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ABSTRACT: Brain tumors, one of the most lethal diseases with low survival rates, require early detection and accurate
diagnosis to enable effective treatment planning. While deep learning architectures, particularly Convolutional Neural
Networks (CNNs), have shown significant performance improvements over traditional methods, they struggle to
capture the subtle pathological variations between different brain tumor types. Recent attention-based models have
attempted to address this by focusing on global features, but they come with high computational costs. To address these
challenges, this paper introduces a novel parallel architecture, ParMamba, which uniquely integrates Convolutional
Attention Patch Embedding (CAPE) and the ConvMamba block including CNN, Mamba and the channel enhancement
module, marking a significant advancement in the field. The unique design of ConvMamba block enhances the ability
of model to capture both local features and long-range dependencies, improving the detection of subtle differences
between tumor types. The channel enhancement module refines feature interactions across channels. Additionally,
CAPE is employed as a downsampling layer that extracts both local and global features, further improving classification
accuracy. Experimental results on two publicly available brain tumor datasets demonstrate that ParMamba achieves
classification accuracies of 99.62% and 99.35%, outperforming existing methods. Notably, ParMamba surpasses vision
transformers (ViT) by 1.37% in accuracy, with a throughput improvement of over 30%. These results demonstrate that
ParMamba delivers superior performance while operating faster than traditional attention-based methods.

KEYWORDS: Brain tumor classification; convolutional neural networks; channel enhancement module; convolutional
attention patch embedding; mamba; ParMamba

1 Introduction
Brain tumor is a mass formed by the uncontrolled proliferation of brain cells, which occurs in males and

females of all ages and is one of the most dangerous diseases in the world [1]. Therefore, early identification
of brain tumors is particularly crucial to improve the treatment effect and survival rate of patients. Among
various imaging techniques, magnetic resonance imaging (MRI) is currently the most popular method for
detecting brain tumors [2]. From the perspective of MRI, brain tumors can be further classified into gliomas,
meningiomas, and pituitary tumors based on their size, shape, and location [3]. Each type of tumor can be
life-threatening. Therefore, it is crucial to classify different types of brain tumors effectively and then conduct
targeted treatments for each type. However, due to the small structural differences between different brain
tumors, accurately classifying them is challenging. Manual classification by doctors is inevitably prone to
misdiagnosis and inefficient, while also increasing the burden on doctors. To overcome these difficulties,
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machine learning-based techniques have begun to be applied to MRI images for automatic brain tumor
classification tasks and have played a crucial role in computer-aided diagnosis (CAD) systems.

So far, the emergence of CNN has revolutionized the field of medical image processing. Traditional
machine learning algorithms such as Support Vector Machine (SVM) and Decision Tree often require
manual feature design, which relies on domain knowledge and expert experience, and the process is
cumbersome. In contrast, CNN can automatically learn feature representations from raw data, reducing
the reliance on manual feature engineering. Therefore, CNN have significantly improved the performance
of CAD systems. Although CNN have achieved better classification performance compared to traditional
machine learning methods, due to the characteristics of local feature extraction, CNNS may ignore some
key inherent tumor properties when processing brain tumor classification tasks, such as the contextual
information surrounding the tumor region and the size variations of the tumor. The lack of these pieces
of information can lead to limitations in the model’s ability to identify tumors. Additionally, the high
similarity between brain tumor categories add to additional difficulties for the practical application of CNN.
To overcome these challenges, researchers [4–6] have increasingly integrated attention mechanisms into
CNN models, By incorporating attention mechanisms, CNNs are able to capture finer-grained details within
tumor regions, which are crucial for distinguishing between different types of brain tumors.

The emergence of vision transformer (ViT) [7] has overcome the limitations of CNN, yet it require
extensive computational resources during training, limiting the input sequence length and increasing
training time. Recently, Mamba [8–10] has not only overcome these difficulties but also possesses the ability
to extract global features. The Spatial State Model (SSM) represented by Mamba operates in linear time with
respect to sequence length. Benefiting from its linear time complexity, Mamba has a lower computational
cost, potentially demonstrating higher computational efficiency in handling complex tasks.

Despite significant advancements in deep learning for medical image classification, existing studies still
fall short in capturing subtle distinctions in brain tumors and reducing computational costs. Traditional
CNN perform well in local feature extraction but are limited in handling long-range dependencies and
global features. Additionally, while ViT overcome the limitations of CNN, they require substantial com-
putational resources. The main objective of this study is to develop an efficient brain tumor classification
model that achieves high classification accuracy, with the aim of enhancing the practical applicability of
automatic brain tumor detection and diagnosis. To this end, we propose a novel parallel architecture named
ParMamba, which utilizes ConvMamba blocks as its backbone and incorporates Convolutional Attention
Patch Embedding (CAPE). The ConvMamba block combines the local feature extraction capabilities of CNN
with the global feature capturing strengths of the Mamba, resulting in improved computational efficiency
and classification accuracy. Furthermore, the channel enhancement module is introduced to enhance cross-
channel feature interactions. CAPE captures brain tumor information from multiple perspectives by applying
both max pooling and convolutional pooling in two directions, which enriches the feature representation.
The main contributions of this paper are summarized as follows:

• This paper propose a parallel architecture called ParMamba, designed for effective multi-class classifi-
cation of brain tumors in MRI images.

• This paper design a novel module, ConvMamba block, which can extract brain tumor image features
from local and global contexts.

• Comprehensive experiments were conducted on two brain tumor datasets, which verified the excellent
ability of ParMamba in brain tumor classification.

• Comparing ParMamba with the most advanced brain tumor classification methods demonstrates that
ParMamba outperforming existing brain tumor classification methods.
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2 Related Work
Brain tumors exhibit a variety of types, each with distinct characteristics and manifestations. Further-

more, many brain tumors have indistinct boundaries, making them easily confusable with surrounding
normal tissue, which adds to the complexity of classification. In early automated systems, people used
machine learning methods to identify tumors of brain tumors from MRI images. El-Dahshan et al. [11] used
discrete wavelet transform (DWT) to obtain features related to MRI images and classified them using a
k-nearest neighbor-based classifier. Shim et al. [12] combined finite element analysis and machine learning
methods for detecting brain injuries. Das et al. [13] adopted Ripplet Transform Type-I (RT) to represent
significant features of brain MRI images and used least squares support vector machines to classify brain MRI
images. Zhang et al. [14] compared traditional training methods such as Scaled Chaotic Artificial Bee Colony
(SCABC), momentum BP, genetic algorithms, and simulated annealing, indicating that the SCABC method
is better. Shim et al. [15] developed an efficient computational pipeline to generate finite element models of
brain injury for specific individuals, predicting structural damage following trauma. However, traditional
machine learning still poses challenges due to its reliance on manual intervention and the requirement for
extensive domain knowledge and expertise.

CNN can automatically learn feature representations from raw data, reducing the reliance on manual
feature engineering. Therefore, CNN has been widely used in CAD methods for medical images and
has revolutionized the field of medical image analysis. Ayadi et al. [16] proposed a deep CNN model,
utilizing ten different convolutional layers to extract features from brain tumor images, aiming to enhance
the ability to capture brain tumor features. Atha et al. [17] employed CNN as the base architecture and
incorporated the idea of semi-supervised learning, combining the training process of labeled and unlabeled
brain tumor data, enabling the network to learn from both types of data simultaneously. Rizwan et al. [18]
used Gaussian convolution kernels to extract local features of brain tumors, enhancing the accuracy of brain
tumor feature extraction. Zhu et al. [19] adopted DenseNets as the base network structure and introduced a
biologically inspired evolutionary algorithm to optimize the network structure of DenseNets, adapting it to
the characteristics of medical image data. Aamir et al. [20] used two pre-trained CNN networks, EfficientNet
and ResNet50, to extract features from brain tumor images separately. Then, they employed partial least
squares (PLS) to fuse the feature vectors extracted from the two models, forming a hybrid feature vector.
Kumar et al. [21] proposed a multi-class brain tumor classification method based on ResNet-50 and global
average pooling, which performs well in addressing gradient disappearance and overfitting issues in deep
networks. Gursoy et al. [22] integrated graph neural networks (GNNs) to capture relational dependencies
between image regions and CNN to extract spatial features, enhancing the detection of brain tumors.

However, when using CNN models for brain tumor classification, limited data can lead to the over-
fitting problem. Therefore, to address the issue of small brain tumor image samples, data augmentation
techniques have been applied to enlarge the dataset in some works. Yaqub et al. [23] utilized generative
adversarial networks (GANs) for data augmentation. Ghassemi et al. [24] employed GANs for preprocessing
brain tumor images, in addition to data augmentation methods such as image rotation and mirroring.
Li et al. [25] adopted data augmentation techniques including rotation, horizontal flipping, and vertical
flipping, as well as salt-and-pepper noise as a data augmentation method.

In recent years, with the introduction of attention mechanism into the field of computer vision,
researchers have also combined attention mechanism with CNN and applied it to medical images.
Dutta et al. [26] adopted CNN as the base architecture and introduced a lightweight global attention
mechanism after the CNN layers, enhancing the model’s ability to extract more salient features from brain
tumor images. Wang et al. [27] utilized a pre-trained vision transformer as the base architecture, and
combined with token merging techniques, to extract key information from brain tumor images. Isunuri
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et al. [28] employed a pre-trained efficientNetB4 to extract brain tumor features and then used multi-path
convolution and multi-head attention for feature enhancement.

More recently, Mamba based on state-space models (SSM) has emerged in people’s vision. Mamba not
only has the ability of global feature extraction, but also exhibits linear complexity related to the size of the
input image. Yue et al. [29] combined the local feature extraction capability of CNN with the ability of SSM
to capture long-range dependencies, thereby modeling medical images in different modes. Ma et al. [30]
have utilized the integration of CNN’s local pattern recognition capabilities with Mamba’s global context
understanding, enabling automatic adaptation to various datasets and applicability in segmentation tasks
across diverse biomedical imaging fields. Ruan et al. [31] have proposed a medical image segmentation model
based on SSM. By leveraging Visual State Space (VSS) blocks to capture extensive contextual information,
they have constructed an asymmetric encoder-decoder architecture, marking it as the first medical image
segmentation model purely built upon SSM.

3 Proposed Methodology
The architecture of the proposed ParMamba adopts four units for brain tumor classification, which is

similar to numerous prior studies [29,32,33]. As shown in Fig. 1, Each unit incorporates a patch embedding
layer, succeeded by multiple sequentially arranged ConvMamba blocks. Specifically, the patch embedding
layer adopts convolutional attention patch embedding layer [32], while each ConvMamba block consists of
a ConvBlock, a MambaBlock, and a channel enhancement module.

Figure 1: The overall architecture of the proposed ParMamba

In the first unit, The channel dimension of the input image x ∈ R3×H×W is mapped to C1 channels via
convolutional attention patch embedding layer, obtaining the embedded image x′1 ∈ RC1×

H
4 ×

W
4 . Then, the x′1

is fed into N1 sequentially stacked ConvMamba blocks to extract image features, yielding X′1 ∈ RC1×
H
4 ×

W
4 . The

second, third, and fourth units repeat the above operations, resulting in the fourth unit, the X′4 ∈ RC4×
H
32×

W
32 is

obtained. Finally, classifier predicts whether the input image is glioma, meningioma, notumor, or pituitary.

3.1 Convolutional Attention Patch Embedding
Convolutional Attention Patch Embedding (CAPE) [32] is a downsampling method, as shonw in Fig. 2.

CAPE combines convolutional patch embedding and channel attention module (CAM). CAPE processes the
input image or the feature map X′i−1 from the previous stage, with dimensions Ci−1 ×Hi−1 ×Wi−1, which can
be described in Eq. (1).

x′i = PatchEmbedding (X′i−1) + CAM (X′i−1) (1)

The input X′i−1 will be patched into x′i ∈ RCi×
H
Si
×

W
Si , where Si represents the downsampling ratio, and Ci

is the adjustable number of channels for stage i.
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Figure 2: Convolutional attention patch embedding

In CAM, Overlap MaxPool captures global spatial information and downsamples the input, followed by
a 11 convolution to increase the number of channels. In convolutional patch embedding, a convolution with
a kernel size of 7, stride of 4, and padding of 2 is used to capture local information, downsample, and increase
the number of channels. Finally, the feature maps obtained from CAM and convolutional patch embedding
are summed to calibrate the feature map. Utilizing the local and global feature extraction capabilities of CAPE
and the ConvMamba block, the fusion of local and global features can adequately extract fine-grained and
coarse-grained features from brain tumor images, thus enhancing the recognition ability for different types
of brain tumors.

3.2 ConvMamba Block
As depicted in Fig. 3, using a parallel architecture with two separate branches for feature extraction

enhances the model’s ability to capture crucial features through feature fusion. This approach allows the
model to leverage the complementary strengths of the individual branches, thereby bolstering its overall
performance in identifying and extracting salient features [29,32]. Therefore, the proposed ConvMamba
block also adopts a parallel structure, consisting of a ConvBlock, a MambaBlock and a channel enhancement
module. The ConvBlock, comprised of multiple convolutional layers and activation functions extracts brain
tumor characteristics. Prior work [29] has validated the feasibility of the MambaBlock. As a state-space model
(SSM) [8], Mamba possesses the characteristic of linear time complexity, ensuring efficient feature extraction
and model training when processing brain tumor images. Additionally, Mamba’s ability to comprehend
global context is particularly significant for identifying complex structures in brain tumor images, as
brain tumors often exhibit diverse shapes, sizes, and locations. Therefore, the proposed ConvMamba block
utilizes the MambaBlock to extract global features of brain tumors, allowing for better attention to the
lesion locations.
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Figure 3: The parallel architecture of ConvMamba block

In the ConvMamba block, the feature maps x′i ∈ RCi×
H
Si
×

W
Si is obtained through a CAPE. The chan-

nels Ci of x′i is then divided into two parts, which are processed by a ConvBlock and a MambaBlock,
respectively. Afterward, the channels are merged, and a channel enhancement module is applied to explore
the dependencies among the channels. This process can be mathematically expressed with the following
equations:

x′′1 , x′′2 = Spl it (Norm (x′i)) (2)
X1 = Conv (x′′1 ) (3)
X2 = Mamba (x′′2 ) (4)
X3 = Cat (X1 , X2) (5)
X4 = X3 + CEM (X3) (6)
X′i = x′i + X4 (7)

where, x′′1 , x′′2 , X1 , X2 ∈ R
Ci
2 ×

H
Si
×

W
Si , X3, X4, x′i ∈ RCi×

H
Si
×

W
Si . Norm(.) represents layer normalization, Split(.)

represents splitting the channels Ci . Conv(.) and Mamba(.) represent the ConvBlock and MambaBlock,
respectively, used for extracting feature information. Cat(.) is the concatenation of the channels of X1 and X2.
CEM(.) represents the channel enhancement module, which facilitates the information exchange between
different channels.

This section describes each component of the ConvMamba block in detail.
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3.2.1 ConvBlock
Traditional convolutions typically employ 11 or 33 kernels and directly perform convolutions on all

channels of the input data. This results in a relatively large number of parameters and computational costs.
The structure of ConvBlock is inspired by MobileNet [34], which utilizes depthwise separable convolutions.
It consists of two steps: firstly, depthwise convolution, where each channel of the input data is convolved
separately; secondly, pointwise convolution, where a 11 kernel is used to convolve the output of the
depthwise convolution to fuse information from different channels. With depthwise separable convolutions,
the number of parameters and computational cost are relatively low, allowing for the use of larger size
kernels, such as 77. Larger size kernels have a wider receptive field, enabling them to capture more extensive
information, which can be advantageous when dealing with the complex structures of brain tumor images.

Inspired by ConvNeXt [33], the ConvBlock employs an inverted bottleneck layer structure, where the
middle is large and the ends are small. The inverted bottleneck layer structure, by expanding and contracting
the number of channels, increases the nonlinearity of the network, enabling the model to have better
generalization capabilities and effectively avoid information loss. This means that the model can better
adapt to new data and improve performance on unseen data. Additionally, the ConvBlock incorporates
layer normalization and the GELU activation function after the depthwise separable convolution and the
first 11 convolution. Layer normalization can enhance the stability of training, prevent issues such as
gradient vanishing and gradient explosion, and provide a regularization effect that improves generalization
performance. The GELU activation function enables the neural network to learn and represent complex
nonlinear relationships.

3.2.2 MambaBlock
First, a review of Structured State Space Sequence Models (S4) [35] is presented. S4 is based on the

concept of hidden states, where an internal state variable h(t) describes the system’s state, and an input x(t)
drives the state transitions. It is typically defined as:

h′ (t) = Ah (t) + Bx (t)
y (t) = Ch (t) (8)

where, A ∈ RN×N represents the state matrix, while B ∈ RN×1 and C ∈ RN×1 denote the projection parameters.
Next, this system is discretized by introducing a time scale parameter △ and applying a fixed dis-

cretization rule, zero-order hold (ZOH), which transforms A and B into discrete parameters
−

A and
−

B,
defined as:
−

A = exp (△A)
−

B = (△A)′ (exp (△A) − I) ⋅ △B
−

C = C (9)

The Eq. (8) can then be expressed with discrete parameters as:

h′ (t) =
−

Ah (t) +
−

Bx (t)

y (t) =
−

Ch (t) (10)
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Additionally, for an input sequence of length T, a global convolution with kernel
−

K can be applied to
compute the output of the equation as follows:

−

K = (C
−

B, C
−

AB, ..., C
−

A
T−1
−

B)

y = x ∗
−

K
(11)

The Selective State Space Model (S6) [8] is an extension of the S4 model. S6 dynamically adjusts certain
parameters (such as△, B, and C), enabling the model to selectively retain or disregard information based on
input data. This flexibility allows the model to better accommodate diverse sequence characteristics.

The core of MambaBlock is the 2D selective scanning (SS2D), which was proposed by Vmamba [10]. As
shown in the Fig. 4, SS2D comprises three components: scan expanding, S6 block, and scan merging. Firstly,
scan expanding generates multiple sequences by extending the input image along four directions (upper left
to the lower right, lower right to the upper left, upper right to the lower left, and lower left to the upper right).
These sequences are then fed into the S6 block to extract and integrate detailed features from each direction.
Finally, scan merging sums and merges the sequences from these four directions to restore an output image
with the same size as the input image. This process aims to enable the model to distinguish and retain key
information while filtering out irrelevant information, thereby enhancing the model’s performance.

Figure 4: Illustration of 2D-Selective-Scan (SS2D). The input patches undergo scan expanding in four different
directions, and each sequence is processed independently by distinct S6 blocks. Subsequently, the results are merged
through scan merging to construct the final output

It is noteworthy that there are two residual connections in MambaBlock. In the first residual connection,
the input is first normalized, then passes through a linear layer, a depthwise separable convolution, and a
SiLU activation function to extract features. These features are then fed into the SS2D, followed by further
feature extraction through normalization and a linear layer. In the second residual connection, the feature
map obtained from the previous residual connection is normalized, and then a linear layer is applied for
feature fusion. This yields the output of the MambaBlock branch. Furthermore, the normalization method
utilized in MambaBlock is layer normalization.

3.2.3 Channel Enhancement Module
After merging parallel tokens, some previous methods [32] employed Multi-Layer Perceptrons (MLP)

to facilitate information exchange between different channels, often resulting in a substantial computational
burden. To reduce computational costs while maintaining classification performance, this paper proposes a
lightweight channel enhancement module, as shown in Fig. 3. The channel enhancement module consists of a
11 convolution with compressed channels to reduce computational costs and enable cross-channel communi-
cation, as well as a 11 convolution with expanded channels to enhance local relationships. Normalization and
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activation functions are applied after each convolution to improve generalization performance, and residual
connections are utilized to prevent gradient vanishing.

4 Experiments and Results
This section provides a detailed description of the experiments conducted in this paper, including

the experimental details, and the datasets used in the experiments. Comparisons are also made with
existing brain tumor classification methods. Furthermore, ablation studies were performed to investigate the
effectiveness of CAPE, MambaBlock, and the channel enhancement module.

4.1 Dataset
To train and evaluate the proposed ParMamba in this paper, two publicly available brain tumor MRI

datasets are utilized.
The first dataset (dataset 1) is available on the Kaggle website1. Dataset 1 contains four different types of

MRI images, including glioma, meningioma, pituitary, and no tumor, with 1621, 1645, 1757, and 2000 images
respectively, totaling 7023 images. Among them, 5712 images are used for training, and 1311 images are used
for testing. Some sample images are shown in Fig. 5a.

The second dataset (dataset 2) is available on the Figshare website2. Dataset 2 contains 3064 T1-weighted
magnetic resonance imaging (MRI) images from 233 patients with different types of brain tumors. The images
in dataset 2 are classified into three categories: 708 meningioma, 1462 glioma, and 930 pituitary tumors. In
this paper, the dataset is split into training and testing sets with a ratio of 8:2. Some sample images are shown
in Fig. 5b.

Before the experiments, the datasets were first preprocessed. All images were resized to 224224 pixels
and normalized for each dataset, scaling all pixel values to the range of [0, 1] by dividing by 255. Additionally,
due to the limited data in dataset 2, two simple strategies for data augmentation were employed, including
mirroring and rotation operations. Through data augmentation, dataset 2 was expanded to three times its
original size, totaling 9192 images.

4.2 Implementation Details
All experiments in this paper were conducted in a Python 3.8 environment with the deep learning

framework PyTorch 1.13.0. The CPU model is 96 Intel(R) Xeon(R) Platinum 8255C CPU, and the GPU model
is RTX 3090 with 24 GB of video memory. The operating system is Ubuntu 20.04.01.

During the training process, an AdamW optimizer with a learning rate of 1e−3 and momentum of 0.9
was utilized. A cross-entropy loss function with a weight decay of 0.05 was employed to optimize the model
parameters. For training the model, the epoch was set to 500, with a batch size of 32. The channel dimensions
of the four units [C1, C2, C3, C4] are [48, 96, 192, 384], and the number of stacked ConvMamba blocks [N1,
N2, N3, N4] are [3, 3, 9, 3]. Additionally, no pre-trained weights were used. The specific configuration is
presented in Table 1.

1https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset, accessed on 08 January 2024
2https://figshare.com/articles/dataset/brain_tumor_dataset/1512427/5, accessed on 08 January 2024
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Figure 5: Images in dataset 1 and dataset 2
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Table 1: Configurations of the ParMamba

Hyper-parameter Value
Input size 224, 224

Depth 18
Embedding dimension 384

Optimizer AdamW
Weight decay 0.05
Learning rate 1e−3
Momentum 0.9
Batch size 32

Max epoch 500

4.3 Evaluation Metrics
Based on the characteristics of brain tumor images, this paper uses accuracy, precision, sensitivity,

and F1 score as the evaluation metrics for the proposed model. These four metrics can directly reflect the
effectiveness of the model. The expressions for calculating these metrics are as follows:

Accurac y = TP + TN
TP + TN + FP + FN

(12)

Precision = TP
TP + FP

(13)

Sensitiv ity = TP
TP + FN

(14)

F1 − score = 2 × Precision × Sensitiv ity
Precision + Sensitiv ity

(15)

where, TP represents the number of true positive samples, FP is the number of false positive samples in the
confusion matrix. TN stands for the number of true negatives, and FN represents the false negative samples
in the confusion matrix.

4.4 Results
This section introduces the classification performance of the proposed ConvMemba on dataset 1 and

dataset 2, and compares its results with the brain tumor classification models. It is noteworthy that the
ablation study in this section is conducted on dataset 1.

4.4.1 Ablation Study
This section compares Mamba with the attention mechanism by replacing the MambaBlock in Con-

vMamba block with a vanilla ViT [7]. As shown in Table 2, the accuracy of Mamba increased by 1.37%
compared with ViT, while the parameters decreased by 1.7 M, FLOPs decreased by 55%, and throughput rate
also increased by more than 30% compared with ViT. Therefore, it is demonstrated that Mamba not only
outperforms ViT in terms of speed but also achieves a higher accuracy.

Furthermore, an ablation study was conducted to investigate the overall impact of CAPE, MambaBlock,
and the proposed channel enhancement module. As indicated in Table 3, without using CAPE and instead
employing a single-branch convolutional patch embedding, the accuracy decreased by 1.22%, with only a
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0.1 M reduction in parameters. This suggests that CAPE is crucial for this model. Disabling the channel
enhancement module after combining the parallel branches of ParMamba resulted in a 0.62% decrease in
accuracy, with only a 0.83 M reduction in parameters. This proves that the channel enhancement module
effectively enhances the merged channels. Therefore, this paper adopts the channel enhancement module to
improve the model’s accuracy with a minimal increase in parameters. Removing MambaBlock and adopting
a single-branch CNN structure led to a 0.31% drop in accuracy, while the number of parameters increased
by 3.42 M. This demonstrates that the proposed parallel architecture of ParMamba is feasible, validating the
effectiveness of MambaBlock’s global context comprehension ability in handling complex brain tumor MRI
images. At the same time, it reduces the number of parameters, making the model more lightweight.

Table 2: Comparison between Mamba and ViT on dataset 1

Models Para (M) FLOPs (G) Throughput (img/s) Accuracy (%)
w/ViT 8.17 2.21 453 98.25

w/MambaBlock 6.47 0.98 594 99.62

Table 3: Ablation study of ParMamba on dataset 1

Models Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Para (M)
w/o CAPE 98.40 98.31 98.37 98.34 6.37

w/o channel enhancement module 99.00 99.03 98.96 98.99 5.64
w/o MambaBlock 99.31 99.29 99.27 99.28 9.89

ParMamba 99.62 99.58 99.59 99.59 6.47

4.4.2 Classification Performance On Dataset 1
The test loss and accuracy curves of the proposed ParMamba on dataset 1 are illustrated in Fig. 6. It

can be observed that ParMamba converges within 500 epochs and achieves perfect classification results in
the classification test on dataset 1. The confusion matrix is shown in Fig. 7. As seen from the confusion
matrix, among the 1311 test images, only 5 images were misclassified, with 2 gliomas being wrongly labeled as
meningiomas and pituitary tumors, 1 meningioma being misclassified as a pituitary tumor, and 2 pituitary
tumors being mislabeled as gliomas and meningiomas. The classification performance of the four categories
are listed in Table 4. For the non-tumor category, it achieved 100% precision, sensitivity, and F1 score,
indicating that the proposed ParMamba can accurately determine whether a tumor has developed in the
brain. As shown in Table 4, the overall precision, sensitivity, F1 score, and accuracy for the four categories
are 99.59%, 99.58%, 99.59%, and 99.62%, respectively. In summary, the proposed ParMamba can effectively
learn the characteristics of brain tumor images, resulting in excellent classification performance on dataset 1.
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Figure 6: Test loss and test accuracy on dataset 1

Figure 7: Confusion matrix on dataset 1

Table 4: Performance metrics on dataset 1

Classification Precision (%) Sensitivity (%) F1 score (%) Accuracy (%)
Glioma 99.67 99.33 99.50 99.33

Meningioma 99.35 99.67 99.51 99.67
No tumor 100.00 100.00 100.00 100.00
Pituitart 99.33 99.33 99.33 99.33
Overall 99.59 99.58 99.59 99.62

4.4.3 Classification Performance on Dataset 2
The test loss and accuracy curves of the proposed ParMamba on dataset 2 are depicted in Fig. 8, and

ParMamba converges within 500 epochs. It is evident that ParMamba achieved perfect classification results
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in the classification test on dataset 2. The confusion matrix is shown in Fig. 9. As seen from the confusion
matrix, out of 1837 test images, only 12 images were misclassified. Among the 855 glioma images, 5 were
identified as meningiomas, and 2 were identified as pituitary tumors. In the 424 meningioma images, only
1 was misclassified as a glioma, and 3 were identified as pituitary tumors. Among the 558 pituitary tumor
images, only 1 was misclassified as a glioma. The classification performance of the three categories are listed
in Table 5. Combined with the performance on dataset 1, the proposed ParMamba demonstrates excellent
precision, sensitivity, and F1 score in the classification of meningiomas and pituitary tumors. As shown
in Table 5, the overall precision, sensitivity, F1 score, and accuracy for the three categories are 99.19%, 99.35%,
99.27%, and 99.35%, respectively. This indicates that the proposed ParMamba can effectively determine the
type of tumor present in the brain.

Figure 8: Test loss and test accuracy on dataset 2

Figure 9: Confusion matrix on dataset 2
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Table 5: Performance metrics on dataset 2

Classification Precision (%) Sensitivity (%) F1 score (%) Accuracy (%)
Glioma 99.88 99.18 99.53 99.18

Meningioma 98.59 99.06 98.82 99.06
Pituitart 99.11 99.82 99.46 99.82
Overall 99.19 99.35 99.27 99.35

4.4.4 Comparison with Existing Brain Tumor Classification Methods
To validate the performance of the proposed ParMamba, this section compares it with existing brain

tumor classification methods, including those based on CNN and attention mechanisms. These methods
were all conducted on either dataset 1 or dataset 2, as specifically shown in Table 6. ParMamba outperforms
Dense CNN Architecture [36], SSBTCNet [17], InceptionV3 [37], radimagenet pre-trained CNN [38], and
DCST + SVM [39] by 4.62%, 3.12%, 2.49%, 1.91%, and 1.91% in accuracy on dataset 1. Similarly, on dataset
2, it outperforms Deep CNN [16], BTSCNet [40], AP-CNN [41], MEEDNets [19], and RanMerFormer [27]
by 4.61%, 2.68%, 1.93%, 0.72%, and 0.49% in accuracy, and also surpasses these brain tumor classification
models in other metrics. Hese excellent results are closely related to the collaboration of ParMamba and
CAPE which extracts local and global features of brain tumors, followed by the utilization of a channel
enhancement module to enhance the merged channels. Additionally, the performance of the compared
methods was directly obtained from their respective papers.

Table 6: Comparison with existing brain tumor classification methods on dataset 1 and dataset 2

Dataset Reference Approach Accuracy (%) Precision (%) Sensitivity (%) F1 score (%)
Dataset 1 Özkaraca et al. [36] Dense CNN architecture 95.00 96.00 96.50 96.00

Atha et al. [17] SSBTCNet 96.50 92.50 91.80 92.00
Gomez-Guzman et al. [37] InceptionV3 97.13 97.97 96.59 97.26

Remzan et al. [38] Radimagenet pre-trained CNN 97.71 97.71 97.71 97.71
Raouf et al. [39] DCST + SVM 97.71 97.80 96.62 97.21

Ours ParMamba 99.62 99.58 99.59 99.59

Dataset 2 Ayadi et al. [16] Deep CNN 94.74 94.03 94.39 94.19
Chaki et al. [40] BTSCNet 96.67 93.00 95.03 94.00

Kakarla et al. [41] AP-CNN 97.42 97.41 97.42 97.41
Zhu et al. [19] MEEDNets 98.63 98.47 98.49 98.48

Wang et al. [27] RanMerFormer 98.86 98.87 98.46 99.39
Ours ParMamba 99.35 99.19 99.35 99.27

To further validate ParMamba, this section conducts significance analyses of ParMamba and other
models on dataset 1 and dataset 2. Nemenyi test is first conducted, with the results presented in Tables 7
and 8. On dataset 1, the p-values between ParMamba and both Dense CNN and SSBTCNet are less than
0.05, indicating significant differences. Similarly, on dataset 2, the p-values between ParMamba and both
DeepCNN and BTSCNets are also less than 0.05, confirming significant differences. In addition, t-test are
performed to explore the significance of the differences between ParMamba and other models further, as
shown in Tables 9 and 10. For both dataset 1 and dataset 2, the normality p-values for the differences between
ParMamba and other models, except for SSBTCNet, are greater than 0.05, suggesting that these differences
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follow a normal distribution. The t-test p-values are all less than 0.05, demonstrating that ParMamba
exhibits statistically significant differences compared to other models. These results indicate that ParMamba
significantly outperforms other models across both datasets.

Table 7: Nemenyi test on dataset 1

Models ParMamba Dense CNN SSBTCNet InceptionV3 Pre-trained CNN DCST + SVM
ParMamba 1.0000 0.0166 0.0045 0.5266 0.7995 0.5812

Dense CNN 0.0166 1.0000 0.9000 0.6358 0.3517 0.5812
SSBTCNet 0.0045 0.9000 1.0000 0.4102 0.1698 0.3517

InceptionV3 0.5266 0.6358 0.4102 1.0000 0.9000 0.9000
Pre-trained CNN 0.7995 0.3517 0.1698 0.9000 1.0000 0.9000

DCST + SVM 0.5812 0.5812 0.3517 0.9000 0.9000 1.0000

Table 8: Nemenyi test on dataset 2

Models ParMamba DeepCNN BTSCNet AP-CNN MEEDNets RanMerFormer
ParMamba 1.0000 0.0166 0.0166 0.2984 0.8541 0.9000
DeepCNN 0.0166 1.0000 0.9000 0.8541 0.2984 0.0868
BTSCNet 0.0166 0.9000 1.0000 0.8541 0.2984 0.0868
AP-CNN 0.2984 0.8541 0.8541 1.0000 0.9000 0.6358

MEEDNets 0.8541 0.2984 0.2984 0.9000 1.0000 0.9000
RanMerFormer 0.9000 0.0868 0.0868 0.6358 0.9000 1.0000

Table 9: t-test on dataset 1

Ours Others Normality p-value t-test p-value
ParMamba Dense CNN 0.3927 1.391e−03

SSBTCNet 0.0346 –
InceptionV3 0.8661 3.784e−03

Pre-trained CNN 0.1945 2.138e−07
DCST + SVM 0.5445 3.555e−03

Table 10: t-test on dataset 2

Ours Others Normality p-value t-test p-value
ParMamba DeepCNN 0.4133 3.2e−5

BTSCNet 0.9024 8.62e−3
AP-CNN 0.2616 1.5e−5

MEEDNets 0.2725 1.79e−4
RanMerFormer 0.9781 1.553e−1
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5 Conclusions
This paper proposes a novel parallel architecture named ParMamba for brain tumor classification.

The ParMamba consists of four components: ConvBlock, MambaBlock, channel enhancement module, and
CAPE. Among them, ConvBlock and MambaBlock extract local and global features respectively, channel
enhancement module implements cross-channel communication, and CAPE is used for downsampling,
effectively extracting fine-grained features of brain tumors from local and global contexts. Extensive
experiments are conducted on two publicly available brain tumor datasets. Dataset 1 contains four categories
of images: glioma, meningioma, pituitary, and non-tumor, while dataset 2 comprises three categories:
glioma, meningioma, and pituitary. The experimental results demonstrate that the proposed ParMamba
achieves outstanding classification performance, with accuracies of 99.62% and 99.35% on dataset 1 and
dataset 2, respectively. This indicates that the model is capable of achieving excellent classification per-
formance on both datasets. Compared to existing brain tumor classification methods, ParMamba marks
a significant advancement in the field. Moreover, the accuracy of Mamba increased by 1.37% compared
with ViT, while FLOPs decreased by 55%, and throughput rate also increased by more than 30% compared
with ViT. This indicates that the proposed ParMamba is not only faster but also more accurate than
attention mechanisms. Furthermore, ablation studies are conducted to validate the effectiveness of CAPE,
MambaBlock, and channel enhancement module individually. The results reveal that the combination of
CAPE, MambaBlock, and channel enhancement module effectively extracts brain tumor features, leading to
excellent classification results.

While the proposed ParMamba model demonstrates strong overall performance, its recognition of
meningioma remains relatively limited. Therefore, future efforts could focus on refining the model to better
capture meningioma features. Moreover, future research could extend the application scope of ParMamba
by testing its generalization performance on large-scale brain tumor datasets. Further potential directions
include developing lightweight network designs for efficient deployment on resource-constrained devices.
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