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ABSTRACT: The evaporation of micrometer and millimeter liquid drops, involving a liquid-to-vapor phase transition
accompanied by mass and energy transfer through the liquid-vapor interface, is encountered in many natural and
industrial processes as well as in numerous engineering applications. Therefore, understanding and predicting the
dynamics of evaporating flows have become of primary importance. Recent efforts have been addressed using the
method of Smoothed Particle Hydrodynamics (SPH), which has proven to be very efficient in correctly handling
the intrinsic complexity introduced by the multiscale nature of the evaporation process. This paper aims to provide
an overview of published work on SPH-based simulations related to the evaporation of drops suspended in static
and convective environments and impacting on heated solid surfaces. After a brief theoretical account of the main
ingredients necessary for the modeling of drop evaporation, the fundamental aspects of SPH are revisited along with
the various existing formulations that have been implemented to address the challenges imposed by the physics of
evaporating flows. In the following sections, the paper summarizes the results of SPH-based simulations of drop
evaporation and ends with a few comments on the limitations of the current state-of-the-art SPH simulations and future
lines of research.

KEYWORDS: Drop evaporation; surface tension; heat and mass transfer; phase separation; smoothed particle hydro-
dynamics (SPH); boiling evaporation; explosive vaporization; droplet/wall interaction

1 Introduction
The evaporation of a liquid is a complex physical process involving the phase transition of the liquid into

a vapor state and the motion (and/or deformation) of the liquid-vapor interface. Since mass and energy are
transferred simultaneously through the interface, the evaporation is a multiscale and multistep heat transfer
problem. The phase transition can take place at different temperatures for which enough thermal energy is
stored within the liquid to overcome the forces of surface tension. At the microscopic level, the evaporation
occurs when the kinetic energy acquired by the molecules close to the liquid surface is greater than the
cohesion exerted by the intermolecular forces within the liquid phase [1,2]. For water drops in warm air,
heat is transferred to the drop surface by conduction and convection, while mass (i.e., vapor) is transferred
back to the air by diffusion and convection. In particular, the evaporation of small confined liquid systems,
such as micrometer- and millimeter-sized drops, have numerous engineering applications and occurs in
many natural and industrial processes. For example, raindrops lose some of their mass by evaporation as
they fall to the ground. This may happen even when the atmosphere around them is not saturated with the
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vapor of the drops. The basic model of drop evaporation is the diffusion-controlled evaporation of a perfectly
spherical drop in a stationary atmosphere, while convective motion that can appear in a moving atmosphere,
will add an extra degree of complexity to the problem. Under the effects of convective motions evaporating
drops may deform, as indeed occurs in freely falling raindrops where the changing shape geometry affects
the evaporation rates. Drops can also evaporate by contact with hot solid surfaces. Good examples are given
by the evaporation of sessile and pendant drops (see Erbil [3] for a comprehensive review of this special
topic). However, most of our present knowledge of drop evaporation comes from models of homogeneous
and single-component drops. If, on the other hand, the drop is composed of a multi-component fluid, as
occurs in many industrial applications, the evaporation problem becomes much more complex because in
this case, the more volatile components will evaporate first, which is then followed by a period where the
evaporation rate is limited by the diffusion process in the liquid phase [3–5].

Although drop evaporation is a ubiquitous phenomenon appearing in many processes, it has not
yet been modeled and simulated in a physically consistent manner. In general, the study of first-order
phase transitions utilizing hydrodynamic plus heat transfer simulations is still today an open topic of
research. Other difficulties and challenges are associated with the treatment of sharp discontinuities of
fluid properties across the liquid-vapor interface as well as its motion and deformation. Published articles
on numerical simulations of drop evaporation by traditional grid-based Eulerian numerical methods have
been appearing for more than four decades. Although grid-based methods have succeeded in simulating
volumetric effects, they have great difficulties in guaranteeing mass (or volume) preservation at free
surfaces, treating inhomogeneities and deformable (or moving) boundaries, and shifting material interfaces
[6–9]. In contrast, Smoothed Particle Hydrodynamics (SPH) is a Lagrangian mass-preserving method and
has the advantage of being robust at handling free surfaces, extreme boundary deformations, and surface
interactions [10,11]. Other attractive features are the Galilean invariance of the discrete hydrodynamic
equations which allows for exact modeling of advection and the rather straightforward implementation of
additional physical and chemical effects. Since SPH is relatively novel compared to grid-based methods, drop
evaporation simulations using SPH date back no more than 25 years. The first SPH simulations of evaporating
drops were reported in 2000 by Nugent et al. [12] using classical (local) thermodynamics with the aid of a
van der Waals (vdW) equation of state. Since many of the basic features of liquid-vapor phase transitions
can be studied in the framework of vdW mean field theory [13,14], the SPH model of Nugent et al. [12] was
extended to study phase change flows in an infinite expanse of fluid using non-classical (i.e., non-local) vdW
thermodynamics [15,16], where the classical pressure and caloric vdW equations of state are combined with
a diffuse-interface model [14]. This model was later used in SPH simulations of spinodal decomposition and
homogeneous nucleation [17–20] and explosive boiling [21–23] of liquid droplets. An advantage of these
models is that the effects of surface tension are naturally handled by the cohesive term in the vdW pressure
equation, while the capillary forces in a diffuse liquid-vapor interface are modeled by the so-called Korteweg
tensor [14]. This formulation is quite robust and able to capture the essential physics of phase transition and
liquid-vapor coexistence. The coupling between local vdW thermodynamics and the non-classical Korteweg
tensor is also referred to in the literature as the vdW square gradient model [15]. In recent work, Harisankar
et al. [24] studied the formation of a bare droplet and its evaporation under the addition of a small amount of
energy using an SPH formulation similar to the one reported by Nugent et al. [12]. This model was previously
applied to simulate the interaction of a fuel droplet with a heated surface [25] and more recently by coupling
the SPH hydrodynamics with a Peng-Robinson equation of state to simulate the thermal evolution of an
n-heptane drop impacting on a hot surface [26].

Other SPH formulations aimed at simulating the evaporation of multiphase flows have also appeared
in recent years. In particular, Yang et al. [27] reformulated the SPH hydrodynamic equations to describe the
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transport of mass and energy across the liquid-vapor interface with simplified thermodynamics relying on
an ideal equation of state where the pressure was assumed to vary linearly with the density. In this approach
a continuity equation for the vapor species was added to the system to determine the mass transfer rate
across the interface. Since this method was found to be accurate enough to model the evaporation process at
the liquid-gas interface and the diffusion of the vapor species into the vapor phase, variants of it were later
used to model both the evaporation of bare drops and the evaporation of drops impacting on heated solid
surfaces at standard atmospheric and high pressure [28–32]. Most of these variants focus on improvements
in the convection-diffusion transport of mass and energy across the liquid-vapor interface. In particular, Xu
et al. [31] introduced a time fractional-order convection-diffusion equation to simulate drop evaporation
under different environments. They found that their droplet evaporation model conformed to the D2 law
proposed on theoretical grounds by Godsave [33] and Spalding [34], which indicates that the square of
the drop diameter decreases linearly with time during the evaporation process. SPH simulations of the
evaporation and combustion process of static n-hexane single, binary, and multiple droplets were considered
by Wang et al. [35], using a Murnaghan-Tait equation of state for the pressure-density relation and a one-step
global reaction model for vapor combustion. This framework was also validated against experimental data
for methane/air laminar diffusion flames [36]. On the other hand, Li et al. [37] performed SPH simulations
to study the effects of drop diameter, impact velocity, liquid evaporation, wall temperature, and inclined wall
angle on the impact of a liquid drop on a solid wall using Yang et al.’s [27] SPH formulation with an adaptive
spatial resolution (SPH-ASR), and found good agreement between the numerical and experimental results.
Using a similar SPH framework, Subedi et al. [38] studied numerically the impact of successive droplets on
a heated wall.

A multi-phase, weakly-compressible SPH framework with ideal thermodynamics based on a
Murnaghan-Tait equation of state for both the liquid and air phases capable of simulating supercooled
large droplets (SLD) impingement at aeronautical speeds while considering the effects of surrounding
air was reported by Cui et al. [39]. A similar formulation was extended by Liu et al. [40] to include
thermal effects for studying the spreading dynamics and evaporation of sessile and nanofluid droplets. Their
model was able to predict the evolution of the droplet from spreading to receding to bouncing on the
heated wall. Moreover, the numerically predicted drop diameters were found to agree acceptably well with
experimental data from images taken with a high-speed camera. While most of the above-mentioned models
are useful in many engineering applications, a deeper insight into the details of evaporating liquid drops
will certainly require the use of advanced numerical techniques along with physical and chemical effects.
For example, most existing SPH models of drop evaporation are limited to two dimensions with only a
few instances involving three-dimensional calculations. On the other hand, several studies start from initial
conditions and use empirical parameters that do not strictly correspond to physical reality. However, SPH
methods extended to include thermal effects have been demonstrated to be powerful tools for studying
the complex dynamics involved in the evaporation of liquid droplets from diffusion-controlled (ordinary)
boiling to bubble nucleation to explosive vaporization. This paper aims to provide an overview of the existing
SPH formulations and model results of drop evaporation. The paper is organized as follows. A brief on
theoretical considerations and formulations necessary for the modeling of drop evaporation is provided
in Section 2. Section 3 describes fundamental aspects of the SPH method and introduces the governing
equations in discrete form as they are used in the various formulations. An overview of the SPH results
obtained for specific topics on drop evaporation is given in Sections 4–6. Section 7 contains a discussion on
the limitations of the present state-of-the-art simulations and ends with a brief comment on future work.
Finally, Section 8 contains the relevant conclusions.
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2 Theoretical Background
The evaporation of liquid drops is a complex physical phenomenon in which the liquid undergoes

a transition into a vapor (gas) state. The process is non-stationary and may occur over a wide range of
temperatures for which the bulk liquid acquires enough thermal energy to overcome the effects of surface
tension. From a molecular point of view, evaporation occurs when the kinetic energy of the surface liquid
molecules exceeds the cohesive work exerted by the inner liquid molecules [1,2]. During drop evaporation
heat transfer, from the external medium to the drop, and mass transfer, from the drop to the external medium,
occur simultaneously, where heat is transferred to the drop by any of three mechanisms, namely conduction,
convection, and radiation, while mass transfer to the external medium may occur either by diffusion or
convection, or even by both. Under natural conditions, the rate of heat and mass transfer depends on the drop
size, the temperature, the relative humidity, and the transport properties of the surrounding medium [3]. In
this section, a brief on the basic theoretical aspects behind the numerical modeling of drop evaporation is
introduced. However, before continuing, it is important to introduce some basic concepts related to liquid-
vapor phase transitions. For example, if a homogeneous solution of a given composition is quenched below
the region bounded by the binodal (or liquid-vapor coexistence) curve of the phase diagram, the separation
of the solution into a liquid and vapor phase may occur either by spinodal decomposition or nucleation.
In particular, for quenching into the miscibility gap below the spinodal curve, phase separation occurs
spontaneously even for infinitesimally small fluctuations with a high interconnectivity of the two phases.
This process is referred to as spinodal decomposition. When quenching takes the solution into the metastable
region bounded by the spinodal and binodal curves, the system becomes thermodynamically unstable to
the growth of large fluctuations only, leading to the formation of one or more vapor bubbles by nucleation.
On the other hand, when a liquid is overheated, it may undergo an extremely rapid evaporation, leading
eventually to a thermal or vapor explosion. This process, which is also called explosive vaporization, occurs
when the liquid attains its superheat limit, i.e., the maximum temperature below the critical value to which
the liquid can be elevated at constant pressure and composition before boiling explosively. At this limit,
the liquid enters the metastable region where random density fluctuations of finite size initiate spontaneous
nucleation of a vapor bubble, which then expands rapidly accompanied by extremely large evaporation rates
and fluid accelerations.

2.1 vdW Thermodynamics
The pressure, p, of a real homogeneous fluid coexisting with its vapor atmosphere can be described in

a first approximation by the vdW equation of state

p = NkBT
V − Nb

− N2a
V 2 , (1)

where V is the volume occupied by the fluid, N is the number of molecules forming the fluid, kB is the
Boltzmann constant, T is the temperature, a defines the strength of the attractive force between pairs
of molecules, and b is the volume of a molecule (or particle). This way Nb is the smallest volume to
which one can compress all fluid molecules. If m = μmp is the mass of a fluid molecule, where μ is the
mean molecular weight and mp = 1.6726218 × 10−27 kg, then the fluid density is ρ = mN/V from which it
follows that ρ/m = N/V . Dividing the numerator and denominator in the first and second terms on the
right-hand side of Eq. (1) by N and N2, respectively, and using the above relation for the specific volume
ρ/m, Eq. (1) can be written in the alternative form

p = ρ (kB/m)T
1 − ρ (b/m) − (

a
m2 ) ρ2. (2)
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Using the definitions k̄B = kB/m, b̄ = b/m, and ā = a/m2, Eq. (2) takes the final form

p = ρk̄BT
1 − b̄ρ

− āρ2, (3)

which is the form originally introduced by Nugent et al. [12] and later employed by most SPH simulations
of evaporating flows based on vdW thermodynamics. In their SPH simulations, Nugent et al. [12] used
these parameters in reduced units: ā = 2, b̄ = 1/2, k̄B = 1, and m = 1 so that the critical density, pressure, and
temperature are given by ρcr = 2/3, pcr = 8/27, and Tcr = 32/27 ≈ 1.19, respectively. Since then these reduced
units have been a standard choice in many simulations of vdW liquid-vapor phase transitions.

The caloric behavior of the vdW fluid is described by the internal energy given by

u = ξ
2

NkBT − a N2

V
, (4)

where the first term on the right-hand side is the kinetic energy of the molecules and the second term is the
potential energy of their forces of cohesion [41]. Here, ξ = 2 in two dimensions and 3 in three dimensions.
Dividing the numerator and denominator of the second term on the right-hand side by N, replacingV/N
by m/ρ in the denominator of the second term, and multiplying and dividing the first and second term by
m, Eq. (4) becomes

u = ξ
2

mN (kB

m
)T −mN ( a

m2 ) ρ, (5)

where mN is the total mass of the fluid. Using the above vdW parameters in reduced form, the vdW caloric
equation takes the final form

U = ξ
2

k̄BT − āρ, (6)

where U = u/(mN) is the specific internal energy.
The sound speed for this vdW fluid is

cs =

�
���2 [ k̄BT

(1 − ρb̄)2
− āρ], (7)

while the specific heat at constant volume and pressure can be derived to be

cv = k̄B , (8)

cp =
2k̄B [k̄B − āρ (1 − ρb̄)2]

k̄BT − 2āρ (1 − b̄ρ)2 . (9)

Since cv is always positive, the following condition

k̄BT > 2āρ (1 − ρb̄)2 , (10)

must hold to ensure positivity of cp. This in turn guarantees that the sound speed is a real number. In
addition to inequality (10), complete thermodynamic stability will be guaranteed by the constraint ρ < 1/b̄.
Although Eqs. (3) and (6) can predict the liquid-vapor phase transition and their coexistence in equilibrium,
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the results can only be qualitatively assessed since for nearly all models reported the parameters employed do
not correspond to real fluids. Perhaps an exception to this rule is the water evaporation models performed
by Xiong et al. [18], who employed vdW parameters k̄B , ā, and b̄ corresponding to pure water.

2.2 Other Equations of State
A SPH formulation that has recently been used extensively to simulate many problems involving

evaporating multiphase flows relies on ideal thermodynamics by assuming a barotropic equation of state of
the form [27].

p = c2
s (ρ − ρref) + pref , (11)

where cs is a numerical speed of sound (usually set equal to ten times the maximum velocity of the system),
ρref is a reference density, and pref is a reference pressure. To prevent negative values of the pressure, the
reference pressure is sometimes set arbitrarily to a value higher than atmospheric pressure [30]. When
using Eq. (11) the energy equation is written in terms of the temperature so that a caloric equation is not
required. The Murnaghan-Tait pressure-density relation [42]

p = pref [(
ρ

ρref
)

γ

− 1] , (12)

is also frequently used, where γ = 1.4 for a gas and γ = 7 for a liquid (or water). The reference pressure is
usually set equal to c2

s ρref/γ and, as before, cs is a numerical sound speed chosen to be ten times the maximum
fluid velocity in order to maintain the density fluctuations below 1% of the normal density and ensure weak
compressibility [10,43].

On the other hand, Yang et al. [26] reported SPH simulations of the interaction of fuel (n-heptane)
drops with heated walls using the Peng-Robinson equation of state

p =
Rg T

Vm − b
− a

V 2
m + 2bVm − b2 , (13)

with realistic fuel properties along with the caloric equation

U = cT − aρ, (14)

where Rg is the universal gas constant, Vm is the molar volume, and the parameters a and b have the same
physical meaning as in Eq. (1), with a being now calculated as

a = ã
⎡⎢⎢⎢⎢⎣

1 + κr
⎛
⎝

1 −
√

T
Tcr

⎞
⎠

⎤⎥⎥⎥⎥⎦

2

, (15)

where ã and κr are constants. The value of c in Eq. (14) is chosen such that the saturated liquid and vapor
enthalpies can be predicted accurately. It is worth mentioning that the specific internal energy is calculated
from the energy conservation equation and that the caloric Eq. (6), for a vdW fluid, and (14) are used to
obtain the temperature.

2.3 Surface Tension
Surface tension is an interfacial property of any liquid. It arises because liquid molecules at and near

the surface are less tightly bound than in the bulk liquid. Therefore, there is an excess of free energy at the
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liquid surface and as a result the surface molecules experience inwardly directed attractive forces, which
are responsible for the elastic tendency to minimize the surface area. It has units of energy per unit area or,
equivalently of force per unit length. In a liquid drop context, the surface tension encodes information of the
amount of surface free energy per unit area of the drop [44]. In other words, it is a measure of the cohesive
energy in an interface and is the main cause of inducing bubble and drop formation [45,46]. In addition, it
is the factor governing the shape of liquid drops, which in turn has a crucial impact on the heat and mass
transfer performance of a thermal system [47,48].

The surface tension of a liquid drop can be calculated using the Young-Laplace equation [49,50]

Δp = (pl − pv) = σK = σ ( 1
R1
+ 1

R2
) , (16)

where pl is the pressure in the interior of the drop, pv is the pressure of the surrounding vapor atmosphere,
σ is the surface tension, K is the mean curvature of the interface, and R1 and R2 are the principal radii of
curvature. This expression is valid when the interface separating the liquid from the vapor phase is a surface
of discontinuity (i.e., a surface of zero thickness). As we shall see later in this section, thermal effects influence
the interface thickness, making it more and more diffuse as the heat is increased. For perfect spherical and
static drops R = R1 = R2 and Eq. (16) reduces to the more familiar form

Δp = 2σ
R

. (17)

In model simulations of evaporating drops based either on vdW or Peng-Robinson thermodynamics,
surface tension effects are not quantified by adding an artificial input force into the hydrodynamic equations
because they arise naturally from the attractive (cohesive) term on the right-hand side of Eqs. (3) and (13). The
gradient of the cohesive pressure produces an attractive, long-range surface force perpendicular to the surface
itself and pointing towards the liquid phase. Therefore, in these simulations, there is no need to explicitly
locate the interface and calculate the local surface curvature. A good example of a three-dimensional, SPH
vdW-based calculation of an initially square-shaped drop evolving into a spherical drop by surface tension
is displayed in Fig. 1 of Ref. [51].

2.4 Latent Heat
The evaporation of a liquid drop embedded into a hotter medium occurs because heat is transferred from

the medium to the drop surface by conduction and/or convection, where it is converted into latent heat (or
enthalpy) of vaporization. The amount of vapor that forms above a liquid is proportional to the temperature
and therefore it is usually measured as the vapor pressure of the system. At higher heating temperatures, a
greater number of surface molecules will acquire enough thermal energy to overcome the intermolecular
attraction forces of the liquid and enter the vapor phase, resulting in increasing vapor pressure. A measure
of the intermolecular attraction forces between pairs of liquid molecules is the latent heat ΔHvap, which is
the necessary energy that a certain amount of liquid must acquire to turn out into vapor without a change of
temperature. The relationship between the (saturated) vapor pressure, pv, and the latent heat is given by the
familiar Clausius-Clapeyron equation

pv = A exp(−
ΔHvap

Rg T
) , (18)
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where A is an experimental constant related to the normal point of boiling. Taking the logarithm on both
sides of Eq. (18), yields the expression

ln pv = −
ΔHvap

Rg

1
T
+ C , (19)

which is the equation of a straight line of slope −ΔHvap/Rg . Here C is a universal constant which is
independent of the particular liquid. In general, the Clausius-Clapeyron equation applies to first-order phase
transitions and is frequently used in many SPH drop-evaporation simulations using vdW thermodynamics
as a validation benchmark test (see, for example, Refs. [17,18,23,24]), where the gas constant Rg is replaced
by k̄B in reduced units.

2.5 Classical Equations of Hydrodynamics
In the presence of thermal effects the motion of the fluid is described by the physical principles of

mass, momentum, energy, and entropy balance. Under a Lagrangian framework, these conservation laws
correspond to the set of coupled partial differential equations

dρ
dt

= −ρ∇ ⋅ v, (20)

ρ dv
dt

= ∇ ⋅T, (21)

ρ dU
dt

= T ∶ ∇v −∇ ⋅ q, (22)

ρ dS
dt

= Δs −∇ ⋅ (
q
T
) , (23)

where v is the fluid velocity vector, S is the specific entropy, T is the stress tensor given by

T = −pI + η (∇v +∇vt) + (ζ − 2
d

η)∇ ⋅ vI, (24)

with I denoting the identity tensor, η the shear viscosity, ζ the bulk viscosity, d the dimension factor, and
superscript t meaning transposition, q is the heat flux vector

q = −κ∇T , (25)

with κ being the heat conduction coefficient, and

Δs =
κ(∇T)2

T2 + η
T
(∇v ∶ ∇v) , (26)

is the entropy production.
SPH simulations of drop evaporation based on Eqs. (20)–(22) were carried out by Nugent et al. [12]

and more recently by Harisankar et al. [24] and Yang et al. [26]. On the other hand, Hochstetter et al. [52]
performed SPH-based calculations of the evaporation and condensation of liquids using a simplified version
of Eqs. (20)–(22) for an incompressible, inviscid fluid under buoyancy effects. In their model, the energy
equation was replaced by a heat conduction equation for a homogeneous medium

ρcp
dT
dt

= ∇ ⋅ (κ∇T), (27)
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where cp is the specific heat at constant pressure. Eqs. (20) and (21) coupled with a heat conduction equation
written in terms of the enthalpy H were also employed in recent SPH calculations of the spreading dynamics
of nanofluid droplets coupled with thermal evaporation by Liu et al. [40].

In the last five years, most work on drop evaporation has focused on SPH simulations of multiphase
flows using the model proposed by Yang et al. [27,28] and variants of it. This model solves Eqs. (20) and (27)
coupled to the Navier-Stokes equation for the fluid velocity

ρ dv
dt

= −∇p + η∇2v + g, (28)

where g is the gravitational acceleration. During the process of phase change due to evaporation, the mass and
energy transfer across the liquid-vapor interface are modeled by the modified continuity and heat conduction
equations

dρ
dt

= −ρ∇ ⋅ v + ṁm , (29)

ρcp
dT
dt

= ∇ ⋅ (κ∇T) − ΔHvapṁm , (30)

where ṁm is the volumetric mass evaporation rate and ΔHvap is the latent heat of vaporization. The mass
fraction field of the vapor species in the gaseous phase, Y, is calculated using the continuity-like equation for
vapor species

ρ dY
dt

= ∇ ⋅ (ρD∇Y), (31)

where D is the vapor mass diffusivity coefficient. In order to close the system of governing equations, an
equation for the mass evaporation rate across the interface is needed, which can be derived from conservation
principles to be

ρṁ = ρ dm
dt

= m∇ ⋅ (ρD∇Y)
1 − Y

, (32)

so that ṁm = ρṁ/m, where m is the initial total mass. Under the assumption that there exists equilibrium
between the liquid and gas at the interface, the vapor mass fraction there is made equal to the saturated vapor
mass fraction given by

Ys =
XsMv

(1 − Xs)Mg + XsMv
, (33)

where Xs is the saturated vapor molar fraction, Mv is the vapor molar mass, and Mg is the molar mass of the
dry gas, excluding the vapor species. The saturated vapor molar mass is obtained by direct integration of the
Clausius-Clapeyron Eq. (18) as

Xs =
ps

pag
= exp [−

ΔHvapMv

Rg
( 1

Ts
− 1

Tboil
)] , (34)

where ps is the saturated vapor pressure, pag is the ambient gas pressure, Ts is the interface
temperature, and Tboil is the boiling temperature at the ambient-gas pressure condition (see
Ref. [53] for details on the derivation of Eq. (34)). Using the same model equations, Yang et al. [26]
performed further SPH simulations to study the impact of fuel drops on a heated surface.
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Variants of their model were also implemented by other authors to simulate drop evaporation
[29–32]. Moreover, SPH simulations of the evaporation and combustion of n-hexane droplets were carried
out by Wang et al. [35] by extending Yang et al.’s [27] model to include a one-step global reaction model of
n-hexane to calculate the vapor combustion.

2.6 Diffuse Interface
In all classical models of two-phase fluid systems the interface dividing both fluids is assumed to be

a surface of discontinuity endowed with surface tension. At the molecular scale, such an interface can be
defined as a transition zone of typical width a few tens of Angströms. In contrast, the interfacial zone in
a diffuse-interface model is defined by a continuous variation of an order parameter, such as the density,
according to the molecular theory of capillarity [13]. In this case, the interface has an inner structure and
a finite width through which the densities of both fluids are connected smoothly. Across the volume of
the diffuse interface, all physical quantities are defined in terms of density variation. The diffuse-interface
model has been successfully used to study diffusion mechanisms during processes of solidification and
phase transitions [54–56]. In particular, Antanovskii [57] performed model simulations of binary fluids
with heat and mass transfer using the fluid composition as an order parameter. Similar models were also
used to study spinodal decomposition as well as drop migration and coalescence processes by thermo-
capillary effects [58,59]. More recent simulations based on the diffuse-interface model coupled with vdW
thermodynamics were reported by many authors to study liquid-vapor phase transitions by spinodal
decomposition and homogeneous nucleation [17–20] and explosive vaporization in drops [21–23] as well
as by heterogeneous nucleation in infinitely extended fluids [16,60]. Diffuse interfaces arise naturally in the
description of fluids near their critical point. It is well-known that at subcritical temperatures two fluid
phases separated by an interface may coexist in equilibrium. However, as the critical point is approached
from below the binodal curve, the diffuse interface becomes thicker and thicker, and the effects of surface
tension decrease. Eventually, at the critical point, the interface becomes infinitely diffuse and the surface
tension vanishes. In the context of critical phenomena, there are in the literature a few works dealing with the
dynamics of diffuse interfaces. For example, Felderhof [61] derived the equations governing the dynamics of
diffuse interfaces near the critical point using a Lagrangian formalism, while Langer et al. [62] studied the
condensation of a vapor near its critical point using a coarse-grained approximation.

2.6.1 Mean-Field Approximation
In the mean-field approximation, the thermodynamics of the liquid-vapor transition phase and the

diffuse interface are described by the vdW capillarity model [14]. In this model the free energy per unit
volume of the fluid is given by

F(ρ, T ,∇ρ) = F0(ρ, T) + λ
2
∇ρ ⋅ ∇ρ, (35)

where F is the volumetric free energy of the fluid, F0 is its classical part, and λ is the capillarity coefficient,
which depends only on the intermolecular potential. The non-local term,∇ρ, is necessary to ensure physical
consistency and therefore a correct description of the diffuse interface. Noting that the differential of F can
be written as

dF = −sdT +Gdρ + ϕ⃗ ⋅ d(∇ρ), (36)

where s is the entropy, G is the Gibbs free enthalpy, and ϕ⃗ is a vector to be defined later. The Second Law of
Thermodynamics states that the entropy attains a maximum in a closed and isolated system in equilibrium.
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Noting that the internal energy u = F + sT and using Eq. (36), the above statement is equivalent to

δ∫
V
[s +L1u(s, ρ,∇ρ) +L2ρ] dV = 0, (37)

where δ is the variation, V is the fluid volume, and L1 and L2 are two constant Lagrange multipliers. Working
out Eq. (37), the equilibrium conditions for the liquid and vapor phases are given by

T = constant, Ĝ = G −∇ ⋅ ϕ⃗ = constant. (38)

These two conditions imply, respectively, that the temperature and generalized Gibbs free enthalpy must
be uniform at equilibrium. By differentiation of Eq. (36) with respect to ρ, the equilibrium condition on both
sides of the interface becomes

∂F
∂ρ

= Ĝ = G − (∇ ⋅ ϕ⃗) = constant, (39)

where it has been made use of the identity

ϕ⃗ ⋅ d(∇ρ) = ∇ ⋅ (ϕ⃗dρ) − (∇ ⋅ ϕ⃗)dρ. (40)

Since at equilibrium G → G0 = ∂F0/∂ρ, it follows from Eq. (39) and differentiation of Eq. (35) that

ϕ⃗ = λ∇ρ, (41)

and the equilibrium condition becomes

∂F0

∂ρ
− λ∇2ρ = constant, (42)

where F0 = F0(ρ, T0) and T0 is the equilibrium temperature of the system. The explicit dependence of F on
∇ρ in Eq. (35) describes the internal structure of the diffuse interface and interprets the excess energy there
as the surface tension. The equilibrium condition (42) is also valid for a bubble or droplet at equilibrium. In
particular, by assuming a spherical coordinate system whose origin coincides with the center of the inclusion
and constraining the system to spherical symmetry it is possible to derive the Laplace Eq. (17) from Eq. (42).

2.6.2 Modified Hydrodynamic Equations
The dependence of the fluid energy on the non-local term ∇ρ needs modification to the classical

hydrodynamics Eqs. (20)–(23) to allow the description of the internal structure of the liquid-vapor interface
and the interpretation of the surface tension as an energy concentrated there. Since the thermodynamic
behavior of the fluid is not classical, the form of the classical mass, momentum, and energy balance equations
must be expanded, and the following closure relations can be derived [14,15,23]

q + ϕ⃗ dρ
dt

= −κ∇T ⇒ q = −κ∇T − ϕ⃗ dρ
dt

, (43)

T + (p − ρ∇ ⋅ ϕ⃗) I + ϕ⃗∇ρ = S⇒ T = (−p + ρ∇ ⋅ ϕ⃗) I − ϕ⃗∇ρ + S, (44)

where now the heat flux vector q not only involves the classical Fourier heat conduction but also a non-
classical contribution referred to as the interstitial working [63], while S = T + pI is the viscous stress tensor.
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The tensor Smust satisfy the condition S ∶ ∇v ≥ 0 to comply with the Second Law of Thermodynamics. Using
the above closure relations, the modified system of balance equations becomes

dρ
dt

= −ρ∇ ⋅ v, (45)

ρ dv
dt

= ∇ ⋅ (T +K), (46)

ρ dU
dt

= (T +K) ∶ ∇v +∇ ⋅ (κ∇T) + ∇ ⋅ (λ∇ρ dρ
dt
) , (47)

ρ dS
dt

= 1
T
S ∶ ∇v + 1

T
∇ ⋅ (κ∇T), (48)

where K is the Korteweg stress tensor defined as

K = λ
2
(ρ∇2ρ + 1

2
∇2ρ2) I − λ∇ρ∇ρ. (49)

This tensor vanishes as the system approaches the critical point as does the surface tension. The third
term on the right-hand side of Eq. (47) is a non-classical energy flux associated with the capillarity coefficient
λ and admits a different interpretation compared to all other terms. For instance, in the bulk of the liquid
and vapor phases, this term vanishes because dρ/dt → 0, while in the interface it is different from zero and
represents the vaporization rate. As a liquid particle crosses the interface it becomes a vapor particle and
therefore dρ/dt < 0 since its density decreases. This implies that the term is related to the propagation of
latent heat through the interface. Although Eq. (48) is not necessary, it is solved to guarantee that the Second
Law of Thermodynamics is always satisfied. The two terms on the right-hand side represents the entropy
generation due to the irreversible processes of viscous dissipation and heat conduction, whose combined
contribution must always be greater than zero so that the entropy maximizes (i.e., dS → 0) as the system
reaches equilibrium.

3 Fundamentals of the SPH Method
The SPH method was independently introduced in the literature in 1977 by Lucy [64] and Gingold

et al. [65] for the numerical simulation of astrophysical flows of arbitrary geometry and at different spatial
scales in three-space dimensions (3D). Since its invention, the method has found its way into an ever-
increasing number of research areas, including applications to different fields of physics, biology, engineering,
health sciences, and computer graphics. SPH is grid-free and relies on a Lagrangian description of the
fluid, where the fluid is represented by a finite number of discrete particles (or interpolation points). Unlike
traditional mesh-dependent schemes, SPH is easy to handle under complicated physics and deformable
boundaries. In this section, we shall first introduce some fundamental aspects of SPH followed by details on
the discretization of the continuum equations of thermohydrodynamics.
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3.1 General Remarks on SPH
SPH is based on interpolation theory and uses as a starting point the well-known Dirac sifting property

f (x) = ∫
Ω

f (x′)δ(x − x′)dnx′, (50)

where f (x) is a continuous and differentiable function defined in the domain Ω ∈ Rn , x is a generic point
in Ω, δ(x − x′) is the Dirac-δ distribution, and n (= 1, 2, or 3) denotes the spatial dimension. In contrast to
conventional grid-based schemes, SPH consists of two approximations, namely the kernel and the particle
approximation. The kernel approximation of f (x) is obtained by replacing the Dirac-δ distribution in the
integrand of Eq. (50) by a bell-shaped interpolation function, W(∥ x − x′ ∥, h), such that

⟨ f (x)⟩ = ∫
Ω

f (x′)W(∥ x − x′ ∥, h)dnx′, (51)

where ⟨ f (x)⟩ is the so-called kernel (or smoothed) estimate of f (x) and h is the smoothing length specifying
the radius of influence of the kernel. In most modern applications of SPH, a compactly supported kernel is
employed so that W = 0 for ∥ x − x′ ∥≥ kh, where k is some dilation factor usually ≤2. In general, the kernel
must satisfy the normalization condition

∫
Ω

W(∥ x − x′ ∥, h)dnx′ = 1, (52)

and in order to be a suitable interpolation function it must approach the Dirac-δ distribution in the limit
when h → 0. The kernel must also satisfy some other properties, for example, to be a positive-definite, a
monotonically decreasing, and an even function. For a fluid of density ρ(x), Eq. (51) is more conveniently
written as

⟨ f (x)⟩ = ∫
Ω
[ f (x′)

ρ(x′)]W(∥ x − x′ ∥, h)ρ(x′)dnx′. (53)

Direct differentiation of Eq. (53) with respect to coordinate x yields the expression for the kernel estimate
of the gradient ∇ f (x)

⟨∇ f (x)⟩ = ∫
Ω
[ f (x′)

ρ(x′)]∇W(∥ x − x′ ∥, h)ρ(x′)dnx′, (54)

where ∇ is the nabla operator. Noting that ∂W/∂x = ∂W/∂x′ and the same for the partial derivatives of W
with respect to y and z, it is a simple matter to show that

∇′W(∥ x − x′ ∥, h) = −∇W(∥ x − x′ ∥, h),

where ∇′ is the nabla operator with respect to the primed coordinates x′. On the other hand, it is also easy
to show that the gradient of the kernel estimate of f (x) is exactly equal to the estimate of the∇ f (x), leading
to the well-known identity ∇⟨ f (x)⟩ = ⟨∇ f (x)⟩. Similarly, the kernel estimate of the divergence of a vector
function, say f(x), admits the following representation

⟨∇ ⋅ f(x)⟩ = ∫
Ω
[ f(x′)

ρ(x′)] ⋅ ∇W(∥ x − x′ ∥, h)ρ(x′)dnx′. (55)

In a similar form the kernel estimate of the gradient of a vector function, f(x), can be obtained
from Eq. (54) by simply replacing the scalar function, f (x), with the vector function, f(x).
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The particle (or SPH) approximation is obtained by dividing the computational domain, Ω, into N small
Lagrangian cells of volume Ωa (with a = 1, 2, . . . , N) and boundaries ∂Ωa so that an interpolation point
(or particle) is defined within each cell at position xa ∈ Ωa . A mass, ma , and density, ρa , are assigned to
each particle a such that the sum of all particle masses equals the total mass of the system. Fig. 1 shows
schematically the discretization procedure in a portion of the computational domain. The circle centered
at the location of the observation particle a represents the spherical volume of the kernel support, Ωs. The
particles that fall within the kernel support are the neighbors of particle a. Using the mean value theorem
so that xb ∈ Ωb for each neighbor b of the observation particle a and identifying the term ρ(x′)dnx′ in the
integrand of Eq. (53) with the differential mass mb of a neighbor particle, the SPH approximation of Eq. (53)
can be written as the summation interpolant

fa =
nneigh

∑
b=1

mb
fb

ρb
Wab , (56)

where fa = ⟨ f (xa)⟩, ρb = ρ(xb), and Wab = W(∥ xa − xb ∥, h). As it is common practice in SPH notation,
the subscript a is used to denote a generic observation particle and the subscript b to denote its neighboring
companions. Following similar steps, the SPH approximation of Eq. (54) becomes

(∇ f )a =
nneigh

∑
b=1

mb
fb

ρb
∇aWab . (57)

Higher accuracy for the estimation of the gradient can be obtained using the alternative representation

(∇ f )a =
1

ρa

nneigh

∑
b=1

mb( fb − fa)∇aWab , (58)

which guarantees that the gradient vanishes exactly when f (x) is a constant. Other representations are
guided by momentum conservation requirements [11,67,68]. For example, consistent approximations to the
pressure forces and compressional work in the momentum and energy equations, which lead to improved
angular momentum conservation, are achieved using the symmetrized form

(∇ f )a = ρa

nneigh

∑
b=1

mb (
fa

ρ2
a
+ fb

ρ2
b
)∇aWab . (59)

In addition, a convenient SPH replacement of Eq. (55) for the divergence of a vector function, which is
frequently encountered in the literature, is given by the expression

(∇ ⋅ f)a =
1

ρa

nneigh

∑
b=1

mb(fb − fa) ⋅ ∇aWab . (60)

Other variants of Eqs. (58) and (60) can be found in the literature where the factor 1/ρa is replaced either
by 1/ρb or 1/ρ̄ab = 2/(ρa + ρb), which are all of comparable accuracy. A peculiar feature of SPH is that the
discrete particle equations are assembled by replacing the field functions and gradients with their basic SPH
interpolation formulae.
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Figure 1: Schematic drawing showing the SPH discretization and the kernel support. Figure taken from Sigalotti
et al. [66]

3.2 The SPH Heat Conduction Equation
In almost all SPH studies of evaporation and condensation processes, the heat conduction Eq. (27) is

written in particle form using the formulation introduced by Cleary et al. [69], namely

dTa

dt
= 1

cp

nneigh

∑
b=1

mb

ρa ρb

4κaκb

(κa + κb)
Tabxab ⋅ ∇aWab

(∥ xab ∥2 + ε) , (61)

where Tab = Ta − Tb , xab = (xa − xb)i + (ya − yb)j + (za − zb)k in rectangular coordinates, ∥ xab ∥2 is the
squared distance between particle a and its neighbor b, and ε = 0.01h2 to prevent singularities when two
particles become too close to each other. This standard SPH formulation is numerically stable and ensures
continuity of heat fluxes across discontinuities in material properties [31,40,61,70].

3.3 Smoothed Particle Equations of Evaporating Multiphase Flows
A model based on Eqs. (28)–(32) was proposed by Yang et al. [27] to simulate heat and mass transfer

across liquid-vapor interfaces, which was then employed in many recent SPH simulations of evaporating
multiphase flows [28–30,32,71]. In SPH particle form these equations read as follows:

dρa

dt
=

nneigh

∑
b=1

mb(va − vb) ⋅ ∇aWab + ṁm , (62)

dva

dt
= −

nneigh

∑
b=1

mb (
pa + pb

ρa ρb
+Πab)∇aWab +

nneigh

∑
b=1

mb

ρa ρb

4ηa ηb

(ηa + ηb)
(va − vb)xab ⋅ ∇aWab

(∥ xab ∥2 + ε) + g, (63)

dTa

dt
= 1

cp

nneigh

∑
b=1

mb

ρa ρb

4κaκb

(κa + κb)
Tabxab ⋅ ∇aWab

(∥ xab ∥2 + ε) −
ΔHvap

ρcp
ṁm , (64)

dYa

dt
=

nneigh

∑
b=1

mb

ρa ρb

(ρa Da + ρb Db)(Ya − Yb)xab ⋅ ∇aWab

(∥ xab ∥2 + ε) . (65)

Note that the viscous acceleration in the Navier-Stokes Eq. (28) and the right-hand side of the
continuity-like equation for vapor species (31) are set in particle form using the same SPH replacement for
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the conduction Eq. (61). The term Πab is an artificial viscosity proposed by Monaghan [43], defined as

Πab =
−αc̄ab μab + 2βμ2

ab
ρ̄ab

, (66)

if (va − vb) ⋅ xab < 0 and 0 otherwise, where μab = [h(va − vb) ⋅ xab]/(∥ xab ∥2 + ε), c̄ab = (ca + cb)/2 is the
average sound speed associated with particles a and b, and ρ̄ab = (ρa + ρb)/2. The parameters α and β control
the strength of the artificial viscosity.

In this model, the effects of surface tension are calculated by adding a term of the form [72]

Fs =
σ
ρ

Knδs , (67)

to the right-hand side of Eq. (28), where σ is the coefficient of surface tension, K is the surface curvature, n is
the unit vector normal to the surface, and δs is a delta function. The unit normal vector is defined in terms of
the gradient of a color function C, where n = ∇C/∣∇C∣ and the surface curvature is given by K = −∇ ⋅ n [29].
In smoothed particle form the expressions for the gradient of the color function and the surface curvature is
given by [73]

∇Ca =
ρa

Va

nneigh

∑
b=1

V 2
a + V 2

b
ρa + ρb

∇aWab , (68)

K = −∇ ⋅ na = d
∑nneigh

b=1 Va(na − nb) ⋅ ∇aWab

∑nneigh
b=1 ∣Vaxab ⋅ ∇aWab

, (69)

where Va = ma/ρa is the volume associated with particle a and d is a dimension factor. Note that when
particles a and b are of different phases then the color function Cab = 1 and zero otherwise. The surface
tension force (67) admits the following SPH representation [28,29]

Fs ,a = −
σd

ρaVa
(∇ ⋅ n)a(∇C)a . (70)

Most recent SPH simulations using the above formulation have focused mainly on studying drop
evaporation as a result of contact with a heated solid surface. To model the vapor generated by the liquid
drop after contact with a heated wall an additional force, Fw, must be added to the right-hand side of Eq. (28),
which simulates the effects of wall temperature, Tw, and ambient pressure, pamb, on either drop rebound from
the wall or film splashing when Tw > Tboil. This force is calculated according to the following prescription

Fw =
1
2

Cw [(
Tw

Tboil
)

2
− 1]( pamb

patm
+ 1) pref

ρlρw
∇lWlw, (71)

where patm is the atmospheric pressure, pref is the reference pressure in Eq. (11), and the subscripts l and w
denote the liquid and wall particles, respectively. The coefficient Cw is usually set equal to 0.9. The boiling
temperature, Tboil in Eqs. (34) and (71) is calculated using the Clausius-Clapeyron equation (see Ref. [28] for
more details). As a final step, the volumetric mass flux at the liquid-vapor interface, ṁm , is calculated using
the smoothed particle representation

ṁm = ∑
l

2ρvmlDv(xv − xl) ⋅ ∇vWvl

ρl(∥ xvl ∥2 + ε)(1 − Yv)
(Yv − Yl), (72)
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where the subscript v denotes vapor particles. Note that the term ṁm on the right-hand side of Eq. (62) works
only for vapor particles interacting with liquid particles near the liquid-vapor interface. This is so because
during evaporation only the vapor density changes. Moreover, since the energy of the liquid phase is reduced
as the latent heat is consumed by evaporation, the second term on the right-hand side of Eq. (64) has to be
calculated only for liquid particles within the interface [28]. The rate of mass transfer when a liquid particle
evaporates into a vapor particle is given by the relation

ṁvl = −ṁlv =
2mvmlDv(xv − xl) ⋅ ∇vWvl

ρl(∥ xvl ∥2 + ε)(1 − Yv)
(Yv − Yl), (73)

so that the total mass change rates of vapor and liquid particles are

ṁv = ∑
l

ṁvl , (74)

ṁl = ∑
v

ṁlv . (75)

The saturated vapor mass fraction and vapor molar mass are calculated using Eqs. (33) and (34),
respectively. During evaporation, the mass of vapor particles will increase at the interface, while that of liquid
particles will consequently decrease. This implies that the mass of SPH particles changes during the numerical
simulation. Therefore, to prevent large differences in the mass among particles about the same phase, Yang
et al. [28] have implemented the criterion that when a mass particle exceeds a large critical value, the particle
splits into two small particles, while on the contrary, if the mass particle is smaller than a small critical
value, the particle merges with its nearest neighboring particle. For more details on the particle splitting and
merging procedures, the interested reader is referred to Refs. [28,74].

3.4 Smoothed Particle Non-Classical Equations Describing a Diffuse Interface
An alternative SPH scheme to the one developed more recently by Yang et al. [27,28], known as the van

der Waals square gradient model, was introduced in the literature by Charles et al. [15] in late 2011 to study
the nanoscale condensation of water. This model is based on an extension of Nugent et al.’s [12] formulation
to include non-classical thermodynamics through a diffuse-interface description, where the inhomogeneous
interfacial region is described as smoothly varying in density. This model has been extensively applied by
many authors to study first-order phase transitions and equilibrium properties of vdW multiphase systems,
resulting from ordinary evaporation [17–20] and explosive vaporization [21–23] of liquid drops, and is based
on the modified balance Eqs. (45)–(48), which admit the following smoothed particle representations

dρa

dt
= ρa

nneigh

∑
b=1

mb

ρb
vab ⋅ ∇aWab , (76)

dva

dt
=

nneigh

∑
b=1

mb (
T
′
a

ρ2
a
+
T
′
b

ρ2
b
) ⋅ ∇aWab + 2ā

nneigh

∑
b=1

mb∇aW H
ab +

nneigh

∑
b=1

mb (
K

H
a

ρ2
a
+
K

H
b

ρ2
b
) ⋅ ∇aW H

ab , (77)
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dUa

dt
= 1

2

nneigh

∑
b=1

mb (
T
′
a

ρ2
a
+
T
′
b

ρ2
b
) ∶ vba∇aWab + ā

nneigh

∑
b=1

mbvba ⋅ ∇aW H
ab

+ 1
2

nneigh

∑
b=1

mb (
K

H
a

ρ2
a
+
K

H
b

ρ2
b
) ∶ vba∇aW H

ab +
nneigh

∑
b=1

mb

ρa ρb

4κaκb

(κa + κb)
Tabxab ⋅ ∇aWab

(∥ xab ∥2 + ε)

+ λ
nneigh

∑
b=1

mb

ρa ρb
(dρa

dt
+ dρb

dt
) ρabxab ⋅ ∇aWab

(∥ xab ∥2 + ε) , (78)

dSa

dt
= 1

2Ta

nneigh

∑
b=1

mb (
Sa

ρ2
a
+ Sb

ρ2
b
) ∶ vba∇aWab +

1
Ta

nneigh

∑
b=1

mb

ρa ρb

4κaκb

(κa + κb)
Tabxab ⋅ ∇aWab

(∥ xab ∥2 + ε) , (79)

where vab = va − vb , T′ = T − āρ2
I, K is the Korteweg tensor given by Eq. (49), and W H

ab = W(∥ xab ∥, H)
is the kernel function evaluated at a longer smoothing length (H ≥ 2h). This is a necessary condition to
improve interfacial stability in the evaluation of the attractive, long-range central forces implied by the vdW
cohesive term −āρ2 in Eq. (3) and the Korteweg forces. Stable SPH representations are used to evaluate the
components of the Korteweg tensor in Eqs. (77) and (78) (see Ref. [17] for more details). The second term
on the right-hand side of Eqs. (77) and (78) accounts for the effects of surface tension so that there is no
need for additional force terms. Eq. (79) for the the time rate of change of the entropy has been introduced
by Díaz-Damacillo et al. [23] in recent work to measure the consistency of the simulations with the Second
Law of Thermodynamics. Instead of the value of the particle entropy, Sa , the main interest lie in the change
of entropy for each particle over time: ΔSl→l+1

a = Sl+1
a − Sl

a , where l denotes the time level. The total entropy
change in a timestep is then given by

ΔSl→l+1 =
N
∑
a=1

ΔSl→l+1
a , (80)

so that ΔSl→l+1 ≥ 0 for all timesteps to satisfy the Second Law of Thermodynamics.

4 SPH Models of Drop Evaporation with Standard Classical Thermodynamics
The first SPH simulations of drop circularization by surface tension and evaporation at subcritical

temperatures were reported by Nugent et al. [12]. In their two-dimensional models, the liquid-to-vapor phase
transition in evaporating drops was calculated using a vdW equation of state. Unlike most SPH simulation
models of free-surface flows at that time, surface tension was not handled as an input parameter since it
arises naturally from the cohesive part of the vdW equation of state. At the vapor-liquid interface, the vdW
cohesive action translates into an attractive, long-range force normal to the interface that points toward the
bulk of the liquid phase, so that there is no need to explicitly track the surface since the details of the local
surface curvature are reproduced automatically. The SPH governing equations employed by Nugent et al. [12]
include the summation interpolant for the particle density

ρa =
neigh

∑
a=1

maWab , (81)

which conserves mass exactly and replaces the smoothed particle continuity Eq. (76) to second-order
accuracy. The momentum balance equation is the same as Eq. (77) without the last term on the right-hand
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side, while the specific internal energy is as Eq. (78) but without the third and fifth terms on the right-hand
side and with the smoothed heat conduction term given instead by the symmetrized representation

−
neigh

∑
a=1

ma (
qa
ρ2

a
+ qb

ρ2
b
) ⋅ ∇aWab , (82)

where q = −κ∇T is the heat flux vector. On the other hand, Nugent et al. [12] first noticed that to obtain
stable spherical (circular) drops and handle the effects of surface tension properly, the short- and long-
range components of the vdW equation of state must be evaluated separately. In particular, they noticed that
improved interfacial stability can be obtained by increasing the interaction range of the cohesive term in
the momentum and energy equations to a smoothing length H(≥ 2h) compared to h for all other forces.
This distinction between short- and long-range forces (second term on the the right-hand side of Eqs. (77)
and (78)) leads to the cohesive contributions for the acceleration and heating

dva

dt
= 2ā

nneigh

∑
b=1

mb∇aW H
ab , (83)

dUa

dt
= ā

nneigh

∑
b=1

mbvba ⋅ ∇aW H
ab , (84)

respectively. The right-hand side of Eq. (83) strongly resembles the form used by Morris et al. [75] to
estimate the surface normals for the calculation of surface curvatures with SPH in the framework of the
continuum-surface-force (CSF) method. The choice of H was determined by the same considerations that
led to interfacial stability with the CSF method. Thus, the forces represented by Eq. (83) largely cancel in the
bulk of the liquid, except for a small strip of width H around the drop surface, where liquid particles are
constrained to move inward in the opposite direction to the outward surface normal, leading to a net surface
tension due to the local surface curvature. As the interpolating function, Nugent et al. [12] used the quartic
spline kernel introduced by Lucy [64]

W(r, h) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

5
πh2 (1 + 3r

h
)(1 − r

h
)

3
if r < h,

0 if r ≥ h,
(85)

which is appropriate in two-space dimensions. In all simulations, they used 2500 SPH particles of equal mass
(ma = m) and started the simulations from a square-shaped drop by imposing periodic boundary conditions
on a much larger square box. As was already mentioned in Section 2.1, Eqs. (3) and (6) were employed with
vdW parameters m = 1, ā = 2, b̄ = 0.5, and k̄B = 1 in reduced units. In these units the shear and bulk viscosity
coefficients were set to η = 1 and ζ = 0.1, while a heat conductivity κ = 5 this large was used to reduce the
density fluctuations and allow a rapid adjustment of the temperature. The smoothing lengths were set to
h = 5 and H = 2h = 10.

Square drops of length L = 50, starting with subcritical temperatures (T < Tcr), were evolved until
circular drops in thermo-mechanical equilibrium were obtained as shown in Fig. 2. In particular, Fig. 2a
shows a circular equilibrium drop formed from a subcritical temperature T = 0.2. In this case the drop rounds
off by surface tension effects without evaporating. As the initial temperature is increased to T = 0.6 (Fig. 2b),
0.87 (Fig. 2c), and 1.05 (Fig. 2d), circular drops surrounded by a vapor atmosphere are formed in equilibrium.
Evidently, the evaporation rate at the surface of the liquid drop increases with increasing initial temperature
as shown in Fig. 2d, which started with a temperature close to the critical value (Tcr = 32/27 ≈ 1.185).
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In a very recent work Harisankar et al. [24] used Nugent et al.’s [12] model to study the formation of
bare liquid drops by surface tension and their evaporation when a small amount of energy, corresponding
to 10% of the maximum particulate specific internal energy is added to the evolving drop every time step
till 10,000 time steps after which the heat supply was stopped. In essence, their model differed from Nugent
et al.’s [12] approach only in the choice of the kernel function. In this case, Lucy’s [64] kernel was replaced by
the hyperbolic-shaped kernel function introduced by Yang et al. [76], namely

W(q, h) = αd

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q3 − 6q + 6 if 0 ≤ q < 1,
(2 − q)3 if 1 < q < 2,
0 if q ≥ 2,

(86)

where q = r/h =∥ x − x′ ∥ /h, while αd = 1/(7h), 1/(3πh2), and 15/(62πh3) in one-, two-, and three-space
dimensions, respectively. Unlike other kernels used in the literature, this kernel is claimed to possess positive
second-order derivatives over its compact support. This is a desirable property because it guarantees that
repulsive forces between pairs of SPH particles do not vanish as they become close enough during a
compression. In addition, under a negative stress (i.e., positive pressure) the calculation remains stable
against the tensile instability. This instability may result in unphysical clustering of SPH particles or a
complete blow-up of the particle positions to infinity [77–80]. As an example, the structure of the bare drop
displayed in Fig. 2a is plagued by a tensile instability which is evident by the clustering of SPH particles in
concentric circular rings separated by void spaces. In the absence of such instability we would expect the
liquid phase to be characterized by a uniform distribution of particles.

Figure 2: Stable circular drops in equilibrium with their vapor atmosphere formed from a square-shaped vdW liquid
of initial subcritical temperature (a) T0 = 0.2, (b) 0.6, (c) 0.87, and (d) 1.05 in reduced units. In all cases N = 2500 SPH
particles were used in a square box of side L = 50. Figure taken from Nugent et al. [12]

Harisankar et al. [24] simulated the complete vaporization of a model circular drop of initial temperature
T = 0.43 and density ρ = 1.76 in reduced units. As more heating is supplied to the drop, the drop temperature
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increases and its size decreases with time as more liquid particles are converted into vapor particles. Since the
simulation was confined to a square box of side L = 120 with impenetrable walls, the average vapor density
was seen to increase as a result of continued evaporation. Fig. 3 shows snapshots of the evaporation process
at different times during the evolution along with the corresponding radial density and pressure profiles of
the drop-vapor coexisting system. The core density of the drop shrinks and the pressure goes up and down
within the liquid-vapor interface. This dip is the result of an unphysical loop displayed by the vdW equation
of state at a subcritical temperature due to the hard-core repulsion, indicating an unstable state across the
interface. The depth of the pressure dip decreases with time and eventually disappears at t = 2200 when the
drop has completely vaporized. They also studied the effects of varying the box size, finding that the boiling
temperature decreases as the box size increases, while the drop size remains unaltered. A similar formulation
was previously employed by Ray et al. [25] to study the phenomenon of liquid oscillation, the binary collision
of vdW drops at high velocity, and the vapor-liquid equilibrium of a vdW drop. They stressed the importance
of using a variable smoothing length to accurately capture the physics of a sparse vapor medium. They also
found that as the critical temperature is approached, the liquid-vapor interface becomes blurred in agreement
with expectations at supercritical environments.

The drop evaporation by impingement on heated surfaces is a related topic of research that has
attracted great interest in science and engineering due to its occurrence in many industrial processes, such
as, for example, spray cooling, fuel injection, fire suppression systems, inkjet printing, and fuel spray in
internal combustion engines, among many other applications. Numerous recent SPH simulations relying on
variants of the Nugent et al.’s [12] approach have been performed to study the spreading and evaporation
of drops impacting upon heated solid surfaces. In particular, Yang et al. [26] performed three-dimensional
simulations of the interaction of fuel (n-heptane) drops with heated surfaces. They used 125,000 SPH particles
to represent the drop and 3000 particles to model the solid wall. To predict the liquid-vapor equilibrium, the
Peng-Robinson Eq. (13) was employed along with the caloric Eq. (14) and the cohesive parameter as defined
by Eq. (15). In order to remove the tensile instability, the hyperbolic-shaped kernel (86) was used. This model
was validated against experimental observations of the spreading of ethanol drops after their impact on a
heated surface [81,82]. Fig. 4 shows the time evolution of the experimentally measured spread size of 2.4 mm
diameter ethanol drop after impacting on a surface at 24○C with a velocity of 3.1 m s−1 [81] as compared with
the numerical results (left) and the experimental spread factor of n-heptane drops impacting a stainless-
steel surface at different temperatures between 24○C and 200○C with a velocity equal to 0.93 m s−1 [82] as
compared with the numerical predictions (right). In both cases the numerical simulations were found to
reproduce fairly well the trends of the experimental data.

The evolution of a 1.5 mm diameter n-heptane drop impinging on a heated surface at different
temperatures is depicted in Fig. 5 at discrete times. In order to better illustrate the liquid surface deformation
the vapor atmosphere around the drop has been removed. In all cases, during the first ms after contact
with the surface, the drop spreads into a thin film. Thereafter the retarding effects of surface tension, liquid
viscosity, and friction forces between the liquid and the wall slow down the spreading, while the liquid at
the center has enough inertia to form a visible cusp. As the wall temperature is increased, the spreading rate
decreases. For instance, as shown in the right frame of Fig. 4, at wall temperatures just above 100○C, the spread
diameter reaches a maximum and then shrinks as the drop recoils due to surface tension. The Leidenfrost
temperature is reached at 200○C when a thin layer of vapor is formed between the liquid and the wall. At
this temperature and above, the drop completely recoils and rebounds from the surface. Further simulations
with varying impact velocities (i.e., varying Weber numbers, We = ρv2D/σ , where v is the drop velocity at
impact and D is its diameter) show that at all temperatures there is a critical We beyond which the drop
disintegrates into secondary droplets. As the wall temperature increases the critical We decreases, reaching
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a minimum value at the Leidenfrost temperature above which the We number remains the same. Fig. 6
shows three different regimes of drop breakup for a wall temperature of 350○C well above the Leidenfrost
point for increasing We. From left to right these three regimes can be identified as “receding breakup”, “drop
disintegration”, and “splashing”. The impingement of an oil drop on walls with different conditions was further
studied by Ma et al. [70] in order to better understand the splashing mechanism in engine conditions. They
proposed a new splashing sub-model to determine the ratio of splashed mass during the impact process
which is thought to be the main factor influencing the mixture.

Figure 3: Sequence of snapshots showing the evolution to complete vaporization of a bare drop consisting of 1740 SPH
particles with an initial temperature T = 0.43 in reduced units (left column). The middle and right columns display the
corresponding radial density and pressure profiles. Figure taken from Harisankar et al. [24]
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Figure 4: (Left) Time evolution of the spread diameter of a 2.4 mm diameter ethanol drop impacting on a solid wall
at Tw = 24○C with a velocity of 3.1 m s−1. (Right) Time evolution of the spread factor, defined as the ratio of the liquid
diameter on the wall after impact with the original liquid diameter, of n-heptane drops impacting on a stainless-steel
surface at different temperatures with a velocity of 0.93 m s−1 (symbols: experimental measurements; lines: numerical
results). Figure taken from Yang et al. [26]

Figure 5: Deformation of a 1.5 mm diameter n-heptane drop at three different times after impact on a surface at different
temperatures. The vapor atmosphere around the spreading drop due to evaporation has been removed for clarity. Figure
taken from Yang et al. [26]

A modified SPH model to simulate the spreading dynamics of nanofluid droplets on heated walls was
recently proposed by Liu et al. [40], where the fluid surface tension and wetting absorption during droplet
wetting on a solid surface is modeled by adding a source force, Fs , in the momentum equation, defined
as the sum within the kernel support domain of the attractive force among particles, Fab , given by the
expression [83]

Fab = sab cos( 1.5π
3h

∥ xa − xb ∥)
xa − xb

∥ xa − xb ∥
, (87)

if ∥ xa − xb ∥≤ h and 0 otherwise, where sab is the strength of the surface tension. In addition, natural
convection inside the drop is accounted for by adding a buoyancy force, Fb, due to temperature differences
given by

Fb = gβ(T − Tref), (88)

where g is the gravitational acceleration vector, β is the coefficient of thermal expansion, and Tref is a
reference temperature. In this case, a water droplet is modeled using the Murnaghan-Tait pressure-density
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relation given by Eq. (12) with added nanoparticles whose effective properties are formulated according to
Liu et al.’s [40], Eqs. (8)–(12). The drop evaporation model is described by solving a SPH heat conduction
equation of the form given by Eq. (61) but with the particle temperature replaced by the particle enthalpy,
H , in the temporal derivative with

H = { cpT if T < Tboil ,
cpTboil +U if T ≥ Tboil and 0 ≤ U ≤ ΔHvap,

where U is the heat absorbed during the phase change. As a further remark, when the temperature reaches
the boiling point, Tboil, the particle density is adjusted in linear relation with the internal energy from liquid
density to zero according to [84]

ρa = (1 − U

ΔHvap
) ρ0, (89)

where ρ0 is the initial drop density.

Figure 6: Drop deflagration after impact on a surface at Tw = 350○C well above the Leidenfrost point. Three different
regimes of drop breakup are shown from left to right for increasing We numbers. Figure taken from Yang et al. [26]

Based on the above SPH model, Liu et al. [40] simulated the wetting and de-wetting dynamics of
sessile nanofluid droplets on a solid surface from non-heating to sub-boiling to super-boiling temperatures.
In particular, when a nanofluid droplet impacts a sub-boiling heating plate the buoyancy force causes a
slight change in the local velocity direction near the drop bottom where the temperature is characterized
by a layered gradient. At a sub-boiling surface temperature of 80○C the drop evolves dynamically changing
its shape due to the impact on the surface without experiencing boiling evaporation (see Liu et al.’s [40],
Fig. 11). During drop spreading, thermal transfer from the heated plate induces a temperature field near
the drop bottom, while during the receding phase a temperature gradient is present in the cap droplet. The
temperature gradient causes the appearance of buoyancy forces within the drop near the heated surface.
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In particular, looking at Fig. 11 of Liu et al. [40], the experimentally observed drop morphology during its
spreading and receding phase is very well reproduced by the SPH simulation. However, as these authors
mention two different patterns may arise depending on the drop impact inertia. For instance, at more violent
impacts (higher inertia) the high impact velocity at the drop bottom brings the heat to the edge of the drop,
leading to high temperatures near the contact line. Conversely, as discussed above, at lower inertia little
heat flow occurs along the spreading direction, and more heat is transferred to the drop center so that the
temperature decreases from the drop center to its edge.

At super-boiling temperatures of the heated plate, boiling evaporation is seen to play a dominant effect
on the de-wetting stage. In this case, the experiments and the simulations also reveal two different patterns,
this time depending on the heating temperature and thermal transfer. At moderate super-boiling the drop
experiences intense boiling at its maximum spreading (i.e., wetting) on the surface, undergoing liquid film
bursts and bubble explosion. However, during the spreading, receding, and evaporation the drop always
remains in contact with the heated surface. This occurs at plate temperatures ≤130○C. At temperatures higher
than this the drop boils as it spreads over the surface. At its maximum spreading sustained boiling destroys
the pinning of the contact line and the drop recedes quickly, leading to a drop rebound from the heated
surface. Fig. 7 shows details of the dynamics after the impact of a 20○C nanofluids droplet on a super-boiling
heated plate at 150○C and We = 24.4. The upper two rows display experimental images of the impact of a
deionized water drop with nanosilver particles and the bottom rows display the results of the SPH simulation
for the same sequence of discrete times.

Figure 7: Impact of a nanofluids droplet on a sub-boiling heated surface at Tw = 150○C. The drop has a temperature of
20○C and impacts on the surface with We = 24.4. The shape evolution as obtained experimentally (upper two rows of
images) is compared with the numerical simulation (bottom two rows). Figure taken from Liu et al. [40]
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5 SPH Models of Multispecies Flow Drop Evaporation
In general, the dynamics of drop evaporation involve phase change and energy transfer at the liquid-

vapor interface along with the diffusion of vapor species in the vapor phase. As was described in Section 3.3,
Yang et al. [27] proposed a reformulation of the classical model based on Eqs. (28)–(32), where a continuity
equation for the vapor species was added to simulate the vapor mass fraction in the vapor phase. To account
for the vapor mass increase and the liquid mass decrease during the process of liquid-vapor phase transition
and avoid large mass differences at the liquid-vapor interface they introduced a particle splitting and merging
technique, which was formulated in such a way as to conserve mass, momentum, and energy. Yang et al.’s [27]
model and variants of it have been successfully applied to study the evaporation of static drops embedded in
a heated gas. However, most studies were addressed to investigate the evaporation of liquid drops impacting
on a heated surface.

Although most existing model simulations of drop impact on heated surfaces are validated for condi-
tions at atmospheric pressure, Yang et al. [28] solved Eqs. (28)–(32) complemented by the pressure-density
relation (11) to simulate the impact of a 50 μm diameter n-heptane drop on a hot surface, using the SPH
discretization scheme given by Eqs. (62)–(65) along with the provisions described by relations (66)–(75).
They conducted a large number of simulations for impact velocities in the range between 4 and 20 m s−1

(corresponding to We numbers between 27 and 680), surface temperatures in the range 27○C–300○C, and
ambient pressures ranging from atmospheric to 20 bars. Based on the outcomes of their simulations they
identified six different regimes, namely spreading, breakup, contact splash, partial rebound, rebound, and
film splash. In particular, drop spreading is observed at low We numbers and relatively low wall temperatures.
In this case, after impact, the drop spreads on the surface forming a film. The film stops spreading and reaches
a maximum diameter by the time the kinetic energy of the drop vanishes. Thereafter, it recedes by surface
tension effects until an equilibrium state is achieved. At higher We numbers and wall temperatures, the drop
spreading produces a larger and thinner film with subsequent breaking on the surface. Yang et al.’s [28]
Fig. 2 displays a picture of these two regimes at p = 1 bar. For instance, spreading is observed when We = 100
and Tw = 27○C, while breakup occurs when We = 430 and Tw = 100○C.

At We = 430 and raising the surface temperature to 150○C, the rim of the liquid film moves upward
during spreading forming a crown structure, which soon thereafter breaks up into tiny secondary droplets,
while the remainder of the film remains attached to the wall surface and fragments as shown in Fig. 8a. This
outcome was referred to by Yang et al. [28] as contact splash. As the temperature is raised to 300○C, the
splashing becomes more violent even when We = 240 as shown in the column sequence of Fig. 8b. In this
case, a crown of secondary droplets forms which are lifted from the wall. During the next 30 μs, the liquid
which is still attached to the wall surface forms a ring like structure before fragmenting into new droplets
which then levitate over the solid surface. In order to distinguish this outcome from the previous one, Yang
et al. [28] called this regime film splashing. Since the Leidenfrost temperature of n-heptane is about 200○C at
a pressure of 1 bar, it was reasonable to expect film splashing to occur at wall temperatures above 200○C. At
We number as low as 50 and p = 1 bar partial rebound was seen to occur at wall temperatures around 180○C,
while total rebound started to appear at slightly higher wall temperatures (Tw = 200○C). In these cases, the
drop flattens over the surface which is then pulled back by surface tension regaining its spherical shape and
detaching from the hot surface. If during rebound from the surface part of the drop remains attached to it
(when Tw < 200○C), the regime is called partial rebound, while when no liquid remains attached to the hot
surface, the regime is called rebound, which is seen to occur at Tw ≥ 200○C and We < 200. On the other hand,
the outcome of drop evolution changes when increasing the ambient pressure. For example, at 20 bars the
Leidenfrost temperature is higher than the boiling temperature. The Leidenfrost temperature is sensitive to
the ambient pressure and increases with increasing ambient pressure.
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Figure 8: Impact of a 50 μm diameter drop on a heated wall at atmospheric pressure (p = 1 bar): (a) contact splash at
We = 430 and wall temperature of 150○C and (b) film splash at We = 240 and wall temperature of 300○C. Figure taken
from Yang et al. [28]

In a recent paper, Sohag et al. [29] reported three-dimensional SPH simulations of the impact of
50 μm diameter drops of n-heptane and n-decane on heated solid surfaces in high-pressure environments,
using Yang et al.’s [27,28] formulation. They considered surface temperatures between 27○C and 400○C and
pressures up to 20 bars for impacts with We = 50. They validated their scheme against experimental results
of the impact of n-heptane drops on a drywall heated at temperatures of 35○C, 150○C, and 300○C and at 1
bar pressure for We ∼ 50 [85] (see their Fig. 2). For all three wall temperatures, the morphological changes
of the drop after the impact as predicted by the SPH simulations were found to be in good qualitative
agreement with the experimental results. Fig. 9 shows the morphology of an n-heptane drop impacting on a
wall at 300○C and different ambient pressures as compared with the experimental observations of Chausalkar
et al. [85]. The comparison between simulation and experiment was not conducted on a timescale basis. At
higher pressure the fluid saturation temperature of n-heptane increases from 98.5○C at 1 bar to 232○C at 15
bars, which delays the onset of drop evaporation and therefore the formation of the vapor layer that causes
the floatation of the drop on the heated surface. This explains the delay at the onset of drop rebound when
increasing the ambient pressure from 1 to 15 bars.
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Figure 9: Impact of a 50 μm diameter n-heptane drop on a heated wall of temperature Tw = 300○ at We = 50 and
different ambient pressures of 1, 5, and 15 bars. The numerical simulations are compared with experimentally taken
images [85]. Figure taken from Sohag et al. [29]

The simulations reported by Sohag et al. [29] focused on two different drop-impact regimes: spread
and rebound. They found that the ambient pressure has little effect in changing the maximum liquid film
spread. For example, Fig. 10 shows the temporal dependence of the spread factor for the n-heptane drop at
wall temperature of 300○C and We = 50 for different ambient pressures. However, under film boiling the
occurrence of the maximum spread is delayed when the ambient pressure is increased from 1 to 20 bars.
Their simulations also predict the experimental variation of the difference between the Leidenfrost and liquid
saturation temperature (Tl − Ts) for the n-decane and n-heptane drops with the ambient pressure. Yang
et al.’s [27,28] formulation was also used by Xiao et al. [30] to study in two-space dimensions the evaporation
of static single and binary drops. In particular, they found that the evaporation time of a single droplet
conformed to the D2 law proposed by Godsave [33] and Spalding [34]. For interacting binary droplets in
the process of evaporation, they found that only when the ratio of droplet separation over drop diameter is
greater than 8 the evaporation process is not influenced by the binary drop interaction.
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Figure 10: (a) Numerically predicted variation of the spreading factor as compared with experimental observations [86]
after impact at We ≈ 57 of a water drop on a heated surface of temperature Tw = 125○ and (b) comparison of the variation
of the spreading factor with experimental data [86] and results from simulations with the rational-cubic interpolation
program (RCIP) [87] after impact of a water drop at We = 100 on a heated wall at 125○C. Figure taken from Sohag
et al. [29]

An extension of Yang et al.’s [27,28] SPH formulation has been employed by Wang et al. [35] to
provide a framework for direct numerical simulations (DNS) of drop evaporation and combustion processes.
In particular, the movement of drops in an infinite flow field is allowed by implementing non-reflective
boundary conditions in a limited area along with heat and mass transfer and chemical reaction processes.
Their formulation includes a solution of the continuity Eq. (20), the momentum Eq. (28), augmented by a
surface tension term of the form given by Eq. (67) using Qiang et al.’s [88] formulation for the color function
and its gradient, the energy equation

ρcp
dT
dt

= −p∇ ⋅ v +∇ ⋅ (κ∇T) +Φ + Q , (90)

where Φ is the viscous dissipation, defined in terms of the strain rate tensor, and Q is the heat released from
the chemical reactions, and the species conservation equation

ρ dYs

dt
= −∇ ⋅ (ρYsVs) + Rs , (91)

where Ys is the mass fraction of species S, Vs is the diffusion velocity of species S, and Rs is the mass
generation rate of S in the chemical reactions. A weakly compressible SPH scheme is enforced by adopting
the Murnaghan-Tait equation of state (12) for the pressure. During drop evaporation heat is absorbed by
the liquid from the outside and part of this heat is used by the outer drop liquid molecules to undergo a
continuous phase transition to a vapor state. In the process of phase transition the liquid mass fraction, ᾱ,
of an SPH particle is varied from 0 to 1, where ᾱ = 1 means that the SPH particle is fully liquid, while ᾱ = 0
means that it has become completely gaseous. In general, ᾱ is calculated according to

∇ᾱ = ∇Q
mh f g

, (92)

where ∇Q represents the heat absorbed by the SPH particle and m is its mass. As ᾱ changes from 1 to 0, the
particle density, heat transfer coefficient, and diffusion coefficient change according to the prescriptions ᾱρ,
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ᾱκ, and ᾱD , respectively. This ensures the conservation of mass, momentum, and energy. The combustion
process was modeled by the one-step irreversible reaction mechanism of n-hexane:

vFFuel + vOOxidizer → vPProduct + Q , (93)

where Q is the heat released and the stoichiometric coefficients vF , vO , and vP are obtained from the global
reaction

C6H14 +
19
2

O2 → 6CO2 + 7H2O. (94)

The combustion heat of n-hexane is 45,104.82 kJ kg−1 and the oxidizer is air whose nitrogen component
does not participate in the reaction. Therefore, the stoichiometric coefficient vO is set equal to 15.14. The
SPH discretization of the hydrodynamic equations was made following similar replacements to those shown
in Eqs. (62)–(65), except for the pressure gradient in the momentum equation which was replaced using the
symmetrized form (59) (see Wang et al.’s [35] Eqs. (24)–(30)).

Wang et al. [35] applied their scheme to the simulation of drop evaporation in a forced convection
environment and the combustion of static single and multiple drops. In the first case, the evaporation of
a 200 μm diameter n-hexane drop at an initial temperature of 342 K is calculated under the effects of
an external hot nitrogen stream (at 850 K) flowing at different velocities. Fig. 11a shows the mass fraction
distribution of vapor from the n-hexane fuel drop at 0.3 ms when the external inflow velocity is 5 m s−1,
while Fig. 11b displays the corresponding temperature distribution. At such high velocity, most of the vapor
phase is blown downstream of the drop forming a long tail in the direction of the main external nitrogen
stream. They further considered the combustion of single and multiple drops in a static environment.
However, their results for drop combustion in a forced convective environment look more interesting. Fig. 12
displays the results of droplet combustion under increasing inflow velocities: (a) 1.0 m s−1, (b) 2.0 m s−1, and
(c) 5.0 m s−1. At an inflow of 1.0 m s−1, the combustion mode is similar to that of a static drop where the
flame is completely wrapped around the drop. When the inflow velocity increases to 2.0 m s−1, the flame
is behind the drop, while at 5.0 m s−1 the flame is farther away from the drop forming a longer tail, which
resembles a parachute. In all three cases, the effects of convection are to produce a more severe chemical
reaction in the downstream region where the flame temperature is higher. The structure and combustion
modes displayed in Fig. 12 were successfully compared with the experimental results of the combustion of
acetone oil drops [89].

The drop evaporation after impact on the liquid film in a horizontal falling film evaporator was recently
studied by Fan et al. [32] using Yang et al.’s [27,28] SPH formulation. The horizontal tube falling film
evaporation is a promising technology that is widely applied in refrigeration and water treatment systems
with great advantages in the heat and mass transfer efficiency and low cost [90–92]. The evaporation process
of a drop impacting on a liquid film in falling-film heat exchangers not only relates to the flow and spreading
dynamics after impact but also to the thermodynamic process of phase transition. Apart from related work
by Xu et al. [31], Cui et al. [39], and Wang et al. [91], among other scholars, there are only a few instances in
the literature dealing with SPH applications to liquid film evaporation. As a validation test case, Fan et al. [32]
simulated the evaporation evolution of an ethanol droplet after impact on a heated surface, finding a fairly
good agreement with ad hoc experimental observations for an ethanol drop of equivalent diameter Dequiv =
(D2

hDv)1/3 = 1.89 mm impacting on a heated wall with an initial velocity of 0.89 m s−1, where Dh and Dv are,
respectively, the horizontal and vertical drop diameters. After 0.3 s in the evolution, they found that the drop
spreading rate matched the experimental data within 6%.
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Figure 11: Numerical results for the evaporation of a 200 μm n-hexane drop at an initial temperature of 342 K in a
hot nitrogen stream initially at 850 K and flowing from bottom to top with a velocity of 5 m s−1. (a) Distribution of the
n-hexane gas components and (b) temperature distribution at 0.3 ms. Figure taken from Wang et al. [35]

Figure 12: Predicted temperature field during the combustion of a 100 μm diameter n-hexane drop in a stream of hot
air moving from bottom to top with a velocity of (a) 1 m s−1, (b) 2 m s−1, and (c) 5 m s−1. A full-envelope flame is seen
in (a), while a tail and parachute flame are seen in (b) and (c), respectively. Figure taken from Wang et al. [35]

A schematic drawing of the evaporation model of drop impact on the liquid film employed by Fan
et al. [32] is displayed in Fig. 13. The falling drop of radius 0.1 mm and temperature 313 K is placed at the center
of a rectangular domain filled with gas at 333 K. The same initial temperature was used for the liquid film,
while the wall temperature was set to 341 K. As the drop impacts the liquid film, a small crown first forms,
which then spreads out as the drop merges gradually with the liquid film. When the initial drop velocity
grows from 1 to 3 m s−1, the contact area with the liquid film and the drop temperature both increase, implying
that at higher falling velocities temperature equilibrium between the drop and liquid film takes longer. Fig. 14
shows details of the drop morphology and system temperature during and after the drop-liquid film impact
for varying initial drop velocity from 1 to 3 m s−1. Only the central top part of the semi-circular liquid film
displayed in Fig. 13a is shown. When the drop temperature is increased at a given falling velocity, the liquid
film around the merging drop is significantly affected by the drop temperature as its rate of evaporation
becomes more pronounced, while the overall liquid film away from the drop impact region is little affected.
These scholars also studied the impact of multiple droplets on the liquid film, finding that the time required
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for them to reach thermal equilibrium with the liquid film is longer compared to that for a single drop at the
same initial velocity.

Figure 13: (a) Schematic drawing of a water drop in air impacting on a hot liquid film resting on a heated arched surface
and (b) computational model domain. Figure taken from Fan et al. [32]

In a recent paper, Xu et al. [31] argued that SPH simulations of phase transitions based on ideal
thermodynamics through the use of Eqs. (11) and (12) may not be accurate enough due to the decrease of
liquid particles during evaporation. In order to improve the accuracy of SPH drop evaporation calculations,
they proposed a formulation based on Eqs. (20), (27), and (28) coupled with Eq. (11) for the pressure-density
relation, Eq. (31) for the mass fraction of the vapor species, and a time-fractional order convection-diffusion
equation for the temperature of the form [93–95]

C
0 D α

t T n
ab =

τ−α

Γ(2 − α) [c(α)0 T α
ab −

n−1
∑
k=1
(c(α)n−k−1 − c(α)n−k)T k

ab − T(α)n−1 − T(α)n−1 u0
ab] , (95)

where Tab = D(Ta − Tb) is the so-called response function, τ is the timestep, Γ is the gamma function, and
α is the fractional order. The coefficients c(α)k are defined as follows:

c(α)k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(α)0 + b(α)0 if k = 1,
a(α)k + b(α)k − b(α)k−1 if 1 ≤ k ≤ n − 2,
a(α)k − b(α)k−1 if k = n − 1,

for n > 1 and c(α)0 = a(α)0 = 1 for n = 1. Here ak and bk are, respectively, the diffusion and convective
coefficients defined as

a(α)k = (k + 1)1−α − k1−α ,

b(α)k = 1
2 − α

[(k + 1)2−α − k2−α] − 1
2
[(k + 1)1−α − k1−α] ,

for 0 ≤ k ≤ n − 1. Eq. (95), known as the Caputo time fractional derivative, is added to the right-hand side of
the smoothed particle representation of Eq. (27) given by Eq. (61). With this provision the classical thermal
conduction equation becomes a fractional order differential equation that better simulates the liquid-vapor
phase transition when ideal thermodynamics is employed. Values of the fractional order between α =
0.1 and 0.7 were tried for the evaporation of an equilibrated drop. As shown in Fig. 15, the value that
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better reproduced the theoretical variation of the drop diameter with time (i.e., the D2 law) was α = 0.1,
corresponding to a drop survival time of 0.54 s.

Figure 14: Temperature distribution at different times after the impact of a water drop initially at a temperature of 313 K
on a hotter liquid film at a temperature of 333 K. The snapshots show the drop evaporation at different times in the top
part of the arched liquid film for drop impact velocities of (a) 1 m s−1, (b) 2 m s−1, and (c) 3 m s−1. In all cases, the solid
arched surface was at an initial temperature of 341 K. Figure taken from Fan et al. [32]

With the above-modified scheme, Xu et al. [31] simulated the phase transition process of drops
impacting on hot flat, and curved solid surfaces. Fig. 16 shows the evolution of a 0.3 mm diameter drop
with an initial temperature of 573 K in a gaseous medium of the same temperature during impact on a hot
arched surface. As the drop hits the surface it evaporates rapidly and a vapor film forms between the drop
and the surface, which makes it float and reduces its evaporation rate. Fig. 17 shows how the spreading length
and the evaporation rate of the drop vary with time. During drop evaporation, the ambient gas temperature
decreases as most energy is absorbed by the evaporation process. Since the temperature of the hot surface is
kept constant, the gas temperature rises again when the drop has completely evaporated.
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Figure 15: Temporal variation of the squared diameter of a static droplet undergoing evaporation. The colored symbols
correspond to varying values of the fractional order selection (α) using the SPH method corrected by the convection-
diffusion Eq. (95). The straight solid line is the theoretically calculated D2 law, which predicts a time survival for this
drop of 0.54 s. Figure taken from Xu et al. [31]

Figure 16: Snapshots showing a 0.3 mm diameter drop falling in a hot gas environment (at 573 K) and impacting on a
semi-circular surface at 373 K with a velocity of 0.5 m s−1. Figure taken from Xu et al. [31]
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Figure 17: Variation of the spreading length and evaporation rate with time for the drop impact model of Fig. 16. Figure
taken from Xu et al. [31]

In a further study, Subedi et al. [38] simulated the impact of a drop train on a hot surface at
different impingement frequencies using a variant of Yang et al.’s [27,28] SPH formulation, where a Shepard
filtering [96]

ρa → (
nneigh

∑
b=1

mb

ρb
Wab)

−1 nneigh

∑
b=1

mbWab , (96)

is applied after a certain number of timesteps to redefine the particle density so that large numerical
fluctuations that may occur in the course of the simulation are effectively minimized. In addition, the XSPH
technique introduced by Monaghan [43]

v̂a = va + ε
nneigh

∑
b=1

mb

ρ̄ab
(va − vb)Wab , (97)

is used to smooth out the velocities and maintain an orderly movement of particles. Their method was
first validated against experimental observations of a drop train impacting on a drywall for the radial
position of the crown’s rim normalized to the drop diameter [97], finding a good level of agreement
(see Subedi et al.’s [38], Fig. 2). The crown rim propagation and crater formation dynamics were also tested
against the experimental measurements provided by Zhang et al. [98] for the impingement of a stream
of hydrofluoroether (HFE)-7100 droplets on a pre-wetted surface for varying We numbers and impact
frequencies. The numerical results were also found to be in reasonable agreement with the experimentally
measured crown’s rim propagation for a falling 240 μm diameter drop train with We = 280.

In particular, Subedi et al. [38] simulated the vertical impingement of consecutive 50 μm diameter drops
on a heated surface (Tw = 323 K) at a velocity of 10 m s−1 (We = 170) at frequencies of 10, 20, 30, 40, and
50 kHz, Reynolds number Re= 850, and We0.5Re0.25 = 70.4. The parameter We0.5Re0.25 was found to provide
a better representation of the splashing threshold than We (see Ref. [99] for more details). They found that
the splashing characteristics are dependent on the frequency, with more splashing resulting from higher
impact frequencies. However, the liquid film thickness after the impact of consecutive drops is a function of
several parameters, including the kinematic viscosity, impingement frequency, surface conditions, drop size,
and ambient pressure. On the other hand, the propagation of the crown rim can be inhibited by increasing
the ambient pressure.
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6 SPH Models of Drop Evaporation with Non-Local Thermodynamics
An alternative formulation for the numerical description of liquid-vapor phase transitions combines the

pressure and caloric vdW equations with a diffuse-interface model, as was already reviewed in Section 2.6. In
this formulation, the thermodynamics is based on the vdW mean-field theory and therefore the dynamics of
evaporation require modification of the classical equations of hydrodynamics as given by the set of Eqs. (45)–
(48), whose smoothed particle representations are given by Eqs. (76)–(79).

A simplified version of Eqs. (45)–(47), where the third term on the right-hand side of the internal
energy Eq. (47) is dropped, was implemented by Sigalotti et al. [17] to investigate the evaporation of liquid
drops starting from a square shape for a range of initial densities and temperatures. They found that drops
with initial subcritical temperatures T0 < 0.6 and densities 0.661 ≤ ρ0 ≤ 1.322 in reduced units undergo
spinodal decomposition (i.e., spontaneous separation of the liquid and vapor phases as a consequence of
drop evaporation) and achieve thermo-mechanical equilibrium with mean drop temperatures higher than
the initial ones, while drops with T0 > 0.6 achieve thermo-mechanical equilibrium with mean temperatures
lower than the initial values. On the other hand, drops starting with temperatures T0 ≤ 0.3 and a density
close to the liquid zone of the phase diagram (ρ0 ≈ 1.652) (see their Fig. 1a) formed stable liquid drops
with almost no vapor phase, while for T0 > 0.3 equilibrated drops formed with a very sparse external vapor
atmosphere. Fig. 18 shows the final stable liquid drops coexisting with their vapor atmosphere at temperatures
from top to bottom of about 0.46, 0.64, 0.66, and 0.75 and decreasing liquid densities. The first row of pictures
display an equilibrium drop with ρ ≈ 1.75 surrounded by a sparse vapor atmosphere. Drops with lower initial
densities experience higher evaporation rates and therefore the evolution ends up with stable drops of smaller
size and much denser vapor atmospheres as shown in the remaining rows of frames in Fig. 18. As shown
in Fig. 19, the densities and temperatures of the coexisting liquid and vapor were found to closely match
the binodal curve as predicted by the vdW equation of state in accordance with the Maxwell construction
tie-line.

The same model formulation was further used by Sigalotti et al. [21] to simulate the evaporation and
explosive vaporization of initially square-shaped drops with densities in the range between 0.31 and 1.64 in
reduced units. For a fixed density, a sequence of models was produced by raising the initial drop temperature
in order to predict the point separating normal boiling at subcritical heating from explosive boiling at the
superheat limit. Values of ρ ≳ 1 are more representative of a liquid, while drops with a lower density are
closer to the vapor zone of the phase diagram and are likely to exhibit higher evaporation rates at a fixed
heating temperature. The response of a drop to instantaneous, uniform heating is therefore sensitive to the
initial density, ρ0, and heating temperature, T0. As the heating is increased, the simulations revealed four
different regimes: (a) a subcritical heating regime in which the drop undergoes spinodal decomposition (i.e.,
spontaneous evaporation at the drop surface boundary), the process ends up with a stable circular drop-
embedded in its vapor; (b) a near-critical heating regime in which the drop nucleates a transient central
bubble. In this case, the bubble grows for a short time and then contracts upon itself and disappears, leaving in
many cases a stable drop of noncircular shape surrounded by a vapor atmosphere; (c) a superheating regime
in which the drop nucleates an unstable central bubble, leading to fragmentation of the liquid layer into stable
secondary drops floating in their vapor atmosphere. Fig. 19 shows the equilibrium densities and temperatures
of the coexisting liquid and vapor as obtained from these simulations; and (d) a superheating regime in
which the nucleated bubble grows violently, leading to an explosive vaporization. In this case, the liquid
layer breaks up into tiny droplets, which with their accompanying vapor, expand rapidly from the site of the
explosion. Fig. 20 shows snapshots of the density and temperature at discrete times during the evaporation
and fragmentation of a drop model with ρ0 ≈ 1.64 and T0 = 2.09 in reduced units. The calculations predicted
a superheat limit for this vdW fluid of ≈ 0.81Tcrit = 0.96, which is close to the theoretical value of Ts = 1,
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predicted at ambient pressure p = 0 (see Ref. [100]). This theoretical value was found to agree reasonably well
with experimental measurements [101].

Figure 18: Stable vdW liquid drops in their vapor atmosphere after evaporation by spinodal decomposition. The
equilibrium temperatures from top to bottom are 0.46, 0.64, 0.66, and 0.75 in reduced units. The normalized distribution
of SPH particle densities overlayed on the phase diagram is shown in the left column of plots, while the particle positions
showing the liquid and vapor phases and the spatially rendered mass density field are shown in the middle and right
columns, respectively. The color-scale bar and numbers on the right indicate the density contrast in reduced units.
Figure taken from Sigalotti et al. [17]
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Figure 19: Equilibrium densities and temperatures for the vdW evaporation drops that produced stable liquid drops
of finite size floating in their own vapor. The symbols discriminate among the model’s initial conditions (see Fig. 1 of
Ref. [21]). Figure taken from Sigalotti et al. [21]

Water boiling on hydrophilic and hydrophobic surfaces was further simulated by Xiong et al. [18] by
solving the SPH Eqs. (76)–(78), where the fifth term on the right-hand side of Eq. (78) was replaced by a
volume-based external energy source (see their Eqs. (12) to (15)). In contrast with previous SPH simulations
of liquid-vapor coexistence with non-local thermodynamics, they used dimensionless vdW parameters
corresponding to water in terms of reference values of length (2.81 nm), temperature (562 K), time (1 ns), and
mass (1.274 × 10−23 kg), which are the same scaling parameters for SPH simulations of water condensation
tabulated by Charles et al. [15]. This way the results in dimensionless form can all be transformed to physical
units. In particular, Xiong et al. [18] performed simulations of water evaporation and drop formation on
hydrophilic, neutral, and hydrophobic surfaces. The Clausius-Clapeyron Eq. (19) was used to estimate the
latent heat. Fig. 21 shows the fitting of ln p vs. 1/T after thermodynamic equilibrium between water and its
vapor atmosphere is achieved. The slope corresponds to −ΔHvap/Rg = −9.265 in dimensionless units, which
in physical units gives a value of 2403.3 kJ kg−1 for the latent heat of evaporation. This value agrees with the
experimental result within an error of 6%.

The same SPH model was employed by Xiong et al. [22] to simulate the vaporization of superheated
drops in a vacuum and in a vapor chamber, this time using reference length, temperature, mass, and time
scales of 5.326 nm, 546 K, 7.295 × 10−23 kg, and 1.356 × 10−11 s, respectively. The amount of thermal energy
supplied to the drop was quantified in terms of the parameter SD = T0 − Teq, which they called superheated
degree (SD), where T0 is the initial drop temperature and Teq is the equilibrium temperature. Fig. 22 displays
the different evaporation patterns encountered by a drop of initial density ρ0 = 1.05 when SD is raised from
0.05 to 1.9 in dimensionless units. At low heating (SD = 0.05), the drop undergoes only surface evaporation.
When SD = 0.2, the drop nucleates a central bubble and undergoes simultaneous surface evaporation
forming a liquid ring. A similar process occurs for SD = 0.6 and 1.0 except that now the liquid ring fragments
into a number of secondary droplets. For SD = 1.0 the fragmentation is the result of an explosive evaporation.
At an extremely high SD(= 1.9) explosive vaporization takes place. In this case, phase separation occurs so
rapidly that this pattern was called flash boiling. They simulated the evaporation of drops with initial densities
in the range 0.7 ≤ ρ0 ≤ 1.75 by introducing an equivalent superheated degree S̄D = SD/σeq, where σeq is the
drop surface tension at equilibrium, finding that the surface evaporation occurs when S̄D < 1/3, while bubble
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nucleation may occur when 1/3 ≤ S̄D < 1. Fragmentation and explosive fragmentation of the liquid ring was
observed in the interval 1 ≤ S̄D < 3 and flash boiling only at S̄D ≥ 3.

Figure 20: Snapshots of the density (upper plots) and temperatures (lower plots) showing the evaporation process of
a vdW drop initially with ρ0 ≈ 1.64 and T0 = 2.09 in reduced units. This model nucleated an unstable growing central
bubble which induced fragmentation of the outer liquid layer into three stable droplets. The color-scale bar and numbers
indicate the density and temperature contrasts. Figure taken from Sigalotti et al. [21]
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Figure 21: Linear fitting of ln p as a function of 1/T to obtain the latent heat of evaporation for water coexisting with
its vapor atmosphere. Figure taken from Xiong et al. [18]

In a more recent work, Díaz-Damacillo et al. [23] solved the SPH Eqs. (76)–(79) with the aid of the
hyperbolic kernel introduced by Yang et al. [76] to study the evaporation of suspended equilibrium vdW
drops. In this case, the fifth term on the right-hand side of Eq. (78) was added for the first time in order to
provide a correct description of the thermal evolution and structure of the liquid-vapor interface. Starting
from equilibrated circular drops with mean densities 1.20 ≤ ρ ≤ 1.78 and temperatures in the range 0.297 ≤
T ≤ 0.732, they simulated the evaporation process for overheating at supercritical temperatures. Depending
on the mean density and overheating temperatures, they found five different patterns, namely (a) surface
evaporation, leading to smaller drops in equilibrium with their vapor atmosphere; (b) bubble nucleation
at the drop center accompanied by surface evaporation, where the central bubble first expands and then
collapses upon itself; (c) slow fragmentation, where the liquid ring breaks into two or more motionless
secondary droplets; (d) fast fragmentation, where the liquid ring fragments into a number of small droplets,
which expand radially outward; and (e) explosive vaporization, leading to deflagration of the drop. This
last pattern resembles the flash-boiling pattern encountered by Xiong et al. [22]. Fig. 23 shows snapshots at
different times during the slow fragmentation of a drop initially with ρ = 1.50 and T ≈ 0.732 after overheating
with a supercritical temperature of 2.4 in reduced units. The last frame on the bottom right shows the path
of the liquid and vapor on the phase diagram. This model experienced a bubble nucleation accompanied by
slow surface evaporation and underwent deep quenching into the miscibility gap during the fragmentation
process into 11 slowly expanding droplets in equilibrium with their surrounding vapor. In general, when the
drops are uniformly overheated, the out-of-equilibrium liquid undergoes rapid quenching into either the
miscibility gap (below the spinodal curve given by the dashed line) or between the spinodal and binodal
curves. In the former case, the drop is likely to undergo spinodal decomposition by surface evaporation,
while in the latter case the drop nucleates a central bubble.



Comput Model Eng Sci. 2025;142(3) 2321

Figure 22: Rendered density field showing different evaporation patterns for a vdW drop initially with ρ0 = 1.05
submitted to increasing uniform heating. Figure taken from Xiong et al. [22]
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Figure 23: Rendered density field at different times during the evaporation of an equilibrium circular vdW drop initially
with a mean density ρ̄ ≈ 1.50 and mean temperature T̄ ≈ 0.732 in reduced units after overheating with a supercritical
temperature T = 2.4. The path of the liquid (red) and vapor (blue) on the phase diagram is shown in the bottom right
frame. Figure taken from Díaz-Damacillo et al. [23]

In general, when liquid drops with microparticles evaporate completely on a surface, they leave a
stain on it. This is typical of the so-called coffee ring effect by which the evaporated coffee drops leave a
distribution pattern of particles that are more concentrated around the contact line. If the coffee drops contain
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nanometer particles, as they evaporate they leave instead a uniform stain of particles where they appear to be
distributed evenly within the contact line. In contrast to coffee rings, this pattern deposition particle is called
a coffee splat. These phenomena have been recently studied both experimentally and numerically by Xiong
et al. [20], using the same vdW-based SPH formalism used previously by the same authors [18,22] coupled
with a rigid particle model of finite-size microparticles, and a point-particle model for the nanoparticles.
They considered the case of a drop placed on a wall of initial density ρ0 = 1.3875 and temperature T0 = 0.6,
containing randomly distributed rigid and point particles and coexisting in equilibrium with a vapor phase
of density ρv = 0.008ρ0. Their scheme was validated against the evaporation of a sessile drop of 10 μL on a
heated surface at 75○C. Experimentally this drop took about 120 s to completely evaporate. The simulation
was performed using 10,000 initially uniformly spaced SPH particles and a smoothing length equal to twice
the initial inter-particle spacing. Fig. 24 shows the temporal evolution of the drop volume as it evaporates
compared with the experimental data.

Figure 24: Temporal variation of the volume of an evaporating sessile drop of 10 μL on a hot surface of 75○C. The drop
completely evaporates after 120 s. The result of the SPH simulation is compared with experimental observations for a
deionized water drop. Figure taken from Xiong et al. [20]

Although the results shown in Fig. 24 are sufficiently convincing of the reliability of SPH to deal
with problems of drop evaporation, the validity of the formulation proposed by Xiong et al. [20] was
further tested against experimental observations of the flow field during evaporation of a 10 μL drop
seeded with polystyrene spherical particles of diameter 10 μm as tracers. The flow structure inside the
drop during evaporation was photographed using particle image velocimetry (PIV) techniques and a high-
resolution camera, while the SPH simulation was performed using 40,000 SPH particles. Fig. 25 shows the
experimentally observed flow field (left image) as compared with the SPH results (right plot). For greater
clarity, the steam particles were removed from the numerical flow field plot. The numerically obtained flow
field reproduces very well the experimental data, with the flow structure characterized in both cases by two
dominant counter-rotating vortices.

The morphology of an evaporating drop with rigid particles of diameter 0.25 (in dimensionless units;
see Xiong et al.’s [20] Table 1 where the dimensionless and physical parameters are listed) is shown in Fig. 26.
In this case, as the drop evaporates the rigid particles expand outwards following the steam out of the
drop. However, when the diameter of the rigid particles is increased they always stay inside the drop. By
comparison, the effect of point particles is depicted in Fig. 27 for the same superheat operated in Fig. 26
(i.e., ΔT = 0.1 in dimensionless units). As the drop evaporates, the particles gradually expand so that the
precipitation range gradually increases over time. In general, the simulations revealed that for rigid particles
their precipitation and the forms emerging on the wall are mainly affected by the wall wettability [102]. At
high wall temperatures, the coffee ring effect is weakened, while hydrophilic surfaces produce larger coffee
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rings compared to hydrophobic ones. On the other hand, droplets with a high concentration of point particles
deposited on a high-temperature hydrophobic wall are likely to form uniform coffee splats, rather than coffee
rings. As Xiong et al. [20] concluded this feature may be important to produce uniformly distributed and
easily controlled nanostructure coatings through droplet evaporation.

Figure 25: Experimentally observed velocity field within a sessile drop evaporating on a heated surface at 75○C (left
image) as compared with the velocity distribution obtained from the SPH simulation (right plot). Figure taken from
Xiong et al. [20]

Figure 26: Snapshots showing the morphology of an evaporating sessile drop of 10 μL seeded with rigid microparticles
on a heated wall at a temperature of 50○C. Figure taken from Xiong et al. [20]
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Figure 27: Snapshots showing the morphology of an evaporating sessile drop of 10 μL seeded with rigid nanoparticles
on a heated wall at a temperature of 50○C. Figure taken from Xiong et al. [20]

7 Limitations of the Present State-of-the-Art SPH Simulations and Future Lines of Research
Drop evaporation is a complex phenomenon involving a liquid-to-vapor phase transition. The com-

plexity of the subject has been highlighted by Erbil [3] in his comprehensive review of the basic theory of
evaporation of sessile and suspended liquid drops. The understanding of the physical processes involved
during droplet evaporation under natural and industrial conditions is an important topic of research in many
disciplines and has gained a wide audience over the last ten years due to the greater amount of documented
experimental observations available and the emergence of increasingly sophisticated numerical methods and
models. The subject has also important technological applications in an ever-increasing number of areas in
science and engineering.
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Among the different existing numerical methods that have been applied to study the problem of drop
evaporation in its various forms, SPH has emerged as a relatively young and promising numerical method
capable of modeling small to medium-sized systems from nanometric to millimetric length scales. Although
significant progress has been achieved in consolidating its mathematical foundations, the method still suffers
from some drawbacks, such as the lack of complete proofs of convergence and the standardization of
techniques [103]. These problems leave behind a number of features that require intensive investigation.
However, despite these caveats, SPH has been successfully employed in the simulation of finite-sized systems
requiring the solution of the equations of fluid dynamics with heat transfer. In particular, state-of-the-art SPH
simulations of droplet evaporation are based on two different formulations, which are extensions of the one
implemented by Nugent et al. [12]. One formulation was introduced by Yang et al. [27] for the simulation of
evaporating multiphase fluid flows, where the usual conservation laws were complemented with a continuity
equation for the vapor species to simulate the vapor mass fraction in the gas phase. The second formulation,
known as the vdW square gradient model, was introduced by Charles et al. [15], which uses non-classical
thermodynamics based on the vdW mean-field approximation of capillarity. A number of limitations are
common to both types of SPH simulations. Comments on the more relevant limitations will be provided in
what follows.

7.1 Need for More Three-Dimensional Simulations
Most SPH simulations in the literature are limited to two-space dimensions, while a more realistic

approach will require to model drop evaporation in three-space dimensions. Three-dimensional SPH
simulations of evaporating drops have been reported in a few cases by Xiong et al. [18] for water drop boiling
in contact with hydrophilic and hydrophobic surfaces and in Refs. [20,26,28,29,38,40] for fuel and nanofluids
droplets impacting on a heated surface. However, there is almost a complete lack of three-dimensional SPH
simulations of evaporating droplets suspended in static and convective atmospheres. On the other hand,
three-dimensional simulations of non-evaporating drops have been presented by Acevedo-Malavé [51] for
studying the dynamics of drop spheroidization under the effects of surface tension, and more recently, by
Yang et al. [104] for studying drop impact on dry surfaces and Chaussonnet et al. [105] for studying the tree
fragmentation of a mother drop in the context of biofuel production.

7.2 Need for Consistent Thermodynamics
Almost all SPH simulations of drop impact on heated surfaces using Yang et al.’s [27] SPH formulation

rely on the use of ideal pressure-density relations so that surface tension effects are modeled by just adding
an artificial force term to the momentum equation and a heating term to the energy equation based on a
prescribed algorithm to mimic the cohesive action. In contrast, the SPH simulations of drop evaporation
based on vdW thermodynamics display a liquid-to-vapor phase transition similar to that of a real fluid, while
the long-range, attractive, inter-particle interaction force implicit in the cohesive term of the vdW equation of
state results in surface tension. A drawback of some of these models is that the results can only be qualitatively
assessed because the liquid-vapor equilibrium is predicted using vdW parameters in reduced (dimensionless)
units and therefore they do not deal with realistic fluids [19,21–23]. However, Xiong et al. [18] studied drop
evaporation in contact with hot surfaces using vdW thermodynamics with vdW parameters appropriate for
water and Yang et al. [26] simulated the interaction of n-heptane drops with a heated surface using a Peng-
Robinson equation of state. Future SPH simulations of evaporating drops must use real equations of state
along with characterization of the fluid in order to provide true comparisons with experiments.
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7.3 Need for Temperature- and Density-Varying Transport Coefficients
A further important limitation that is common to all SPH simulations of evaporating drops lies in the

assumption that the coefficients of viscosity and thermal conduction are constant, while in general for real
liquids these coefficients are functions of density and temperature. For example, it is well-known that the
shear and bulk viscosity coefficients of most liquids decrease with increasing temperature. It is common in
numerical work to use the empirical relation [106,107]

η(T) = A exp (−BT) , (98)

to model the dependence of the shear viscosity coefficient on temperature, where A and B are empirically
determined parameters [106]. Similarly, the thermal conductivity also decreases with temperature for most
real liquids [107]. This can have important effects on the vapor conductivity especially in cases where the
drop undergoes homogeneous nucleation followed by explosive vaporization. The dynamics of the bubble
growth and the intensity of the explosion depend on the heat exchange between the vapor and the liquid
layer around it [108]. In addition, for poorly conducting liquids, the rate of heat transfer from the liquid to
the vapor decreases and, as a consequence, the dynamics of the bubble growth will be affected. Therefore,
the assumption of constant transport coefficients limits the possibility of quantitative comparisons with
experimental observations of the ordinary and explosive boiling of liquid drops. However, despite this,
the landscape of SPH simulations of evaporating drops remains largely focused on constant viscosity and
heat conductivity conditions. For instance, recent work on the characterization of fuel drop impact on
wall films using Yang et al.’s [27] SPH formulation with constant transport coefficients was reported by
Pan et al. [109,110]. A weakly compressible SPH formulation for thermo-capillary phase change problems
involving solid, liquid, and gas phases using constant transport coefficients for application to selective
laser melting was implemented by Meier et al. [111], which is an emerging metal additive manufacturing
technique. More recently, Patwary et al. [112] reported three-dimensional SPH simulations of fuel droplets
interacting with a heated wall at different ambient pressures and Weber numbers based on constant viscosity.
In particular, they studied secondary atomization and proposed an empirical correlation relating the mean
secondary droplet size to the ambient pressure in the film-boiling regime. Moreover, Subedi et al. [113]
simulated the Leidenfrost behavior of a droplet stream impinging on a hot wall using Yang et al.’s [27]
SPH formalism, finding that when the ambient pressure is increased splashing is impeded and the film
concentrates inwards near the impingement point. The use of constant viscosity and thermal conduction
coefficients has not only been a shortcoming of most SPH simulations, but also of simulations with other
numerical methods [114–117].

Recently, the effects of variable viscosity have been studied in droplet collision dynamics for complex
fluid systems, where interactions between liquid/liquid and liquid/air interfaces are involved [118]. In this
case, however, the temperature dependence of viscosity on droplet collisions for both Newtonian and non-
Newtonian fluids has been simulated using Direct Numerical Simulations with the aid of a Volume-of-Fluid
method. For the liquid the temperature-dependent viscosity was modeled using the Arrhenius-type equation

ln η(T) = ln η(Tref) =
Ea

R
( 1

T
− 1

Tref
) , (99)

where Tref is a reference temperature taken to be 293.15 K, η(Tref) = 5.7 × 10−2 Pa s, Ea is the activation energy
varied between 22.06 and 59.55 kJ mol−1, and R is the universal gas constant. The air viscosity was taken to be
1.836 × 10−5 Pa s. The study was also extended to investigate experimentally the dynamics of drop impact on
a sapphire surface heated between 40○C and 90○C. In particular, local temperature gradients in the viscosity
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were seen to influence the spreading and heating of drops compared to numerical predictions of drop impact
on hot surfaces by excluding the local effects of temperature on viscosity.

A new SPH scheme developed for simulations of multi-component fluid mixing with thermally-driven
buoyancy and temperature-dependent viscosity was presented by Reece et al. [119,120]. In this case, the SPH
scheme was applied to study vitrification processes in the nuclear industry for waste immobilization before
long-term storage. A list of ten different equations for viscosity as a function of temperature is provided by
Reece [120]. However, of these equations the preferred ones for modeling melt viscosities of glasses in the
vitrification of nuclear waste are those given by [121]

ln η = A+ B
T
+ C

T
exp(D

T
) , (100)

ln η = A+ ln (ηTg − A)(
Tg

T
) , (101)

ln η = η∞ +
K
T
+ exp(C

T
) , (102)

where A, B, C, D, and K are empirical parameters. In Eq. (101), Tg is the glass transition temperature and
ηTg = 1012 Pa s. Application of this scheme to a vitrification melter for single-phase and two-phase flows with
temperature-dependent viscosities reveals a three-dimensional flow instability taking place due to mixing
and suggesting a different flow regime in the melter that has to be investigated further.

A notable analytical model for the heating and evaporation of a single component liquid drop was
developed by Cossali et al. [122], which includes a temperature-dependent density, diffusivity, thermal
conductivity, and specific heat of the gas species. They performed a comparison of the effects of variable
properties on heat and evaporation rates with predictions of a constant property model for six different
species, including water, acetone, ethanol, n-hexane, n-octane, and n-dodecane. In particular, the thermal
conductivity of a pure gaseous substance was approximated by the power-law correlation

κ(T) = rT q , (103)

which is consistent with monoatomic gases at low density [123], where q = 1/2. For polyatomic gases the
above temperature dependence can still be used but with different values of q (see Table 1 of Cossali et al. [122]
for the values of r and q about the different species). The analytical model can be extended to non-spherical
drops. Whereas experimental measurements of the evaporation rate of spheroidal drops show consistency
with the D2-law [124], this provides a good scenario for comparing the results with analytical models of
non-spherical drops with constant properties of the gaseous phase [125–128].

7.4 Non-Newtonian Fluid Drops
Rheologically complex fluids and materials are of great importance in numerous processing operations

in the industry. In general, good examples of these materials are polymer solutions and biological fluids.
Other examples are given by coated sheets, optical fibers, and plastics, which are important in many
manufacturing processes. Therefore, more efficient production methods and manufacturing procedures can
be designed by improving our understanding of their physical behavior. In response to this, a great amount
of research dealing with the characterization, modeling, and simulation of non-Newtonian fluid flows using
grid-based traditional numerical methods has been performed during the last three decades. In comparison
only a few SPH simulations have been reported to date.
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The first simulations of non-Newtonian fluid flows using SPH were reported in 2002 by Ellero et al. [129],
where a corotational Jaumann-Maxwell model was employed to describe the viscoelastic behavior of the
fluid. Shortly after, Shao et al. [130] studied the dynamics of viscoelastic fluid flows with free surfaces
using a modified form of the Cross model. The ability of SPH to simulate transient viscoelastic fluid
flows was assessed by Ellero et al. [131]. They simulated the start-up flow between parallel plates for a
viscoelastic (Oldroyd-B) and an upper-convected Maxwell (UCM) fluid at a low Reynolds number, finding
very good agreement with available analytical solutions. Later on, in 2007, Hosseini et al. [132] simulated
non-Newtonian fluid flows using standard SPH techniques, including power-law, Herschel-Bulkley, and
Bingham-plastic models. They considered three different test cases, namely a non-Newtonian dam-break
problem, flow through a viscometer for different non-Newtonian fluids, and a laminar mudflow on a mild
slope. The impact of Oldroyd-B and UCM fluid drops on a rigid plate was further investigated by Fang
et al. [133]. Their results for the Newtonian and Oldroyd-B fluids were found to reproduce quantitatively well
those obtained by Tomé et al. [134] using finite-difference methods. Xu et al. [135] reported three-dimensional
SPH simulations of non-evaporating, Newtonian, and non-Newtonian drops impacting on a solid wall, in
which the viscosity was modeled using the Cross model. Their results indicate that the Newtonian droplet
spreads out by keeping a convex shape during the impact, while the non-Newtonian drop behaved differently
due to the shear-thinning effect, achieving a larger spreading radius than its Newtonian counterpart. Their
SPH scheme was also applied to two-dimensional simulations of transient viscoelastic fluid flows, where the
polymer dynamics was described by the evolution of continuous Brownian configuration fields [136]. More
recently, Tembely et al. [137] performed simulations of drop impact on different substrates for Newtonian
and polymer solutions using a Volume-of-Fluid method. Moreover, Shi et al. [138] extended the δ-plus-SPH,
proposed by Molteni et al. [139], for modeling non-Newtonian multiphase flows. On the other hand, the
visualization of impacting non-Newtonian drops has enormous applications in animated computer games
as well as in many applied areas ranging from engineering to medical simulations. In response to this,
SPH has also gained ground in the computer graphics community to create realistic drop simulations and
animations [140]. From this survey of non-Newtonian SPH models it is clear that the method has become
sufficiently mature to be able to simulate the evaporation of non-Newtonian drops in its various contexts.

7.5 The Issue of Spatial Resolution
A further important factor is the issue of spatial resolution. For example, as resolution is increased

quantitative differences can appear in the morphology of the system and the number of secondary droplets
produced in overheated drops undergoing rapid or even explosive fragmentation. In addition, resolution
can also influence the breakup times of the liquid layer due to bubble growth and the structure of the
diffuse liquid-vapor interface. There are almost no publications showing convergence studies in SPH droplet
simulation. However, Xu et al. [135] demonstrated that increasing the resolution from 55,552 to 749,078
particles in Newtonian and non-Newtonian drop impact simulations has little effect on the results when
measured in terms of the evolution of the drop width. This situation will certainly change in drop simulations
of fragmentation and explosive vaporization where a plethora of tiny droplets accompanied by vapor are
produced. Therefore, in order to clarify how spatial resolution affects the drop evaporation process, it is
necessary to carry out three-dimensional convergence studies in these cases and assess the validity of the
numerical predictions by direct comparison with experimental data.

Since there is great interest in engineering applications where the liquid-vapor equilibrium is crucial
to the development of predictive models of evaporating fuel droplets in engines for spray combustion,
future simulations must include chemical reactions in order to simulate the evaporative combustion in
multi-component fuel drops. On the other hand, considering the influence of the various conditions that
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may intervene during the drop/wall interaction process, more experimental results are needed to refine
the model simulations. The level of prediction of SPH drop evaporation models will depend on several
factors, including improved physics, chemistry, and spatial resolution. Of course, the computational tool
can be extended to include realistic thermodynamic properties to simulate other fuels and predict the
outcome of drop/wall interaction at practical operating conditions. In addition to the evaporation of drop
impact on heated surfaces, more simulations are needed to study the evaporation and combustion of fuel
drops in convective environments. These models are of particular importance because most liquid fuels are
atomized before entering the combustion chamber and undergo combustion in the form of droplet groups.
The reliability of the predictions must necessarily be tested by comparing the SPH results with molecular
dynamics simulations and experimental measurements.

8 Conclusions
In this paper, we provide an overview of the published work on SPH-based simulations of liquid drop

evaporation. The review covers articles published since 2000 when the first SPH simulations of evaporating
drops were conducted. To assist non-expert readers, the paper includes an introductory section on the
theoretical background necessary for the numerical modeling of drop evaporation. A separate section
introduces some fundamental aspects of the SPH method, along with the governing equations and current
state-of-the-art formulations employed in these simulations. Subsequent sections provide a brief description
of relevant results obtained using different formulations for drop evaporation in static and convective hot
environments, as well as during impact on a heated surface or liquid film. The evaporation of sessile drops
due to contact with a hot wall is also reviewed as a specific case of drop impingement on a solid surface.
The overview concludes with a section discussing the limitations of current SPH model simulations and
suggesting potential directions for future research. Upon reviewing the various published studies, it is
evident that the SPH method has become a powerful tool for simulating both ordinary and explosive boiling
of small liquid drops in a hot atmosphere, as well as drop evaporation upon contact with a hot surface.
These simulations have demonstrated a high level of predictive accuracy, particularly in cases where direct
comparisons with experimental data were available.
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