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ABSTRACT: Resource allocation remains a challenging issue in communication networks, and its complexity is
continuously increasing with the densification of the networks. With the evolution of new wireless technologies such as
Fifth Generation (5G) and Sixth Generation (6G) mobile networks, the service level requirements have become stricter
and more heterogeneous depending on the use case. In this paper, we review a large body of literature on various
resource allocation schemes that are used in particular in mobile wireless communication networks and compare
the proposed schemes in terms of performance indicators as well as techniques used. Our review shows that among
the strategies proposed in the literature, there is a wide variety of optimization targets and combinations thereof,
focusing mainly on performance indicators such as energy efficiency, spectral efficiency, and network capacity. In
addition, in this paper, selected algorithms for resource allocation are numerically analyzed through simulations to
compare and highlight the importance of how the resource algorithms are implemented to achieve efficient usage of
the available spectrum. The performance of selected algorithms is evaluated in a multi-cell heterogeneous network and
compared to proportional fair and eICIC, a widely-used combination of resource allocation and interference mitigation
techniques used by communication networks. The results show that one approach may perform better when looking at
the individual average user data rate but worse when looking at the overall spectral or energy efficiency, depending on
the category of traffic. The results, therefore, confirm that there may not be a single algorithm that visibly outperforms
other candidates in terms of all performance criteria. Instead, their efficiency is always a consequence of a strategic
choice of goals, and the targeted parameters are optimized at a price. Thus, the development and implementation of
resource allocation algorithms must follow concrete usage scenarios and network needs and be highly dependent on
the requirements and criteria of network performance.
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1 Introduction

As witnessed in recent years, the exponential trend of the number of connected devices is expected to
continue, indicating a consistent increase in data traffic demand [1,2]. According to an Ericsson report [3],
mobile network traffic has almost doubled just in the last 2 years. During the first quarter of 2024, 160
million 5G subscriptions were added to exceed 1.7 billion and are expected to reach 5.6 billion by the
end of 2029, projected to account for 60% of all mobile users. 5G is expected to become the dominant
mobile access technology by 2028 [3]. 5G network supports applications with different Quality of Service
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(QoS) requirements, such as remote surgery, intelligent transportation systems, high voltage electricity
distribution, and industrial control. Since 5G is expected to support different applications with heterogeneous
requirements, 5G services are classified into three main categories [4]:

1. Enhanced Mobile Broadband (eMBB) which aims to offer high data rates, high user mobility, and
high connectivity

2. Ultra-reliable low latency communications (uRLLC) which is designed for mission-critical applica-
tions by offering high reliability and ultra-low latency, and

3. Massive Machine Type Communications (mMTC), which is designed to support massively dense
deployments of connected devices and is considered one of the main enablers of IoT (Internet of Things).

5G integrates diverse technologies, including vehicular networking [5], Device to Device (D2D)
communications [6], Machine to Machine (M2M) communications [7], Internet of Things (IoT) [8], cloud
radio access networks [9], mobile edge computing (MEC) [10], cloud computing [11], unmanned aerial
vehicles (UAVs) [12], etc., to realize the Internet of Everything [13].

6G is expected to offer a further improvement over 5G in these three key parameters. Currently, 5G
presents trade-offs between latency, energy, throughput, and end-to-end reliability, while 6G is excepted to
jointly meet stringent network demands such as extremely high throughput, ultra-high reliability, and ultra-
low latency [14,15]. In particular, it is expected to support a connectivity density 10 times higher compared
to 5G and 100 times higher compared to 4G and offer a peak throughput 100 times faster than 5G and 1000
times faster compared to 4G [15–17]. The main differences between 4G, 5G, and 6G networks are presented
in Fig. 1.

Figure 1: Comparison between 4G, 5G, and 6G capabilities
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In 6G, five categories of usage scenarios are defined, where eMBB+, uRLLC+, and mMTC+ are
extensions of usage scenarios defined in 5G while sensing and AI is two new categories that will be developed
in the era of 6G. High spectral and energy efficiency, high capacity, and low latency are needed to support
real-time AI. The sensing requirements vary from application to application. For example, future localization
applications are expected to require high sensing accuracy and resolution, resulting in high reliability and
high bandwidth [18].

The coexistence of different services with specific heterogeneous requirements within the same network
in 5G and 6G networks makes the resource allocation process challenging. In particular, satisfying the
QoS requirements of uRLLC users will cause the reduction of available resources for the eMBB users.
Furthermore, the stochastic nature of uRLLC traffic complicates the situation due to the unexpected
arrival of the uRLLC requests with their strict latency and reliability requirements. In response, the 3rd
Generation Partnership Project (3GPP) proposed two scheduling approaches to handle the uRLLC traffic:
reservation-based scheduling and instant scheduling [19]. The first approach reserves frames to handle
any unexpected uRLLC traffic. This approach causes a waste of resources in cases where there are no
incoming uRLLC data. The second approach serves the incoming uRLLC traffic using short transmission
time intervals. This approach may cause interruptions to other applications’ ongoing transmissions, causing
performance degradation.

The resource allocation scheme, to address said challenges, must be able to efficiently match available
resources not only with the potential users but also the specific service, depending on their channel condi-
tions and service level requirements. Managing expectations of the different services while meeting the strict
requirements in terms of delay and throughput, as the number of users grows exponentially, severely strains
not only the scheduling process but also related tasks such as user association and interference coordination.
It is not uncommon therefore that sometimes these tasks are performed jointly or in coordination.

1.1 Resource Allocation in Heterogeneous Networks
The multi-tier ultra-dense Heterogeneous Networks (HetNets) are considered the main architecture

in future wireless communication networks and a solution that has been widely adopted to respond to the
ever-increasing traffic growth and heterogeneous traffic requirements in 5G and 6G [15,20].

Traditional HetNets are composed of small cells that present low-power base stations (BSs) known as
micro, pico, or femtocells (depending on their coverage radius) deployed within an existing area of macro
cells. Such deployment offers many benefits, including improved coverage area and low-power transmission,
improved network capacity, reduced load at the macro cell, and overall cost benefits [21]. The high-power
macro cells are deployed to cover large areas such as urban, suburban, and rural areas, while micro cells are
deployed for small areas to complement the macro cells or enhance throughput. Fig. 2 presents the evolution
of cellular networks from traditional networks, composed only of macro cells (Homogeneous Networks), to
two-tier and three-tier HetNets. Table 1 presents the main characteristics of different-sized cells.
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Figure 2: Evolution of cellular networks: a) Homogeneous Network; b) Two-tier Heterogeneous Network; c) Three-tier
Heterogeneous Network

Table 1: Description of cells [22–25]

Description Femto Pico Micro Macro
Deployment Indoor Indoor/outdoor Outdoor Outdoor

Number of consumers 4 to 16 32 to 100 200 200 to 1000+
Output transmitted power 20 to 100 mW 250 mW 2 to 10 W 40 to 100 W

Cell radius 10 to 50 m 200 m 2 km 10 to 40 km
Mobility None Low High High

Cost Very Low Low Medium High

With the development of cellular communication networks and the growth of the users’ demands and
requirements, the number of cells has seen significant and continued growth, resulting in the densification
of the HetNets. The deployment of small cells brings benefits for the wireless communication networks
in several aspects, including the reduction of costs and energy consumption in comparison to deploying
additional macro cells [26–28]. However, despite the obvious benefits that come with densification, such
networks are consequently faced with a complex challenge in terms of efficient resource allocation.

The two principal challenges that have always been present in HetNets are interference management
and user association [29]. The transmission of any low-power BS associated with its users is impacted by
interference originating from the transmissions of any high-power macro BS covering the same geographic
area (inter-tier interference or cross-tier interference). Also, the resource allocation procedure is interweaved
with interference management, and in ultra-dense deployments, the interference problem is exacerbated
because of a shorter distance between the users and the interfering BS, resulting in stronger than usual intra-
tier interference (co-tier interference) as well [30].

Resource allocation aims to allocate radio resources to users as efficiently as possible while optimizing
network performance [31]. The procedure is conducted with an optimization target in mind, such as
improved spectral efficiency (SE), improved energy efficiency (EE), or other considerations such as fairness
guarantees, interference coordination, QoS assurance, etc. The goal of resource allocation usually is to pursue
any or a number of the above targets. An optimal decision, however, represents a considerable challenge in
terms of computational complexity, particularly in the case of ultra-dense HetNets because the number of
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BSs is significantly increased, implying that the number of combinations (BS-user) that need to be considered
during the resource allocation procedure is larger as well.

The association of users is a challenge on its own: the users that are close to the small BSs tend to associate
with the macro BSs instead of the small BSs (femto, picro, or micro) because of a higher received signal
strength from the high-power BS of the macro cell. To address these challenges, the 3GPP has proposed the
enhanced inter cell interference coordination (eICIC) Mechanism, which provides two techniques [30,32].
Firstly, a bias is added to the received signal strength from the small BSs, to force the users to connect with
the small cells instead of macro cells. Secondly, to reduce the interference from the macro BSs, each macro
BS remains silent for some time in which micro/pico BSs can transmit. This period, in which macros do
not transmit, is called the Almost Blank Subframes (ABS) period. 3GPP does not specify how to define
the ABS period and the bias value, and therefore these parameters are open to adjustment depending on
network needs.

1.2 Scheduling Algorithms
The resource allocation decisions are accomplished by scheduling algorithms. 5G New Radio (NR), like

its predecessor, Long-Term Evolution (LTE), uses Orthogonal Frequency Division Multiplexing (OFDM)
in the physical layer. OFDM carries data over orthogonally spaced subcarriers in the frequency domain.
The subcarrier spacing is an important parameter that determines both the overall number of subcarriers
and the length of the OFDM symbol in the time domain. Radio resources in 5G are arranged in units of
Resource Elements (REs), consisting of one subcarrier during one OFDM symbol. REs are further grouped
into Resource Blocks (RBs), composed of 12 consecutive subcarriers in the frequency domain. Once the
process of user-BS association is completed, resource scheduling is applied to allocate RBs to the users at the
BS level. Once the allocation is completed and users are informed through the appropriate control channel,
the users’ data can be transmitted on the scheduled RBs [33].

The scheduler has to fulfill as many user requirements as possible in terms of QoS and latency by
ensuring that all users of a cell are served. The scheduling algorithms are not standardized, leaving sufficient
room for proprietary and vendor-specific algorithms to be developed. Historically, there have been several
scheduling algorithms that have found widespread application [33]. Round Robin Scheduling is a method
that allocates resources to the users where the first user is served first with the whole frequency spectrum for
a certain period. Once the resources are released, the next user is served, and so on. New requests are placed
at the end of the waiting queue. The core advantages of this algorithm are fairness in resource allocation and
easy implementation. Maximum rate scheduling is another method that assigns resources disproportionately
by allocating them more often to users who experience good channel conditions than those who experience
bad channel conditions. While this type of scheduling optimizes network capacity, it does not guarantee a
good level of fairness. Proportional Fair (PF) scheduling is a method that allocates resources to the users by
aiming to ensure fairness in terms of service offered to the users while also considering user throughput. The
PF scheduling allocates an RB, on a specific time instance k, to a particular user if the instantaneous channel
quality of the user is relatively high, concerning its average channel conditions over time. As a method that
tries to strike a balance between fairness and network performance, PF is one of the most commonly used
scheduling algorithms in today’s networks.

However, future communications networks impose stricter requirements, particularly regarding delay
and reliability, as described above. Therefore, more advanced algorithms that aim to optimize several resource
allocation targets are proposed for future communications networks. This paper is focused on techniques
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and algorithms for resource allocation in dense HetNets. Based on numerical simulations, a comparative
analysis between different algorithms is performed, and results are derived and presented. In the following
section, a detailed analysis of previous works is presented, followed by a description of the methodology
used in this work and a detailed elaboration of the selected algorithms. The results of the simulations and
conclusions are presented in the final section.

2 Related Work
When allocating radio resources in HetNets, some of the main optimization objectives found in relevant

literature are:

• Network capacity
• Spectral efficiency
• Energy efficiency
• Fairness
• Guaranteed QoS level
• Reduced complexity
• Interference mitigation

Different algorithms and approaches are proposed for optimizing one or several of the above-mentioned
targets. The approaches and the pursued goals are varied, as illustrated hereafter with selected examples.

2.1 Energy Efficiency
EE has become one of the main concerns in today’s wireless networks [34] due to the rapid increase in

energy demands that reflect the negative impact on the environment. Green communications have attracted
a lot of interest from both industry and academia, mostly because of environmental concerns [35,36]. The EE
is calculated as the ratio of the overall data rate to total energy consumption (bits/joule) for all users [37,38].
Improving EE provides the means for longer battery life and is required not only to prolong the battery
lifetime of end-user smartphones but primarily to address the domain of sensor network deployments where
targeted battery lifetimes are as long as a decade. Efficient resource allocation schemes focused on energy
consumption minimization and energy conservation have been investigated in the following works.

In [39] and [40], the energy and spectral efficiency trade-offs are studied in multicell heterogeneous
wireless networks. The work in [39] aims to optimize both EE and SE by considering users’ data rates, while
in [40], the authors propose to maximize EE at a cost of SE. Based on the derived trade-off, an algorithm is
proposed to maximize EE with minimal sacrifice of SE. In addition to sacrificing SE, another major downside
of the above-mentioned algorithms is a high level of complexity that reduces the overall system capacity.

In [41], a low-complexity algorithm is proposed by using UAVs. This strategy takes into consideration
also the QoS requirements, such as users’ data rate and signal-to-noise and interference ratio (SINR). Another
work that also exploits UAVs for offloading the network traffic is presented in [42]. Here, the authors propose
a solution for jointly optimizing UAVs location, UAV-user association, resource allocation, and the load
balancing between the two systems under the EE constraint. The main limitation of these works is that they
do not take into account inter-tier interference, which is a very important issue in ultra-dense networks.

The problem of energy-efficient resource allocation in the orthogonal frequency division multiple access
(OFDMA) system is also addressed in [43]. In this work, the BSs are grouped into clusters to cooperate to
perform energy-efficient user scheduling and power control on the same radio spectrum. This algorithm
also presents high computational complexity. In [44], authors propose a users’ association scheme based on
cell traffic load. The users aim to enhance their transmission rate and this is achieved by being connected to
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the less loaded cells. This solution is proposed for a scenario consisting of only one macro cell, and also the
users are assumed to be fixed in the scenario.

In [45], the resource allocation in a D2D HetNet is investigated under the QoS constraints, including
the data rate of each user and Energy Harvesting (EH) constraints. The EH technique collects renewable
energy from the environment and is crucial in 5G because it reduces energy consumption. The proposed
algorithm presents high computational complexity since it addresses the problem through optimization
using Lagrangian parameters. Also, the proposed algorithm uses only EH as the energy supply source,
which can cause interruptions in the data transmission. Another algorithm that employs the EH technique
is presented in [46]. This work adopts a hybrid energy supply unit at the BS, where harvested energy is
utilized with higher priority. The EE is maximized under the QoS constraints using Lagrangian parameters
and presenting high computational complexity. The authors in [47] propose a resource allocation scheme in
a two-tier HetNet where BSs are powered by renewable energy sources and conventional grid. The proposed
strategy aims to optimize the overall networks’ EE under QoS limitations. The complexity of the algorithm
is high, as the scheme presents a significant overhead, making its use unrealistic in ultra dense networks.
Another drawback of these solutions is that the EH technique imposes high replacement costs and limited
gain for existing BSs.

In [48], two strategies are proposed for EE optimization. In the first part, the resource allocation is
performed under the data rate constraints, and afterward, the users’ EE is calculated. The user with the
lowest EE is selected, and an unoccupied subchannel with the largest channel gain is assigned to that user.
This process is iterated until the number of unoccupied subchannels reaches zero. In [49], an allocation
algorithm is proposed to maximize the EE under the data rate requirements. The number of subcarriers
to be allocated to a particular user is based on the average SINR and bit rate received by that user. The
algorithm addresses the problem through optimization using Lagrangian parameters. Also, in [50], a user
association scheme based on the Lagrangian dual decomposition is proposed. Both algorithms present high
complexity and are simulated in a scenario consisting of one macro cell. In [51], authors propose an energy-
efficient joint resource allocation and user association scheme in a HetNet scenario. The proposed solution
uses continuity relaxation and the Lagrange dual approach to address the problem. A dynamic energy-
efficient-based approach is proposed for getting the optimum resource allocation. The proposed solution
outperforms other general algorithms in terms of EE. This solution presents a high complexity. In [52],
authors propose a novel iterative approach to address the issue of user association and power allocation in a
three-tier HetNet scenario. Authors aim to enhance EE under the QoS requirements. This solution performs
well in terms of throughput, power consumption, and EE and outperforms a baseline user association scheme
developed for a two-tier HetNet scenario. However, this solution does not consider fairness. In [53], authors
proposed a solution for maximizing the EE in a HetNet also considering D2D technology while minimizing
the interference from D2D to cellular users. First, the user association is performed for cellular users based on
maximum received power, and then a novel resource allocation method known as sequential max search is
proposed for D2D users. However, the simulation results are not compared to other state-of-the-art solutions.

Another group of resource allocation algorithms tackles EE in HetNet based on Massive Multiple-Input,
Multiple-Output (MIMO) technology. Massive MIMO can significantly improve system EE because BSs are
equipped with a high number of antennas and serve a high number of users simultaneously, fully utilizing
available space resources [54].

Energy-efficient power allocation for Massive MIMO is studied in [55], where a power allocation
algorithm based on the water-filling power allocation scheme is proposed. However, in the proposed
approach, the EE could have been further enhanced if a fairer scheme was used since the water-filling is a
standard algorithm known to discriminate users with poor channel conditions. In addition, the proposed
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approach does not consider interference among users. The algorithm proposed in [56] also does not take
into account the interference, and the system is simulated with a single macro cell. This work proposes a
low-complexity algorithm for user association and power coordination by considering fairness requirements
and capacity and power consumption constraints. Also, an optimal solution is proposed for the number of
activated antennas on the massive MIMO setup.

Another approach to EE maximization is based on power management by switching inactive BSs or
BSs with low traffic into sleep mode. The conventional sleep control schemes switch the BSs into sleep mode
based only on the number of users associated with that particular BS. More advanced solutions based on
this approach give better results in terms of EE, such as the solution proposed in [57], where the system
throughput is considered as the decision criteria for switching the BSs into sleep mode. Also, in [58], three
scenarios are introduced for enhancing EE by switching the BSs into sleep mode in a dense small cell 5G
network. In the first scenario, to switch the BS to sleep mode, each user belonging to that BS must increase
or reach his previous performance when associating to the new cell. In the second scenario, the overall data
rate of the involved cells must increase or reach the previous performance for turning the selected BS to sleep
mode. The last scenario considers the total network capacity, which should be greater than or equal to the
previous network capacity to turn the BS to sleep mode. The simulations demonstrate that the second and
the third scenarios are more efficient regarding energy consumption. A similar approach was also proposed
in [59], where three EE optimization solutions are provided for three different scenarios. In [60], a small cell
sleeping MEChanism is proposed to enhance EE in HetNets. The small cells located in the cell-edge area of
a macro cell are switched into sleep mode. The users of the sleeping cells are covered by the range-expanded
small cells located near the slept cells, and users that are located close to macro cells are served by the macro
BSs. However, this paper considers a non-realistic scenario consisting of only one macro cell. The strategy
of switching BSs into sleep mode is also employed in [61]. The numerical results showed that combining
strategies for putting the BSs into sleep mode and spectrum allocation can reduce the power consumption
and interference of the whole network. In this work, only the micro BSs are considered to be switched into
sleep mode, even though the macro BSs are responsible for the largest amount of energy consumption.

2.2 Fairness
Another group of algorithms targets fairness in their allocation strategies. Fairness is a key performance

indicator for evaluating resource management. Jain’s fairness index [62] has been frequently used to assess
the fairness level. The fairness level in resource allocation algorithms and its impact on network performance
is presented in [63]. The fairness requirement in resource allocation schemes ensures that each user gets a fair
share of the resources [64]. In wireless communication, fairness can be fulfilled by allocating a fair amount
of resources to each user according to their QoS requirements.

Commonly used fairness rules in resource allocation problems include proportional fairness [65,66],
weighted proportional fairness [67], and adaptive proportional fairness [68]. Priority-based scheduling,
in contrast, ensures that users are served and utilize the resources based on their priority. Although
implementing priorities makes the resource allocation process seem unfair, it can be seen as an extension of
weighted fairness.

In [69], the authors studied two types of fairness: proportional fairness and max-min fairness for energy-
efficient resource allocation. The EE is optimized under QoS and fairness constraints. The proposed solution
presents high computational complexity. The problem of fairness in resource allocation in the OFDMA in the
5G networks is also discussed in [70]. The main goal of this research is the maximization of the total capacity
of femtocells while fulfilling the fairness constraint, minimum throughput for delay-sensitive users, cross-tier
interference threshold of femtocell HetNets, and exclusive property of OFDMA subchannels. This algorithm,
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however is implemented at the cost of high computational complexity. On the other hand, Reference [71]
considers only delay constraints, ignoring other constraints and making this algorithm less fair compared
with the previous work. A joint resource allocation and power allocation is proposed for EE maximization.
The proposed algorithm takes into consideration the users’ data rate requirements but again presents a high
level of complexity and does not consider inter-cell interference. To address the fairness requirement, authors
in [72] propose an urgency value to be assigned to users depending on their requirements, which is used
to determine which users are served first, making the algorithm fair for all users. The algorithm presents a
good solution for solving the fairness problem but does not consider the EE target. Another fair algorithm
is presented in [73], where spectrum resources are fairly allocated to users. The EH technique is employed
in this solution, where users are equipped with EH modules, and a joint resource allocation algorithm for
EH that focuses on fairness is proposed. In [74], a resource allocation algorithm that optimizes coverage and
capacity is proposed. This algorithm also fulfills the fairness requirement; it improves upon the traditional
proportional fairness algorithm by considering the user’s received signal power when assessing the user’s
scheduling priority. It considers both received signal power and throughput when allocating resources.
Another resource allocation algorithm that may be considered to be fair is proposed in [75]. The algorithm
is designed for a downlink multicarrier non-orthogonal multiple access (NOMA) system to maximize the
network capacity under proportional fairness constraints. These three algorithms proposed in [73–75] do not
consider interference and introduce high complexity. The work on [76] aims to maximize the overall capacity
in a scenario with heterogeneous QoS requirements. The problem is divided into two sub-problems: power
allocation and spectrum allocation. The algorithm ensures that all QoS requirements are fairly satisfied.
In [77], authors addressed the problem of fairness. Three fundamental tradeoffs of SE, EE, and fairness in
ultra-dense networks are considered, and a model-driven learning algorithm is proposed for solving the
nonconvex problem of resource allocation.

An EE aware joint resource and power allocation algorithm is proposed in [78]. A user grouping
method is proposed by considering co-channel interference and channel conditions of different users. The
proposed algorithm reduces the interference within the resource block and thus improves the system EE.
After grouping the users, a power reallocation algorithm is applied to further improve the EE of the whole
system. At the same time, the algorithm enhances SE and provides good fairness performance, but at a cost
of high complexity. In [79], a resource allocation algorithm is proposed for enhancing EE. The problem of
resource allocation is decomposed into two subproblems: subcarrier allocation and power allocation. To
fulfill the fairness constraint, the subcarrier allocation is based on resource-proportional fairness for the
given power allocation. This algorithm is tested in a scenario consisting of only one macro cell. In [80],
authors proposed an algorithm that aims to maximize the network rate through resource allocation using
the Q-learning technique. The authors aimed to propose a fair scheme but do not consider the cross-tier
interference in their resource allocation strategy. In [81], a user association and power allocation scheme
is proposed for a scenario of massive MIMO-enabled HetNets. This work aims to maximize the SE under
proportional fairness and transmit power constraints. Simulation results prove that the proposed solution
outperforms the max maximum signal received power (RSRP) and min RSRP algorithms regarding SE and
load balancing.

2.3 Guaranteed QoS Level
A group of algorithms considers the guarantee of QoS requirements when allocating resources. QoS

measures the networks’ performance related to a service. QoS is generally not linked to the user but to the
content delivery or network support [82]. QoS is another rapidly growing optimization target, driven by the
continued proliferation of advanced applications, such as online video streaming services, online gaming,
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smart transportation, network-controlled UAVs, remote telesurgery, smart city projects, etc. The resource
allocation schemes may be used to address QoS requirements of such targets as ultra-low latency, ultra-high
reliability, higher data rate, or any combination thereof. For instance, edge caching and edge computing have
been largely believed to be fundamental supplements that enhance the above mentioned targets [83–85].

The importance of integrating edge caching and edge computing in future green communications
is discussed in [86], and a framework for supporting data retrieval and computing services is proposed.
This technology is employed by different resource allocation strategies for optimizing EE and reducing
delays. In [83], a resource optimization problem is formulated as a joint optimization of radio and
computational resources to minimize energy consumption under latency constraints. A multicell scenario
is simulated where mobile users ask for computation offloading to a common cloud server. In [83], the
edge computing technique is also used for minimizing energy consumption and reducing latency. A low-
complexity algorithm is proposed for optimizing the users’ task offloading and transmit power allocation
for a single-user mobile-edge computing system. Another solution that also exploits the EH technology for
computational tasks on the mobile device side is presented in [85]. The edge server is also considered for
improving execution latency. A low-complexity algorithm is proposed that optimizes the offloading decision
and transmits power for computation offloading. The offloading decision is dependent only on the current
system state without requiring the distribution of information on the computation task requests. In [87], an
algorithm is proposed for minimizing the energy consumption of all users. The algorithm aims to jointly
optimize the resource allocation, power control, and computation offloading for a mobile edge-based multi-
user wireless communication system. The solution is provided by using the convex optimization method. The
main drawback of these algorithms is that they do not take the interference target in their allocation strategy.
In [88], a novel scenario is proposed where each access point is equipped with a MEC server. This work
aims to optimize user association and resource allocation problems through a heuristic approach. Simulation
results prove that the proposed strategy can achieve lower energy consumption within fewer iterations than
other benchmarking schemes.

In [89], authors aim to improve the Quality of Experience (QoE) of users through the optimization
of wireless resource allocation. A system model for user clustering is proposed, where users are combined
based on QoS requirements. In this work only co-tier interference is addressed. In [90], authors proposed a
low complexity user association and resource allocation scheme, for minimizing power consumption under
the QoS requirements. The problem is divided into two sub-problems. For reducing the computational
complexity, relaxation and decomposition techniques are applied. Furthermore, a low-complex iterative
algorithm for power allocation is proposed based on the decomposition theory that converges quickly to the
optimal solution. In [91], an energy-efficient user association scheme is proposed with the aim of interference
mitigation in 5G HetNets. The user association is performed under the SINR, power usage, and user distance
constraints. Simulation results prove that the proposed solution gives good results and improves the network
performance. In [92], a fair resource allocation scheme is proposed for maximizing the SE of femtocells by
using an optimal exhaustive search algorithm under the QoS constraints for macro users. A distributed and
low-complexity algorithm is proposed for finding an efficient solution. In [93], authors propose a solution
for user association and power allocation in macro BSs alone, coupled and decoupled HetNet, under the QoS
constraints. An approximation approach is used for finding a near-optimal solution. From the simulation
results, it is concluded that the proposed decoupled cell association method outperforms the standard
coupled cell association scheme in terms of interference management and sum-rate maximization.

In [94], the authors present a combined resource and power allocation scheme in a HetNet scenario
composed of a macro cell and a pico cell under the QoE requirements. They employ an advanced Kuhn-
Munkres algorithm to match the subcarrier allocation technique. The simulation results prove that the
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proposed algorithm outperforms the average power allocation and PF algorithms. However, the simulation
scenario is very simple, not considering all types of interference.

2.4 Reduced Complexity
Another group of papers that aim to optimize the resource allocation process focuses on reducing

computational complexity through resource allocation schemes. The massive number of BSs and users in
dense networks is very challenging regarding computational complexity. The increased number of devices,
including both BSs and users’ equipment, highly increases the number of possible combinations during user-
BS association, leading to high computational complexity. To reduce the complexity during the resource
allocation process, many research works choose to employ a heuristic approach. This is because the heuristic
approach is very suitable to be used for solving optimization problems, especially for performing resource
allocation since it presents low complexity. Some interesting examples are presented below.

In [95], specifically, the authors present a low complexity algorithm for enhancing EE through resource
allocation, using the heuristic approach to reduce computational complexity. Users’ association is performed
based on the users’ EE. Resource allocation in 5G heterogeneous networks is the topic in [96], where two
different access schemes are analyzed using heuristic algorithms. The users are associated to the BS based on
the strongest SINR. In [97], to address the interference in an enabled D2D heterogeneous cellular network
with multi-band, the authors propose a heuristic algorithm for optimizing the uplink resource allocation.
This group of algorithms however, does not address fairness aspects.

The algorithm proposed in [98] employs a heuristic approach for user association for optimizing EE. In
this work, the BS adjusts its transmit power depending on the users’ QoS requirements. Users associate the
BS that spends the smallest amount of power for satisfying the SINR requirement. However, this algorithm
does not take into account cross-tier interference. In [99], authors propose an advanced bat algorithm for
allocating the spectrum resource carriers based on heuristic, for maximizing EE under the QoS constraints.
The algorithm presents low complexity but is simulated in a scenario consisting of only one macro cell.

The resource allocation problem is also addressed using Graph Theory, where the interference interac-
tions can be presented as a graph [100,101]. The BS could be presented by the vertex in a graph, whereas the
level of interference could be presented by the edge [102].

In [103], a joint optimization of users’ association, subchannel allocation and power allocation algorithm
based on graph theory is proposed. In [104], graph theory is used to address the problem of user association
and resource allocation. Loads of small BSs with varying capacities are balanced by adding congestion factors.
The users choose to associate with the BS that maximizes its payoff (or minimizes its payment) individually.
As a result, the technique achieves a distributed optimization. However, the suggested approach does not
ensure user fairness, and it does not consider user demands for different types of traffic. On the other hand,
the authors in [105] present a fair user association approach in HetNets based on cooperative graph theory
that focuses on maximizing the utility of users. The proposed solution outperforms a throughput-oriented
approach regarding fairness, data rate, load distribution, and convergence. In [106], the authors present
a power allocation approach based on noncooperative graph theory in an ultra dense HetNet under the
QoS constraints with the throughput balance between the access and backhaul links through predicting
the number of linked users. The simulation results show that the proposed strategy effectively balances
throughput between the two lines while fulfilling the predefined minimum rate. In [107], a user association
scheme is proposed using matching theory in mmWave-enabled cellular HetNets. Authors propose an early
acceptance technique, which has proven to be an efficient distributed matching technique for user association
in 5G HetNets. Simulation results show that the proposed algorithm gives good results in terms of network
throughput while substantially reducing complexity and overheads due to its distributed nature. In [108],
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authors presented a solution for interference management through resource allocation, using graph coloring
techniques. The proposed algorithm assigns a weight value to each directed edge, indicating the interference
strength from nearby BSs, and a weight value to each vertex, reflecting the color with the least interference
or the highest transmission rate. Simulation results show that the proposed algorithm outperforms the
benchmarking solutions regarding fairness and QoS parameters.

Recently, several works have proposed the use of Machine Learning (ML) techniques to facilitate the
management of communication networks. The deep reinforcement learning (DRL) technique is considered a
promising approach in resource management, especially in user association and resource allocation schemes,
due to the low computational complexity [109]. DRL is an advanced version of reinforcement learning (RL)
in which deep learning is utilized to increase the effectiveness of the learning rate for RL algorithms [110].
The significant potential of using DRL on resource allocation strategies in communication networks is
demonstrated in [111] and [112]. The basic idea of RL is to learn the optimal policy for maximizing the
cumulative rewards. DRL trains agents to select the optimal action, and after the training, the user association
and resource allocation can be performed without a lot of calculation [113].

In [114], the authors propose an energy-efficient resource allocation scheme in a 5G heterogeneous
cloud radio access network using ML techniques. The users are divided into two groups: users with high
QoS requirements and users with low QoS requirements. The simulation results show that the proposed
centralized online learning approach achieves good results in terms of EE, SE, and data rates. In [115],
a DRL based algorithm for HetNet is proposed, with a centralized deep Q-network (DQN)-based user
association scheme for enhancing the network capacity. In this scheme, a central agent globally determines
the associations of all BSs and users at the same time. Also in [116], a user association scheme exploiting the
distributed DRL agents is proposed, using the local channel information and the interference information of
nearby users. In [117], a user association scheme based on multi-agent RL is proposed for maximizing the sum
rate of the mmWave network. The scheme is simulated in a two-tier network (composed of small and macro
cells) with multiple radio access technologies. On the other hand, authors in [118] proposed a decentralized
user association technique based on multi-agent DRL to maximize the EE in ultra-dense networks. In [119],
a joint user association and resource allocation centralized scheme is proposed to maximize the overall data
rate of both cellular users and device to device pairs using RL. In this work, the scenario under consideration
consists of only one microcell. In [120], a resource allocation scheme is proposed to jointly optimize the
system capacity and power consumption, using the DRL technique in a two-tier HetNet. The performance
of the scheme is evaluated in a scenario consisting of only one macro cell, meaning that interference
constraints are not taken into account. In [121], a joint power and spectrum allocation scheme is proposed
for maximizing the total transmission rate in an ultra dense network. In this work, a cooperative multi-agent
DRL framework is proposed under the QoS constraints. The proposed solution is simulated in a simple
scenario, not considering all types of interference. In [122], a joint user association and resource allocation
scheme is proposed in a three-tier HetNet under QoS requirements. The authors proposed a distributed
optimization method based on multi-agent RL. To solve the computationally expensive problem with the
large action space a multi-agent DRL method is proposed. In [123], a distributed multi-agent learning
based spectrum allocation strategy is proposed in a dense multi-tier HetNet scenario considering also D2D
technology. D2D users learn about the wireless environment and autonomously select spectrum resources to
maximize their throughput and SE. This solution performs well in terms of throughput and SE, while giving
higher SINR values and causing minimal interference in cellular users. Finally, in [124], an RL-based resource
allocation scheme is proposed in a scenario based on UAV BSs deployment for providing energy-efficient
services to ground users. The proposed scheme is tested only for UAV BSs, ground BSs are not considered
in the scenario.
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2.5 Interference Mitigation
The last group of algorithms discussed in this work aims to include the interference target in their

resource allocation strategy. In dense networks, the challenge of interference escalates in complexity because
of a considerable increase in the number of interfering BSs. Thus, interference needs to be taken into
consideration while performing resource allocation as it affects all QoS parameters as well as the overall
system performance. The authors in [72] propose to embed interference mitigation into the resource
allocation procedure. In [125], authors proposed an algorithm where users are divided into center and edge
users. The center users can utilize all the available frequency resources, while the edge users are allowed to
use only orthogonal frequency resources to eliminate the interference between BSs. This algorithm mitigates
the interference but at the cost of high complexity. In [126], a scheduling scheme of allocation, in the time
and frequency domain, is proposed based on user priority. The SINR for each user is calculated, and if this
ratio is higher than a predefined threshold, the user will get a higher priority to be allocated to the respective
subcarrier. The resource allocation in the time domain is applied through the eICIC method using the ABS
technique. Femtocells do not transmit during some subframes, therefore avoiding interference in macro
cells. This algorithm does not consider the network EE. The coordination of interference between the cells
of the same tier is analyzed in [127]. An ultra-dense scenario composed of only small cells is simulated. For
this scenario, a distributed joint spectrum resource allocation strategy with power control is proposed for
mitigating the interference from the second closet BS from the user, as the main source of interference. One
disadvantage of this solution is its high complexity. The coordination of interference in a femtocells network
is also analyzed in [128]. An identifying interference method is proposed, and then a resource optimization
algorithm is formulated. The proposed algorithm in this work does not consider the fairness constraint.
In [129], a two tier HetNet is simulated, and the problem of interference is settled based on the Stackelberg
game. A cross-layer interference rejection and a high complexity resource allocation model for a two-tier
HetNet is formulated. In [130], a solution is proposed to minimize the interference in femtocell networks.
This solution divides the service area and frequency band into three sets by assigning each area a frequency
set. After determining the location of the femto cell, a frequency is assigned according to cell placement.
The proposed solution reduces the interference, and as a result, the SINR is increased, and throughput is
improved. However, the proposed solution is simulated in a scenario with a small number of users. In [131],
authors propose to divide users into two groups: center and edge users based on the distance from the three
nearest BSs. To mitigate the interference, authors propose that users jointly be served by the two or three
cooperating BSs. This algorithm also presents high complexity.

In the following works [132–134], only cross-tier interference is considered in resource allocation
strategy. A novel interference management approach is proposed in [132]. The proposed algorithm splits the
cell into spatial regions and allocates frequencies optimally to remove cross-tier interference. This algorithm
is also extended for a multicellular network. In [133], an approach is presented to reduce the cross-tier
interference in two-tier HetNets. The proposed solution divided the entire macro cell coverage area into three
regions: inner, middle, and outside regions. Furthermore, the complete accessible spectrum is divided into
four sub-bands. The first three sub-bands are shared between the inner and outer areas, while the fourth sub-
band was further subdivided into three sub-bands, each used by the middle area. The unused sub-bands of
each macrocell are assigned to femtocells. Work proposed in [134] aims to minimize cross-tier interference
in a HetNet. The proposed approach employs the massive MIMO technology for constructing transmit and
receive beamforming vectors that eliminate cross-tier interference at the user side. Simulation data shows
that the proposed solution gives good results in terms of system aggregate rate.

Works presented in [135,136] consider both cross-tier and co-tier interference in their allocation strategy.
In [135], authors investigated the interference issue in a 5G network, considering also D2D technology. This
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work aims to address both cross-tier and co-tier interference using three different methods, such as the
New Hybrid Frequency Reuse (NHFR) with ABS method, the closed mode D2D method, and the combined
method, including the two previous methods. In [136], authors propose an Edge-Aware Remote Radio
Heads Cooperation (EARC) method for cell edge and non-cell edge devices. This algorithm presents a high
computational complexity.

As discussed above, resource allocation algorithms typically target a single objective in their allocation
strategy that they aim to follow and optimize. However, they often fail to adequately satisfy other targets
that significantly impact the efficiency of the resulting resource allocation. Table 2 summarizes the reviewed
works, indicating their target objectives and main techniques used.

Table 2: Review of optimization strategies in resource allocation
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Main technique used

[39] ✓ ✓ ✓ ✓ Trade-off between EE and SE
[41] ✓ ✓ ✓ Enhancing EE through the use of UAVs
[42] ✓ ✓ ✓ Enhancing EE through the use of UAVs
[40] ✓ ✓ ✓ Enhancing EE at the cost of SE
[43] ✓ ✓ ✓ Enhancing EE at the cost of SE
[44] ✓ ✓ ✓ Associating users based on traffic load
[45] ✓ ✓ Enhancing EE through renewable energy sources
[46] ✓ ✓ Enhancing EE through renewable energy sources
[47] ✓ ✓ Enhancing EE through renewable energy sources
[48] ✓ ✓ ✓ Enhancing EE through iterated solution
[49] ✓ ✓ ✓ Optimizing EE through optimization using Lagrangian

parameters
[50] ✓ ✓ ✓ ✓ Optimizing EE through optimization using Lagrangian

parameters
[51] ✓ Optimizing EE through optimization using Lagrangian

parameters
[52] ✓ ✓ ✓ Optimizing EE through optimization using Lagrangian

parameters
[53] ✓ ✓ Enhancing EE using D2D technology
[55] ✓ ✓ Enhancing EE based on the water-filling power

allocation
[56] ✓ ✓ ✓ ✓ ✓ Trade-off between EE and SE
[60] ✓ ✓ ✓ Enhancing EE through switch ON/OFF technique

(Continued)
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Table 2 (continued)
Ta

rg
et

/r
ef

er
en

ce

N
et

w
or

k
ca

pa
ci

ty

SE EE

Fa
ir

ne
ss

Q
oS

re
qu

ir
em

en
t

C
om

pl
ex

ity
re

du
ct

io
n

In
te

rf
er

en
ce

co
or

di
na

tio
n

Main technique used

[61] ✓ ✓ ✓ ✓ Enhancing EE through switch ON/OFF technique
[65] ✓ ✓ ✓ ✓ Improving throughput and fairness through carrier

aggregation and the coordinated multi-point
transmission

[66] ✓ ✓ Improving fairness by assigning priorities between
users to better exploit good channel conditions

[67] ✓ ✓ ✓ ✓ Improving fairness through embedding proportional
rate constraints in allocation strategy

[69] ✓ ✓ Improving fairness through embedding proportional
rate constraints in allocation strategy

[70] ✓ ✓ ✓ ✓ ✓ ✓ Improve throughput and fairness by dividing users
into two categories, DS and DT users

[71] ✓ ✓ ✓ ✓ Improve throughput and fairness by considering only
DS users

[72] ✓ ✓ ✓ ✓ Managing interference by embedding it in allocation
strategy

[73] ✓ ✓ ✓ Improving EE through Energy harvesting technique
considering also fairness constraints

[74] ✓ ✓ ✓ Improving fairness by user’s scheduling priority based
on received signal power

[75] ✓ ✓ Maximizing the network capacity under fairness
constraint

[76] ✓ ✓ ✓ Improving fairness by considering users’
heterogeneous QoS requirement

[77] ✓ ✓ ✓ ✓ ✓ Trade-off between SE, EE and fairness using ML
techniques

[78] ✓ ✓ ✓ ✓ ✓ Mitigating interference through user grouping method
[79] ✓ ✓ ✓ Improving fairness through embedding proportional

rate constraints in allocation strategy
[80] ✓ ✓ ✓ Maximizing the network rate through Q-learning

technique
[81] ✓ ✓ Improving fairness through embedding proportional

rate constraints in allocation strategy

(Continued)



2226 Comput Model Eng Sci. 2025;142(3)

Table 2 (continued)
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Main technique used

[89] ✓ ✓ Optimizing resource under QoS constrains
[90] ✓ ✓ ✓ Optimizing resource allocation under QoS constrains
[91] ✓ ✓ ✓ Enhancing EE under QoS constrains
[92] ✓ ✓ ✓ ✓ Enhancing SE under QoS constrains
[93] ✓ Optimizing user association under QoS constrains
[94] ✓ ✓ Optimizing resource allocation under QoE constrains
[95] ✓ ✓ ✓ ✓ ✓ Reducing complexity and enhancing EE by using

heuristic approach
[96] ✓ ✓ ✓ Reducing complexity by using heuristic approach
[97] ✓ ✓ ✓ ✓ Reducing complexity and minimizing interference by

using heuristic approach
[98] ✓ ✓ ✓ Reducing complexity by using heuristic approach
[99] ✓ ✓ ✓ Reducing complexity by using heuristic approach
[103] ✓ ✓ ✓ Reducing complexity through graph theory
[104] ✓ ✓ Reducing complexity through graph theory
[105] ✓ ✓ ✓ Reducing complexity through graph theory
[106] ✓ ✓ ✓ Reducing complexity through graph theory
[107] ✓ ✓ ✓ Reducing complexity through graph theory
[108] ✓ ✓ ✓ ✓ Reducing complexity through graph theory
[114] ✓ ✓ ✓ ✓ ✓ Reducing complexity through Q-learning
[115] ✓ ✓ ✓ ✓ Reducing complexity by employing ML techniques
[116] ✓ ✓ ✓ ✓ Reducing complexity by employing ML techniques
[117] ✓ ✓ ✓ Reducing complexity by employing ML techniques
[118] ✓ ✓ ✓ Reducing complexity by employing ML techniques
[119] ✓ ✓ Reducing complexity by employing ML techniques
[120] ✓ ✓ Reducing complexity by employing ML techniques
[121] ✓ ✓ ✓ Reducing complexity by employing ML techniques
[122] ✓ ✓ ✓ Reducing complexity by employing ML techniques
[124] ✓ ✓ Reducing complexity by employing ML techniques
[125] ✓ ✓ ✓ Managing interference by dividing users into the

center and edge users
[126] ✓ ✓ ✓ Managing interference through eICIC method using

ABS technique

(Continued)
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Table 2 (continued)
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Main technique used

[127] ✓ ✓ ✓ ✓ Manage only inter-cell interference by eliminating the
interference by the second closest BS from users.

[128] ✓ ✓ ✓ ✓ Manage only inter-cell interference by the proposed
interference identification method

[129] ✓ ✓ Managing interference by embedding it in allocation
strategy.

[130] ✓ Minimize co-tier interference by dividing frequency
band into sets.

[131] ✓ ✓ ✓ Mitigating interference by jointly serving users by the
two or three cooperating BSs.

[132] ✓ ✓ Mitigating cross-tier interference by splitting the cell
into spatial regions.

[133] ✓ Mitigating cross-tier interference by splitting the
macro cell coverage area into regions.

[134] ✓ ✓ Mitigating cross-tier interference through MIMO
technology.

[135] ✓ Mitigating interference through ABS and the closed
mode D2D method.

[136] ✓ ✓ Mitigating interference through Edge-Aware
RRH-Cooperation method.

3 Methodology
While Table 2 provides a qualitative comparison between reviewed algorithms based on a thorough

literature review, a quantitative comparison between a few selected algorithms is derived using numerical
simulations. In particular, we selected two resource allocation algorithms (marked with bold in Table 2),
proposed in [70] and [72], which consider more than one criterion while allocating resources. A compar-
ative analysis of these algorithms with PF scheduling, a widespread resource allocation algorithm, is also
conducted using numerical simulations on the Matlab platform.

The algorithm proposed in Reference [70] addresses the problem of resource allocation and user
association using a convex optimization approach that presents a high computational complexity but offers
an optimal solution. To our knowledge, there is a limited number of works that address these types of
problems using standard optimization techniques due to the complexity of the problem, and those that do so
tend to consider simplified scenarios with a limited number of BSs. The main target of the algorithm proposed
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in [70] is the SE optimization. This algorithm is tested in a scenario consisting of only one macro cell.
On the other hand, the algorithm proposed in Reference [72] addresses the problem of resource allocation
using a heuristics approach and offers a near-optimal solution but presents low complexity, which makes it
more suitable to be applied in practice. The main target of the algorithm proposed in [72] is interference
coordination. The selected algorithms follow two very different approaches to tackle the same problem of
resource allocation and consider different constraints and targets in their procedure. We chose these two for
comparison because they represent two different categories of algorithms and consider several aspects. Thus,
we can derive several conclusions regarding the selected techniques and analyze how the selected approach
and target can impact the algorithm’s performance. Finally, we also compare to the PF algorithm which,
although relatively simple, has been adopted as a standardized approach to dealing with resource allocation
in heterogeneous networks. Considering its widespread popularity, we consider it a necessary baseline for
performance evaluation.

In addition, the three algorithms are also simulated with the eICIC technique to analyse the impact
of this technique on resource allocation algorithms’ performance. A detailed description of the selected
solutions is presented below.

3.1 Description of Selected Algorithms
The first algorithm [70] investigated in detail is the Iterative Resource Allocation algorithm (IRA)

(Algorithm 1), designed for resource allocation in 5G networks. The algorithm considers users with hetero-
geneous QoS requirements simultaneously in OFDMA HetNets, intending to optimize SE, and also includes
a fairness guarantee.

Algorithm 1: Iterative resource allocation algorithm
1: Initialisation: Imax and Lagrangian variables vectors λ, μ, θ , η set i = 1
2: repeat
3: for k = 1 to Kr do
4: for n = 1 to N do
5: for u = 1 to Uk do
6: a) Update p̃n

k ,u
7: b) Update gn

k (λ, μ, θ , η) and ãn
k ,u

8: endfor
9: endfor

10: Update λk
11: for u = 1 to Uk do
12: Update μk ,u and ηk ,u
13: endfor
14: endfor
15: for n = 1 to N do
16: Update θn

17: endfor
18: i = i + 1
19: until Convergence or i = Imax

To achieve this goal, the picocell K f users are first divided into two categories: DS users with minimum
data rate requirements and DT users with a fairness requirement, where DS + DT = Uk , Uk is the number
of picocell users. This algorithm aims to maximize the total throughput of all picocell users. Heterogeneous
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services, which include DT users and DS users, are considered in each femtocell. In addition, minimum
data rate protection for DS users and fairness for DT users are also taken into account [70]. The Lagrangian
method is used for problem optimization, where, λ, μ, θ , η are defined as the dual variables, introducing high
computational complexity.

The main steps of IRA are presented in Algorithm 2, where the following symbols mean:

• p̃n
k ,u is the optimal power allocated to user u on resource block n

• ãn
k ,u is allocationa variable indicating that resource block n, is allocated to user u in picocell k

• Imax is the maximum number of iterations, which was set to 50 in [70]

The optimization process is repeated until the convergence is achieved.
The other algorithm we analyze, Interference Aware Scheduling (IAW) [72], follows a heuristic approach

to optimize resource allocation, resulting in reduced complexity. In this work, the authors propose to
embed interference mitigation in the resource allocation procedure, interference coordination being the
first criterion of this algorithm. The algorithm aims to decide at each time step k which BS, including
micro and macro cells, should serve each traffic request, i.e., flow, and which RB should be allocated for
communication. To achieve this, the algorithm assigns an urgency value to every active flow, which depends
on the characteristics of the requested traffic, such as data size l f and delivery deadline d f . Thus, the
fairness criteria are fulfilled with this step. Afterward, a weight matrix W k is calculated for all the possible
combinations of resource allocation decisions, and for each decision, a pollution value is calculated. The
pollution value accounts for the interference impact that the possible decision may cause to the other active
users. Using these parameters, the algorithm produces a resource allocation strategy presented in the form
of a matrix, ak . The strategy is defined by a set of triplets (s, f , r) indicating which serving cell (i.e., which
BS) is chosen to serve which traffic flow f on which RB r.

The main steps of this algorithm are introduced below:

Algorithm 2: Interference aware scheduling
Require: tk , e( f ), l f , d f , S , R

1: ak ← ∅ and tk ← 0
2: count = 0
3: repeat
4: F k ← {f ∈ F ∶ e( f ) ≤ k ∧ tk( f ) < l f ∧ e( f ) + d f ≥ k}
5: compute urgenc y( f ),∀ f ∈ F ka

6: sort F ka by urgency
7: compute W k

8: construct ak

9: update tk
a

10: count ← count + 1 ≥ ∣R∣
11: until count

where e( f ) is the time step at which flow is initiated.
At each time step k, the algorithm is provided with updated information regarding incoming flow

requests and status information, tk , regarding all other active flows. If these sets are not provided, the
algorithm will dynamically configure them during the allocation procedure. The algorithm steps are repeated
at most ∣R∣ times, where R refers to the total set of the RBs, to ensure that all available RBs are evaluated
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at least once [72]. This algorithm approaches the problem of resource allocation heuristically at reduced
computational cost.

3.2 Simulation Scenario
To obtain an accurate picture of how different algorithms perform in identical conditions, in this

section, we evaluate the performance of the selected algorithms by simulating a two-tier HetNet scenario.
The scenario under consideration is modeled based on the urban deployment as defined by 3GPP tech-
nical specifications for future communication networks [137]. The scenario consists of several macro and
micro/pico cells. The inter-site distance for macro BSs is set to 500 m. Users and pico BSs are distributed
uniformly over the coverage area. The users are considered static during the simulation period, which is a
reasonable assumption considering that the simulation period for one simulation run is 1 s. Data traffic is
modeled according to the three categories of services that are delivered in 5G. Namely, we model three types
of traffic to mimic the behavior of eMBB, uRLLC, and mMTC traffic [138], as follows:

• eMBB traffic is modeled as full buffer traffic, with content item sizes between 100 KB and 1 MB and
deadline between 100 and 150 ms

• uRLLC traffic is modeled as intermittent (bursty) traffic with content sizes randomly chosen between
15–50 KB and deadlines 80 to 100 ms

• mMTC traffic is modeled as intermittent (bursty) traffic with content sizes randomly chosen between
5–15 KB and deadline 200 to 300 ms

Every 1 ms time slot, users request a content item randomly from one of the three categories, with
random size and deadline depending on the category. During the simulation we then keep track of the
amount downloaded for each user, including the serving BS and number of resources used. The network
scenario is shown in Fig. 3, with macro and pico/micro BSs marked with black and red color, respectively,
while users are marked with x markers.

Figure 3: Simulation scenario

We assume that all network nodes operate over a 10 MHz band; hence we have ∣Rd ∣ = ∣Ru ∣ = 50 RBs,
using 15 kHz subcarrier spacing. The noise power level value is defined according to [139]. Line of Sight
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(LoS) probability and pathloss for macro and pico/micro BSs are calculated based on [140]. The scheduling
decisions are valid for one subframe; therefore the resource allocation algorithm is performed every
1 ms. Table 3 presents relevant simulation parameters.

Table 3: Simulation parameters

Parameters Value
Number of macros 57
Number of micros 228
Number of users 1140

Macro transmitting power 43 dBm
Pico transmitting power 30 dBm

Antenna height for macro 25 m
Antenna height for micro 10 m

Users’ antenna height 1.5 m
Noise power density −174 dBm/Hz

This simulation scenario evaluates the performance of the two selected resource allocation algorithms
(IRA, IAW) and the standard PF algorithm. The algorithms are simulated under the same conditions to
enable us to conduct a comparative analysis regarding user data rate, request completion time, and percentage
of successful requests. In addition, the algorithms are also compared in terms of EE, SE, and fairness. The
simulation results are presented in the following section.

4 Results and Discussions
The first comparison between the three algorithms is presented in Fig. 4. In Fig. 4 (left), the algorithms

are compared based on the average data rate per user. The figure shows the cumulative distribution function
(CDF) curve of the individual user average data rate obtained using the three different algorithms. The PF
and IRA algorithms perform almost identically in terms of this indicator and slightly better than the IAW
algorithm. Both PF and IRA consider the data rate in their objective functions, while IAW only considers it
indirectly in terms of its urgency parameter. It is interesting to note that although PF only considers fairness,
it still offers shorter completion times per data flow, as can be seen in Fig. 4 (right). Note that PF offers, on
average, 1 ms completion time for 60% of data flows, while IRA and IAW offer 1 ms completion time for 55%
and 50% of data flows, respectively. Both IAW and IRA prioritize urgent traffic to some degree; therefore,
this could contribute to the overall increase in completion time since uRLLC traffic, which appears only
intermittently, is prioritized, interrupting ongoing eMBB traffic.

In Fig. 5 (left), we show the ratio of completed requests for the three different categories of traffic. PF
and IAW perform quite similarly in terms of the indicator, guaranteeing the successful delivery of almost
all uRLLC and mMTC traffic and around 80% of eMBB traffic. IRA performs slightly worse, in particular
for uRLLC and mMTC traffic. In the right side plot of Fig. 5, we show the overall Jain fairness index
for each algorithm. The Jain fairness index is calculated concerning the average user data rate using the
following expression:

J = (∑
n
i=1 xi)

2

n ⋅ ∑n
i=1 x2

i
(1)
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where n is the total number of users and xi denotes the average user data rate for user i.

Figure 4: Comparison of algorithms in terms of average data rate per user (left); Comparison of the two algorithms in
terms of completion time (right)

Figure 5: Comparison of algorithms in terms of successful requests per category: eMBB (blue), uRLLC (red) and
mMTC (yellow) (left); Comparison of algorithms in terms of fairness (right)

It is surprising to note that IAW outperforms PF regarding this indicator. We recall that IAW attempts to
minimize the overall interference caused by each transmission, and this, in turn, results in improved channel
conditions for the edge users, thus increasing the overall fairness of the solution.

It should be noted that neither IAW nor IRA directly tackles fairness. However, the IAW algorithm
assigns an urgency value to all requests based on the time before the delivery deadline expires. Based on
this urgency value, the algorithm serves the users, which achieves a level of fairness comparable to the
PF algorithm. The IRA algorithm divides users into two categories: Delay Sensitive (DS) users and Delay
Tolerant (DT) users. Higher priority is given to DS users for providing uninterrupted service, while DT users
are served with lower priority since they can tolerate delays. This achieves slightly lower levels of fairness
than the other two algorithms, evaluated based on the Jain Fairness Index.
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In Fig. 6, we compare two other important performance indicators, SE and EE. As expected, in terms
of EE (shown in Fig. 6 (left)), IAW outperforms the two other algorithms, especially for pico cells. It is,
therefore, evident that interference mitigation is important when optimizing heterogeneous networks. We
note surprisingly that at the network level, IAW also outperforms in terms of SE, for macro cells in particular.
We note that due to their pollution potential, macro cells are used sparingly when employing IAW, but as
can be implied from these results, with high levels of SE. By contrast, IRA, which optimizes SE, does not
perform as well in the presence of macro cells. We recall that IRA only optimizes SE for picocells, which
is degraded significantly when macro cells are employed without any interference mitigation MEChanisms
in place. When interference is embedded in the resource allocation strategy, the algorithms perform better
than standard solutions in terms of energy and spectral efficiency. The IAW algorithm embeds interference
coordination in its allocation strategy, while IRA optimizes the resource allocation procedure under only
the cross-tier interference constraint. It should be noted that in general, improving EE, which requires BSs
to use transmit power sparingly or intermittently, usually decreases the SE or the amount of bits that can be
transmitted per Hz or RB due to the decrease in SINR. However, these results show that although there is
a trade-off between SE and EE, it is possible to improve both metrics, in particular by employing efficient
interference coordination or mitigation techniques.

Figure 6: Comparison of algorithms in terms of Energy Efficiency (left); Comparison of algorithms in terms of Spectral
Efficiency (right)

To evaluate the effect of interference coordination on the performance of the system, we also repeat
the simulation scenario while applying eICIC, with ABS of 20%. The results are presented in Figs. 7–9.
In terms of average user data rate (Fig. 7 (left)), we see very little difference from the previous results,
with IAW experiencing some improvement as we notice that the gap in performance with the other two
algorithms is narrower. In terms of request completion time (Fig. 7 (right)), we note a slight increase in
completion times for PF and IRA, where we note that the percentage of requests that are completed within
1 ms now drops to 55% and 50%, respectively. In terms of successful requests (Fig. 8 (left)), we see that there
is some improvement for uRLLC and mMTC traffic, especially using the IRA algorithm. In terms of fairness
(Fig. 8 (right)), ABS improves the performance of both PF and IRA, validating our previous conclusion that
the IAW algorithm ensures fairness in the system by using its inherent interference mitigation MEChanisms
and does not need additional MEChanisms such as eICIC.
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Figure 7: Comparison of algorithms in terms of data rate per user with 20% ABS (left); Comparison of algorithms in
terms of completion time with 20% ABS (right)

Figure 8: Rate of successful requests per category: eMBB (blue), uRLLC (red) and mMTC (yellow) with 20% ABS (left);
Comparison of algorithms in terms of fairness with 20% ABS with 20% ABS (right)

The most significant improvement when ABS is employed is noted in terms of EE and SE for pico cells.
As expected, when macro cells are muted, the pico cells operate without any inter-tier interference and,
therefore, with better efficiency, both in terms of power consumed, since they can deliver higher data rates
at the same transmit power, as well as better SE, since they use the same number of RBs to deliver higher
amounts of data, especially during the period when ABS is active and for the users that are served by pico
cells. Therefore, we note there is an improvement across all three algorithms in these two indicators when
ABS is active. This means that if the strategy of changing the macro cell mode (setting macros to idle mode) is
included in the allocation strategy, the algorithms will perform better because users’ SINR will be increased
since the number of interfering BSs will be reduced. In this case, also the EE and SE are enhanced, which is
another important target in ultra-dense networks, especially in 5G and 6G.

Furthermore, we have presented the results in tables. Table 4 presents a comparison of the performance
of the selected algorithms without and with the eICIC technique in terms of the percentage of users achieving
a certain user rate and the percentage of users showing a certain completion time value. For example, in the
case of the IAW algorithm, 79.5% of the users achieve values of completion time smaller than 5ms, meaning
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the other users experience completion time greater than 5 ms. When the eICIC technique is employed, 80%
of the users achieve values of completion time smaller than 5 ms with the IAW algorithm.

Figure 9: Comparison of algorithms in terms of Energy Efficiency with 20% ABS (left); Comparison of algorithms in
terms of Spectral Efficiency with 20% ABS (right)

Table 4: Comparison of algorithms in terms of average user rate and completion time

Percentage of
users/Algorithm

IAW IAW
with

eICIC

PF PF with
eICIC

IRA IRA with
eICIC

Completation time
<5 ms

79.5% 80% 82.4% 82.1% 76.3% 76.1%

50% of users that
archive a certain

data rate

5.88 Mb/s 5.83 Mb/s 6.64 Mb/s 6.24 Mb/s 6.64 Mb/s 6.08 Mb/s

Table 5 presents the percentage of successful requests differentiated for three types of traffic for the three
algorithms. For example, the PF algorithm reaches a percentage of 81.17% of successful requests for eMBB
traffic, while when the eICIC technique is applied, that percentage of successful requests for the same traffic
raises to 81.44%.

Table 5: Percentage of successful requests

Algorithm/Traffic nature eMBB uRRLC mMTC
IAW 81.06% 99.45% 99.15%

IAW with eICIC 81.29% 98.87% 98.65%
PF 81.17% 99.45% 99.52%

PF with eICIC 81.44% 99.19% 99.33%
IRA 79.22% 93.54% 94.6%

IRA with eICIC 79.58% 94.64% 95.56%
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Tables 6 and 7 present the maximum values for SE and EE, respectively, reached by each algorithm. The
IRA algorithm reaches a maximum EE value of 2454.35 b/J at pico cells, while when eICIC is applied, the
value increases at 2624.86 b/J.

Table 6: Maximum EE reached by each algorithm

Algorithm/Cell type Macro Pico
IAW 439.157 b/J 3610.29 b/J

IAW with eICIC 440.823 b/J 4222.98 b/J
PF 333.164 b/J 3214.7 b/J

PF with eICIC 345.032 b/J 3462.17 b/J
IRA 331.592 b/J 2454.35 b/J

IRA with eICIC 343.854 b/J 2624.86 b/J

Table 7: Maximum SE reached by each algorithm

Algorithm/Cell type Macro Pico
IAW 438.117 b/RB 180.515 b/RB

IAW with eICIC 439.779 b/RB 211.149 b/RB
PF 332.375 b/RB 160.735 b/RB

PF with eICIC 344.215 b/RB 173.109 b/RB
IRA 332.375 b/RB 122.718 b/RB

IRA with eICIC 344.215 b/RB 131.243 b/RB

As discussed in this paper, complexity is another major concern for resource allocation strategies. We
can conclude that heuristics is a suitable approach to be followed, especially in ultra-dense networks when
complexity is increased with the densification. Heuristic algorithms such as PF combined with eICIC or
IAW algorithms could be scaled for use in future communication networks because, in general, they are less
complex than convex optimization approaches such as the one used in IRA, and are more easily integrated
with the use of emerging approaches such as machine learning.

On the one hand, the IRA algorithm could be adapted to be used for future small scale communication
networks, especially for practical use cases where traffic prioritisation is required, such as uRLLC, since it
takes into account user latency requirements. The concept could easily be extended, and user differentiation
may be performed based on additional requirements. Since the 5G and 6G are known for heterogeneous
users’ requirements, the algorithm could be a suitable approach for such scenarios.

The IAW can be implemented both centralized and distributed. In a distributed manner, the algorithm
is performed independently for each cluster, consisting of three macrocells and 12 microcells. This makes it
more suitable for application in large-scale networks, compared with IRA, which is only tested in a single-
cell scenario.

5 Conclusion
Resource allocation in HetNets is a topic discussed in numerous research publications and continues

to be a very intensive area of research in future communication networks. In this work, we offer a
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thorough review of the literature on the topic by comparing and contrasting dozens of proposed schemes
in the literature in terms of their optimization objectives and approaches. In addition, we analyze three
algorithms, two selected algorithms from the state-of-the-art and one standard algorithm, and compare their
performance in wireless HetNets through numerical simulations. The IAW algorithm, which is developed
for 4G heterogeneous networks and follows a heuristic approach; the IRA algorithm, which is designed for
5G HetNets and uses an optimization approach; and the PF algorithm, which is a standard algorithm used in
practical wireless systems. All algorithms are executed in the same scenario and under the same conditions
to facilitate a quantitative comparative analysis between the three algorithms.

The simulation results confirm that interference coordination is an important aspect of resource
allocation strategies since it affects network performance and users’ QoS requirements. The IAW algorithm
outperforms the IRA and PF algorithms regarding EE, SE, and fairness because it uses resources more
sparingly but more efficiently.

Due to heterogeneous service requirements and strict delay tolerance required by technologies such
as 5G and 6G, networks must perform satisfactorily regarding the rate of successful requests and fairness
indices. We note that IAW performs better in terms of these two parameters, while for PF and IRA, the
performance is improved by using additional interference MEChanisms such as ABS.

In this work, we also analyzed the effect of applying additional interference coordination techniques
in conjunction with resource allocation algorithms. To do this, we repeated the simulation for the same
network and scenario, but we applied the eICIC technique by setting the ABS to 20%. From the simulations,
we concluded that the performance of the algorithms is improved when the ABS is set to 20% because the
interference is reduced, compared to the results when the ABS is set to 0. The biggest improvement is noted
in terms of EE and SE, which was expected since when macro cells are idle, less energy is consumed, and all
active users are served by pico cells.

Finally, we can conclude that for resource allocation in ultra-dense HetNets, there is no single algorithm
that guarantees the best performance in all relevant metrics. Thus, the type of resource allocation algorithms
to be applied depends heavily on network performance requirements and parameter criteria. These, in
6G, for example, depend greatly on the concrete use case, targeted services, and technology choices when
such a network is deployed. All these findings from this work, derived by comparing different resource
allocation algorithms, can be applied by network operators and policymakers to design more efficient
resource allocation strategies, resulting in a reduced cost. Fulfilling some of the network parameters while
performing resource allocation, has a high impact on network performance. Network operators have to
prioritize which goals are most important for their network topology to reach an optimal trade-off and
achieve the desired performance.

Future research will be focused on further aspects of ultra-dense network scenarios, beginning with a
deeper and more comprehensive analysis of resource allocation techniques for different scenarios. HetNets
with more complex architectures will be considered, taking into account a wider variety of BSs that may
not be fixed, such as UAVs. A deeper analysis of resource allocation in terms of EE and other pollution
parameters, such as electromagnetic field exposure, also needs to be conducted, since they are topics of great
interest in light of climate change.
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