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ABSTRACT: Image captioning has seen significant research efforts over the last decade. The goal is to generate
meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate.
Many real-world applications rely on image captioning, such as helping people with visual impairments to see their
surroundings. To formulate a coherent and relevant textual description, computer vision techniques are utilized
to comprehend the visual content within an image, followed by natural language processing methods. Numerous
approaches and models have been developed to deal with this multifaceted problem. Several models prove to be state-
of-the-art solutions in this field. This work offers an exclusive perspective emphasizing the most critical strategies
and techniques for enhancing image caption generation. Rather than reviewing all previous image captioning work,
we analyze various techniques that significantly improve image caption generation and achieve significant perfor-
mance improvements, including encompassing image captioning with visual attention methods, exploring semantic
information types in captions, and employing multi-caption generation techniques. Further, advancements such as
neural architecture search, few-shot learning, multi-phase learning, and cross-modal embedding within image caption
networks are examined for their transformative effects. The comprehensive quantitative analysis conducted in this study
identifies cutting-edge methodologies and sheds light on their profound impact, driving forward the forefront of image
captioning technology.

KEYWORDS: Image captioning; semantic attention; multi-caption; natural language processing; visual attention
methods

1 Introduction
Image captioning serves the purpose of conveying an image’s essence in a concise and accurate sentence.

It is very similar to employing a machine for translation. Most image captioning models predominantly rely
on deep learning [1–3] and neural networks architectures. However, in image captioning, the machine’s task
is to translate an image into text [4–6]. This involves a profound visual understanding of the image before
crafting a meaningful description, one that not only identifies the objects and their attributes within the
image but also illustrates the relationship between these objects and the context, be it a location or an activity,
the general image captioning model is illustrated in Fig. 1.
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Figure 1: An example of an image captioning model based on deep learning, which processes an input image and
produces a corresponding textual description

Image captioning has a wide range of applications, acting as a digital companion for people with visual
impairments by offering succinct image descriptions during internet browsing. It enhances autonomous
vehicle navigation by providing contextual information for safe, rapid, and precise movement and supports
medical diagnosis by generating captions for diagnostic images, aiding timely treatment [7,8]. In news media,
automatic captions enrich articles by making visual content more informative [9–11], while in social media,
captions boost accessibility and engagement by describing visual posts. In e-commerce, image captioning
improves product searchability and user experience with automatically generated descriptions. It also aids
search engines by enabling accurate text-based retrieval of visual content. Captioning further extends to
service robotics [12–14], military applications [15–17], education [18], geology [19], construction scenes [20],
and image indexing [21–23], demonstrating the versatility and value of precise, contextually rich image
captions. These varied applications underscore the importance of ongoing research to further enhance
real-world implementation.

Many surveys on this topic have been published, offering comprehensive evaluations of image cap-
tioning approaches. These include [24–28], which discuss various early methods, as well as more recent
works such as [29–33], which focus on advances in neural networks and diffusion models. Additionally,
Refs. [34–38] provide in-depth reviews of the latest trends and innovations in the field. In contrast, our work
provides a distinctive viewpoint by concentrating on improving the generation of image captions through
the identification of the most crucial strategies and techniques within this domain. This survey provides a
comprehensive exploration of image captioning strategies and techniques, aiming to enhance the generation
of image captions. It covers a variety of aspects, including methods for visual attention, types of semantic
information in image captioning, multi-caption generation techniques, neural architecture searches for
images, few-shot image captioning, multi-phase learning, and the integration of cross-modal embedding
within image caption networks. Additionally, it addresses learning approaches, datasets, and evaluation
metrics used in image captioning. By providing a quantitative assessment of state-of-the-art methodologies,
this work identifies significant technological advancements, contributing to ongoing progress in the field.
It also offers valuable insights to researchers and practitioners by assessing critical methodologies and their
impact on improving image captions’ quality. Recognizing the evolving technological landscape and its
potential for further innovations underscores the paper’s relevance for future research and transformative
applications in image captioning, cementing its significance.

This paper is organized into key sections covering foundational image captioning frameworks, enhance-
ment strategies, learning approaches, datasets, and evaluation metrics. Studies are analyzed based on
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their impact on improving caption generation, innovation, and contribution to advancing state-of-the-art
techniques. The evaluation framework focuses on the effectiveness of various methods like visual attention,
semantic integration, multi-caption generation, and neural architecture search. Significant advancements are
highlighted by systematically reviewing the most influential and cutting-edge research in the field.

2 Image Captioning Frameworks
The evolution of image captioning techniques has seen a shift from traditional encoder-decoder

frameworks to modern transformer-based frameworks, each with distinct advantages. Traditional tech-
niques rely on convolutional neural networks (CNNs) for image encoding and recurrent neural networks
(RNNs) for text decoding, translating visual features into language in a linear manner. While effective,
these models are often limited in handling complex visual scenes and capturing long-range dependencies
within captions. In contrast, modern transformer-based frameworks introduce attention mechanisms that
interpret relationships among image elements, treating them as contextually interrelated rather than isolated.
By leveraging self-attention, transformers generate contextually rich, coherent captions that better capture
nuanced scenes, even with complex or lengthy descriptions. These transformer-based models adapt more
effectively to diverse contexts and tasks, yielding superior accuracy and detailed captions compared to
traditional approaches.

2.1 Traditional Encoder-Decode-Based Frameworks
Presently, the research focus has gravitated toward the automatic description of visual content in images

using natural language. Image captioning is an intricate task in the domain of deep learning [39], distinct
from other fields like object detection [40–43], recognition [44,45], and image and video tagging [46–50],
as it necessitates object detection and the linguistic expression of their relationships.

Traditional encoder-decoder frameworks play a central role in developing image captioning models,
notably advancing this field, as emphasized by Vinyals et al. [51]. In this structure, CNN-based encoders
convert images into features, working with an RNN-based decoder that transforms these features into
descriptive captions, Fig. 2. Typically, the encoder extracts image features to capture the overall visual
content, while the captions elaborate on various aspects of the image.

The UpDown [52] framework holds a significant position in image captioning and is often used as a
baseline model for numerous image captioning techniques. It generally consists of two Long Short-Term
Memory (LSTM) layers: the language LSTM and the attention LSTM. Additionally, it incorporates a visual
attention module that focuses on the local features of images as it predicts the next word. This visual attention
module selects and emphasizes the crucial regions of an image for generating the subsequent word, as
illustrated in Fig. 3.

In previous work, the Deep Hierarchical Encoder-Decoder Network (DHEDN) was introduced, com-
prising three LSTM layers: the Sentence-LSTM (S-LSTM), Vision-Sentence Embedding LSTM (VSE-LSTM),
and Semantic Fusion LSTM (SF-LSTM). The S-LSTM acts as an encoder for the input caption, the VSE-LSTM
merges and maps encoded caption features and visual features from the CNN into a shared semantic space,
and the SF-LSTM serves as a decoder, generating image descriptions. The distribution combine module and
semantic enhancement module were incorporated into the SF-LSTM to enhance its capacity. The policy
gradient method was applied to optimize this model [53].

In another previous study, the Recall Network framework was introduced as an encoder-decoder-
based model that consistently retrieves the image’s visual information during the generation of each word.
This framework, implemented using the GridLSTM, adjusts to the image’s visual representations through
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the depth of LSTM’s memory cells. It efficiently updates and forgets visual information in line with the
corresponding word without requiring additional learnable parameters or networks [54].

Figure 2: Illustration of the traditional encoder-decoder framework

Figure 3: A two-layer LSTM with attention, inspired by the bottom-up, top-down attention mechanism. The A-LSTM
represents the attention LSTM, responsible for modeling attention over the extracted features (V), while the L-LSTM
refers to the language LSTM, which generates the output sequence. The term v̄ refers to the global features
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2.2 Transformer-Based Frameworks
Transformer-based frameworks, as illustrated in Fig. 4, have achieved significant advancements in

image captioning, building on their success in natural language processing and extending it to computer
vision. These deep learning models leverage a powerful self-attention mechanism to capture intricate
relationships across input sequences, whether in text or visual data, without relying on recurrence as
in traditional models (like RNNs). This self-attention enables transformers to attend to all parts of an
input simultaneously, making them highly efficient for large datasets. In image captioning, transformer
architectures, including Vision Transformers, are particularly effective at modeling long-range dependencies,
allowing for detailed and contextually accurate descriptions of complex visual scenes and delivering state-
of-the-art performance across various AI applications. Transformer-based frameworks improve image
captioning models’ performance by encoding spatial and contextual information more effectively, resulting
in more accurate and contextually rich captions. In their seminal work, Vaswani et al. [55] introduced
the fully-attentive paradigm, which brought a revolutionary perspective to language generation. This
innovative approach, using the Transformer model as its foundation, has significantly impacted various
natural language processing tasks, including GPT (Generative Pre-training Transformer) [56] and BERT
(Bidirectional Encoder Representations from Transformers) [57], playing pivotal roles in reshaping the field.
The Transformer design shares similarities with image captioning, as it adopts a sequence-to-sequence
structure, making it a suitable solution for such tasks. In the conventional Transformer, masking self-
attention is employed to process words, serving the role of a decoder. Further, cross-attentional processing is
applied, where words function both as queries and as outputs from the final encoder layer, followed by a feed-
forward network. During training, the preceding words are masked, facilitating unidirectional generation.
Some image captioning models have employed the standard Transformer architecture [58,59].

Figure 4: Illustration of the transformer-based frameworks

The Bidirectional Encoder Representations from Transformers (BERT) was primarily designed for
Natural Language Processing (NLP). By achieving bidirectional context understanding through the Masked
Language Model (MLM) objective, BERT outperforms unidirectional models in various Natural Lan-
guage Processing (NLP) benchmarks. The concept has become a fundamental part of the development of
transformer-based models for natural language understanding and generation. However, its contextualized
embeddings and bidirectional attention mechanism have inspired adaptations for multimodal applications,
including image captions. For improved image understanding and caption generation, researchers have
explored hybrid models that incorporate BERT-like structures in conjunction with vision models. These
innovative architectures seamlessly integrate visual and textual modalities at early stages. The primary
advantage of this approach, when used to model captioning, lies in the initialization of text-related layers
that have been trained using parameters that are derived based on extensive corpora of text. Consequently,
BERT has found substantial application in works utilizing pre-training techniques [60,61]. For instance,
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Ref. [61] developed a captioning algorithm that leverages both the textual and visual aspects within a BERT-
based model [62]. Moreover, in [60], the utilization of image object markers for anchoring was introduced
to enhance alignment of language and vision collective representations. To achieve this objective, the model
encodes the image and text pair as a triple, composed of tokens that represent words, tags that represent
objects, and features of regions. The object attributes are derived from the object detectors of the textual
classes, providing a rich foundation for connecting language and visual context in captioning tasks.

The pre-training of vision-language models often involves the utilization of transformer-based architec-
tures. Transformer-based models have emerged as the cornerstone of many state-of-the-art vision-language
models due to their success in a variety of natural language processing tasks. Ref. [63] presents the Vision-
Language Pre-training (VLP) model, a versatile encoder-decoder framework tailored for vision-language
tasks. VLP employs a mutually shared transformer network, initially trained on a large caption dataset.
It enhances performance through masking bidirectional and sequence-to-sequence language predictability
tasks, accommodating context variations, and improving its applicability to tasks such as image captioning
and visual question answering. Ref. [64] introduces mPLUG, a unified Multi-modal Pre-training framework
for both vision-Language Understanding and Generation, a vision-language model that tackles challenges
like computational inefficiency and information disparity using innovative cross-modal skip-connections.
The connections establish shortcuts between layers, enhancing efficiency, particularly in visual self-attention
mechanisms. Additionally, Ref. [65] introduces Prismer, a vision-language model that leverages domain
expertise and excels in fine-tuned and few-shot learning scenarios, requiring minimal training data. Ref. [66]
presents the Qwen-VL series, a set of multilingual models of visual language that excel in multimodal
understanding and generation.

GPT models, primarily designed for natural language processing, can be repurposed for image cap-
tioning through a multimodal approach. By combining GPT with a vision encoder to extract visual features
from images, the model can generate captions based on textual prompts and visual information. This
adaptation typically involves fine-tuning the pre-trained GPT model on image-caption pairs to optimize
its performance for this task. While not initially intended for image captioning, the flexibility of GPT
enables it to handle multimodal tasks effectively, although specialized models may outperform it due to
their tailored architectures. Ref. [67] introduces VisualGPT, which leverages linguistic knowledge from a
pre-trained language model (LM) to balance visual and linguistic information, enabling quick adaptation to
new tasks with minimal in-domain training data. The model employs a unique self-resurrecting encoder-
decoder attention mechanism that efficiently integrates the pre-trained LM as the language decoder, yielding
sparse activations without encountering zero gradients. XGPT [68] presents a new method for Cross-modal
Generative Pre-Training in image captioning. XGPT employs four innovative generation tasks—Adversarial
Image Captioning (AIC), Image-conditioned Masked Language Modeling (IMLM), Image-conditioned
Denoising Autoencoding (IDA), and Text-conditioned Image Feature Generation (TIFG)—to pre-train
text-to-image caption generators.

The work presented by [69] introduces a method by leveraging the Contrastive Language-Image (CLIP)
model for visual encoding and a pre-trained language model (GPT2) for caption generation. By fine-tuning a
language model on CLIP-encoded captions, the method efficiently produces meaningful captions for diverse
datasets without additional annotations or pre-training. Ref. [70] resides in Visual Conditioned GPT (VC-
GPT), a comprehensive image captioning framework that streamlines the conventional two-stage training
paradigm. VC-GPT seamlessly links a pre-trained visual encoder (CLIP-ViT) with a language decoder
(GPT2), thereby eliminating the necessity for distinct object detection models. Ref. [71] presents PromptCap,
a knowledge-based visual question answering (VQA). PromptCap utilizes a natural-language prompt to
govern the visual elements depicted in the resulting caption, thereby improving the interaction between
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images and large language models such as GPT-3. Ref. [72] introduces SmallCap that addresses challenges
associated with scaling data and model size. SmallCap produces captions using an input image and associated
captions obtained from a datastore. It is characterized by its lightweight nature and quick training process,
as it only updates parameters in cross-attention layers connecting a pre-trained CLIP encoder with a GPT-2
decoder. By substituting the contents of the data store, SmallCap adapts to new domains seamlessly without
needing further fine-tuning.

3 Strategies and Techniques
This section explores key strategies and techniques that significantly enhance image caption quality

and context. This dynamic field requires innovative approaches, including attention mechanisms, semantic-
rich captions, multi-caption generation, neural architecture search, few-shot, and cross-modal embedding.
These strategies elevate caption coherence, informativeness, and creative depth, ultimately empowering
image captioning systems for various applications. The taxonomy of strategies to improve image captioning
generation is shown in Fig. 5, and Table 1.

Figure 5: Taxonomy of strategies to improve image captioning generation

Table 1: A list of some strategies and techniques adopted in some papers in this survey

Model Ref. Technique used Category of the strategy used
Hard + Soft attention 2015, [73]

Image captioning with visual Visual attention

ATT-FCN 2016, [58]
UpDown 2018, [52]

X-Linear attention 2020, [75]
hLSTM + Adaptive Attention 2020, [76]

BCAN 2021, [74]
JRAN 2023, [96]

AbSViT 2023, [86]
GVA 2024, [88]

CGAN 2017, [109] GANs-based

Multi-captionTOMS 2018, [110] Topics-based
TextCap 2021, [111] Text-based image captioning

(Continued)
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Table 1 (continued)

Model Ref. Technique used Category of the strategy used
NumCap 2023, [112] Numbering-based image

captioning
NeuralTalk2-T-oe 2018, [101]

Topics-based image captioning

Semantic information

TopicSensitive 2020, [104]
TopicBased 2020, [105]

ETP + RTR + STP 2023, [106]

MAD + SAP 2020, [90]

Attribute-based image captioningStack-VS 2020, [93]
Fusecap 2023, [94]
FaceAtt 2023, [95]

PoS + Guidance 2020, [99] Part-of-Speech-based
Image CaptioningPoSGuidance +multimodal 2022, [98]

NPoSC-A3 2024, [100]

Re-Caption 2019, [107] Attribute-based with
Part-of-Speech

AutoCaption (Vinvl) 2020, [113] Neural architecture
search image
captioning

Neural Architecture
Search (NAS)MMnas 2020, [114]

IUC 2022, [115]

Natural-language-feedback 2017, [116] Multi-phase learning
image captioning Multi-phase learningStack-captioning 2018, [117]

Re-Caption 2019, [107]

FPAIT 2018, [118]
Few-shot image captioning Few-shotLMCap 2023, [119]

Re-ViLM 2023, [120]

VSE++ 2017, [121]

Visual-semantic embedding Cross-modal embedding

NeuralTalk2-T-oe 2018, [101]
MLBL-F 2014, [122]
ORDER 2015, [123]

MAP + NDCG 2019, [124]
Joint corr-learning 2019, [125]

Oscar 2020, [126]
CLIP 2021, [127]

3.1 Image Captioning with Visual Attention
Attention mechanisms have been introduced to enhance image captioning by effectively incorporating

image features [58,73,74]. These mechanisms, in the context of visual attention, employ image features that
are dynamically weighted to predict subsequent words during caption generation at each time step. Various
mechanisms of attention have been integrated to improve image descriptions [75,76].

Attention mechanisms have been introduced to enhance image captioning by effectively incorporating
image features [58,73,74]. These mechanisms, in the context of visual attention, employ image features that
are dynamically weighted in order to predict subsequent words during caption generation at each time step.
A variety of attention mechanisms have been integrated to improve image descriptions [75,76].

In previous studies, attention mechanisms were integrated into image captioning in order to guide the
network’s attention to different image regions while predicting words [73]. Some frameworks introduced
adaptive attention, allowing the model to determine whether to rely on language model or visual features
when generating words, using a sentinel gate [77]. Another approach combined bottom-up and top-down
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visual attention mechanisms, incorporating object proposals generated by a Faster-RCNN with a two LSTM
layers-based captioning network [52]. The attention mechanism was further enhanced by integrating spatio-
temporal memory mechanisms into visual attention, creating the spatio-temporal memory attention model
(STMA) [78]. Additionally, a task-adaptive attention module was designed to reduce the model’s dependency
on visual information when generating non-visual words [79].

To improve caption quality and explore visual-semantic relationships, a dual attention approach to
pyramid image feature mapping was applied [80]. A cluster-based grounding network was introduced to
focus on linguistic characteristics within informative regions without introducing additional parameters
or raising inference complexity [81]. Furthermore, the Proposal Attention Correctness (PAC) metric was
introduced to assess the correctness of soft attention, bridging the gap between captioning performance
and visual grounding. An extension of the Transformer model, the multimodal Transformer, emphasized
both inter-modal and intra-model interactions within a single attention block [82]. It enabled modeling of
word-to-object, object-to-object, and word-to-word relationships, along with multi-view feature learning.
Finally, region-aware interaction learning was proposed to extract information from object and region
dimensions, considering semantic correlations between them [83]. Ref. [84] introduces an innovative image
caption generation approach, incorporating wavelet decomposition and convolutional neural networks
for comprehensive information extraction. Ref. [85] presents a new method for reevaluating attention
mechanisms in vision transformers, challenging the traditional interpretation and introducing the concept of
similarity grouping. Ref. [86] introduces an innovative approach to top-down attention, drawing inspiration
from the Analysis-by-Synthesis (AbS) theory of human vision. It introduces the Analysis-by-Synthesis Vision
Transformer (AbSViT) model, which not only approximates AbS but also offers controllable top-down
attention. The work presented in [87] introduces a Refined Visual Attention (RVA) framework for image
captioning that dynamically reweights visual attention by considering the context provided by previously
generated words. Similarly, Ref. [88] unveils a Guided Visual Attention (GVA) methodology for generating
image captions, which fine-tunes attentional weights to enhance the overall quality of the captions produced.
These methodologies represent pivotal progress in leveraging attention mechanisms to create more accurate
and contextually relevant captions.

Despite their innovative solutions, these models still face significant challenges. A major issue is their
tendency to overly focus on local features, often at the expense of a comprehensive understanding of the
image. This can lead to captions that, while technically accurate, fail to capture the main idea or highlight the
most important aspects of the image. Additionally, these models struggle with varying visual presentations
of objects, such as changes in scale, position, and occlusions. These variations can significantly hinder
the models’ ability to accurately identify and interpret the key elements of an image, thereby affecting the
relevance and accuracy of the generated captions.

3.2 Image Captioning with Semantic Information
Incorporating image attributes, which refer to the most common words in the training caption corpus,

has been explored as an approach to enhance image captioning, leveraging the rich semantic information
carried by these attributes [89–92]. Prior studies integrated attribute detectors with images to predict these
attributes and assigned relative probability distributions. Attributes predicted from image features were
then combined together with image features and used as inputs for caption generation, enabling caption
generation to incorporate latent semantic image information, thereby improving caption quality.
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3.2.1 Attribute-Based Image Captioning
One study introduced a multimodal attribute detector that effectively utilizes image attributes [90].

This detector, in conjunction with the Faster-RCNN module, obtained visual object features from images
and predicted their attributes, Fig. 6 illustrates an example of the local region features extracted using the
Faster-RCNN. By training the multimodal attribute detector alongside the captioning model, both modules
cooperatively leveraged attribute semantics. Moreover, this approach involved selecting a group of attributes
closely related to the current linguistic context at each time step for generating the forthcoming caption
word. A multi-stage image descriptor, known as Stack-VS, was introduced to efficiently utilize semantic
and visual-level information from input images [93]. This model employed bottom-up and top-down
attention techniques within a stack decoder model, optimizing attention weights for semantic-level attribute
representations and visual-level feature representations to produce detailed image descriptions. Visual-
level features were obtained using a Faster-RCNN network, and a weakly-supervised multiple-instance
learning approach was employed to learn the semantic-level attributes of input images. Ref. [94] presences
FUSECAP, enriching captions with visual expert insights and a large language model, creating 12 million
improved caption pairs. These enhanced captions improve image captioning models and benefit image-text
retrieval. Ref. [95] introduces the Face-Att model, focusing on generating attribute-centric image captions
with a special emphasis on facial features. JRAN [96] enhances caption coherence by focusing on feature
relationships. By incorporating both region and semantic features, JRAN generates precise and context-aware
captions, offering valuable contributions to applications like chatbots and image search.

Figure 6: (Continued)
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Figure 6: An example image showing the top 36 local region features extracted using Faster-RCNN [97]

3.2.2 Part-of-Speech-Based Image Captioning
Several recent studies incorporated part-of-speech (PoS) information into image captioning models,

introducing methods to control the flow of information based on predicted PoS [98]. These approaches,
such as the PoS guidance module, combined PoS information with word embeddings to influence caption
generation [98]. Additionally, some models incorporated PoS into the encoder-decoder framework, allowing
it to direct the sentence generation task by detecting and examining PoS tags for upcoming words [99]. The
PoS predictor was fused with image descriptors using different styles, namely the inject-based and merge-
based styles, to collaboratively guide the text generation process, with multi-task learning introduced for
effective training. NPoSC-A3 [100] mechanism stands out by effectively leveraging PoS clues to judiciously
integrate both visual and semantic information into the language model. With its unique components,
including a global semantic context generator and a PoS predictor, NPoSC-A3 demonstrates significant
improvements in the accuracy and syntactic richness of the generated captions.

3.2.3 Topics-Based Image Captioning
Other studies explored the integration of topics with image captioning algorithms, utilizing topic models

with caption corpora. For instance, one approach incorporated topics to direct sentence generation by
detecting the top-1 topic for an input image and embedding it alongside the image [101]. Another introduced
a topic-guided image descriptor that detected relevant topics based on image content, allowing topic-based
re-weighting to enhance image descriptions. Ref. [102] presences an attention mechanism called topic-guided
attention for image captioning. The proposed mechanism integrates image topics as guiding information,
enhancing the selection process. Additionally, the method employs separate networks to extract image
features and topics, allowing for joint fine-tuning in an end-to-end manner during training. Ref. [103]
introduces a new topic-guided neural image captioning model, which improves upon existing methods that
often overlook high-level semantic information. Zia et al. [104] proposed framework generates captions
that are sensitive to the topics depicted in the images, capturing the semantic relations and polysemous
nature of words. Ref. [105] emphasizes on incorporating the topic or purpose of an image into the caption
generation process beyond just object detection and orientation. By focusing on understanding the broader
context of images, the proposed deep learning framework aims to generate captions that better reflect
human-like perception. This results in superior descriptions that are not only grammatically correct but
also contextually relevant to the content of the images. The proposed model incorporates a topic model into
the framework, representing images as sets of topics with relevant word distributions. In the study by Al-
Qatf et al. [106], an innovative end-to-end training strategy is introduced, aiming to enhance the alignment
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of image captions with image content by integrating topic prediction alongside caption generation. This
approach incorporates several key components, including an Enhanced Topic Predictor (ETP), Retrieval-
Based Topics Re-weighting (RTR), and a Subsequent Topic Predictor (STP). Through these mechanisms, the
model achieves the generation of image captions that are not only more accurate but also notably diverse,
contributing to a richer and more comprehensive description of the images. This approach represents a
significant stride in the quest for more effective and contextually relevant image captioning techniques.

3.2.4 Other Approaches
While various approaches have been explored, such as combining attributes and part-of-speech (PoS)

analysis or integrating topics with PoS information, these efforts have paved the way for significant
advancements in image description generation. One notable development is the proposal of a two-phase
learning re-captioning model, which aims to further enhance the quality of generated descriptions. This
model achieves its goals by capitalizing on saliency mechanisms, including visual, semantic, and sample
saliency, to refine image representations [107]. It accomplishes this through the integration of a multi-label
Convolutional Neural Network (CNN), bidirectional Gated Recurrent Unit (GRU), attention networks, and
a joint embedding layer, resulting in improved image descriptions.

Despite their efficiency, semantic attention techniques in image captioning face several limitations
that affect their performance. These limitations result in an inadequate representation of important image
features, potentially leading to vague captions or the omission of significant visual details. Additionally, there
is a reliance on predefined attribute sets, which limits the system’s ability to adapt to new or unexpected
visual elements that fall outside these categories. These techniques are also prone to errors in part-of-speech
(PoS) tagging. Since semantic attention often relies on PoS information to identify and focus on key elements
in an image, incorrect PoS tagging can misdirect the attention mechanism, resulting in less relevant or
accurate captions. Another challenge is capturing a wide range of topics without introducing biases from
the underlying saliency-detecting methods. Saliency-based techniques often prioritize visually dominant
elements, which may not align with the narrative or contextual importance of an image, leading to captions
that overlook subtle but critical details. Furthermore, current semantic attention frameworks struggle to
dynamically adapt to the varying complexity of visual scenes. As images become more complex, featuring
a diverse array of objects, activities, and interactions, it becomes increasingly difficult to accurately capture
and translate this complexity into comprehensive and coherent captions [108].

3.3 Image Captioning with Multi-Caption
Crafting a single, exhaustive caption that encapsulates the complexities and subtleties of a complex

image is an inherently demanding endeavor, even for human observers. To tackle this challenge, certain
image captioning techniques adopt a more inclusive strategy, generating multiple descriptions for a single
image. This approach seeks to offer a more thorough and comprehensive portrayal of the image’s content,
taking into consideration various visual elements, particulars, and potential interpretations. These multiple
descriptions can provide a more diverse and in-depth viewpoint on the same image, augmenting its
accessibility and comprehension.

3.3.1 GANs-Based Multi-Caption
The GANs-based multi-captioning model takes an innovative approach to describing images by gen-

erating several diverse captions [109], each highlighting different features of the image. It does this through
two main components: the generator and the evaluator.
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The Conditional Generative Adversarial Network (CGAN) for image captioning operates by combining
a Generator (G) and an Evaluator (E) in an adversarial framework. The Generator takes image features
(extracted from a Convolutional Neural Network, CNN) and a random noise vector (z) as inputs to produce
captions word-by-word using a Long Short-Term Memory (LSTM) network. The random noise vector
introduces diversity in the generated captions. The Evaluator scores the captions based on their semantic
relevance to the image and their naturalness compared to human-written captions. Training is achieved
using reinforcement learning with Policy Gradient, where the Evaluator’s score serves as a reward signal for
the Generator. Additionally, Monte Carlo rollouts provide early feedback during caption generation, helping
stabilize and improve the training process. This approach ensures that the generated captions are diverse,
natural, and semantically aligned with the images.

3.3.2 Topic-Based Multi-Caption
Another approach leverages the concept of topics by generating multiple captions for a given image [110].

With topic-based multi-caption model, the input consists of an image and a specified topic. Modeling is
designed to create captions that are specifically related to the chosen topic. A fusion gate unit is introduced to
maintain thematic consistency and effectively incorporate the topic information into the captioning process.
This unit enables the model to seamlessly integrate topic embeddings into the Long Short-Term Memory
(LSTM) network. Furthermore, a topic classifier is employed to facilitate topic prediction, ensuring that the
generated captions remain contextually relevant to the chosen topic [110].

3.3.3 Text-Based Multi-Caption
Another work [111] introduced the Anchor-Captioner approach in text-based image captioning,

excelling in fine-grained description tasks by generating multiple captions from various viewpoints. Its
novelty lies in its emphasis on fine-grained text information, enabling it to decipher and incorporate textual
content from elements like billboards, signs, and product prices within images.

3.3.4 Numbering-Based Multi-Caption
Recently, the model presented in [112] introduced a unique approach that considers the number of

available ground truth captions for an image during training. This model learns from these numbers and
employs them to generate diverse image captions. Instead of relying solely on the semantic information
provided by GT captions, the model takes advantage of the quantitative availability of multiple captions to
create a varied set of captions for images, as illustrated in Fig. 7.

These approaches highlight the significance of generating several descriptions of an image, as they
enable a more comprehensive and nuanced representation of visual content. This, in turn, can benefit
various applications, including image indexing, accessibility, and enhanced user comprehension, by offering
a range of perspectives on complex visual data. However, in many contexts, users often prefer a single, well-
crafted caption that provides a comprehensive understanding of the image content. While the Multi-Caption
approach can be beneficial in certain scenarios, such as when multiple perspectives or interpretations are
warranted, the simplicity and clarity of a singular, high-quality caption often better serve the user’s need for
a clear and concise understanding. A single caption can efficiently convey the essential information without
overwhelming the viewer with unnecessary details or redundancy. It allows for a focused presentation of key
elements and concepts within the image, facilitating quick comprehension and engagement. Additionally, a
well-written single caption can maintain the viewer’s attention and interest, guiding them through the visual
narrative with precision and effectiveness. Moreover, in scenarios where space or attention is limited, such
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as social media posts or mobile applications, a single caption is more practical and user-friendly. It avoids
cluttering the interface and ensures that the message is conveyed succinctly and effectively. However, crafting
a single caption that strikes the right balance between informativeness and brevity can be a challenge. It
requires careful consideration of the most salient aspects of the image and the intended message, as well as
skillful writing to convey this information concisely yet comprehensively.

Figure 7: Overview of the numbering-based multi-caption model

3.4 Multi-Phase Learning
Numerous approaches have delved into Multi-Phase Learning in image captioning, reflecting the

complexity of the task and the continuous quest for improved performance. For example, Gu et al. [117]
proposed a novel coarse-to-fine image captioning model integrating stacked visual attention and multiple
LSTM networks. Departing from conventional one-stage models, their approach facilitates gradual caption
generation in a coarse-to-fine manner, proving advantageous for image captioning tasks. By iteratively
refining the generated captions through multiple phases, the model can capture finer details and nuances
in the image content, leading to more accurate and descriptive captions. However, a potential drawback
is identified in the sequential arrangement of Gu et al.’s two-phase learning, as the second phase does not
commence until the completion of the first phase. This sequential dependency may introduce delays in the
caption generation process and limit the model’s adaptability to dynamic image features.

In another innovative strategy, Fidler et al. [116] integrate natural language feedback from a human
teacher into reinforcement learning for image captioning. By incorporating human feedback into the training
process, their approach aims to improve the relevance and coherence of generated captions. They employ a
hierarchical phrase-based RNN to accommodate human feedback, enabling the model to learn from explicit



Comput Model Eng Sci. 2025;142(3) 2261

linguistic guidance. While promising, a limitation arises from the costly nature of human language feedback,
which slows down the optimization of captioning models and may impose practical constraints on large-
scale deployment.

Similarly, in the work by Zhou et al. [107], a saliency-enhanced re-captioning framework is introduced,
employing a two-phase learning approach for image captioning. This framework distills visual, semantic, and
sample saliency from the first-phase model to enhance global image representation in the second phase. By
leveraging saliency cues derived from the initial captioning phase, the model can focus on the most relevant
aspects of the image and generate more contextually rich captions. However, a notable aspect is the self-
boosting nature within the same model across the two phases, resulting in the generation of only one caption
in the output of phase one. While this self-boosting mechanism may lead to more focused attention and
enhanced caption quality, it also introduces potential biases and limitations in the diversity of generated
captions. Fig. 8 shows a schematic representation of the multi-phase learning framework.

Figure 8: A schematic representation of the multi-phase learning framework, highlighting the two distinct phases

3.5 Neural Architecture Search (NAS)
Neural architecture search (NAS) for image captioning involves automating the process of designing and

optimizing neural network architectures specifically tailored for the task of generating captions for images.
The goal of this method is to identify architectures that can efficiently represent the intricate connections
between text and image, resulting in captions that are more precise and appropriate for the context. The study
by [113] introduced AutoCaption, a novel approach to image captioning that utilizes Neural Architecture
Search (NAS) to automatically design a more effective decoder for generating image captions. By employing
a network structure search method based on reinforcement learning, AutoCaption accelerates the process
of designing the text generation model while ensuring it considers the specific characteristics of the image
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captioning task. MMnas [114], which stands for Multimodal Neural Architecture Search, is designed to
tackle various multimodal learning tasks. MMnas employs a unified backbone consisting of deep encoder-
decoder structures. These structures incorporate primitive operations selected from a predefined pool, with
task-specific heads added to address different multimodal learning tasks. Through a gradient-based NAS
algorithm, MMnas efficiently learn optimal architectures for diverse tasks. A three-tiered strategy for image
captioning is proposed by [115]. Using differentiable architecture search techniques, this approach finds the
most appropriate architecture automatically. The optimization process unfolds across three sequential stages:
first, the image captioning model refines its encoder and decoder weights to generate captions; then, the
refined encoder-decoder produces a synthetic captioning dataset from unlabeled images, which allows the
model’s weights to be updated further; finally, the model evaluates its performance on a validation set and
adjusts the encoder-decoder architecture to minimize validation loss.

However, NAS for image captioning faces several challenges. First of all, there can be a large and intricate
search space for neural architectures, which makes the exploration process costly and time-consuming in
terms of processing. Furthermore, the selection of search strategy, optimization algorithms, and evaluation
criteria all have a significant impact on the performance of NAS approaches, necessitating careful design and
adjustment. Notwithstanding these difficulties, new architectures that surpass the capabilities of handcrafted
designs may be found with NAS, utilizing algorithmic optimization and processing power to push the limits
of image captioning performance. NAS can spur innovation in image captioning and make it easier to create
more practical and efficient models by automating the architecture design process.

3.6 Cross-Modal Embedding
Cross-modal embedding techniques have garnered substantial attention in a variety of cross-modal

studies [122,124,125]. These approaches involve embedding different modalities, such as images and cap-
tions, into a shared embedding space. Within this space, the similarity between modalities is measured
using metrics like Euclidean or cosine distance, which enable the quantification of their relatedness [122].
Typically, the relationship between modalities is modeled symmetrically, treating them as equals. However,
an alternative approach proposed in previous work by [123] explores an asymmetrical treatment of the
image-caption relationship. Here, a two-level partial order is introduced, establishing a coordinate-wise order
within the common embedding space. This approach harnesses the hierarchical structure of visual-semantic
relationships by mapping this partial order to the visual-semantic hierarchy while preserving order. As part
of the advancement of cross-modal retrieval, Ref. [121] introduced a novel technique for learning visual-
semantic embeddings, enhancing the loss function with the inclusion of hard negatives, resulting in the
VSE++ model. Additionally, Ref. [101] extended cross-modal embedding to incorporate topics alongside
images and captions, enforcing a three-level hierarchical structure in the embedding space and enabling
coordination between topics, captions, and images. Ref. [127] uses contrastive learning to create a shared
embedding space for images and text, allowing images to be recognized based on textual descriptions alone.
By training on vast datasets of image-text pairs, the model can generalize across tasks without additional
fine-tuning, enabling zero-shot learning where it can classify new images based solely on their descriptions.
This represents a significant shift from traditional supervised methods that require labeled image datasets.
The novelty presented in [126] is the introduction of object tags as anchor points for aligning images and
text in a shared semantic space. By using object tags detected in images, the model, named Oscar, simplifies
the process of learning semantic alignments between visual and textual elements. This approach enhances
pre-training efficiency and improves performance across multiple vision-language tasks, such as image
captioning and visual question answering, by providing explicit alignment cues, making it more effective
than prior methods that rely solely on self-attention without anchor points.
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3.7 Few-Shot Image Captioning
Few-shot image captioning aims to create descriptive texts for images by training a model with a very

limited set of examples. This challenge is tackled by leveraging models pre-trained on vast datasets, which
are then fine-tuned on the small available dataset to adapt to the specific task of captioning new images. The
approach generally involves an image encoder, like a CNN, to extract visual features and a text decoder, such
as an LSTM or a Transformer, to generate captions. The key strategies include using transfer learning to apply
knowledge from related tasks, employing attention mechanisms to focus on relevant parts of the image, and
augmenting the limited data to enhance the model’s learning. The process is iterative, with adjustments to
the model’s architecture and training methods based on evaluation metrics like BLEU and CIDEr, aiming to
improve the relevance and accuracy of the generated captions.

The Fast Parameter Adaptation for Image-Text Modeling (FPAIT) [118] introduces a novel method for
few-shot learning in multi-modal tasks like image captioning and visual question answering. It stands out by
quickly adapting to new tasks with minimal examples and mitigating biases caused by small datasets through
dynamic linear transformations. This enables FPAIT to significantly improve performance in understanding
the intricate relationships between images and text. Ref. [128] proposes a new approach to few-shot image
captioning by utilizing unpaired images and captions, thereby minimizing the need for expensive manual
annotation of large-scale datasets. The proposed method, based on ensemble-based self-distillation, involves
training multiple base models with different data samples in each iteration. Pseudo captions and features
are generated from unpaired data and used to train the base models, with weights allocated based on their
confidence levels.

Recent research highlights effective methods of integrating few-shot learning with transformer archi-
tectures for image captioning. Research into in-context configurations further explores image selection and
caption assignment, offering strategies to improve vision-language model adaptation [129]. LMCap uses a
multilingual CLIP encoder to retrieve similar captions, which prompts a language model to create captions
in multiple languages without requiring supervised data [130]. Tsimpoukelli et al. [119] present a novel
approach aimed at expanding the few-shot learning potential of auto-regressive language models into a
multimodal domain that encompasses both visual and linguistic elements. By training a vision encoder
to represent images as sequences of embeddings and pairing them with pre-trained language models,
the system can generate captions with just a few examples. This approach creates a multimodal few-shot
learner capable of rapidly acquiring new tasks when provided with examples represented as sequences
of image and text embeddings. The system demonstrates impressive versatility, including learning new
words for objects, visual question-answering with minimal examples, and leveraging external knowledge.
Ref. [120] introduces Re-ViLM, a Retrieval-augmented Visual Language Model built upon Flamingo, aimed
at addressing limitations in existing approaches for image-to-text generation. Re-ViLM retrieves relevant
knowledge from an external database for zero and in-context few-shot image-to-text generations. This
approach reduces model parameters and allows easy accommodation of new data during evaluation.
Moreover, Re-ViLM facilitates in-context few-shot learning by constructing interleaved image and text
data. LMCap presents a novel approach to multilingual image captioning without the need for expensive
machine-translated data [130]. Instead of relying on large-scale multilingual datasets, LMCap introduces an
image-blind few-shot multilingual captioning model. By prompting a language model with retrieved captions
from a multilingual CLIP encoder, LMCap generates captions in the desired language using an XGLM
decoder. This bypasses the need for multilingual caption data and achieves competitive performance with
fully-supervised multilingual captioning models. Importantly, LMCap requires no supervised training on
captioning data, making it efficient and effective, especially on geographically diverse datasets like XM3600.
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Few-shot image captioning faces significant challenges, primarily due to models struggling to generalize
from a small set of examples to diverse, unseen images, leading to overfitting. The relevance of the pre-trained
models utilized for transfer learning and the caliber and diversity of the training instances are critical factors
in determining the efficacy of the strategy. Complexity increases with the generation of nuanced language
and accurate evaluation of it, and resources and experience are needed to fine-tune models on sparse data.
Dependency on pre-trained models may also result in biases. To improve generalization and performance,
overcoming these obstacles requires creative training approaches and model modifications.

Table 2 provides a comprehensive summary of the performance of notable methods for image caption-
ing on the widely used COCO dataset. The evaluation is based on standard metrics, including BLEU (B-1
to B-4) for precision, METEOR (M) for harmonic mean, ROUGE-L (R) for recall-oriented understanding,
and CIDEr (C) for consensus-based image description scoring. Fig. 9 illustrates the CIDEr scores for various
image captioning methods on the COCO dataset. To complement this quantitative analysis, Fig. 10 showcases
qualitative results, providing examples of captions generated by different models using the COCO dataset.

Table 2: An overview of notable recent studies on image captioning using COCO dataset

Method B-1 B-2 B-3 B-4 M R C
RecallNet [54] 75.8 – – 33.1 24.7 54.9 103.7

MRRC [131] 75.3 59.7 46.0 35.3 26.6 55.7 108.2
SCST [132] – – – 34.2 26.7 55.7 114.0
HAN [133] 80.4 63.8 48.8 36.5 27.4 57.3 115.2
HAF [134] 80.5 62.9 47.7 35.5 27.3 – 116.4

TAAIC [79] 78.6 – – 37.1 27.5 57.2 119.6
UpDown [52] 79.8 – – 36.3 27.7 56.9 120.1

TDA+GLD [135] 78.8 62.6 48.0 36.1 27.8 57.1 121.1
RFNet [136] 79.1 63.1 48.4 36.5 27.7 57.3 121.9

Stack-VS [93] 79.4 63.6 49.0 37.2 27.9 57.7 122.6
VFDICM [137] 80.8 64.2 49.3 37.2 28.3 57.9 122.4
SDVFR [138] 81.1 64.3 49.5 37.4 28.4 58.1 123.2
ICEAP [139] 81.1 64.5 49.5 37.4 28.5 58.2 123.8
SGAE [140] 81.0 65.6 50.7 38.5 28.2 58.6 123.8

GCN-LSTM [141] 80.8 65.5 50.8 38.7 28.5 58.5 125.3
Dual Global [142] 80.8 65.6 51.1 39.1 28.9 58.9 126.3

AoA [143] 81.0 65.8 51.4 39.4 29.1 58.9 126.9
HIP [141] 81.6 66.2 51.5 39.3 28.8 59.0 127.9

M2Trans [144] 81.6 66.4 51.8 39.7 29.4 59.2 129.3
X-LAN [75] 81.9 66.9 52.4 40.3 29.6 59.5 131.1
DLCT [145] 82.4 67.4 52.8 40.6 29.8 59.8 133.3
GRIT [146] 84.1 69.4 54.9 42.5 30.9 61.2 141.3
CoCa [147] – – – 40.9 33.9 – 143.6

SimVLM [148] – – – 40.6 33.4 – 143.3
BLIP-2 ViT-G OPT 2.7B [149] – – – 43.7 – – 145.8

GIT [150] – – – 44.1 32.2 – 151.1
OFA [151] – – – 44.9 32.5 – 154.9

mPLUG [64] – – – 46.5 32.0 – 155.1
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Figure 9: CIDEr scores for image captioning methods on the COCO dataset

Figure 10: (Continued)
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Figure 10: Examples of captions generated by different models using the COCO dataset are provided. Caption B is
produced by the UpDown model, Caption N by the NumCap model, and captions S by the SDVFR model. GT refers
to the ground truth captions [138]

4 Image Captioning Learning Approaches
Usually, captioning networks learn by predicting the subsequent word in reference captions, employing

the traditional cross-entropy loss function. Evaluation of generated captions uses a suite of evaluation
metrics. In recent times, there has been a surge in innovative approaches that directly fine-tune image
captioning models with these evaluation metrics, even though they possess non-differentiable attributes.
These optimization procedures leverage reinforcement learning methods [135,152] as a means to achieve
this. One optimization strategy, self-critical sequence training (SCST), uses the CIDEr evaluation metric
to enhance and train captioning models. SCST exhibits a substantial improvement in model performance,
particularly in relation to the CIDEr metric [132].

Another innovative optimization method, the global-local discriminative objective, is based on
reinforcement learning principles [135]. By introducing a global discriminative constraint, the model is
encouraged to align the produced description with the corresponding image while avoiding similarity
to other images. The local discriminative constraint, on the other hand, emphasizes less frequent but
specific words. These constraints collectively contribute to generating more descriptive captions that capture
visual details.

In a separate approach, an image annotating network built on the Transformer architecture introduced
a modification to the maximum likelihood estimation (MLE) by incorporating a Kullback-Leibler (KL)
divergence term. This term distinguishes between the model’s prediction probability distribution and the
ground truth distribution and aims to improve description generation [153]. Additionally, an approach that
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leverages knowledge graphs enhances the Transformer network’s description capabilities by considering
word embeddings and their cosine similarity [153].

The hierarchical attention fusion (HAF) model serves as a reinforcement learning-based baseline for
image captioning and incorporates multi-level feature maps from ResNet into hierarchical attention [134].
During the reinforcement learning phase, a revaluation network (REN) is used to reevaluate CIDEr scores
and assign different weights to each word in the generated sentence based on word significance. This
process is associated with word-level rewards. A scoring network (SN) also assesses the generated annotation
against reference annotations, offering benefits from additional, unmatched references, which contributes to
sentence-level rewards [134].

A novel reinforcement learning approach for image captioning, known as Vocabulary-Critical Sequence
Training (VCST), introduces a vocabulary-critic module that assesses each word in the vocabulary at each
generation step, providing different credits to each word. VCST incorporates efficient algorithms for BLEU
and CIDEr-D metric calculations to minimize computation time costs, making it adaptable for integration
into existing reinforcement learning approaches to enhance their performance [154].

In the context of language models, the initial masked language model, as introduced for BERT [155],
aims to construct a comprehensive language representation by randomly concealing a portion of input
tokens. It instructs the model to predict these concealed tokens while using adjacent tokens for context,
allowing it to build a robust sentence representation. However, this training approach is slower compared
to traditional left-to-right or right-to-left methods, as it focuses exclusively on predicting concealed tokens.
Some research has adopted this method as a pre-training objective, sometimes without combining it with
cross-entropy [126,156].

In the context of pre-training in vision and language, two primary methods are commonly used. The
first involves masked contextual token loss, in which tokens from both textual and visual modalities are
concealed, based on BERT [155]. This approach enhances the representation that combines both modalities.
The second method is contrastive loss, in which inputs are organized into image regions, caption words,
and object tag triples. The task is to differentiate between correct triples and those with randomly replaced
tags [126,156]. There is also an objective focusing on aligning text and image within a word region, requiring
the model to predict the original word sequence from corrupted word sequence [68].

In GPT-based image captioning, the learning approaches typically involve a combination of pre-
training and fine-tuning techniques. Initially, masked language modeling and other unsupervised learning
techniques are used to pre-train the GPT model on large text corpora [157]. The model gains a solid basis
in natural language understanding during this pre-training phase. The model is fine-tuned on particular
image-captioning datasets after pre-training. By combining text embeddings from the GPT model and
picture attributes taken from pre-trained convolutional neural networks (CNNs) [158], the model learns to
provide captions for images during fine-tuning. The alignment of textual and visual information is frequently
facilitated by the use of attention processes [77].

5 Datasets and Evaluation Metrics
Image captioning models are developed using datasets and evaluation metrics. Datasets provide the

foundation for training and testing these models. Evaluation metrics help us objectively assess caption quality
and effectiveness. In this section, we delve into some of the prominent datasets and evaluation metrics,
highlighting their significance and contributions to improving image captioning.
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5.1 Standard Datasets
A variety of datasets have been introduced and extensively utilized in the field of image captioning.

Prominent among these datasets are Flickr8K [159], Flickr30k [160], Microsoft COCO [161], and Visual
Genome [162]. These datasets serve as crucial resources for researchers, providing rich and diverse sources
of images and associated textual descriptions to facilitate advancements in image captioning research. Fig. 11
presents examples from the Flickr8K, Flickr30K, Microsoft COCO, and Visual Genome datasets.

Figure 11: Examples from the Flickr8K, Flickr30K, Microsoft COCO, and visual genome datasets

• Flickr8K [159] dataset comprises around 8000 images sourced from diverse groups on Flickr.com,
approximately 6000 images for training and 1000 images for each validation and testing [163]. It
intentionally avoids focusing on famous locations or individuals, offering various everyday situations
and locations. Notably, each image comes with five human-annotated captions, enriching the dataset’s
utility for image captioning models.

• Flickr30K [160], an extension of Flickr8K, offers a substantial collection of 31,783, typically around
29,000 images for training and 1000 images for each validation and testing set. Each image is associated
with five descriptive sentences, yielding a wealth of textual data, and there are, on average, 16.6
expressions per image. This rich dataset proves invaluable for research in computer vision and natural
language processing.

• Microsoft COCO dataset [161] is the largest and most widely recognized benchmark dataset in image
captioning. It consists of 123,000 images, each accompanied by five ground-truth sentences. This dataset
is commonly used to evaluate image captioning models, and its validation and testing sets contain 5000
images each, with 113,000 images in the training set. It serves as a standard reference for assessing the
performance of image captioning techniques, according to Karpathy’s data split [164], which is widely
adopted in image captioning as in [99,165,166].

http://Flickr.com
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• Visual genome dataset [162] dataset stands out in image captioning due to its unique approach to
considering the relationships between objects within images. Unlike some of its counterparts, the Visual
Genome dataset does not provide captions for the entire scene; instead, it offers descriptions for different
regions within an image, allowing for a more detailed and nuanced understanding. This rich dataset
comprises over 100,000 images, each characterized by 18 attributes and featuring an average of 21
distinct objects. Furthermore, the dataset encompasses descriptions of 18 object relationships, making
it a valuable resource for research in computer vision and language understanding. The Visual Genome
dataset does not have predefined training and testing splits. Researchers create custom splits based on
their specific research requirements, making the number of training and testing images variable.

5.2 Evaluation Metrics
Researchers have introduced a variety of evaluation metrics to provide quantitative estimates for the

linguistic expressions generated from images. These metrics have become integral to virtually all image
captioning research endeavors and are widely regarded as the standard benchmarks for assessment. Among
these established evaluation metrics are BLEU [167], SPICE [168], CIDEr [169], METEOR [170], and
ROUGE [171]. We offer a succinct overview of each of these widely recognized assessment criteria. BLEU,
SPICE, CIDEr, METEOR, and ROUGE are quintessential evaluation metrics used to gauge the quality
and accuracy of linguistic descriptions generated from images. These metrics play a pivotal role in image
captioning research, offering a standardized framework for assessing and comparing the performance of
various models. Below, we provide a concise introduction to each of these benchmark evaluation metrics.

• BLEU [167], short for Bilingual Evaluation Understudy, serves as an evaluation metric designed to
assess the quality of machine-translated sentences. It involves comparing the generated translations to
professional human translations, known as reference sentences, with the aim of gauging how closely the
translated sentence matches the reference sentences. BLEU is recognized as one of the earliest evaluation
metrics to quantify the proximity of a translation through a numerical value.

• METEOR [170], an evaluation metric employed for automated machine translation assessment, stands
for Metric for Evaluation of Translation with Explicit Ordering. It relies on a broader concept of
matching individual words (unigrams) between machine-generated translations and human-generated
reference translations. It considers factors such as word meanings, stemmed forms, and surface forms for
these unigram matches. Additionally, METEOR can be easily extended to incorporate more advanced
matching techniques.

• ROUGE [171], short for Recall-Oriented Understudy for Gisting Evaluation, is a software tool employed
to automatically assess summaries. It works by comparing machine-generated translations or summaries
with reference translations or summaries. ROUGE calculates the number of overlapping units, encom-
passing word sequences, n-grams, and word pairs, between the human-crafted ideal summaries and the
automatically generated summary.

• CIDEr [169], which stands for Consensus-based Image Description Evaluation, is an evaluation metric
tailored for the assessment of image annotation tasks. Essentially, CIDEr gauges the agreement between
the set of human-written reference annotations for an image and the description generated for that
image. To accomplish this, stemming is employed to reduce reference and generate caption words in
their root forms. Additionally, CIDEr utilizes Term Frequency Inverse Document Frequency (TF-IDF)
to assign weights to individual n-grams.

• SPICE [168], short for Semantic Propositional Image Captioning Evaluation, is a metric employed for the
evaluation of image and video annotations. Its primary function is to determine the similarity between
the scene graph tuple extracted from the human-authored reference annotations and the annotations
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generated by a computer. The semantic scene graph, created through a dependency parse tree, encodes
information about objects, their relationships, and their attributes.

6 Emerging Challenges and Future Directions

6.1 Current Challenges
• Dataset Constraints: The limitations of existing datasets are a significant hurdle in image captioning.

Many datasets lack diversity, leading to biased models that produce repetitive and less natural captions.
For example, in medical imaging datasets, the imbalance between diseased and normal samples often
results in captions that default to normalcy. Enhancements in image and text alignment algorithms,
advanced unsupervised learning methods, and more comprehensive paired datasets are necessary to
address these issues [34,172].

• Ethical and Bias Considerations: Several real-world deployments and user studies highlight both the
promise and challenges of image captioning in practical applications. For instance, Microsoft’s Seeing AI
app assists visually impaired users by narrating their surroundings, with iterative improvements based
on user feedback to enhance contextual accuracy [173]. Similarly, in autonomous driving, systems like
Tesla’s Autopilot and Waymo’s self-driving vehicles leverage image-based scene interpretation, showing
success in controlled settings but facing limitations in complex or low-visibility scenarios [174]. Social
media platforms, including Facebook and Instagram, also utilize captioning to improve accessibility,
automatically generating descriptions that help visually impaired users interact with image-based
content [175]. Meanwhile, medical imaging applications use captioning models to support radiologists by
providing preliminary descriptions, though human oversight remains essential for accuracy and safety.

• Model Design: Advanced deep learning frameworks and reinforcement learning techniques hold poten-
tial to enhance captioning performance. However, designing effective reward structures and ensuring
continuous learning without instability remains challenging. For instance, Generative Adversarial
Networks (GANs) frequently struggle with convergence, highlighting the need for more robust training
strategies and simpler model architectures [176,177].

• Interpretability Issues: Explaining and understanding the process behind image captioning is crucial.
Current models are often evaluated using metrics from machine translation or natural language
processing, which may not align with human cognitive processes. Developing evaluation methods that
truly reflect human cognitive processes is essential for improving the interpretability of image captioning
models [35,62].

• Real-time and Interactive Captioning: Developing models capable of generating real-time and inter-
active captions remains a challenge. These models must handle dynamic and complex scenes,
requiring advanced algorithms and optimized processing capabilities to provide timely and relevant
captions [35,178].

• Multimodal Integration: Effective integration of visual and textual data is critical for generating
meaningful captions. Current models often struggle with aligning these modalities, particularly in
unstructured and noisy environments. Enhancing multimodal understanding and improving the
robustness of models in diverse settings are ongoing challenges [179].

6.2 Future Directions
• Unsupervised Learning Approaches: Due to the limitations of supervised methods, there is growing

interest in unsupervised techniques. These methods aim to mitigate dataset bias and the object-
hallucination phenomenon seen in supervised learning. However, the challenge of aligning information
from different modalities in an unpaired setting remains significant [34,35,62].
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• Vision-Language Pre-training (VLP): VLP methods have shown potential in addressing some limita-
tions of supervised methods and object detector-based designs. Detector-free designs, which utilize
general visual encoders for cross-modal fusion, require further investigation to enhance their capabilities
for generative tasks like image captioning [180].

• Adaptive Learning and Personalization: Future models may incorporate adaptive learning techniques
to personalize caption generation based on user preferences and contextual requirements. This involves
developing algorithms that can learn and adapt over time, providing more tailored and relevant captions
for different users and scenarios [35,179].

• Applications for the Visually Impaired: There is increasing focus on using image captioning technology
to assist the visually impaired. Developing vision assistants that can accurately describe images and
inform users about their surroundings can significantly improve the quality of life for visually impaired
individuals [62,178].

• Ethical Considerations and Evaluation Metrics: Addressing ethical biases in caption generation, improv-
ing real-time and interactive captioning capabilities, and refining evaluation metrics are crucial areas
of ongoing research. Ensuring that models do not reinforce harmful stereotypes is essential for the
responsible advancement of image captioning technology [178,179].

• Transformer Models and Attention Mechanisms: Recent advancements in transformer models and
attention mechanisms have shown significant promise in improving image captioning. Designing novel
attention technologies that mimic human cognitive processes can further enhance the extraction of
representative and targeted features, leading to more accurate and contextually relevant captions [35].

• Utilization of Scene Graphs: Scene graphs offer a promising approach for image captioning by repre-
senting complex relationships and interactions between objects. Improving scene graph parsers and
pre-training with visually relevant relational data are critical areas for future research [62].

By addressing these challenges and embracing emerging trends, researchers can unlock the full potential
of image annotation systems, making them more accurate, reliable, and applicable to a broader range of
real-world scenarios.

7 Industry Impact of Advanced Image Captioning
The advancements in image captioning discussed in this paper hold significant implications for

practitioners, particularly in industry settings. Enhanced captioning accuracy and contextual relevance can
directly benefit sectors like e-commerce, media, and accessibility services, providing better support for
visually impaired individuals and improving content discoverability. Workflow automation in fields such
as customer support and medical diagnostics can also benefit from these refined models, which reduce
manual intervention and errors by automating image tagging, content categorization, and medical image
reporting. In marketing and content generation, dynamic captioning models enable personalization based
on user interaction data, making images more engaging, especially in news media contexts. Furthermore,
improved captioning accuracy aids autonomous systems in interpreting complex environments, crucial
for the safety and compliance of applications like autonomous vehicles and robotics. Finally, cutting-
edge captioning technology enhances scalability and cost-efficiency for large-scale applications, such as
social media platforms, by reducing reliance on extensive human resources and efficiently managing vast
amounts of data. Overall, these advancements underscore the transformative potential of image captioning
in improving operational efficiency, safety, and user engagement across various industries.
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8 Conclusions
Image captioning, the process of generating textual descriptions for visual content, has significant

implications across various disciplines. It facilitates accessibility for individuals with visual impairments,
supports autonomous navigation in self-driving vehicles, streamlines medical image analysis, and enhances
news articles’ informativeness. The field of image captioning has witnessed substantial evolution, with diverse
methodologies and models, from traditional encoder-decoder frameworks to advanced transformer-based
architectures, consistently improving its capabilities. This survey endeavors to provide a comprehensive
exploration of image captioning strategies and techniques aimed at enhancing the generation of image
captions, encompassing image captioning with visual attention, image captioning with semantic information,
multi-caption image captioning, neural architecture search, few-shot image, multi-phase learning, and
cross-modal embedding, as well as image captioning learning approaches, datasets, and evaluation metrics.
Future research in image captioning has promising potential in several areas. Firstly, exploring methods to
integrate contextual information into models could enhance the relevance of generated captions. Improving
dataset handling techniques like data augmentation and cleaning can lead to more robust model training.
Leveraging multimodal data sources such as text and audio can enrich the understanding of visual content.
Novel approaches like reinforcement learning and self-supervised learning may enhance caption quality
and creativity. Standardizing evaluation metrics will enable fair comparisons and facilitate advancements in
the field.
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