̄i(tk)])Δ i(∞) + μBE[g[τ̄i(tk)]]

After some simple manipulations, then

Δ i(∞) =
BE[g[τ̄i(tk)]]

E[g[τ̄i(tk)]τ̄i(tk)]
(24)
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Substituting (24) in (23) yields a steady-state error of

ei(∞) = B
⎛
⎜⎜
⎝

B f̂ ×
E[g[τ̄i(tk)]]

E[g[τ̄i(tk)]τ̄i(tk)]
− 1
⎞
⎟⎟
⎠

(25)

and let
E[g[τ̄ i(tk)]]

E[g[τ̄ i(tk)]τ̄ i(tk)]
= P2. Since the communication rate,B and the nominal oscillator frequency, f̂ will

always be positive and non-zero, i.e., B > 0, f̂ > 0 it is obvious from (25) that a necessary and sufficient
condition for zero asymptotic synchronization error is for P2 = 1

B f̂
. ∎

Lemma 4.2. Consider a WSN whose nodes carry out time synchronization based on the model
presented in Figs. 2, 3, and using a stochastic gradient algorithm of the form given by (13) for clock
rate update. Time Synchronization will eventually be achieved with zero steady-state error, e(∞) = 0 and
nominal ticking rate, Δ i(∞) = 1

f̂
if and only if, P2 = 1

B f̂
.

The steady-error asymptotic variance must be as small as possible to maintain tight global synchroniza-
tion among network nodes [32]. For any particular stochastic gradient algorithm, the value of μ must be
chosen to satisfy Theorem 4.1 and be as small as possible. Hence, to further analyze the convergence behavior
of this proposed paradigm for synchronization, the asymptotic variance of the synchronization error is given
by Theorem 4.3.

Theorem 4.3. The asymptotic variance in synchronization error of a stochastic gradient algorithm of
the form given by (13) for clock rate update is given by

Var[e(∞)] = μ2 (B2 + B f 2
max

2 f̂ 2
)(Q3 + (B2 + σ 2

D) f̂ 2Q1 − 3B f̂ Q3

2μQ2 + 2μ2Q3
) + B f 2

max

f̂ 2
+ σ 2

D (26)

where Q1 = E[g2[τ̄i(tk)]], Q2 = E[g[τ̄i(tk)]τ̄i(tk)], and Q3 = E[g2[τ̄i(tk)]τ̄2
i (tk)].

The proof of Theorem 4.3 is given in Appendix C. From the analysis of our generalized paradigm for
clock synchronization, we observe that the steady-state values and the conditions are all independent of the
propagation error.

Lemma 4.3. A node i synchronizing in a network with gateway node will eventually achieve zero
steady-state error, ei(∞) = 0 with variance var[ei(∞)] and nominal ticking rate, Δ i(∞) = 1

f̂
, once Theo-

rems 1 and 2 are satisfied, irrespective of the statistics of the propagation delay of transmission between the
node and the gateway or neighboring nodes.

5 Theoretical Performance of Stochastic-Gradient Algorithms
In this section, we extend the analysis of the proposed generalized paradigm for synchronization to

study the convergence and steady state of node clock rate or frequency adjustment using the LMS algorithm,
the Newton search algorithm, the GraDes algorithm, N-LMS algorithm, Sign-Error LMS and Sign-Data
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LMS. The following steps can be taken to undertake this analysis while choosing a particular stochastic
gradient algorithm for clock rate update, the following steps can be taken:

1. Reconfigure the chosen stochastic gradient algorithm to fit the form of (13) and estimate a simplified
form of the function g[τi(tk)].

2. To obtain the range of values for which the clock frequency update will converge in the mean sense, find
P1 and substitute it into (20).

3. To obtain the steady state values of the synchronization error, e(∞) and the clock rate, Δ i(∞) in the
mean sense, find P2 and substitute it in the equations in Theorem 4.2.

4. Calculate and simplify Q1 , Q2 and Q3 using g[τi(tk)] and substitute it into (26) to obtain the
asymptotic variance.

5.1 Gradient Descent (GraDes) Algorithm Inspired Time Synchronization
In the literature [28], the GraDes based time synchronization protocol is expressed as follows:

ci(tk+1) = ci(tk) + ei(tk) = tk + βk , and (27)
Δ i(tk+1) = Δ i(tk) − 2μτ̄i(tk)ei(tk) (28)

Therefore g[τi(tk)] = 2τ̄i(tk). From this configuration, we obtain the variable for convergence in the
mean sense as

P1 = 2E[g2(τ̄i(tk))] = 2B2 f̂ 2 (1 + f 2
max

3B f̂ 2
)

For this algorithm to converge, μ must be chosen to be based on the inequality of

0 < μ < 1
B2 f̂ 2 (1 + f 2

max
3B f̂ 2 )

(29)

This condition is more accurate as compared to that presented in [28] which approximates ∂e(Δ i)
∂Δ i

=
2ei(tk)τ̄i(tk) = 2ei(tk)E[τ̄i(tk)]. Furthermore, after some simple manipulations the variable P2 is calcu-
lated as P2 = 1

2B f̂ (1+ f 2
max

3B f̂ 2 )
, and therefore substituting P2 into Theorem 4.2, gives e(∞) = B( 1

2(1+ fmax
3B f̂ 2 )

− 1) and

Δ i(∞) = 1
f̂
(2(1 + f 2

max
3B f̂ 2 )).

For the asymptotic variance, we compute Q1 and Q2 and for g[τi(tk)] = τ̄i(tk) as follows:

Q1 = 4E[τ̄2
i (tk)] = 4(B2 f̂ 2 + B f 2

max
3

)

Q2 = 2E[τ̄2
i (tk)] = 2(B2 f̂ 2 + B f 2

max
3

)

The lower-bound approximation is adopted for Q3 using Jensen’s inequality where

Q3 = 4E[τ̄4
i (tk)] ≥ 4E4[τ̄i(tk)] = 4B4 f̂ 4
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Inserting these values in (26) and simplifying yields,

Var[e(∞)] = μ (B2 + B f 2
max

2 f̂
)

⎛
⎜⎜⎜⎜
⎝

B4 f̂ 4 + f̂ 2(B2 + σ 2
D)(B2 f̂ 2 + B f 2

max
3

) − 3B5 f̂ 5

B2 f̂ 2 + B f 2
max
3

− 2μB4 f̂ 4

⎞
⎟⎟⎟⎟
⎠

+ B f 2
max
f 2 + σ 2

D . (30)

Lemma 5.1. The asymptotic error and clock rate for the GraDes algorithm used for clock rate update
in synchronization for WSNs will reach zero steady-state, e(∞) = 0, nominal ticking rate, Δ i(∞) = 1

f̂
, and

have a convergence condition of μ ∈ (0, 2
B2 f̂ 2 ) if and only if:

3B f̂ 2 = −2 f 2
max (31)

5.2 Least Mean Square (LMS) Algorithm Inspired Time Synchronization
The instantaneous LMS algorithm can be adopted for the update of logical clock rate and hence, the

update of clock parameters for this algorithm can be given as follows:

ci(tk+1) = tk + βk , and (32)
Δ i(tk+1) = Δ i(tk) − μei(tk)τ̄i(tk) (33)

Hence, g[τi(tk)] = τ̄i(tk). From this configuration, similar to the GraDes-based algorithm, it obtains
the variable for convergence in the mean sense as

P1 = 2E[g2(τ̄i(tk))] = B2 f̂ 2 (1 + f 2
max

3B f̂ 2
)

For this algorithm to converge, μ must be chosen to based on the inequality

0 < μ < 2

B2 f̂ 2 (1 + f 2
max

3B f̂ 2
)

(34)

In addition, after some simple manipulations the variable P2 is calculated as P2 = 1
B f̂ (1+ fmax

3B f̂ 2 )
, and

therefore substituting P2 into Theorem 4.2, e(∞) = B( 1
(1+ f 2

max
3B f̂ 2 )

− 1) and Δ i(∞) = 1
f̂
( 1
(1+ f 2

max
3B f̂ 2 )

). We compute

Q1, Q2 and Q3 for g[τi(tk)] = τ̄i(tk) as follows:

Q1 = Q2 = E[τ̄2
i (tk)] = B2 f̂ 2 + B f 2

max
3

and

Q3 = E[τ̄4
i (tk)] ≥ E

4[τ̄i(tk)] = B4 f̂ 4
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Inserting these values in (26) and simplifying yields,

Var[e(∞)] = μ
2
(B2 + B f 2

max

2 f̂
)

⎛
⎜⎜⎜⎜
⎝

B4 f̂ 4 + f̂ 2(B2 + σ 2
D)(B2 f̂ 2 + B f 2

max
3

) − 3B5 f̂ 5

B2 f̂ 2 + B f 2
max
3

− μB4 f̂ 4

⎞
⎟⎟⎟⎟
⎠

+ B f 2
max
f 2 + σ 2

D . (35)

Lemma 5.2. The asymptotic error and clock rate for the LMS algorithm used for clock rate update in
time Synchronization for WSNs will eventually reach zero steady-state, e(∞) = 0 and nominal ticking rate,
and Δ i(∞) = 1

f̂
, and have a convergence condition of μ ∈ (0, 2

B2 f̂ 2 ) if and only if:

3B f̂ 2 ⋙ f 2
max or B ⋙ f 2

max

3 f̂ 2
(36)

Proof of Lemma 5.2. Given P1 = B2 f̂ 2(1 + f 2
max

3B f̂ 2 ) and P2 = 1
B f̂ (1+ fmax

3B f̂ 2 )
, if the fraction, f 2

max
3B f̂ 2 �→ 0 then

P1 = B2 f̂ 2 and P2 = 1
B f̂

.

Since the clock frequency cannot be zero, f 2
max

3B f̂ 2 ≈ 0 only if, the numerator f 2
max far exceeds 3B f̂ 2. Now

assuming f̂ = ρ fmax , 0 < ρ < 1, then f 2
max

3B f̂ 2 = 1
3ρ2 B . Since fmax is fixed for a sensor node oscillator, 1

3ρ2 B �→ 0
if the beacon rate, B is really high. ∎

5.3 N-LMS and Newton Algorithm Based Time Synchronization
The equations of the time synchronization protocol inspired by the Newton algorithm are given by

ci(tk+1) = ci(tk) + ei(tk) = tk + βk , and (37)

Δ i(tk+1) = Δ i(tk) − μ ei(tk)
τ̄i(tk)

(38)

The clock rate update in (38) is reminiscent of the N-LMS algorithm for a scalar parameter which can
be given as follows:

Δ i(tk+1) = Δ i(tk) − μ ei(tk)τ̄i(tk)
γ + τ̄2

i (tk)

Assuming an infinitesimal γ, and comparing to (13), g[τi(tk)] = 1
τ̄ i(tk)

. Hence, P1 = 1. Therefore for this
algorithm to converge, μ must be chosen to based on the inequality

0 < μ < 2 (39)

The variable P2 is also calculated to be P2 = 1
B f̂

, and therefore from Theorem 4.2, e(∞) = 0 and Δ i(∞) =
1
f̂
. This result is also consistent with that presented in [29]. To calculate the asymptotic variance, Q1, Q2

and Q3 are computed from Theorem 4.3. Substituting g[τi(tk)] = 1
τ̄ i(tk)

in their respective equations and
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simplifying,

Q1 = E[τ̄−2
i (tk)] ≈ E

−1[τ̄2
i (tk)] =

1

B2 f̂ 2 + B f 2
max
3

Q2 = Q3 = 1

Inserting these values in (26) and simplifying yields,

Var[e(∞)] = (B2 + B f 2
max

2 f̂
)( μ2 fmax + 2μ f̂ 2σ 2

D

2 − 4μ − 2μ2B f̂ 2
+ 2μ2 f 2

max) +
B f 2

max
f 2 + σ 2

D . (40)

5.4 Sign-Data LMS Algorithm Inspired Time Synchronization
The Sign-Error LMS algorithm is a modified variant of the conventional LMS algorithm and can also be

used to update the logical clock rate. In this algorithm, Instead of using τ̄i(tk), this algorithm uses its sign.
This leads to the following recursions for clock parameters:

ci(tk+1) = ci(tk) + ei(tk) = tk + βk , and (41)
Δ i(tk+1) = Δ i(tk) − μsign[τ̄i(tk)]ei(tk) (42)

where

sign[τ̄i(tk)] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−1 if τ̄i(tk) < 0
0 if τ̄i(tk) = 0
1 if τ̄i(tk) > 0

Since the the hardware clock is constantly ticking, we assume τ̄i(tk) = τi(t+k ) − τi(tk) ≠ 0 or − 1 and
hence g[τi(tk)] = sign[τ̄i(tk)] = 1

From this formulation, P1 = E[sign[τ̄i(tk)]τ̄i(tk)] = B f̂ . Therefore for this algorithm to converge, μ
must be chosen to based on the inequality

0 < μ < 2
B f̂

(43)

In addition, the variable P2 is calculated to be P2 = 1
B f̂

, and therefore from Theorem 4.2, e(∞) = 0 and
Δ i(∞) = 1

f̂
. We compute Q1, Q2 and Q3 for g[τi(tk)] = 1 as follows:

Q1 = 1

Q2 = E[τ̄i(tk)] = B f̂

Q3 = E[τ̄2
i (tk)] = B2 f̂ 2 + B f 2

max
3

Inserting in (26) and simplifying yields,

Var[e(∞)] = μ
2
(B2 + B f 2

max

2 f̂
)

⎛
⎜⎜⎜⎜
⎝

f̂ 2(B2 + σ 2
D) + (1 − B f̂ )(B2 f̂ 2 + B f 2

max
3

)

B2 f̂ 2 + B f̂ + B f 2
max
3

⎞
⎟⎟⎟⎟
⎠

+ B f 2
max
f 2 + σ 2

D . (44)
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5.5 Theoretical Comparison of Synchronization Algorithms
This section summarizes the theoretical differences and similarities between the LMS algorithm, the

Newton search algorithm, the GraDes algorithm, the SignData-LMS algorithm, and the N-LMS algorithm
for synchronization clock rate update. The yardstick for this exercise is based on the steady-state syn-
chronization error and clock rate, the convergence time, the asymptotic error variance, and the order of
algorithm complexity.

5.5.1 Steady-State Convergence
Using the steady-state values of synchronization error and the clock rate, three algorithms: the N-

LMS, the Newton search, and the Sign-Data LMS are observed to converge to zero synchronization error
and the nominal clock rate, 1/ f̂ . This means that the algorithms will eventually evolve to a steady state
independent of network size N and beacon period B. However, the steady-state conditions of the GraDes and
LMS algorithms depend on the maximum frequency of the node clock oscillator, fmax , the beacon rate, B,
and the nominal oscillator frequency, f̂ . However, the convergence of the LMS algorithm is better than that
of the GraDes algorithm because if the conditions in Lemmas 5.1 and 5.2 are satisfied, the LMS algorithm
converges to 1/ f̂ , whereas the GraDes algorithm converges to 2/ f̂ . Furthermore, we compare the conditions
of convergence of the algorithms. All algorithms’lower bound of the step size, μ, is zero. However,except for
the Newton and N-LMS algorithms having upper bounds of μ to be 2, the upper bound of μ for all the other
algorithms is inversely proportional to B f̂ . Table 2 compares the convergence and steady-state performance
of all algorithms used for node logical clock updates.

Table 2: Asymptotic error, clock rate and conditions for convergence

Algorithm Step size, μ Error, e(∞) Rate, Δ(∞)

GraDes 0 < μ < 1
B2 f̂ 2(1+ f 2

max
3B f̂ 2 )

B( 1
2(1+ fmax

3B f̂ 2 )
− 1) 2

f̂
(1 + f 2

max
3B f̂ 2 )

LMS 0 < μ < 2
B2 f̂ 2(1+ f 2

max
3B f̂ 2 )

B( 1
(1+ f 2

max
3B f̂ 2 )

− 1) 1
f̂
(1 + f 2

max
3B f̂ 2 )

−1

N-LMS 0 < μ < 2 0 f̂ −1

Newton 0 < μ < 2 0 f̂ −1

SignData-LMS 0 < μ < 2
B f̂

0 f̂ −1

5.5.2 Asymptotic Error Variance
The asymptotic variance indicates the statistical distance between the steady-state synchronization

error of each network node and the global average steady-state error. The degree of synchronization
precision of a protocol, which is inversely proportional to the asymptotic variance, can be compared between
protocols. From the generalized derived closed-form asymptotic variance of all protocols, we observe that
the differences in each protocol’s variance lie in the third multiplicative factor,which we denote here as ψ and
given as

ψ =
−Q3(3B f̂ − 1) + (B2 + σ 2

D) f̂ 2Q1

2μQ2 + 2μ2Q3
(45)
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It can be observed from (45) that the asymptotic variance, Var[e(∞)], is minimized if Q1 is minimum
and, Q2 and Q3 are maximum. Comparison of the parameters for the five clock rate update algorithms
is given by Table 3. Based on this criteria for synchronization comparison, it is clear that SignData-LMS
outperforms all other algorithms since it has a minimum Q1 and a maximum Q2 and Q3. In comparison,
the N-LMS and Newton algorithms have lower values of Q1 but the values of Q2 and Q3 are infinitesimal
as compared to those of SignData-LMS. However, since all the parameters are minimal for the N-LMS
and Newton algorithms, this will result in lower values of Var[e(∞)] compared to the LMS and GraDes
algorithms. In addition, Q1, Q2, and Q3 for LMS are all less than those of GraDes, and since Q2 and Q3
for GraDes are far higher than those of LMS, we conclude that the GraDes algorithm will outperform the
LMS algorithm in terms of synchronization precision. This indicates that, theoretically, the most precise
algorithm for clock synchronization precision is the SignData-LMS, followed by the N-LMS and Newton
algorithms, then the GraDes algorithm. The LMS-based synchronization algorithm performs poorly in terms
of synchronization precision.

Table 3: Precision comparison using asymptotic error variance, Var[e(∞)]

Algorithm Q1 Q2 Q3

GraDes 4(B2 f̂ 2 + B f̂ 2
max
3 ) 2(B2 f̂ 2 + B f 2

max
3 ) 4B4 f̂ 4

LMS B2 f̂ 2 + B f 2
max
3 B2 f̂ 2 + B f 2

max
3 B4 f̂ 4

N-LMS (B2 f̂ 2 + B f 2
max
3 )

−1
1 1

Newton (B2 f̂ 2 + B f 2
max
3 )

−1
1 1

SignData-LMS 1 B f̂ B2 f̂ 2 + B f 2
max
3

5.5.3 Complexity
The complexity of all the stochastic gradient-based algorithms, i.e., GraDes, LMS, N-LMS, Newton,

and SignData-LMS, are similar. In the algorithms, for each node i, the update of clock parameters is
carried out every synchronization round or beacon rate, B. Hence, the algorithm will run in multiples
of B until convergence is attained. Hence, the overall complexity is O(B). However, with each B, node
i updates its logical clock every Ts using received logical clock values from its Ni neighbors. Hence, all
algorithms’computation complexity is O(BTs Ni).

5.6 Multi-Hop Synchronization with Generalized Protocol
Based on the pair-wise synchronization assessment, this section describes an extensive procedure for

achieving time synchronization in WSNs. A generic protocol is devised that allows any node to achieve
local synchronization and by extension, allows network-wide synchronization. The gateway node, G, and its
associated timestamp, τG , may only be directly accessible to a small number of nodes; hence, a decentralized
averaging procedure is utilized to synchronize all nodes with G. The clock rate, Δ, is updated using the
stochastic adaptive search method, which modifies the logical clock speed every synchronization cycle. The
protocol assumes an underlying MAC protocol is assumed by the protocol. Algorithm 1 presents the pseudo-
code for the protocol implementation of node i. Upon activation, node i sets several variables to zero, such as
ci , which represents the estimated clock value, Δ i , which represents the oscillator frequency and two auxiliary
variables, ClockError and Received, which are utilized for decentralized averaging (Line 3).
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Algorithm 1: Synchronization pseudo-code for node i
1: Initialization
2: Clear repository
3: ci ← 0; ClockError ← 0; Received ← 0;
4: Specify g[τi(tk)], based on the selected algorithm
5: Neighborhood Handshake
6: Node i broadcasts clock request packets to 1-hop neighbors, Ni
7: Say node j, is such that { j ∈ Ni ∣Ni ∈ V and Ei , j ∈ E }
8: if cj request is received at node j then
9: j sends an acknowledgment with payload cj
10: end if
11: Synchronization
12: for Each received cj at node i do
13: ei j ← (c j − ci)
14: ClockError ← ClockError + ei j
15: Received ← Received + 1
16: After Ts seconds
17: enew ← C l ockError

Rece iv ed
18: if ∣enew − ci ∣ < emax then
19: Δ i ← Δ i − μ(enew g[τ̄i])
20: end if
21: ci ← ci + enew
22: ClockError ← 0; Received ← 0;
23: Set timer to fire after B seconds
24: end for
25: Neighborhood Broadcast
26: procedure UPON RECEIVING ci CLOCK REQUEST FROM NODE j
27: Node i transmits acknowledgment ci to node j
28: end procedure
29: procedure UPON TIMER, TIME-OUT
30: Broadcast request for clock packets from Ni neighbors
31: end procedure

After clearing its stored data and determining g[τi(tk)] according to the selected algorithm, node i
broadcasts a request to its neighbors for their clock values (Line 4). Following receipt of this request, node
j, a neighbor of i, sends i an acknowledgment packet that includes c j, its clock value (Lines 5–7). Node i
computes the difference between its current time value, ci , and the received time value, c j, for each received
acknowledgment with a clock value, c j. It then accumulates this value in the ClockError variable for all
neighboring time values. In addition, each reception increases by one in the Received variable (Lines 8 to
11). Node i waits for a duration, Ts ⋘ B1 (Line 13).

The node updates of Δ i is done using the computed update criterion if the absolute value of enew is
less than a pre-calculated maximum error, emax . This value is given by emax = 2B f̂ −1 fmax [13] based on
the frequency difference between the two arbitrary nodes captured at a specific window size B. The emax

1 where Ts is the upper bound on the variance in the convergence time of all network nodes, presuming that clock inputs from 1-hop neighbors are
received quickly. Node i calculates the average local error, enew, during this period after expecting to receive values from all nearest neighbors.
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reflects the trade-off between synchronization precision and the expected frequency deviation under typical
operational conditions, considering hardware variability and environmental noise. Then, node i sets a timer
to go off in B seconds (Lines 16 to 18), updates the clock value, ci , resets the auxiliary parameters, and, when
the timer goes off, node i broadcasts request packets for local clock values. Last but not least, node i sends
an acknowledgment to j with its most recent clock whenever it receives a clock request from node j nearby.

6 Experimental Results and Discussion
This study implemented the proposed generalized protocol configured with five (5) stochastic algo-

rithms, GraDes, LMS, N-LMS, Newton, SignData-LMS and also AvgPISync [13] for a MICAz WSN platform
using TinyOS operating system. Based on our evaluation of recent protocols, even though there are
newer alternatives, AvgPISync stands out as a high-performing adaptive and distributed protocol with
proven practical implementation results. Therefore, it is an excellent candidate for comparison with newly
developed protocols.

6.1 Experimental Test-Bed
The experimental test-bed utilizes MICAz nodes from Memsic, which are built around a 7.37 MHz

8-bit Atmel Atmega128L microcontroller. The nodes are equipped with 4 kB of RAM, 128 kB of program
flash, and a Chipcon CC2420 radio chip, capable of transmitting data at a rate of 250 kbps at a frequency of
2.4 GHz. The 7.37 MHz quartz oscillator on the MICAz board serves as the clock source for the timer used
for timing measurements. Since the timer operates at one-eighth of the oscillator frequency, each timer tick
occurs approximately every 921 kHz (approximately 1 μs), resulting in f̂ equal to 1 MHz.

TinyOS-2.1.2, installed on the Ubuntu Linux Distribution, is used as the base operating system for all
experimental work. The MICAz board’s CC2420 transceiver timestamps synchronization packets at the MAC
layer using the timing measurement timer [21]. Although the motes are a bit old-fashioned, they have the
same architecture as most of the recent motes and are still used by several contemporary researchers [33–35]
for WSN protocol design. Also, the proposed adaptive algorithms are hardware-neutral, as they primarily
target algorithmic convergence and synchronization precision and are expected to perform better on more
recent devices. Additionally, the higher clock rates and lower energy consumption in contemporary devices
could further enhance the performance of our framework.

The test-bed layout used for our experiments is based on a grid and line topology of 16 nodes, as shown
in Fig. 4, with a diameter of 8 between nodes. The grid topology allows us to evaluate the performances
of protocols on a dense network, and the line topology is employed to study protocol performances on a
sparse network and the effects of the shape of networks on synchronization accuracy and convergence. Each
testbed is configured such that one node acts as the gateway node and the others as ordinary nodes, which
are programmed independently with the synchronization protocol. A specialized node configured to act as
the base station or sink is connected to a PC and gathers all time-sync packets onto a computer for analysis.
In our experiments, a beacon period B of 30 s was used for all protocols. The experimental parameters for
AvgPISync, β, αmax , and emax are kept respectively at 1, 3.33 × 10−8 [13], and for N-LMS, γ = 1 × 10−6. The
same step size of μ = 0.1 is used in all protocols to ensure objective assessment of all protocols. At the start of
each experiment, the network nodes are powered on in a random sequence within a 45-s window, and each
experiment runs for a duration of approximately 330 min.
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Figure 4: Layout of WSN Testbed for Experiments

6.2 Logical Clock and Frequency (Rate)
This study needs to examine the clock value discrepancies among the network nodes to assess the

synchronization accuracy of each protocol. It achieves this by gathering the clock values of all nodes at each
communication instant k. Specifically, during every synchronization round, each node, excluding node 1,
sends its logical clock and rate values to the base station, which is connected to a computer. Each node’s clock
and clock rate values are converted to decimal form and saved in a text file. The global mean logical clock,
cglobal and frequency, fglobal values of experiments on the grid and line test-beds are shown in Fig. 5. The
values are calculated, respectively, as

cglobal = EV [ci(tk)] (46)
fglobal = EV [1/Δ i(tk)] (47)

Figure 5: Average global logical clock, cglobal and frequency, fglobal values for 16 nodes grid and line test-beds. The
logarithmic y-axis is used in the plots to observe the detailed changes in cglobal and fglobal values for each protocol

All protocols are observed to converge approximately to the nominal frequency of f̂ = 1 MHz, although
at different times. Overall, fglobal converges to f̂ for protocols for the grid network at between 33−39 min and
between 41–50 min for the line network. The Newton-based protocol has the fastest convergence for both
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networks, followed by the GraDes and AvgPISync protocols. The LMS and N-LMS protocols had similar
convergence times, and the Sign-Data LMS was the slowest protocol. The mean global logical clock values,
cglobal for the protocols are also observed to be within similar peak values for all but there seems to be a
higher time-shift of cglobal values for the grid network than the line network.

6.3 Criteria for Synchronization Accuracy
The error between the logical clocks of arbitrary nodes, i and j, in the test network after convergence

time, TC , to the experiment end time, TE , is used to assess the synchronization accuracy between all protocols
for the grid and line networks.

ei j(tk) = c j(tk) − ci(tk), TC ≤ tk ≤ TE (48)

Network-wide synchronization accuracy at each communication instant is then calculated using
maximum global synchronization error, eglobal and the synchronization accuracy of nodes with respect to
their neighbors by using the maximum local synchronization error, elocal given respectively by [20]

eglobal = EV[max
i , j∈V

ei j(tk)] (49)

elocal = EV[ max
i , j∈V , j∈Ni

ei j(tk)] (50)

The synchronization accuracy between any two network nodes can be assessed using the global
synchronization error, eglobal, whereas the synchronization accuracy between adjacent nodes can be assessed
using the local synchronization error elocal.

The study then computes the global error’s mean, standard deviation, and maximum statistics as key
indicators of each protocol’s robustness and ability to perform in grid and line topologies. The mean error
reflects the overall accuracy of the synchronization, and the standard deviation indicates the variability of the
synchronization between nodes, and the maximum error highlights the worst-case performance. Consistent
results across both topologies suggest that the protocol is not overfitted to specific test cases but instead
demonstrates some level of adaptability and reliability. The study validates a protocol’s resilience to structural
topology changes by analyzing these metrics collectively. These metrics also provide a foundation for future
validation in broader real-world applications.

6.4 Experimental Results on Grid
The experimental results on the grid network for eglobal and elocal are given in Fig. 6a,b, respectively.

Regarding both global and local synchronization error, all protocols, including the AvgPISync protocol, show
high synchronization accuracy, with values ranging from 10.7–12.33 μs for maximal global error and 5.57–
7.11 μs for maximal local error although Sign-Data LMS has the best performance for global and local errors.
However, in terms of convergence time, LMS and N-LMS are the fastest to converge within 8–9 min and
7–8 min, respectively. This is followed by AvgPISync protocols, which converge within 10–12 min, then 14–16
min for the GraDes algorithm. The Newton search algorithm and Sign-Data LMS-based protocol were the
slowest, with 15–18 min values.

In addition to the error curves, an error distribution histogram and kernel density estimation (KDE)
for the probability density function (PDF) of eglobal for each protocol are carried out and shown in Fig. 7a,b,
respectively. It observes a Gaussian PDF distributed eglobal for all protocols with similar performances in
terms of mean and standard deviation (STD), although AvgPISync has a higher mean eglobal as compared
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to the stochastic gradient-based protocols. Sign-Data LMS-based protocol shows a tighter PDF curve
with STD = 0.531 μs which is consistent with the theoretical analysis of synchronization precision. Table 4
summarizes the mean, STD, maximum, and convergence time of the global error of all tested protocols.

Figure 6: Global and local synchronization-error on the 4 × 4 grid network

Figure 7: The (a) probability density and (b) normalized distribution histogram of the global synchronization-error,
eglobal on grid network

Table 4: Maximal global synchronization error, eglobal accuracy, and convergence time comparison on the the 4 × 4 grid
network

Protocol algorithms Mean [eglobal] (μs) STD [eglobal] (μs) Max [eglobal] (μs) Convergence
time (min)

AvgPISync 9.75 0.814 11.01 10–12
GraDes 9.22 0.984 12.33 14–16

LMS 9.27 0.837 11.86 8–9
N-LMS 9.01 0.644 11.46 7–8
Newton 8.74 1.205 11.12 15–17

SignData-LMS 9.26 0.531 10.70 16–18
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For WSN applications on dense networks requiring rapid convergence, it might be best to consider the
N-LMS-based protocol for logical clock frequency adjustments. If synchronization accuracy or precision is
rather paramount with tolerable slower convergence, then it is best to use Sign-Data LMS for the frequency
update. For balanced accuracy and convergence time requirements, the GraDes or Newton search algorithms
can be employed, although the LMS algorithm will also perform in such a case.

6.5 Experimental Results on Line Topology
The experimental results on the line network for eglobal and elocal are given in Fig. 8a,b, respectively.

First, the Newton-based protocol converges the fastest regarding global convergence time within 12–14 min.
AvgPISync, then GraDes follow this, and then N-LMS and LMS-based protocols. Sign-Data LMS shows the
slowest convergence time and takes nearly twice as long as the Newton search algorithm-based protocol.
However, regarding synchronization accuracy, the Sign-Data LMS LMS-based protocol outperforms all
protocols with maximal global and local synchronization errors of 11.08 and 8.55 μs. The GraDes and LMS-
based protocols also achieve good accuracy around 13 μs. AvgPISync, N-LMS, and Newton algorithms also
achieve an acceptable accuracy of around 15 μs. In the PDF and distribution plots of eglobal shown in Fig. 9a,b,
the AvgPISync shows a higher mean global error of 14.62 μs than all protocols with values around 12 μs. In
terms of precision, the Sign-Data LMS outperforms all the other protocols with an STD of 0.9 μs. Also, we
observe the least precision for the AvgPISync (STD = 2.436 μs) protocol as compared to all other protocols
(STD = 1.2–1.7 μs).

Figure 8: Global and local synchronization-error on the line network

Therefore, in selecting the optimal algorithm for logical clock frequency adjustments, for WSN appli-
cations where sparse or simple type network architectures are used, if accuracy and precision are paramount
over fast convergence, Sign-Data LMS is recommended; otherwise, if fast convergence is the priority,
then the Newton search algorithm is preferred. For a more balanced performance, N-LMS or GraDes are
recommended. A summary of the mean, STD, maximum, and convergence time of the global error of all
tested protocols is shown in Table 5.
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Figure 9: The (a) probability density and (b) normalized distribution histogram of the global synchronization-error,
eglobal on line network

Table 5: Maximal global synchronization error, eglobal accuracy, and convergence time comparison on the line network

Protocol algorithms Mean [eglobal] (μs) STD [eglobal] (μs) Max [eglobal] (μs) Convergence
time (min)

AvgPISync 14.62 2.436 15.27 15–17
GraDes 12.91 1.421 13.22 16–19

LMS 12.98 1.268 13.39 21–22
N-LMS 12.60 1.507 15.53 19–20
Newton 12.23 1.69 15.26 12–14

SignData-LMS 12.96 0.915 11.08 24–26

6.5.1 Implications of Protocol Performance on WSN Reliability and Efficiency
The proposed synchronization protocol enhances the reliability and efficiency of WSNs in several

helpful ways:

1. The protocol helps conserve energy, which is critical for sensor nodes operating on limited battery
power, by reducing the number of resynchronization events and unnecessary communication.

2. The protocol’s high synchronization accuracy can ensure that data from different nodes is well-aligned
in time, resulting in more consistent and dependable measurements of nodes.

3. The adaptive design of the protocol can lead to nodes adapting dynamically to harsh conditions like
interference and packet loss, maintaining performance even in unpredictable environments.

4. Scalability and Stability: The flexibility in protocol design is expected to allow it to scale smoothly
with larger networks or changing topologies. This is also shown in the protocol performance on the
line topology.

These conclusions are drawn from theoretical analyses and the limited experimental tests conducted
in this study. Although the initial results are promising, further extensive experimental testing across a
broader range of real-world scenarios is necessary to validate these claims and assess the protocol’s broader
applicability and effectiveness.
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7 Conclusion
This study presents an adaptive method of time synchronization for WSNs inspired by a generalized

class of stochastic gradient algorithms. It develops a generalized framework for time synchronization in
unstructured WSNs that allows for a trade-off between synchronization accuracy, precision, and convergence
time by selecting different gradient algorithms for logical clock frequency adjustments. The generalized
conditions for pairwise convergence are derived in the mean-sense, steady-state error, and clock rates. Then,
synchronization precision is analyzed using closed-form relations for each proposed proto-col. The LMS,
GraDes, N-LMS, Newton-search, and Sign-Data LMS algorithms are analyzed using this generalized frame-
work. All protocols achieve zero steady-state synchronization error with high synchronization precision.
A generalized protocol is developed for multi-hop synchronization and implemented on real-time WSNs.
Experimental results from the protocol for some algorithms show that it outperforms the AvgPISync protocol
in terms of synchronization accuracy, precision, and convergence time. Despite promising results, the
proposed framework has limitations, including assumptions of stationary nodes and ideal noise conditions,
which cannot be applied in real-world, dynamic environments. The framework also lacks optimization
for energy efficiency, a critical factor for large-scale WSNs. Future work can involve incorporating affine
stochastic algorithms for improved performance, optimizing the protocols for joint synchronization accu-
racy and energy efficiency, and implementing them in networks with non-stationary nodes. Additionally,
addressing scalability in larger, dynamic networks while maintaining synchronization accuracy will be an
important challenge.
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Appendix A. Symbol Definitions

Symbol Definition Context
τi(t) Hardware clock of node i at time t. Represents the physical clock of a WSN

node.
f (t) Frequency of the hardware clock. Accounts for clock drift due to

environmental factors like temperature
changes.

(Continued)
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(continued)

Symbol Definition Context
r(t) Random variable representing the

oscillator’s drift.
Models clock drift as a uniformly

distributed random variable.
c(t) Logical clock of a WSN node. Computed based on the hardware clock

for synchronization.
Δ i(t) Logical clock rate (frequency) for node i. Determines the adjustment to logical

clock rate during synchronization.
g[τi(tk)] Function applied to the input in

stochastic gradient algorithms.
Used to update the clock frequency in

synchronization algorithms.
μ Step size for stochastic gradient updates. Affects the convergence behavior of clock

updates.
ei(tk) Synchronization error for node i at time

tk .
Difference between the logical clock and

the gateway clock.
B Beacon period. Time interval between synchronization

messages.
P1 , P2 Parameters defining conditions for

convergence and steady state.
Derived during convergence analysis.

J(Δ i) Cost function for clock synchronization. Defines the optimization target for clock
updates.

σ 2 Variance of propagation delay or
synchronization error.

Quantifies error due to noise and drift.

cglobal Average logical clock value across all
nodes.

Measures overall synchronization
accuracy.

fglobal Average clock frequency across all nodes. Used to monitor the convergence of
logical clock rates.

eglobal Maximum synchronization error across
all network nodes.

Evaluates global synchronization
performance.

elocal Maximum synchronization error among
neighboring nodes.

Measures local synchronization accuracy.

Δtk Time interval between consecutive clock
updates.

Captures temporal behavior of clock
adjustments.

N Total number of nodes in the network. Represents network size.
V Set of vertices representing WSN nodes. Used in the network graph representation.
E Set of edges representing communication

links between nodes.
Defines connectivity in the network

graph.
τG(t) Gateway node’s clock value. Used as a reference for synchronization.

βk Propagation delay between nodes and the
gateway node.

Modeled as a Gaussian random variable
in synchronization analysis.

σ 2
D Variance of noise in synchronization

messages.
Affects the asymptotic variance of

synchronization error.
Q1 , Q2, Q3 Factors in asymptotic variance equations. Used to analyze precision of

synchronization algorithms.
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Appendix B. Reconfiguration of Stochastic Gradient Algorithms Based on Generalized Framework
The pairwise logical clock error when node i communicates with gateway node, G is

e(tk) = ci(tk) − τG = ci(tk) − kB − βk (A1)

e(tk) = Δ i(tk)τ̄i(t+k ) − τG

GraDes Algorithm

Δ i(tk+1) = Δ i(tk) − μ∇e2
i (tk) (A2)

The gradient function is derived as follows:

∇ei(tk) =
∂e2(Δ i)

∂Δ i
= 2ei(tk) ×

∂e(Δ i)
∂Δ i

= 2ei(tk)τ̄i(tk)

Δ i(tk+1) = Δ i(tk) − 2μτ̄i(tk)ei(tk)

LMS Algorithm The general update equation for LMS can be given as

Δ i(tk+1) = Δ i(tk) − μ∇EΔ i [e2
i (tk)]

Using the orthogonality principle and simplifying,

∇EΔ[e2
i (tk)] = Δ i(tk)E[τ̄2

i (tk)] −E[τ̄i(tk)τG]

Since we are dealing with the instantaneous values, we adopt the approximations: E[τ̄2
i (tk)] ≈ τ̄2

i (tk)
and E[τ̄ i(tk)τG] = τ̄i(tk)τG , which implies

∇EΔ[e2
i (tk)] ≈ τ̄i(tk)(Δ i(tk)τ̄i(tk) − τG) = τ̄i(tk)ei(tk)

Hence

Δ i(tk+1) = Δ i(tk) − μτ̄i(tk)ei(tk)

Newton Search Algorithm

Δ i(tk+1) = Δ i(tk) − μ[H(tk)]−1 g(tk) (A3)

where g(tk) = ∂J(Δ i)
∂Δ i

and H(tk) = ∂ g(Δ i)
∂Δ i

Using (4), we derive g(tk) and H(tk) respectively as

g(tk) = 2e(tk) ×
∂e(Δ i)

∂Δ i
= 2e(tk)τ̄i(tk) and

H(tk) = 2τi(tk) ×
∂e(Δ i)

∂Δ i
= 2τ̄2

i (tk)

Since ∂e(Δ i)
∂Δ i

= ∂
∂Δ i

[Δ i(tk+1)τ̄i(tk) − kB − βk] = τ̄i(tk)
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Since H(tk) is scalar, [H(tk)]−1 = 1
2τ̄2

i (tk)

Δ i(tk+1) = Δ i(tk) − μ ei(tk)
τ̄i(tk)

(A4)

N-LMS Algorithm

Δ i(tk+1) = Δ i(tk) − μ[γ + H(tk)]−1 g(tk) (A5)

Similar to the Newton search algorithm,

Δ i(tk+1) = Δ i(tk) − μ τ̄i(tk)ei(tk)
γ + τ̄2

i (tk)
(A6)

Appendix C. Asymptotic Variance for Generalized Algorithm
To prove Theorem 4.3, let Dk+1 = βk+1 − βk , zk = Δ i(tk) f̂ − 1 and wk+1 = ∫

tk+1
tk

r(ζ)dζ

τ̄(tk) = B f̂ +wk+1 (A7)

where wk+1 has statistics E[wk+1] = 0 and E[w2(tk+1)] = B f̂ .
Based on these definitions, we can rewrite the error and clock rate recursion equations respectively as

ei(tk+1) = zk (B + wk+1

f̂
) + wk+1

f̂
− Dk+1

Δ i(tk+1) =
zk + 1

f̂
− μg[τ̄i(tk)](zk [B + wk+1

f̂
] + wk+1

f̂
− Dk+1)

Let hk+1 = B f̂ +wk+1 with mean, E[hk+1] = B f̂ and second moment, E[h2
k+1] = B2 f̂ 2 + B f 2

max
3

zk+1 = zk (1 − μg[τ̄i(tk)]hk+1) − μg[τ̄i(tk)] (hk+1 + B f̂ + f̂ Dk+1)

Since τ̄(tk) = hk+1, we can write:

zk+1 = zk (1 − μg[τ̄i(tk)]τ̄i(tk)) − μg[τ̄i(tk)]τ̄i(tk) + μB f̂ g[τ̄i(tk)] + g[τ̄i(tk)] f̂ Dk+1 (A8)

Taking the expectation of both sides,

E[zk+1] = E[zk] (1 − μE[g[τ̄i(tk)]τ̄i(tk)]) − μE[g[τ̄i(tk)]τ̄i(tk)] + μB f̂E[g[τ̄i(tk)]]
+ E[g[τ̄i(tk)]]E[ f̂ Dk+1] (A9)

Limiting k �→∞ and simplifying (A9) yields,

E[z∞] =
E[τ̄i(tk)]E[g[τ̄i(tk)]]
E [g[τ̄i(tk)]τ̄i(tk)]

− 1.

For stochastic gradient algorithms, assuming,

E[τ̄i(tk)]E[g[τ̄i(tk)]] = E [g[τ̄i(tk)]τ̄i(tk)]
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then E[z∞] = 0. Further, we evaluate the mean square error by first squaring both sides of (A8), given as

z2
k+1 = z2

k (1 − μg[τ̄i(tk)]τ̄i(tk))2 + μ2 g2[τ̄i(tk)](τ̄i(tk) − μB f̂+

f̂ Dk+1
2 − 2μzk g[τ̄i(tk)](1 − μg[τ̄i(tk)]τ̄i(tk))) (A10)

(τ̄i(tk) − μB f̂ + f̂ Dk+1)

Since E[e∞] = BE[z∞] = 0, it follows that, Var[e(∞)] = E[e2(∞)] and E[e2(∞)] can be expressed in
terms of E[z2(∞)] as

E[e2(∞)] = E[z2
k] (B2 +

E[w2
k+1]

f̂
) +

E[w2
k+1]

f 2 + E[D2
k+1]

Using straight-forward steps, the asymptotic variance of the error can be given as

Var[e(∞)] = μ2 (B2 + B f 2
max

2 f̂ 2
)( E[τ̄2

i (tk)g2[τ̄i(tk)]]
2μE[τ̄i(tk)]g[τ̄i(tk)]] − μ2E[τ̄2

i (tk)g2[τ̄i(tk)]]

+(B2 + σ 2
D)E[g2[τ̄i(tk)]] − 3B f̂E[τ̄2

i (tk)g2[τ̄i(tk)]]
2μE[τ̄i(tk)]g[τ̄i(tk)]] − μ2E[τ̄2

i (tk)g2[τ̄i(tk)]]
) + B f 2

max
f 2 + σ 2

D (A11)

Let Q1 = E[g2[τ̄i(tk)]], Q2 = E[g[τ̄i(tk)]τ̄i(tk)], and Q3 = E[g2[τ̄i(tk)]τ̄2
i (tk)]. The asymptotic vari-

ance in synchronization error of a stochastic gradient algorithm of the form given by (13) for clock rate update
is given by

Var[e(∞)] = μ2 (B2 + B f 2
max

2 f̂ 2
)

(Q3 + (B2 + σ 2
D) f̂ 2Q1 − 3B f̂ Q3

2μQ2 + 2μ2Q3
) + B f 2

max
f 2 − σ 2

D (A12)
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