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ABSTRACT: Enhancing website security is crucial to combat malicious activities, and CAPTCHA (Completely
Automated Public Turing tests to tell Computers and Humans Apart) has become a key method to distinguish humans
from bots. While text-based CAPTCHAs are designed to challenge machines while remaining human-readable, recent
advances in deep learning have enabled models to recognize them with remarkable efficiency. In this regard, we
propose a novel two-layer visual attention framework for CAPTCHA recognition that builds on traditional attention
mechanisms by incorporating Guided Visual Attention (GVA), which sharpens focus on relevant visual features. We
have specifically adapted the well-established image captioning task to address this need. Our approach utilizes the
first-level attention module as guidance to the second-level attention component, incorporating two LSTM (Long
Short-Term Memory) layers to enhance CAPTCHA recognition. Our extensive evaluation across four diverse datasets—
Weibo, BoC (Bank of China), Gregwar, and Captcha 0.3—shows the adaptability and efficacy of our method. Our
approach demonstrated impressive performance, achieving an accuracy of 96.70% for BoC and 95.92% for Webo.
These results underscore the effectiveness of our method in accurately recognizing and processing CAPTCHA datasets,
showcasing its robustness, reliability, and ability to handle varied challenges in CAPTCHA recognition.

KEYWORDS: Text-based CAPTCHA image recognition; guided visual attention; web security; computer vision

1 Introduction
CAPTCHAs, or Completely Automated Public Turing tests to tell Computers and Humans Apart, play a

crucial role in internet security by distinguishing between human users and automated bots [1–3]. Available
in various formats such as text, image, audio, and video, CAPTCHAs are designed to strengthen online
defenses against malicious activities [4–7]. Among these, text-based CAPTCHAs have become one of the
most commonly used and effective methods for protecting online platforms due to their simplicity and ease
of implementation across a wide range of applications [8,9]. However, the rapid advancements in technology,
particularly in deep learning algorithms [10,11], have increasingly threatened the security of traditional
CAPTCHA systems.

As machine learning techniques become increasingly sophisticated, CAPTCHA systems must con-
tinuously evolve to counter emerging threats. Adversarial attacks and advanced algorithms have driven
the development of more resilient CAPTCHA designs, incorporating elements like distortion, rotation,
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and context-based challenges to thwart automated recognition. Despite these advancements, the ongoing
battle between CAPTCHA developers and attackers highlights the need for continuous innovation in online
security measures. The rapid advancements in deep learning, known for its exceptional feature extraction
capabilities, have significantly impacted domains like image restoration and object detection [12–15], making
it a powerful tool for CAPTCHA recognition systems. However, this also poses challenges for text-based
CAPTCHAs, as traditional methods struggle with feature extraction and are vulnerable to image noise.
As a result, there is a growing trend towards deep learning-based CAPTCHA recognition, categorized
into segmentation-based and segmentation-free approaches [16,17]. While segmentation-based methods
involve dissecting characters before recognition and often face efficiency challenges, segmentation-free
algorithms bypass this step, directly recognizing and classifying CAPTCHA characters with promising
accuracy and efficiency.

Technologies like image captioning share similarities with CAPTCHA recognition, particularly in
interpreting and processing visual data. However, image captioning methods have not been fully adapted
for CAPTCHA recognition, which represents a missed opportunity to leverage these techniques for broader
applications. One area that remains underexplored is the integration of advanced visual attention techniques,
which could significantly enhance feature extraction and improve processing efficiency, ultimately boosting
recognition accuracy. Furthermore, the potential of using multiple attention layers has not been adequately
investigated in CAPTCHA recognition. Incorporating these layers could enable the model to better handle
complex visual data, further improving accuracy. Additionally, traditional recognition methods often treat all
parts of the image equally, limiting effective feature extraction. This issue is especially problematic in complex
or noisy images, where focusing on the most relevant features is crucial for achieving successful recognition.

In this regard, we introduce a novel CAPTCHA recognition system called the Dual-Layer Attention-
Based CAPTCHA Recognition Approach with Guided Visual Attention (DLACRM), as depicted in Fig. 1.
Our model features a specialized recurrent neural network (RNN) architecture, adapted from the UpDown
model [18], which is widely used in image captioning tasks. This adaptation is specifically designed to
address the complexities of CAPTCHA recognition. To enhance the model’s ability to detect subtle details in
CAPTCHA images, we incorporate convolutional neural networks (CNNs) to extract both global and local
features. Instead of relying solely on the conventional visual attention mechanism, we extend this approach by
introducing a novel two-layer attention framework. The first layer employs traditional visual attention, while
the second layer, termed Guided Visual Attention (GVA), further refines the focus on relevant visual features,
thereby improving CAPTCHA recognition accuracy. Additionally, we integrate dual layers of Long Short-
Term Memory (LSTM) networks in the decoder, which enhances the model’s capability to accurately predict
CAPTCHA characters. This strategic design results in a more refined and robust CAPTCHA recognition
system, significantly improving the accuracy and reliability of decoding CAPTCHA images.

In particular, we propose a CAPTCHA recognition system that effectively addresses key challenges
in traditional systems, such as character overlapping and distortion, which are increasingly vulnerable to
advanced deep learning attacks. Current recognition models often struggle to capture the critical visual
features necessary for accurate CAPTCHA decoding, as many rely on single-layer attention mechanisms
that inadequately represent the depth of visual details, or they omit attention layers altogether, limiting
feature extraction. To overcome these limitations, our system integrates a refined multi-layered attention
mechanism, specifically the Guided Visual Attention (GVA) technique [19], along with a tailored UpDown
model. This approach refines the output from the first attention layer by passing it to a second layer, allowing
for deeper and more accurate feature representation. The guided attention dynamically adjusts the weights
of the first layer to optimize the focus of the second, effectively mitigating issues like “attention drift”
and enhancing the model’s ability to handle complex visual data. This results in significantly improved
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recognition accuracy across various complex CAPTCHA schemes, offering a robust and versatile solution
to bolster online security against automated threats.

Figure 1: The diagram shows the overall process flow of the proposed CAPTCHA recognition framework

The evaluation conducted in this work encompasses datasets from diverse and prominent sources,
including the Bank of China (BoC), Weibo, Gregwar, and Captcha 0.3, each representing a variety of
CAPTCHA schemes. These datasets include manually collected BoC CAPTCHAs from the Bank of China’s
official website, Weibo CAPTCHAs from the Chinese social media platform Weibo, as well as CAPTCHAs
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generated using the Gregwar CAPTCHA library and Captcha 0.3. Our thorough analysis reveals outstanding
success rates in defeating these targeted CAPTCHAs without the need for segmentation, achieving 96.7%
success on BoC CAPTCHAs and 95.92% on Weibo CAPTCHAs. This work introduces a groundbreaking
deep-learning-driven CAPTCHA recognition system that excels in efficiency and simplicity, eliminating
the need for segmentation. By leveraging image captioning techniques, the system achieves exceptional
success in decoding text-based CAPTCHAs. The strength of our approach lies in its straightforwardness
and versatility, making it a promising solution for enhancing online security. Our contributions include
both theoretical advancements in CAPTCHA recognition and practical applications aimed at strengthening
internet security.

This work presents several key contributions:

• We explore the use of image captioning techniques for CAPTCHA recognition and employing more
than one visual attention layer.

• We utilize a two-layer visual attention mechanism. The first layer applies conventional visual attention,
which serves as guidance for the second module, termed Guided Visual Attention (GVA), aimed at
enhancing CAPTCHA recognition.

• We propose a novel model that encompasses a CNN-based encoder, a Guided Visual Attention
module (GVA), a Conventional Visual Attention module (CVA), and two LSTM layers to enhance the
CAPTCHA recognition process.

• Our study involves comprehensive experiments across four different dataset schemes, including two
real-world datasets, Weibo and BoC, which were carefully collected and manually labeled. Furthermore,
our proposed approach shows performance on par with recent state-of-the-art methods.

The structure of this paper is as follows: Section 2 reviews various CAPTCHA recognition methods and
algorithms. Section 3 outlines the fundamental concept of the proposed CAPTCHA recognition algorithm,
along with the architecture and parameters of the recognition CNN. In Section 4, the paper describes
the structure of the datasets used, evaluates the accuracy of the proposed CAPTCHA recognition model,
compares the results, and discusses the proposed algorithm. Finally, Section 5 presents the conclusion of
the study.

2 Related Work
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a

security mechanism designed to distinguish between human users and automated bots. It plays a critical
role in preventing spam, data scraping, and unauthorized access to websites and online services [20].
CAPTCHA challenges come in various forms, such as text-based, image-based, and audio-based, with
each type presenting a task that is easy for humans but difficult for machines to solve [21–23]. Text-based
CAPTCHA, the most traditional type, typically requires users to identify and input distorted or obfuscated
characters displayed in an image [24–26]. This method leverages the human brain’s superior ability to
recognize patterns despite visual noise, which bots struggle to replicate [27,28]. Despite advancements in
machine learning and optical character recognition (OCR) systems, text-based CAPTCHAs remain a widely
used tool for online security due to their simplicity and effectiveness in countering automated threats [29,30].

Text-based CAPTCHA systems have undergone significant evolution due to advancements in machine
learning and artificial intelligence. Early approaches focused on distorting text with noise, geometric
transformations, and background clutter, which posed a challenge for Optical Character Recognition
(OCR) systems. However, deep learning models, especially Convolutional Neural Networks (CNNs), have
dramatically improved the accuracy of CAPTCHA solvers, with success rates often exceeding 90% for even
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complex challenges. Research demonstrated the vulnerability of text-based CAPTCHA systems to CNN-
based attacks, leading to further exploration of hybrid models combining CNNs with Recurrent Neural
Networks (RNNs) or Long Short-Term Memory (LSTM) networks to improve recognition of overlapping
and distorted characters [31]. More recent works have explored the use of Convolutional Recurrent Neural
Networks (CRNNs) to tackle complex text-based CAPTCHAs [21]. Adversarial machine learning techniques,
such as those proposed by Shi et al. [20], are now being used to enhance the security of CAPTCHAs by
generating adversarial examples that are challenging for machines but easily interpretable by humans [20].
Despite these advancements, the growing power of machine learning necessitates continued innovation
in CAPTCHA design, particularly through hybrid and adversarial approaches to maintain security and
usability [10,32,33].

Thobhani et al. introduced an innovative method using Convolutional Neural Networks (CNNs)
with binary images, which demonstrated exceptional accuracy and significantly reduced system size [34].
However, despite its strengths, the approach faces challenges in CAPTCHA recognition, particularly due to
the extensive need for annotated training data. In contrast, Derea et al. [35] proposed the CRNGS algorithm,
which integrates deep learning with character grouping techniques to streamline CAPTCHA recognition
without the necessity of image segmentation. This method leverages adaptable softmax layers, allowing for
performance optimization across different CAPTCHA formats. Similarly, Khatavkar et al. [36] developed
a segmentation-free Optical Character Recognition (OCR) model, utilizing the Connectionist Temporal
Classification (CTC) loss function to efficiently classify text-based CAPTCHAs without the need for explicit
segmentation of characters. On the other hand, Chang et al. [37] provided a comprehensive examination
of security vulnerabilities in slider-based behavior-verification CAPTCHAs, a relatively underexplored area.
They introduced a universal framework for accurately detecting target trajectories and simulating user
behaviors, thus enhancing the robustness of these CAPTCHA systems [34–37]. Reference [38] presents a
comparative analysis of text-based and image-based CAPTCHA systems, emphasizing the evaluation of both
usability (solving time) and efficiency (response time) as key performance metrics.

Anderson et al. [18] proposed a novel approach that integrates both bottom-up and top-down attention
mechanisms to improve visual question-answering and image captioning systems. This method, inspired
by human visual perception, aims to replicate the way humans interpret images and respond to related
questions. Numerous studies have built upon [18] in their image captioning research, including [39],
introduces a dynamic approach that adjusts semantic attributes based on contextual relevance, enhancing the
alignment between visual and textual information. The combination of the Attribute Detection Component
(ADC) and the Attribute Prediction and Visual Weighting (APVW) module optimizes using attributes
for generating more accurate captions. Reference [40] presents a two-step method for improving image
captioning. Initially, the Visual Feature Detector (VFD) identifies key visual elements. Subsequently, the
Visual Feature Visual Attention (VFVA) module concentrates on these features to refine the context, resulting
in more precise captions. Reference [19] introduces the Guided Visual Attention (GVA) technique for
generating image captions, enhancing the quality of the captions by refining how the attentional focus
is distributed.

The existing literature shows notable gaps in adapting image captioning techniques for CAPTCHA
recognition despite the similarities between the two technologies in processing visual data. Specifically,
integrating advanced visual attention mechanisms, such as multiple attention layers, still needs to be
explored in CAPTCHA recognition. These methods could significantly improve feature extraction, pro-
cessing efficiency, and recognition accuracy, particularly in complex or noisy images. Moreover, traditional
recognition approaches often fail to prioritize relevant features, limiting their effectiveness in challenging
CAPTCHA scenarios.
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3 Methodology
In our comprehensive study of CAPTCHA recognition, we propose a novel two-layer attention

framework. This framework is designed to enhance CAPTCHA recognition by effectively focusing on
relevant visual features. Specifically, the first layer of our attention framework employs conventional visual
attention techniques. This initial layer guides the second layer, which we refer to as Guided Visual Attention
(GVA). The GVA layer refines the attention mechanism to improve the precision of feature extraction
and recognition. The proposed network utilizes a two-layer LSTM architecture to enhance the recognition
process by exploiting temporal dependencies. A schematic overview of our proposed model is illustrated
in Fig. 1.

3.1 Visual Features of Input Image
In our CAPTCHA recognition system, the first step involves extracting visual features from the input

image, which are then used by the language model for further processing. The initial phase of CAPTCHA
recognition focuses on deriving visual representations of the image. This is achieved using a Convolutional
Neural Network (CNN) in the encoder component of our model to generate essential image features, denoted
asV, for CAPTCHA identification. Specifically, these features are extracted from the output of the final max-
pooling layer in the CNN, which consists of five convolutional layers and five max-pooling layers. The CNN
uses the ReLU activation function and applies batch normalization. The structure of this CNN is depicted
in Table 1. The CNN producesN visual feature vectors, forming the visual matrix V ∈ RN×h . Each visual
feature vector is represented as vi ∈ Rh for i ∈ {1, 2, ..., N}. The visual matrixV obtained from the input
imageI via the CNN network is described by:

V = {v1 , v2, . . . , vN} (1)

v̄ = 1
N

N
∑
i=1

vi (2)

where V ∈ RN×h , vi ∈ Rh for i ∈ {1, 2, . . . , N}, and v̄ ∈ Rh .

Table 1: The architecture of the CNN used in our model

Layer type Filter size Number of filters Activation function
Convolutional 3 × 3 64 ReLU

Batch normalization – 64 –
Maxpooling 2 × 2 – –

Convolutional 3 × 3 128 ReLU
Batch normalization – 128 –

Maxpooling 2 × 2 – –
Convolutional 3 × 3 256 ReLU

Batch normalization – 256 –
Maxpooling 2 × 2 – –

Convolutional 3 × 3 512 ReLU
Batch normalization – 512 –

Maxpooling 2 × 2 – –
Convolutional 3 × 3 1024 ReLU

(Continued)
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Table 1 (continued)

Layer type Filter size Number of filters Activation function
Batch normalization – 1024 –

Maxpooling 2 × 2 – –

3.2 Conventional Visual Attention: CVA
In our DLACRM, we have adopted the conventional visual attention mechanism [18] as the first layer

attention component. The output of the first layer attention module, known as the context visual vector v̂t , is
utilized as guidance for the second layer attention component (introduced in Section 3.3), as shown in Fig. 2.
The conventional visual attention mechanism is described by the following formulas:

βi
t = tanh (ha

t ⋅Wa + vi ⋅Wb) ⋅Wc (3)
αt = softmax (βt) (4)

v̂t =
N
∑
i=1
(αi

t ⊙ vi) (5)

where βt ∈ RN , and αt ∈ RN . The hidden state of the attention LSTM ha
t ∈ Rg , and the context visual vector

of the first attention layer v̂t ∈ Rh . Wa ∈ Re×g , Wb ∈ Re×h , and Wc ∈ Re are trainable weights.

Figure 2: The structure of the two-layer visual attention module
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3.3 Guided Visual Attention: GVA
In the task of CAPTCHA image recognition, the objective is to generate a sequence of characters for the

CAPTCHA C = (y1 , y2, . . . , yT), which accurately reflects the content of the image I. Here, yi represents a
character in the CAPTCHA sequence C, and T is the total number of characters in the CAPTCHA. To achieve
this, we utilize the Guided Visual Attention (GVA) mechanism, designed to effectively capture and process
the visual features of the CAPTCHA image [19]. GVA operates as a second-level attention mechanism,
assigning importance scores to the candidate feature vectors extracted from the image. These scores are then
normalized using the softmax function to derive attention weights. The resulting attention-weighted feature
vector is fed into the language LSTM module for character prediction. This process allows the model to focus
on the most relevant parts of the image, ensuring accurate character generation. The internal structure of the
GVA module is depicted in Fig. 3. As shown in Fig. 4, our approach leverages a two-layer LSTM architecture:
the attention LSTM for managing the visual context and the language LSTM for generating the final sequence
of characters, which is defined as:

δi
t = tanh (We ⋅ ha

t +Wf ⋅ vi +Wg ⋅ v̂t) ⋅Wd (6)
γt = so f tmax (δt) (7)

ṽt =
N
∑
i=1
(γi

t ⊙ vi) (8)

where δt ∈ RN , and γt ∈ RN . The context visual vector of the GVA attention module is ṽt ∈ Rh . Wd ∈ Re ,
We ∈ Re×g , Wf ∈ Re×h , and Wg ∈ Re×h are learnable parameters.

3.4 Language Model
The decoder part of our CAPTCHA recognition model encompasses mainly two LSTM layers along

with the two layers of visual attention modules. The hidden state of the attention LSTM ha
t ∈ Rg is given by:

ha
t = LSTMa (ha

t−1 , [h
l
t−1 , E ⋅ yt−1 , v̄]) (9)

where hl
t−1 ∈ Rg represents the hidden state of the language LSTM in the previous time step, yt−1 ∈ Rc is the

generated character in the previous time step, and E ∈ Rc×m signifies the character embedding matrix. The
language LSTM network receives input from both the output of the attention LSTM ha

t and the context vector
generated by the Guided Visual Attention (GVA) mechanism ṽt . Consequently, the output of the language
LSTM is defined as:

hl
t = LSTMl (hl

t−1 , [ṽt , ha
t ]) (10)

where hl
t ∈ Rg is the hidden state of the language LSTM. The output of the language LSTM is utilized through

the softmax function to predict the next character, which is defined as:

pt = softmax (Wp ⋅ hl
t) (11)

where pt ∈ Rc is the probability distribution along the whole characters, and Wp ∈ Rc×g is a trainable
parameter matrix.

Concisely, the extracted featuresV and ha
t are first sent to the visual attention module, which generates

the output feature v̂t . Then, v̂t ,V, and ha
t are passed through the proposed Guided Visual Attention

component to produce the visual vector representation ṽt . Next, ṽt and the hidden state ha
t are fed into

the language LSTM module. The output of this module goes through a fully connected layer, followed by
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a softmax layer, which yields a probability distribution with the highest probability corresponding to the
predicted character yt . At each time step, the predicted characters are collected to form the final CAPTCHA.

Figure 3: The diagram depicts the internal structure of the Guided Visual Attenion (GVA)

Figure 4: The diagram displays the internal structure of the language model, where A-LSTM represents the attention
LSTM and L-LSTM denotes the language LSTM

3.5 Loss Functions
We utilize cross-entropy (XE) for training our model, employing the standard cross-entropy loss LossXE ,

which is defined as:

lossXE =
1
T

T
∑
t=1
− log (pt (yt ∣ y1∶t−1 , V)) (12)
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4 Experiments and Results
In this section, we furnish detailed insights into the datasets utilized for training, validating, and evalu-

ating the DLACRM model. After delving into the datasets, we provide an exhaustive description of the CNN
architecture and attention mechanism employed within the DLACRM model, alongside a comprehensive
overview of the training parameters applied. Subsequent to setting up the model, we meticulously evaluate
its accuracy using various metrics. Furthermore, we conduct an extensive comparative analysis, juxtaposing
the performance of the DLACRM algorithm with that of other existing CAPTCHA recognition systems. This
comparative scrutiny not only underscores the strengths of the DLACRM model but also pinpoints areas for
potential enhancement, thus offering valuable insights into its overall effectiveness and limitations.

4.1 Used Datasets
Due to the limited availability of CAPTCHA datasets, sourcing CAPTCHA images is critical for

recognition research. We collect images through two methods: extracting from live online platforms and
using CAPTCHA generation software. Our study uses four datasets: Bank of China (BoC) (https://ebsnew.
boc.cn/boc15/login.html/) (accessed on 09 January 2025), Weibo (https://www.weibo.com/) (accessed on
09 January 2025), Captcha 0.3, and Gregwar. Fig. 5 shows examples from these datasets, highlighting
their diversity.

Weibo CAPTCHA samples

Captcha 0.3 CAPTCHA samples Gregwar CAPTCHA samples

BoC CAPTCHA samples

Figure 5: Illustrative examples of CAPTCHA schemes employed within the DLACRM model

4.1.1 Bank of China CAPTCHA Dataset
To address the growing threat of automated attacks, the Bank of China, which operates over 10,000

branches worldwide, has implemented an advanced CAPTCHA system. This system features overlapping
characters, distortion, warping, and rotation, all designed to challenge bots. Each CAPTCHA consists of four
characters from a set of uppercase English letters and numbers, with characters like G, C, Q, I, O, L, S, 0, 1,

https://ebsnew.boc.cn/boc15/login.html/
https://www.weibo.com/


Comput Model Eng Sci. 2025;142(3) 2851

and 5 excluded to minimize risk. Our dataset, sourced from the Bank’s CAPTCHA system, includes 70,000
varied CAPTCHA images. By sharing this dataset, the Bank of China supports research and the development
of improved CAPTCHA recognition technologies, underscoring its commitment to enhancing cybersecurity
and protecting financial data.

4.1.2 Weibo CAPTCHA Dataset
As of 2022, Weibo, one of China’s top social media platforms, has 586 million monthly active users and

is recognized for its commitment to online security. Weibo employs a CAPTCHA system with features like
character overlap, distortion, warping, and rotation to protect user accounts. The CAPTCHAs consist of four
characters, excluding specific letters and digits (e.g., I, D, G, U, Q, 0, 1, and 5) to strengthen security against
bots. Our dataset of 70,000 Weibo CAPTCHA images is carefully labeled for analysis, providing insights into
the system’s effectiveness and supporting the development of advanced security algorithms. This collection
underscores Weibo’s proactive approach to online security.

4.1.3 Captcha 0.3 CAPTCHA Dataset
An open-source tool, Captcha 0.3 allows users to easily generate custom CAPTCHAs. For our dataset,

we opted for a four-character format, drawing from a mix of numeric digits (0–9) and both uppercase and
lowercase English letters (A–Z, a–z), resulting in a diverse range of combinations. Our collection consists
of 70,000 unique CAPTCHA images, each generated with complete randomness to ensure no duplicates.
To improve security, we incorporated intersecting lines over the characters and added noisy dots in the
background. The CAPTCHAs were created using the “liberbaskerville-regular” font. Fig. 5 presents sample
images from our dataset, showcasing the variety and security features included in the CAPTCHA design.

4.1.4 Gregwar CAPTCHA Dataset
Known for its strong CAPTCHA generation, the Gregwar PHP library offers effective defense against

automated bot attacks. By incorporating security elements like intricate noise lines, stylish backgrounds, and
rotational effects, it generates CAPTCHAs that can withstand even persistent bot threats. Each CAPTCHA
is made up of four randomly selected characters from three categories: numeric digits, uppercase, and low-
ercase English letters, presenting a significant challenge for bots. Our dataset, which has been meticulously
compiled, features 70,000 unique Gregwar CAPTCHA images. The random character selection ensures that
no duplicates or repetitions occur, enhancing the dataset’s diversity and making it a valuable resource for
testing CAPTCHA recognition systems and evaluating security measures.

4.1.5 Preprocessing Steps
Each CAPTCHA dataset is systematically divided into three distinct subsets: a comprehensive training

set consisting of 50,000 varied CAPTCHA images, a carefully curated testing set with 10,000 selected
CAPTCHA images, and a thorough validation set comprising 10,000 meticulously chosen CAPTCHA
images. Each CAPTCHA image across these datasets has a filename that includes a label representing a
unique four-character string extracted from the CAPTCHA itself. During the initial preprocessing phase,
all CAPTCHA images are converted to grayscale and resized to uniform dimensions of 64 × 256 to ensure
consistency throughout the dataset. It is important to note that the selection process for the images in the
training, validation, and testing sets is carried out randomly to eliminate potential biases and maintain the
dataset’s integrity for accurate evaluation and training purposes.
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4.2 Experimental Settings
We employ a CNN architecture (as shown in Table 1) to extract features from images, producing object

representations with dimensions of 16 × 1024. For the CAPTCHA recognition task, each input image is
represented by a visual feature vector of size h = 1024. The LSTM networks are designed with a hidden
state size of g = 1000 to capture complex linguistic structures during CAPTCHA generation, mapping each
character to a vector of length f = 1000. The model processes N = 16 visual feature vectors per image, with
an internal attention mechanism of size e = 512 to focus on important regions of the image. The number
of characters c varies across CAPTCHA schemes: 28 for Weibo, 26 for BoC, and 62 for both Gregwar and
Captcha 0.3. For model training, we use the Adam optimizer with an initial learning rate of 0.0005, which
decays by 0.8 every 5 epochs over a total of 120 epochs. The batch size is set to 50, and scheduled sampling is
increased by 5% every 5 epochs, capping at 25%. Gradient clipping is applied with a maximum value of 0.1,
and dropout is used at a rate of 0.5. Testing employs a beam size of 3 with a beam search strategy, and the
model is implemented in the PyTorch framework.

4.3 Model Accuracy
Table 2 displays the comprehensive CAPTCHA accuracies of the DLACRM model across different

schemes, including Weibo, BoC, Gregwar, and Captcha 0.3 CAPTCHA. Notably, overall accuracy refers
to the percentage of correctly identified CAPTCHAs across the entire dataset, where each CAPTCHA is
considered correct only if all characters are correctly predicted. In contrast, total accuracy measures the
percentage of correctly predicted individual characters across all CAPTCHAs, regardless of whether the
entire CAPTCHA string is correctly identified. While overall accuracy evaluates the model’s performance
at the CAPTCHA level, total accuracy provides insight into the model’s precision at the character level,
highlighting its ability to correctly recognize individual characters even if the full CAPTCHA is not identified
accurately. Before delving into the exceptional results achieved with the BoC CAPTCHA, it’s important to
highlight the DLACRM model’s performance with the Weibo CAPTCHA scheme. The model attained an
impressive accuracy of 95.92%, successfully recognizing 9,592 out of 10,000 images. This demonstrates the
model’s robustness in handling different CAPTCHA formats, establishing a solid foundation for its versatility.

Table 2: The four CAPTCHA schemes—Gregwar, Captcha 0.3, Weibo, and BoC—used to assess both individual
character accuracy and overall CAPTCHA accuracy for DLACRM

Gregwar scheme Captcha 0.3 scheme Webo scheme BoC scheme
1st character

accuracy
79.38%

(7938/10,000)
98.89%

(9889/10,000)
98.74%

(9874/10,000)
98.97%

(9897/10,000)
2st character

accuracy
71.95%

(7195/10,000)
97.44%

(9744/10,000)
98.59%

(9859/10,000)
99.86%

(9986/10,000)
3st character

accuracy
71.42%

(7142/10,000)
96.54%

(9654/10,000)
98.68%

(9868/10,000)
99.84%

(9984/10,000)
4st character

accuracy
82.24%

(8224/10,000)
98.28%

(9828/10,000)
98.89%

(9889/10,000)
99.20%

(9920/10,000)
Total character

accuracy
76.24%

(30,499/40,000)
97.78%

(39,115/40,000)
98.72%

(39,490/40,000)
99.06%
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(9670/10,000)
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Moving on to the BoC CAPTCHA scheme, the DLACRM model truly excelled, achieving a remarkable
accuracy rate of 96.70%. This translated to correctly identifying 9670 out of 10,000 images. The model’s
success here underscores its ability to manage the intricacies of the BoC CAPTCHA, solidifying its efficacy
in more complex scenarios. Similarly, in the Captcha 0.3 scheme, the DLACRM model continued its high
performance, achieving a recognition accuracy of 93.76%. Out of 10,000 images, it accurately identified 9376,
demonstrating consistent reliability across varying CAPTCHA designs. However, the Gregwar CAPTCHA
scheme posed a significant challenge for the model. Here, the DLACRM model’s accuracy dropped to 40.57%,
with correct recognition of 4057 out of 10,000 images. Despite this lower accuracy, the model’s capacity to
decipher a substantial number of Gregwar CAPTCHAs suggests room for improvement and adaptation in
tackling more complex CAPTCHA types.

Looking at the overall character accuracy across different CAPTCHA schemes, the DLACRM model
showcased robust performance. In the BoC CAPTCHA scheme, it achieved an outstanding character
accuracy of 99.06%, accurately identifying 39,627 out of 40,000 characters. This result highlights the model’s
exceptional precision in deciphering BoC CAPTCHAs. In the Weibo CAPTCHA scheme, the model main-
tained a high accuracy rate of 98.72%, with 39,490 characters recognized correctly out of 40,000. The Captcha
0.3 scheme also displayed strong accuracy, achieving a rate of 97.78%, with 39,115 characters accurately
identified. These results further validate the model’s effectiveness across diverse CAPTCHA formats.

Even in the more challenging Gregwar CAPTCHA scheme, the model achieved a commendable
character accuracy of 76.24%, correctly identifying 30,499 characters out of 40,000. Despite the inherent
complexity of Gregwar CAPTCHAs, this performance showcases the model’s adaptability and potential
for refinement.

When examining individual character accuracies, the DLACRM model exhibited remarkable perfor-
mance across all CAPTCHA schemes, demonstrating its robustness in character recognition. In the BoC
CAPTCHA, the model achieved character-specific accuracies of 98.97%, 99.86%, 99.84%, and 99.20% for
the first through fourth characters, respectively. Similarly, in the Weibo CAPTCHA scheme, accuracy rates
were consistently high, with 98.74%, 98.59%, 98.68%, and 98.89% for the respective characters. The Captcha
0.3 scheme showed stable results as well, with individual accuracies of 98.89%, 97.44%, 96.54%, and 98.28%.
Despite the difficulties posed by the Gregwar CAPTCHA scheme, the model still achieved notable character
accuracy rates: 79.38%, 71.95%, 71.42%, and 82.24% for the first through fourth characters. This underscores
the DLACRM model’s resilience, even in the face of more complex challenges.

The training performance of the DLACRM model on the BoC dataset is highlighted through total and
overall accuracy metrics, which are presented in Fig. 6. Over the 120 training epochs, the model shows
significant improvement in performance. Initially, at epoch 0, both total and overall accuracy were at 0%,
indicating no initial accuracy. By epoch 3, the total accuracy reached 48%, and overall accuracy was at 18%,
demonstrating a rapid early learning phase. As training progressed, the total accuracy continued to improve,
reaching 92% by epoch 6 and stabilizing at an impressive 97% by epoch 9. From epoch 12 onward, the total
accuracy maintained a high level of 98%, indicating the model’s strong and consistent learning capabilities.
The overall accuracy followed a more gradual increase, reaching 83% by epoch 6, 92% by epoch 9, and
stabilizing at 95% by epoch 12. This gradual but consistent improvement underscores the model’s robust
ability to generalize across various tasks, maintaining high accuracy through the training phases. The model’s
rapid convergence and sustained performance highlight its effectiveness in character recognition tasks and
broader evaluation criteria.

Fig. 7 provides the training performance of the DLACRM model on the BoC dataset, with a specific
focus on the accuracy for Characters 1, 2, 3, and 4 during the 120 epochs. Character 1 demonstrated rapid
learning during training, starting at 0% accuracy at epoch 0 and reaching 58% by epoch 3. It surged to 95%
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by epoch 6 and stabilized at 98% from epoch 9 onwards, showing robust performance. Character 2 had a
slightly slower start, beginning at 0% and reaching 42% by epoch 3, but improved quickly to 92% by epoch
6 and 97% by epoch 9, maintaining 98% accuracy thereafter.

Figure 6: The overall and total character recognition accuracy of DLACRM on the BoC dataset during the training
phase

Figure 7: Character accuracy for Characters 1 (a), 2 (b), 3 (c) and 4 (d) using the DLACRM model on the BoC dataset
during the training phase
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Character 3 started at 0%, improved to 40% by epoch 3, and rose rapidly to 89% by epoch 6 and 95%
by epoch 9, stabilizing at 97% from epoch 12 onwards. Character 4 followed a similar trend to Character 1,
starting at 0%, reaching 54% by epoch 3, 92% by epoch 6, and 96% by epoch 9, with a consistent accuracy of
98% from epoch 12. All characters showed significant improvements in the early epochs, stabilizing at high
accuracy levels (97-98%) by epoch 12, highlighting the model’s robust learning and consistent performance
across diverse character recognition tasks.

The training performance of DLACRM model on the Weibo dataset, focusing on total and overall
accuracy metrics, demonstrates a clear progression of learning over the 120 epochs, as presented in Fig. 8.
Initially, at epoch 0, both total and overall accuracies were at 0%, reflecting no initial performance. By
epoch 3, the total accuracy had increased to 26%, while overall accuracy remained low at 1%, indicating the
early stages of the model’s learning process. As training progressed, the total accuracy showed substantial
improvement, reaching 54% by epoch 6 and stabilizing at 84% by epoch 9. From epoch 12 onward, the
total accuracy consistently maintained a high level of 93%, highlighting the model’s effective learning and
adaptation capabilities. The overall accuracy followed a similar trend but with a more gradual improvement,
starting at 21% by epoch 6, reaching 65% by epoch 9, and stabilizing at 83% from epoch 12 onwards. These
metrics underscore the model’s growing proficiency and robust performance across the training period, with
rapid convergence and sustained high performance from the mid-training stages onwards.

Figure 8: The overall character recognition accuracy of DLACRM on the Weibo dataset during the training phase

Fig. 9 The provides the training performance of the DLACRM model on the Weibo dataset, with a
specific focus on the accuracy for Characters 1, 2, 3, and 4 during the 120 epochs. Character 1 demonstrated
significant learning progress during training, starting at 0% accuracy at epoch 0 and improving to 32%
by epoch 3. By epoch 6, Character 1’s accuracy had increased sharply to 74%, and by epoch 9, it reached
92%, eventually stabilizing at 96% from epoch 12 onwards, indicating a strong and rapid learning curve.
Character 2 began with a lower initial accuracy of 0% and reached 22% by epoch 3. Despite this slower
start, Character 2 showed a steady improvement, achieving 54% by epoch 6 and 83% by epoch 9, before
stabilizing at 93% from epoch 12, demonstrating the model’s effective adaptation even with initial variability.
Character 3 faced a more challenging start, beginning at 0% and improving to 20% by epoch 3. However, the
accuracy quickly increased to 41% by epoch 6 and 77% by epoch 9, stabilizing at 90% from epoch 12 onwards,
reflecting consistent growth and adaptation. Character 4 showed a pattern similar to Character 1, starting at
0% and reaching 30% by epoch 3. By epoch 6, Character 4’s accuracy had improved to 47%, and by epoch
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9, it reached 82%, stabilizing at 93% from epoch 12 onwards, highlighting the model’s robust performance
across all characters. Overall, each character experienced substantial improvements in the early epochs, with
high stabilization levels (90%–96%) by epoch 12, underscoring the model’s strong learning capabilities and
consistent performance in character recognition tasks across the dataset.

Figure 9: Character accuracy for Characters 1 (a), 2 (b), 3 (c) and 4 (d) using the DLACRM model on the Weibo dataset
during the training phase

The training performance of the model on the Captcha 0.3 dataset, focusing on total and overall accuracy
metrics, shows a clear trend of improvement throughout the 120 training epochs, as presented in Fig. 10.
Initially, both total and overall accuracies were at 0% at epoch 0, reflecting the starting point with no initial
learning. By epoch 3, the total accuracy had increased to 23%, while the overall accuracy remained at 0%,
indicating an early stage of learning with limited generalization. As training progressed, the total accuracy
showed substantial improvement, reaching 48% by epoch 6 and climbing to 70% by epoch 9. By epoch 12,
the total accuracy stabilized at 82%, highlighting the model’s rapid learning capabilities. From mid-training
onward, the total accuracy consistently maintained high levels, indicating strong proficiency in recognizing
characters accurately. The overall accuracy, while improving more gradually, reached 15% by epoch 6 and
continued to rise, achieving 44% by epoch 9 and stabilizing at 63% by epoch 12. This consistent improvement
underscores the model’s ability to generalize effectively across different characters and tasks as training
progressed, highlighting robust learning and adaptability.
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Figure 10: The overall and total character recognition accuracy of DLACRM on the Captcha 0.3 dataset during the
training phase

Fig. 11 provides the training performance of the DLACRM model on the Captcha 0.3 dataset, with a
specific focus on the accuracy for Characters 1, 2, 3, and 4 during the 120 epochs. Character 1 demonstrated
a gradual improvement during training, starting at 0% accuracy at epoch 0 and reaching 17% by epoch 3. By
epoch 6, Character 1’s accuracy had increased significantly to 59%, and by epoch 9, it reached 82%, stabilizing
at 90% from epoch 12 onwards, indicating strong learning and consistent performance. Character 2 started
with a lower initial accuracy of 0%, reaching 15% by epoch 3. Despite a slower start, Character 2 showed
steady progress, achieving 43% by epoch 6 and 69% by epoch 9, before stabilizing at 80% from epoch 12,
reflecting effective adaptation even with variability early on.

Character 3 had a challenging start, beginning at 0% and improving to 17% by epoch 3. However,
accuracy increased steadily to 39% by epoch 6 and 61% by epoch 9, stabilizing at 76% from epoch 12 onwards,
demonstrating consistent growth and adaptation throughout the training. Character 4 followed a slightly
faster learning curve, starting at 0% and improving to 41% by epoch 3. By epoch 6, Character 4 reached
51%, and by epoch 9, it climbed to 69%, stabilizing at 82% from epoch 12 onwards, highlighting robust
learning capabilities across diverse characters. Overall, each character experienced substantial improvements
within the initial epochs, with stabilization at high accuracy levels (76%–90%) by epoch 12. This consistent
performance highlights the model’s robust learning capabilities and its effectiveness in character recognition
tasks across the dataset.

The overall and total accuracy of the model on the Gregwar dataset shows a gradual improvement over
120 epochs, as presented in Fig. 12. Initially, both accuracies were at 0%, with the total accuracy increasing to
10% by epoch 3 and 35% by epoch 12. By epoch 33, the total accuracy reached 65%, continuing to improve to
69% at epoch 45, and stabilizing at 73% from epochs 69 to 84. The overall accuracy, which started improving
later, reached 2% by epoch 12, then climbed to 23% by epoch 33, 30% by epoch 45, and stabilized at 35-
36% by epochs 72 and 84. These results reflect steady, consistent learning with slow but continuous gains in
performance across tasks.

Fig. 13 provides the training performance of the DLACRM model on the Gregwar dataset, with a specific
focus on the accuracy for Characters 1, 2, 3, and 4 during the 120 epochs. Character 1 demonstrated gradual
learning progress during training, starting at 0% accuracy at epoch 0 and improving slowly to 6% by epoch
3. By epoch 6, Character 1’s accuracy increased to 16%, and by epoch 9, it reached 28%, continuing to
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improve to 39% by epoch 12. By epoch 33, Character 1 had improved significantly to 69%, showing a marked
increase in performance. At epochs 45 and 72, the accuracy of Character 1 rose to 74% and 77%, respectively,
maintaining stability at 77% by epoch 84, reflecting consistent learning and strong adaptation. Character 2
started similarly at 0% and reached 7% by epoch 3. Its accuracy improved gradually to 12% by epoch 6, 21% by
epoch 9, and stabilized at 28% by epoch 12. By epoch 33, Character 2 reached 59% and continued its upward
trend to 64% by epoch 45 and 68% by epoch 72, finally stabilizing at 69% by epoch 84, highlighting steady
improvement across the training period.

Figure 11: Character accuracy for Characters 1 (a), 2 (b), 3 (c) and 4 (d) using the DLACRM model on the Captcha 0.3
dataset during the training phase

Character 3 had a challenging start, beginning at 0% and reaching 9% by epoch 3. Accuracy increased
slowly to 13% by epoch 6 and 18% by epoch 9, then improved to 24% by epoch 12. By epoch 33, Character
3 achieved 56% accuracy, reaching 62% by epoch 45 and 67% by epoch 72, and stabilizing at 67% by epoch
84, showing consistent but gradual learning. Character 4 followed a slightly faster learning curve, starting
at 0% and reaching 18% by epoch 3. By epoch 6, Character 4 improved to 37%, reached 44% by epoch 9
and stabilized at 47% by epoch 12. At epoch 33, Character 4’s accuracy climbed to 74%, increasing to 77%
by epoch 45 and stabilizing at 80% by epochs 72 and 84, indicating a relatively quicker adaptation and
robust performance. Overall, each character experienced substantial improvements within the initial and
later epochs, with stabilization at higher accuracy levels (67%–80%) by epochs 72 and 84. This consistent
yet modest progress reflects the model’s gradual learning capabilities on the Gregwar dataset, demonstrating
steady increases in character recognition skills over time.
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Figure 12: The overall character recognition accuracy of DLACRM on the Gregwar dataset during the training phase

Figure 13: Character accuracy for Characters 1 (a), 2 (b), 3 (c) and 4 (d) using the DLACRM model on the Gregwar
dataset during the training phase

4.4 Comparison Results
To thoroughly evaluate the strengths and weaknesses of the DLACRM model, we conducted an

extensive comparison with several widely recognized CAPTCHA recognition algorithms, ensuring a fair
assessment by using the same datasets. Key models in the image-text CAPTCHA recognition domain
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included in our comparison were the Multilabel CNN, CRABI, and CRNN models. The Multilabel CNN
architecture employs a single convolutional neural network with multiple softmax output layers, each tasked
with recognizing a different character in the CAPTCHA. In contrast, CRABI simplifies the process by
eliminating the need for segmentation, utilizing binary images attached to CAPTCHA copies and a basic
CNN with a single softmax output layer for efficient character recognition, while the CRNN model combines
convolutional layers with recurrent layers, resulting in a complex and resource-intensive architecture.

The detailed comparison results, presented in Tables 3–6, along with Figs. 14–17, which correspond
to the BoC, Weibo, Captcha 0.3, and Gregwar CAPTCHA schemes, respectively, provide a comprehensive
analysis of each model’s performance across diverse CAPTCHA scenarios. The evaluation emphasizes two
primary metrics: total character accuracy and overall CAPTCHA accuracy, offering valuable insights into
the effectiveness of the tested models. Interestingly, the CRABI model outperformed all others in the
Gregwar CAPTCHA scheme, including the DLACRM model, emphasizing the diversity and complexity of
CAPTCHA structures and highlighting the need for recognition algorithms tailored to specific CAPTCHA
types. Further analysis of the results in Tables 3 and 4 reveals that the DLACRM model outperformed all
other methods in both total character accuracy and overall CAPTCHA accuracy for the BoC and Weibo
CAPTCHA schemes, demonstrating its effectiveness in accurately recognizing characters and capturing
the overall context of CAPTCHA images. Although the DLACRM model achieved the highest rankings
in the BoC and Weibo schemes, it still performed admirably in the Captcha 0.3 scheme, ranking second
behind the Multilabel model, which underscores the nuanced nature of CAPTCHA challenges and the
necessity for adaptive models to maintain consistent efficacy across different CAPTCHA designs. Overall,
the comparison results demonstrate the versatility and robustness of the DLACRM model, which shows
superior performance across multiple CAPTCHA schemes, indicating its potential for widespread adoption
in real-world applications where accurate and efficient CAPTCHA recognition is essential.

Table 3: Performance comparison results employing the BoC CAPTCHA scheme

Metric Multilabel [35] CRABI [35] CRNN [35] DLACRM
Total character 99.03% 98.44% – 99.06%

accuracy testing (39,614/40,000) (39,379/40,000) (39,627/40,000)
Overall CAPTCHA 96.39% 94.33% 96.47% 96.70%

accuracy testing (9639/10,000) (9433/10,000) (9647/10,000) (9670/10,000)

Table 4: Performance comparison results employing the weibo CAPTCHA scheme

Metric Multilabel [34] CRABI [34] CRNN [34] DLACRM
Total character 96.03% 97.89% – 98.72%

accuracy testing (38,411/40,000) (39,156/40,000) (39,490/40,000)
Overall CAPTCHA 86.24% 92.68% 91.05% 95.92%

accuracy testing (8624/10,000) (9268/10,000) (9105/10,000) (9592/10,000)
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Table 5: Performance comparison results employing the Captcha 0.3 CAPTCHA scheme

Metric Multilabel [35] CRABI [35] CRNN [35] DLACRM
Total character 98.71% 96.11% – 97.78%

accuracy testing (39,485/40,000) (38,444/40,000) (39,115/40,000)
Overall CAPTCHA 95.33% 85.93% 83.57% 93.76%

accuracy testing (9533/10,000) (8593/10,000) (8357/10,000) (9376/10,000)

Table 6: Performance comparison results employing the Gregwar CAPTCHA scheme

Metric Multilabel [34] CRABI [34] CRNN [34] DLACRM
Total character 83.31% 85.28% – 76.24%

accuracy testing (33,322/40,000) (34,111/40,000) (30,499/40,000)
Overall CAPTCHA 51.23% 54.20% 49.98% 40.57%

accuracy testing (5123/10,000) (5420/10,000) (4998/10,000) (4057/10,000)

Figure 14: Compares the overall CAPTCHA accuracy of the DLACRM model with several other models, based on the
BoC scheme

4.5 Qualitative Evaluation
To assess the effectiveness of the CAPTCHAs produced by DLACRM, it’s crucial to complement

quantitative score analysis with a qualitative evaluation. Fig. 18 presents a carefully selected array of sample
images from the test dataset, each linked to its corresponding CAPTCHA. In this figure, every image is
associated with CAPTCHA text generated by our model across four datasets: BoC, Weibo, Captcha 0.3, and
Gregwar. For example, the image located in the top-left corner of the first row and column illustrates the BoC
CAPTCHA “P6DF,” while the top-right image represents the Gregwar CAPTCHA “k5Su.” Our DLACRM
model consistently demonstrates its ability to accurately capture the textual content within these images. The
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model’s performance and the quality of the CAPTCHAs it generates remain consistently high, as reflected in
the scores shown in Table 2 and the example CAPTCHAs depicted in Fig. 18.

Figure 15: Compares the overall CAPTCHA accuracy of the DLACRM model with several other models, based on the
Weibo scheme

Figure 16: Compares the overall CAPTCHA accuracy of the DLACRM model with several other models, based on the
Captcha 0.3 scheme

Fig. 19 highlights instances where CAPTCHAs were incorrectly recognized. For example, in the left
CAPTCHA image, the character “l” was misidentified, and in the right image, the characters “g” and “j”
were also incorrectly interpreted. These recognition errors are primarily due to overlapping colored lines
that intersect the text and the challenging arrangement of the characters. The common failure scenarios
typically stem from various anti-recognition mechanisms designed to thwart automated solvers. These
mechanisms include the use of distorted and stretched characters, colored lines that overlay the text, and
added background noise, all of which contribute to the increased complexity of the CAPTCHA. Additionally,
the close spacing and occasional overlap of characters complicate the segmentation process, while the low
contrast between the text and background further challenges machine-based CAPTCHA solvers.
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Figure 17: Compares the overall CAPTCHA accuracy of the DLACRM model with several other models, based on the
Gregwar scheme

UVZF     JR20

P6DF     BGLJ6MO9

C4WH A8pY

    k5Su

UVZF

P6DF 6MO9

C4W44 H    JR20

BGLJ

A8AA pY

k5kk Su

BoC Weibo Captcha 0.3 Gregwar

Figure 18: Examples of some CAPTCHAs correctly recognized by DLACRM for the four datasets: BoC, Weibo,
Captcha 0.3, and Gregwar

I imx2

G lmx2

I imx2xx

G lmx2 G JcJ3

I JeJ3 I qf65

G gj65

Figure 19: Examples of CAPTCHAs incorrectly recognized by the DLACRM model, with “I” referring to the incorrectly
recognized characters and “G” representing the ground truth
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4.6 Discussion
This study introduces a groundbreaking approach specifically designed for the complex task of

CAPTCHA recognition, marking a significant leap forward in the field. Our model integrates a two-layer
attention mechanism—comprising CVA and GVA—that enhances its ability to capture relevant local visual
features and accurately identify CAPTCHA characters. Through thorough evaluation and rigorous testing,
our algorithm has demonstrated outstanding performance across various challenging CAPTCHA defense
mechanisms. Our comprehensive assessment reveals the algorithm’s robustness in overcoming complex
challenges inherent in CAPTCHA designs, such as overlapping characters, noise lines, rotations, distortions,
and varied color backgrounds. Additionally, the algorithm’s adaptability in handling multiple CAPTCHA
character categories further highlights its versatility and wide-ranging applicability.

Notably, our algorithm exhibits remarkable resilience when facing the formidable defense mecha-
nisms of the Gregwar CAPTCHA scheme, which is known for its stringent security measures. Traditional
CAPTCHA recognition methods often struggle with this scheme, but our algorithm rises to the chal-
lenge, delivering exceptional accuracy and effectiveness in deciphering even the most intricate Gregwar
CAPTCHAs. Furthermore, our approach streamlines the recognition process by eliminating the need for the
cumbersome task of segmenting CAPTCHA images into individual characters, which significantly improves
both accuracy and efficiency. By pushing the boundaries of CAPTCHA recognition technology, our work
not only advances the state-of-the-art but also has significant implications for enhancing online security
measures. The robustness and versatility of our algorithm pave the way for more secure online platforms,
protecting against automated threats and ensuring the integrity of digital interactions.

Compared to the CRNN model, which involves numerous hyperparameters that require careful tuning
and convolutional layers that need specific adjustments, our DLACRM model offers a much simpler and
more efficient architecture. The complexity of CRNN’s design adds significant challenges, especially when
optimizing the model for effective performance. In contrast, our DLACRM model features relatively few
hyperparameters and a flexible CNN architecture that integrates seamlessly with the RNN layer. This design
allows for efficient processing without the need for extensive preprocessing steps. Additionally, our model
does not depend on the number of characters in the image, which eliminates the limitations faced by other
models like CRABI that require complex preprocessing, longer training times, and complicated architectures.
While the CRABI model, which utilizes Attached Binary Images (ABIs) technology, suffers from the need to
process multiple copies of input images sequentially, our DLACRM model bypasses these challenges. Also,
our model does not suffer from the scalability issues when the number of characters in CAPTCHA images
increases as compared to multilabel CNN approach. A key strength of our approach is its novelty; we have
pioneered the use of image captioning models for CAPTCHA recognition, which enhances both the per-
formance and accuracy of CAPTCHA recognition systems. Our approach can be extended to cybersecurity
domains that rely on sequential data. The advanced attention mechanisms, especially in processing such data,
have proven effective and hold significant potential for enhancing cybersecurity measures.

5 Conclusions
In this study, we introduce an innovative two-layer attention framework for CAPTCHA recognition

that builds on traditional attention mechanisms by incorporating Guided Visual Attention (GVA) to
sharpen focus on key features. We have adapted the well-established image captioning task to meet this
specific need. Our approach features the GVA module guided by the Conventional Visual Attention (CVA)
component, integrating two LSTM layers to enhance recognition of CAPTCHAs. Our system demonstrates
impressive success across diverse datasets, including BoC, Weibo, Gregwar, and Captcha 0.3, achieving high
performance without the need for segmentation. This research not only advances theoretical understanding
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but also has practical implications for strengthening online security. The simplicity and versatility of our
model make it a promising tool for CAPTCHA recognition, utilizing techniques from image captioning. This
work marks a significant advancement in CAPTCHA security, highlighting the potential of image captioning
techniques to improve internet security. In future work, we aim to enhance our approach by incorporating
Transformer models, leveraging self-attention mechanisms, and employing multi-head attention to improve
performance and scalability.
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