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ABSTRACT: Feature selection (FS) is essential in machine learning (ML) and data mapping by its ability to preprocess
high-dimensional data. By selecting a subset of relevant features, feature selection cuts down on the dimension
of the data. It excludes irrelevant or surplus features, thus boosting the performance and efficiency of the model.
Particle Swarm Optimization (PSO) boasts a streamlined algorithmic framework and exhibits rapid convergence traits.
Compared with other algorithms, it incurs reduced computational expenses when tackling high-dimensional datasets.
However, PSO faces challenges like inadequate convergence precision. Therefore, regarding FS problems, this paper
presents a binary version enhanced PSO based on the Support Vector Machines (SVM) classifier. First, the Sand Cat
Swarm Optimization (SCSO) is added to enhance the global search capability of PSO and improve the accuracy of the
solution. Secondly, the Latin hypercube sampling strategy initializes populations more uniformly and helps to increase
population diversity. The last is the roundup search strategy introducing the grey wolf hierarchy idea to help improve
convergence speed. To verify the capability of Self-adaptive Cooperative Particle Swarm Optimization (SCPSO), the
CEC2020 test suite and CEC2022 test suite are selected for experiments and applied to three engineering problems.
Compared with the standard PSO algorithm, SCPSO converges faster, and the convergence accuracy is significantly
improved. Moreover, SCPSO’s comprehensive performance far exceeds that of other algorithms. Six datasets from
the University of California, Irvine (UCI) database were selected to evaluate SCPSO’s effectiveness in solving feature
selection problems. The results indicate that SCPSO has significant potential for addressing these problems.

KEYWORDS: Feature selection; SVM; particle swarm optimization; sand cat swarm optimization; engineering
problems

1 Introduction

With the rapid progress of society and the economy, the era of big data is advancing steadily. Data
collection and storage technology are widely utilized, and a massive amount of data has been accumulated.
Against this background, extracting helpful information has proven challenging due to the sheer volume of
data, its varying quality, and the diversity of data sources. Traditional data analysis methods, like hypothesis
testing and regression analysis, can no longer handle large data sets. Even if some datasets are not significant
in quantity, they cannot be analyzed using these methods due to the unique properties of the data. Therefore,
to overcome these challenges, new techniques must be developed. Data mapping integrates classic data
analysis tools with sophisticated algorithms to effectively process vast volumes of data and discover valuable
knowledge within them. By applying data mapping techniques, hidden and helpful information and patterns
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can be extracted from massive databases. Thus, critical conclusions and trends can be drawn, helping people
understand the data and make meaningful analyses and applications.

Feature selection (FS) is an instrumental part of Machine Learning (ML) and data mapping [1]. It can
extract a valid set of features from a substantial quantity of redundant, noisy, and irrelevant information to
raise the performance of learning algorithms, reduce computational expenses, improve the interpretability
of models, and reduce the risk of over-fitting [2]. FS attempts to optimize the system for a particular metric
by selecting N features from the available M features, where N < M.

Generally, FS methods have three categories [3]: filtering approach, embedding approach, and wrapping
approach. First, independent of the specific learning algorithm, the filtering approach selects the most signif-
icant subset of features by assessing and ranking the features. The more common filtering approaches [4] are
variance selection, mutual information method, chi-square test, etc. They all choose the top-ranked features
by some law, and these guidelines can be based on statistical indicators, information theory, correlation
coeflicients, and so on. Filtering approaches are computationally simple and efficient, but they have several
limitations. Due to their independence, they may not be able to capture the complex interactions between
features; furthermore, focusing only on the attributes of the features themselves and the relationship with
the target variables without considering the correlation between the features makes it impossible to discover
the optimal subset of features for a given problem and data set. In practical applications, combining other FS
approaches to obtain better results is frequently essential. Second, embedding approaches [5] perform feature
selection simultaneously with model training and decide whether to select a feature or not by evaluating
the importance or weight of the feature during the model training process. Embedding approaches have
become familiar and effective in FS due to their advantages of automation, making full use of data, avoiding
over-fitting, learning task adaptation, and reducing dimension catastrophe.

Finally, the core idea of the wrapping approach [6] is to convert the FS task into a subset search
problem and to assess the effectiveness of various feature subsets using an evaluation metric. These evaluation
criteria can be specific performance metrics of the learning algorithm or classifier, such as accuracy, mean
square error, etc. Moreover, this approach can be combined with diverse classifiers, including the K-Nearest
Neighbor method (KNN) [7], Decision Tree (DT) [8], Support Vector Machines (SVM) [9], and other similar
techniques. Although these methods are computationally more expensive, they provide a more accurate
measure of the impact of features on model performance and have more vital generalization ability. The
wrapping approach generally utilizes optimization techniques to deal with the FS problem. The FS may be
viewed as an optimization problem solved using existing optimization algorithms and techniques [10] and
finding the near-optimal subset of features.

Meta-heuristic algorithms are extensively applied to solve FS problems by their extreme optimization
search capability. In general, they randomly generate a group of initial solutions and then evaluate this group
of solutions using an evaluation function to measure their performance [11] in the FS problem. Next, the
algorithm undergoes a series of search strategies to refine the current solution through iteration. During each
iteration, they adjust the state of the solution according to some rules and ways that approximate the optimal
solution until the termination condition is reached or a predetermined result is satisfied. However, although
each evaluated algorithm can perform well when considering some specific optimization problems, the No
Free Lunch theorem [12] shows that no super-optimization technique can tackle all optimization problems.
Hence, refining existing algorithms or inventing more capable ones is essential.

Particle Swarm Optimization (PSO) is a conventional meta-heuristic algorithm that takes inspiration
from the foraging and social behavior of bird flocks [13]. Due to its relatively simple core thinking, PSO
finds broad application in optimization problems. However, several challenges and limitations exist, such as
being vulnerable to local optimization. Therefore, an enhanced particle swarm optimization is proposed in
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this paper. Meanwhile, the proposed algorithm is tested on two challenging test sets and applied to three
engineering applications and six feature selection problems. The primary achievements of this paper are
outlined as follows:

(1) Integrate the benefits of the Sand Cat Swarm Optimization (SCSO) into PSO and integrate two
enhanced methodologies.

m  The incorporation of the SCSO tackles the problem of restricted search breadth present in the original
method, thereby greatly enhancing the algorithm’s ability to explore and reducing the likelihood of
becoming ensnared in local optima.

m  Inthealgorithm’s initial phase, the initial population’s random generation is discarded in favor of a more
high-level Latin hypercube sampling strategy that permits particles to explore a broader range of the
entire search space.

B Roundup search strategy is introduced so particles can more quickly determine the target’s loca-
tion during the search process, significantly reducing the computational cost and increasing the
optimization efficiency.

(2) Compare the suggested algorithm with other enhanced PSO and various algorithms on the CEC2020
and CEC2022 test suites.

(3) Self-adaptive Cooperative Particle Swarm Optimization (SCPSO) is tested against other excellent
algorithms on three engineering application problems with satisfactory results.

(4) SCPSO has demonstrated its effectiveness in addressing six feature selection problems, producing
subsets that exhibit high accuracy while containing only a limited number of features.

The following chapters are outlined: Section 2 introduces the improvement and optimization of PSO
in recent years and the researchers’ settlement and study of the feature selection problem. Section 3 briefly
describes the basic framework and optimization process of PSO and SCSO. In Section 4, the contents of
the two enhanced strategies and the process of SCPSO are described in detail. Section 5 concentrates on
verifying the performance of SCPSO on two test sets. Three real-world problems are chosen in Section 6 to
test SCPSO’s ability to address the optimization problem further. The study of SCPSO to solve six feature
selection problems is presented in Section 7. Section 8 offers a recapitulation and prospects.

2 Relevant Research
2.1 Research on PSO

Recently, continuous work has been done to improve PSO. In 2015, an SL-PSO proposed by Cheng
et al. [14] incorporated a social learning mechanism into PSO and performed well on 40 low-dimensional
issues and seven high-dimensional functions. HFPSO, a hybrid algorithm combining Firefly and Particle
Swarm Optimization, proposed by Aydilek [15] in 2018, was tested on the CEC2015 and CEC2017 test suites
in different dimensions as well as several engineering and mechanical design benchmark issues. The results
showed that HFPSO provided fast and reliable optimized solutions with single peaks for computationally
expensive numerical functions, simple multi-peak, mixed, and combined classes outperforming other
algorithms. Moreover, researchers have also employed PSO in many real-world applications. The new hybrid
genetic PSO proposed by Ha et al. [16] in 2020 obtains the advantages of both algorithms and achieves
satisfactory results in allocating distributed generation in distribution grids. To enhance the operational
efficacy of micro gas turbines under a wide range of operating conditions, Yang et al. [17], in 2021, developed
an algorithm named HIPSO_ C.S. by combining PSO with the Cuckoo Search Algorithm.
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2.2 Research on Feature Selection

As the optimization power of the meta-heuristic algorithms increases, so does the number of examples
of their adoption for the FS algorithm. In the following, we will explore some of the studies in this domain.
Zarita et al. [18] in 2016 proposed a wrapper’s Harmony Search Algorithm that successfully addressed the
detection and prediction of epileptic seizures and enabled HS to discover a more reasonable solution within
a limited time frame by varying the initialization process of HS and the improvisation of the solution.
Desbordes et al. [19] applied a Genetic Algorithm to tackle the issue of the survival rate of patients after
esophageal cancer treatment. The ultimate forecast outcomes were obtained as a subset of nine features,
and the comparative findings indicated that the utilization of GA outperformed alternative approaches. Tu
etal. [20] added the enhanced global optimal guidance strategy, adaptive cooperation strategy, and dispersed
foraging strategy to Gray Wolf Optimization Algorithm (GWO) to obtain the multi-strategy ensemble GWO
(MEGWO), which not only increases the local and global search ability of GWO but also enriches the species
diversity. They also applied the MEGWO to 12 FS issues, which proves its reliability and utility in solving
real-world issues. Meta-heuristic algorithms hold substantial significance in cancer prediction, and the
enhanced Cuckoo search algorithm proposed by Malek et al. [21] can identify a reduced set of features while
attaining superior classification accuracy. Besides, the binary teaching-based optimization algorithm [22],
binary dandelion algorithm [23], and binary capuchin monkey search algorithm [24] came into being. It was
adopted to solve the FS problem better.

3 PSO Overview

Particle Swarm Optimization [25], recognized as a leading meta-heuristic algorithm, was initially
introduced by Eberhart and Kenned in 1995. PSO utilizes the biological flock model proposed by biologist
Heppner to simulate birds’ feeding behavior. Assuming that there is one and only one piece of food in a
defined area, a community of birds randomly seeks the food without knowing the exact location of the food,
and the simplest and easiest to implement approach is to explore the vicinity of the bird nearest to the food.
Consider each bird as a weightless and volume-less point mass in space, and each point mass is assigned a
fitness value based on a particular function. Besides, velocity governs both the direction and distance of flight.

First, a uniform probability distribution function is deployed to randomly distribute each particle
Pa; = {pan, pais,...,paipim}>(1 < i< Nu) throughout the exploration space, and all the particles in the
exploration space form a particle population POP = {Pay, Pa,, ... Pay,} composed of Nu particles, with
each particle represented as a Dim dimension vector; furthermore, the velocity Ve; = {ve;1,veiz,...,veipim}
of each particle is randomly initialized with the specific formula shown below:

Pa; = Lb+ (Ub - Lb) - rand (0,1) 1)
Ve; = Vemin + 2+ Vemay - rand (0,1) (2)

where Ub and Lb are the upper and lower bounds of all the population variables, Ve, Venin are the
maximum and minimum values of the velocity of each particle. The fitness of each individual in the
population is calculated using the function Fit, and the historical optimal position Pabest; of particle Pa;,
which can also be called the local optimal position, is given by the following formula:

Pabest; (t) F(Pa;(t+1))>F (Pabest; (t+1))

Pa; (t+1) F(Pa; (t+1)) < F (Pabest; (t +1)) 3)

Pabest; (t+1) = {
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where t is the current iteration number. Finally, the location of the global best individual GPabest is
determined by evaluating the fitness values of all particles in the population, i.e.,

F (GPabest) = min {F (Pabest, (t)), F (Pabest, (t)),...,F (Pabesty, (1))} @
GPabest € {Pabest, (t), Pabest, (t),...,Pabesty, (t)}

In the optimization process, the combination of two optimal values is applied to optimize the flight
speed of each particle, which is then employed to adjust the velocity of each particle. The specific formula is
presented below:

Ve; (t+1)=w- Ve; (t) + ay-r - (Pabest; (t) — Pa; (t)) + ay - r, - (GPabest; (t) — Pa; (t)) (5)
Pa; (t+1) =Pa; (t) + Ve; (t) (6)

where a; = a, = 0.5 are self-learning factor and group learning factor correspondingly, and ry, r, are arbitrary
numbers obeying a uniform distribution.

4 SCPSO Overview

The PSO algorithm’s principle is relatively simple, its structure is concise, and it can achieve fast
convergence. This can significantly save computational costs for feature selection problems requiring high-
dimensional data processing. However, the fast convergence characteristic also makes the algorithm prone
to getting stuck in local optima, resulting in poor algorithm accuracy. Therefore, it is necessary to adopt
enhancement strategies to improve the algorithm’s performance.

4.1 Latin Hypercube Sample Strategy

Most meta-heuristic algorithms adopt the technique of random initialization to obtain an initial popu-
lation. However, this method is relatively low-level and highly prone to producing an unevenly distributed
population, affecting the algorithm’s convergence rate and precision. The Latin hypercube sample technique
is a statistical method of approximate random sampling from a multivariate distribution that produces as
many uniformly distributed sample points as possible. He et al. added it to the Firework Algorithm to better
solve the mixed polarity Reed-Muller (MPRM) logic loop area optimization problem [26]. The enhanced
Atom Search Algorithm using a Latin hypercube sample is more stable and reliable in optimizing the extreme
learning machine model [27]. So SCPSO uses the Latin hypercube sample strategy to make individuals
among the starting population span across the whole search space to the greatest extent possible so that the
distribution of individuals can be more rationalized, and the diversity of the population can be improved.
Then, the specific processes for initializing SCPSO are outlined as follows:

(1) Determine the population size Nu and the dimension Dim.

(2) Divide the variable interval into Nu equally spaced non-overlapping subintervals.
(3) Randomly select one point in each dimension for each subinterval separately.

(4) Form an initial population from the randomly selected points.

Fig. 1 illustrates the comparison of the effects of the two initialization methods. From the figure, it is
evident that the population obtained by the initialization of the Latin hypercube sample strategy has a more
robust distribution, which makes it more beneficial to choose the sample points uniformly in all dimensions,
making the dispersion of the initial population throughout the space more balanced and comprehensive.
That initialized populations more uniformly and helps to increase population diversity. In contrast, random
initialization possesses a distinctly short-periodic state with a less even distribution, which means that
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populations may cluster along specific directions in the search space while ignoring other possible search
directions. This situation may limit the global search capability of the algorithm and lead to failure to achieve

better optimization results.
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Figure 1: Comparison of the two initialization techniques

4.2 SCSO Strategy

Inspired by the foraging behavior of sand cats in desert environments, Amir Seyyedabbasi et al.
introduced the Sand Cat Swarm Optimization [28]. Sand cats can efficiently locate and capture prey by
exploiting their skill in detecting low-frequency noise. Like PSO, SCSO treats the prey position as the global

optimal position and is divided into two mechanisms: search and attack.
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4.2.1 Search Mechanism

Each sand cat utilizes its acute auditory sense to detect low-frequency vibrations below 2 kHz and locate
prey throughout the exploration space. The specific modeling is as follows:

Pa; (t+1) =r,-(GPabest (t) — rand (0,1) - Pa; (t)) (7)
ra = R, x rand (0,1) (8)
R =Sy - (SMTX t) 9)

where 7, is the auditory sensitivity range of each sand cat. Sy, is a constant with a value of 2, T is the upper
limit on the count of iterations for the entire search process, and R, denotes the general sensitivity scope
of the sand cat’s hearing, which linearly diminishes in value from 2 to 0 as the iterative process advances.
Especially when R, = 0, r, = 0, at which point the most recent position of the sand cat will also be adjusted
to 0, is also in the search space. Furthermore, an adaptive balance factor R is proposed, which ranges from
[0,2] and whose value is given by the following formula:

R=2xR, xrand (0,1) - R, (10)

4.2.2 Attack Mechanism

As the optimization procedure progresses, the sand cat in the exploration region automatically
approaches the prey slowly and launches an attack on the targeted prey with the following formula:

Dist = |rand (0,1) - GPabest (t) — Pa; (t)| (11)
Pa; (t+1)=Pa;(t) —r,- Dist-cos(f) (12)

where Dist is the magnitude of displacement between the sand cat’s ideal position GPabest (t) and the
current position Pa; (t), 8 is an arbitrary angle that is between 0° and 360°. Through this mechanism, the
orientation of the sand cat’s movement is determined by f. At this point, each member of the colony moves
in a different circular put-up search in space.

4.2.3 Transition Mechanism

The implementation and transition of the process of SCSO search and attack on prey are determined
by the parameter R. In the initial phase of the iteration, the value of R, is large; when |R| > 1, SCSO is in
the exploring stage, and the sand cat explores broadly for potential targets within the exploration area. As
the count of iterations grows, the value of R, converges to 0 during the later phase of the iteration, at which
point |R| > 1, SCSO is in the exploitation phase, and the sand cat initiates an attack on the prey it is aiming
at. The diagram of sand cat search and attack prey is displayed in Fig. 2. At this time, the specific formula is
described below:

_ | GPabest (t) — Dist-cos () - 1a, IR < 1]; exploitation
Pa(t+1)= {ru - (GPabest (t) — rand (0,1) - Pa (t)), |R >1];exploration (13)
Once the algorithm finishes the PSO position update phase, it implements the SCSO position update
formula. This crucial step effectively addresses the issue of limited search scope seen in the original approach,
significantly improving the algorithm’s exploration capabilities and preventing it from getting trapped in
local optima.
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|R[>1

IR|>1

Figure 2: Diagram of sand cat search and attack prey

4.3 Roundup Search Strategy

Although the application of complex strategies enhances the accuracy of the solution, it may, to some
extent, slow down the convergence speed of the algorithm. Drawing inspiration from how gray wolves
round up food in the GWO [29], this paper refines the particle foraging exploration stage. Introducing the
hierarchical idea of gray wolves, the leader chosen depending on the fitness size is nearer to the prey and is
more capable of quickly recognizing the location of potential prey, and the leader leads the other particles
to approach the target location gradually. That helps to improve exploration efficiency, thereby increasing
the convergence speed of the algorithm. Usually, the number of leaders is kept in the top 10%. The specific
modeling of individuals encircling prey is as follows:

Pa,, (t+1) = leader,, (t) — By, - disy, m=1,2,...,Nu—leader (14)
Nu-leader
> pam(t+1)
Pa(t+1)=—"" 15
a(t+1) Nu - leader (15)

where leader refers to the leader in the population, and Nu-leader refers to the number of leaders. dis is the
spatial separation between the leader and the individual’s current. The specific equation is:

dis,, =|Cy, - leader,, (t) — pa (t+1)] (16)

Band C are the two synergy coefficients, which are denoted as:

B, =2b-rs—b 17)
Cm 227’4 (18)
b=2—l-(%) (19)

where B is designed to model the aggressive behavior of the particle toward its prey and its value is influenced
by b. b exhibits a linear decline from 2 to 0 as the count of the iteration increases. r3, 4 are two random
numbers in the range [0, 1]. Fig. 3 visualizes the particle updating its position according to the leader.
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Figure 3: Diagram of the roundup search strategy

4.4 SCPSO

This section outlines the basic framework of SCPSO, where the PSO’s structure is reconstructed by
adding the Latin hypercube sample strategy and the SCSO based on the roundup search strategy. Firstly,
the Latin hypercube sampling strategy generates a population, and then the algorithm executes the PSO
position update formula. Subsequently, the historical best position in PSO is passed as the initial point to
SCSO, and SCSO’s position update is performed. Finally, the roundup search strategy will be integrated into
the exploration phase of SCSO to improve the convergence speed of the algorithm.

The pseudo-code of SCPSO is also rendered in Algorithm 1. In addition, the flowchart in Fig. 4 visualizes
more vividly the execution process of SCPSO.

Algorithm 1: SCPSO

Set parameters: population scale (Nu), dimension (Dim), maximum iteration times (T), etc.
Produce an initial population with Latin hypercube sampling strategy and initialize flight velocity.
Compute the initial fitness value of particles, record the historical best position of particles Pabest;, best
fitness value F (GPabest), global best position GPabest.

1: While (t < T)

2: adjust the parameters like R;, 7, R, b.

3: for i= 1:Nu

4. Ve; (t+1)=w- Ve; (t) + ay-r - (Pabest; (t) — Pa; (t)) + ay - rp:
(GPabest; (t) — Pa; (t))//Updated flight velocity
Pa; (t+1) = Pa; (t) + Ve; (1)
Calculate the particle fitness value, update Pabest;, record F (GPabest), GPabest.

if |R|>1//
Pa; (t+1) =r, - (GPabest (t) —rand (0,1) - Pa; (t))

© N o w!

(Continued)
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Algorithm 1 (continued)

9. Pa,, (t+1) = leader,, (t) - B,, -dis,,, ~m=12,...,Nu—leader//Round-up
search strategy
Nu—-leader
> pam (t+1)
=1
10. Pa(t+1)=—"
( ) Nu — leader
11. else
12. Pa; (t+1)=Pa; (t)—r,-Dist-cos(f)
13. end
14. Calculate per-particle fitness value F(Pa;)
15. if F(Pa;)<F (GPabest)
16. F (GPabest) = F (Pa;)
17. GPabest = Pa;
18. end
19. end
20.t= ¢t +1
21. end
Start
Using Egs. (3.9) and (3.10) to calculate
1 the parameter &
Set algorithm parameters: | oo
Nu,Dim,T | -1 1
_______________ +________ I |
I 7| SCSOstrategy [RI<1 ’
| Divide [Lb,Ub] into Nu distinct | | |
I subintervals I | _ No | Yes |
I Latin Hypercube J | ! }
I sampling strategy | |
| One point in each sub-interval is taken | | |
| to form the initial population I | Update particle position Update particle position |
e | : using Eq. (3.7) using Eq. (3.12) }
Calculate the initial fitness value, using Eqs. s _i _______ = l |
.3), (3.4 i
3.3). (3_ ) 0/ dexive I Calculate particle fitness ]
Pabest, F(GPubest),GPbest Calculate Pay,B,,,C,, and b | valiies, record (G ERED |
r using Egs. (4.1), (4.3)-(4.6). : ‘an d GPbest }
Update Ve; and Pa; using Egs. (3.5) and (3.6) | : l }
Update particle position | |
| using Eq. (4.2) | g |
Calculate the fitness value for each Pa; and : |
update Pabest,F(GPabest),GPbest Roundup search | |
| strategy T |

Figure 4: Flow chart of SCPSO

5 Trials and Analysis

Within this part, a series of numerical trials are conducted on SCPSO to evaluate its performance fairly.
Firstly, we conduct a performance analysis on various strategies using nine benchmark functions. Secondly,
SCPSO is evaluated against other modified PSO algorithms on the 30-dimension CEC2020 test suite [30]
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to test the efficiency of the strategies incorporated in this paper. Then, SCPSO is tested compared to other
competitive algorithms on 10 and 20-dimension CEC2022 test suites [31]. Remarkably, the test functions
in both the CEC2020 and CEC2022 test suites comprise a portion of the challenging test functions in the
CEC2014 [32] and a portion of the CEC2017 [33] test suites. Moreover, they are all categorized into four
parts: single-peak, fundamental, hybrid, and combined functions, encompassing a domain of —100 to 100 for
all functions. Trials on such test suites are more adept at evaluating the proficiency of SCPSO in resolving
diverse optimization issues.

To reflect the impartiality of the trials and eliminate the interference of chance, the population size was
set to 50 and the maximum limit of iterations was 1000. All algorithms were run 20 times. Table 1 shows the
built-in parameters of the algorithms. Each trial was executed in a standardized environment.

Table 1: Parameter settings for each algorithm

Algorithms Parameters name Parameters values
PSOGSA Gravitational constant G [0,100]
Shrinkage-expansion coefficient f3 [0,1]
Random parameter u, k [0,1]
GQPSO
Q Gaussian distributed random number g [0, 1]
Positive constant g 5000
Offset parameter y [0, 0]
Scale parameter y [0, oo]
LEPSO Skewness factor « [-1,1]
Levy exponent f3 [0, 2]
COSCSO Cauchy mutation calculator a [0,1]
Exploring sensitive parameters f3 0.1
RSA Evolutionary factor ES Decrease randomly from 2 to —2
Random number r; (1, N]
Sensitive parameters « 0.1
WOA Control factor m Decreases linearly from 2 to 0
Constant n 1
TLCO scale parameter & [-1,1]
Constant a 2
Control parameter r; [0, 2]
SCA
Random parameter r, [0, 277]
Random parameter r3 [0, 2]
HHO Initial energy E, [-1,1]
Runaway energy E Reduction from 1.5 to 0
GJO .
Static parameter C; 1.5
COA Random integer I {1,2}

Furthermore, to effectively compare the efficacy of distinct algorithms, it is measured in terms of four

common quantitative metrics [34]:
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(1) Best value

Best = {F, (GPabest), F, (GPabest),..., Fryns (GPabest)}

(2) Worst value

Worst = max {F, (GPaworst), F, (GPaworst), ..., Fruns (GPaworst) }

(3) Average value

Runs

> Fi (GPabest)

k=1

Average =
g Runs

(4) Standard deviation

1 Runs
Std = \J Rums 1 > (Fx (GPabest) - Average)’

uns -1 ;7

where Fy (GPabest), Fi (GPaworst) are the optimal and worst values derived from one run of the algo-
rithm, respectively. These two metrics demonstrate the accuracy of the algorithm. Taking the average value
provides an overall indication of algorithm competence and mitigates the influence of random factors. The
standard deviation, on the other hand, mirrors the degree of discretization of the data set. The robustness of
the algorithm can be measured accordingly.

5.1 Performance Analysis of Strategies

The performance analysis of strategies is of great significance in studying optimization algorithms.
By quantifying a strategy’s optimization effect, we can effectively evaluate its performance in terms of
convergence speed, accuracy, and global search capability. In addition, the performance analysis can also
evaluate the algorithm’s applicability and provide a basis for selecting appropriate strategies in practical
application scenarios. Building on the foundation of Particle Swarm Optimization (PSO), we introduce
a single strategy: PSO + LHS, which integrates the Latin hypercube sampling technique. Additionally,
PSO + RSA denotes the version of PSO that employs the Roundup Search Strategy. Lastly, PSO + SCSO refers
to the variant of PSO enhanced with the SCSO methodology. In addition, PSO and SCPSO are to compare
with them. Table 2 records the statistics of the mean and standard deviation of PSO and its variants. Fig. 5
shows their convergence curves. Comprehensive figures and tables show that compared with the original
PSO, PSO + LHS, and PSO + SCSO have a noticeable improvement in convergence accuracy and stability,
which indicates that the Latin hypercube sampling technique and SCSO effectively improve the solution
accuracy of PSO. However, it is worth noting that compared with the fast convergence of PSO, they are
slightly slower in convergence. That indicates that the algorithm sacrifices part of the solution speed while
jumping out of the local optimal solution and actively searching for the global optimal solution. PSO + RSA
has a limited improvement of the accuracy of PSO in most functions and even has a specific inhibiting effect
in individual functions. However, PSO + RSA retains the advantage of PSO’s fast convergence speed. Overall,
SCPSO integrating three strategies is significantly better than the PSO variant with only a single strategy in
most algorithms, both in terms of convergence accuracy and stability, and the convergence speed of SCPSO is
moderate. That is mainly due to the cooperation between the Latin hypercube sampling technique and SCSO
to improve the algorithm’s accuracy. Adding the Roundup Search Strategy also improves the algorithm’s
overall convergence speed. However, the addition of the Roundup Search Strategy has a slight inhibiting
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effect on the overall accuracy of the algorithm for individual functions. Therefore, SCPSO is generally the best
choice, but for practical problems requiring higher accuracy, readers can also consider PSO + LHS + SCSO.

fitness value

Table 2: Performance analysis results

]

PSO PSO+LHS PSO+RSA PSO+SCSO  SCPSO
o Average 30I5E+03 LIS7E-04 100IE+03 1508E-03 261907
Std 4.844E + 03  1.247E - 04 3.162E + 03 2.432E - 03 2.415E — 07
B Average  LI103E + 02 2.253E + 00 1.215E + 01 3.859E — 02 3.765E — 03
Std  6945E+01 1087E+00 7610E+00 3.953E—-02  4.338E — 03
iy Average 1785E+04 3840E+01 7037E+03  1598E-01  180IE- 04
Std 1.344E + 04  2.586E +01 4.878E + 03 3.234E - 01 3.270E - 04
F4 Average  1.811E + 01 3.163E - 01 1.658E + 01 4.178E — 02 1.186E — 04
Std  4744E+00 5837E-02 3.060E+00 2915E-02  7414E - 05
ps Average  BO0LE+06  627E+0L O9347E+03  493E+0l  487IE+01
Std 2.531E + 07 2.426E +01 2.836E +04  4.882E - 01 3.873E — 02
6 Average  6.318E + 03 8.697E — 02  1.044E + 03 1.200E + 01 6.693E + 00
Std 7.225E + 03 1.336E - 01 3.615E + 03 4.275E - 01 6.148E + 00
7 Average  1.259E + 01 3.053E + 00  2.144E + 00 4.372E - 03 2.259E - 03
Std 2.005E + 01 1.959E + 00 8.605E — 01 2.808E — 03 1.708E — 03
F8 Average -1.197E+04 -1149E+04 -1I112E+04 -1279E+04 -1.227E +04
Std 9.361E + 02 1.216E + 03 1.086E + 03 1.892E + 03 2.211E + 03
F9 Average 2.408E + 02 4.110E + 01 1.726E + 02 4.517E - 03 1.304E - 04
Std 5.217E + 01 1.568E + 01 3.879E + 01 4.577E - 03 2.224E - 04
: N SCPSO SCPSO SCPsO i
;\\“-““\‘\ m D s w
; 10”12 { 0%
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Iteration
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Figure 5: (Continued)
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Figure 5: Convergence plot of SCPSO and PSO with a single strategy

5.2 Comparison and Analysis of SCPSO with Other Modified PSO

To assess the efficiency of SCPSO and investigate the effects of SCSO, the Latin hypercube sample
strategy and roundup search strategy on PSO were used. In this part, SCPSO is tested against six other
competitively modified versions of PSO and two improved versions of SCSO, in addition to comparing it
with PSO on the 30-dimension CEC2020 test suite. The chosen algorithms are PSOGSA [35], GQPSO [36],
PSO_DLS [37], RDPSO [38], LEPSO [39], ESPSO [40], MSCSO [41], COSCSO [42].

In Table 3, the results of the ten algorithms on the 30-dimensional CEC2020 test suite are meticulously
compiled. SCPSO stands out as the front-runner, securing the top position on seven test functions. While
it doesn't quite outperform PSOGSA on F5 and F7, SCPSO still shows remarkable consistency and strong
performance compared to the other algorithms. Notably, SCPSO demonstrates a clear edge on Fl1, F3, F4,
F6, F8, and F9, where its results are consistently smaller than those of the other algorithms, reflecting its
exceptional stability. The table further presents the algorithms’ average rankings and their final overall ranks,
which are as follows: SCPSO > ESPSO > COSCSO > PSOGSA > RDPSO > PSO > GQPSO > MSCSO >
PSO_DLS > LFPSO.SCPSO maintains an impressive lead with an average rank of 1.3, while ESPSO follows
closely in second place with an average rank of 3.0. PSO lags in sixth place with an average rank of 4.9,
demonstrating that the enhancements brought by SCSO hybridization give SCPSO a substantial edge in
performance. This stark contrast in rankings highlights the effectiveness of SCPSO in delivering superior
optimization results, establishing it as the top performer in this suite.
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The Wilcoxon rank sum test [43], also known as the Wilcoxon signed rank test or Wilcoxon-Mann-
Whitney test, is employed to compare two independent samples to see if there is a difference in their median.
The Wilcoxon rank sum test p-value at the 95% significance level (« = 0.05) with SCPSO as the control is
tabulated in Table 4. Synthesizing the four significant indicators mentioned above, PSOGSA was significantly
more potent than PSO on F5 and F7, and COSCSO was significantly superior to SCPSO on F10. ESPSO and
PSO do not differ significantly from SCPSO at F2 and F5, respectively. Based on the data, SCPSO exhibits
a significant superiority over the six modified versions of PSO and demonstrates a remarkable difference
compared to the two enhanced SCSOs.

Table 4: Wilcoxon rank sum test p-values for other modified PSO (CEC2020 30 dimension)

F Algorithm

PSOGSA GQPSO PSO_DLS RDPSO LFPSO ESPSO MSCSO COSCSO PSO

F1 3187E—-09 3187E-09 3187E-09 3.187E-09 3187E-09 1596E-10 3.187E-09 7577E-06 1.918E - 07
F2 3372E-02 3187E-09 3.187E-09 1548E-02 3.187E-09 2977E-01 1201E-06 4.986E-02 3.277E-05
F3 3187E—-09 3187E-09 3187E-09 3.187E-09 3187E-09 1349E-03 3.187E-09 3.187E-09 3.187E-09
F4 8.007E - 09 NAN 8.007E - 09 8.007E-09 8.007E-09 8.007E - 09 NAN NAN 8.007E - 09
F5 2390E-02 3.187E-09 3.187E-09 6.610E-05 3.187E-09 3.187E-09 9173E-08 9173E-08 7557E - 01
F6 3987E-06 3187E-09 3.187E-09 3.048E-04 3187E-09 1782E-03 3.187E-09 5.227E-07 6.674E - 06
F7 4112E-02 3187E-09 3.187E-09 6.868E-04 3.187E-09 3.187E-09 3.187E-09 1667E-02 1.349E - 03
F8 3187E-09 3.187E-09 3187E-09 3187E-09 3.187E-09 1201E-06 3.187E-09 8.782E-03 3.187E - 09
F9 3187E-09 3187E-09 3187E-09 2960E-07 3187E-09 3.187E-09 3.187E-09 1431E-07 1235E-07
F10 3987E-06 3187E-09 3187E-09 7898E-08 3.187E-09 4.601E-04 3.187E-09 5250E-01 5.255E-05

+/=/- 2/0/8 0/0/9 0/0/10 0/0/10 0/0/10 0/1/9 0/0/9 1/0/8 0/1/9

To better visualize the convergence performance of SCPSO during the iteration process, ten algorithms
are qualitatively analyzed by the curve convergence plot given in Fig. 6. On observing the plot, the red curves
on F1, F2, F3, F6, F7, F8, and F9 have distinctly lower minimums than those of the other modified algorithms.
Moreover, except for F4 and F10, the convergence speed of SCPSO is rapidly accelerated when the iteration
count reaches 400, and the precision is improved, which further suggests that it is wise to add SCSO to PSO.
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Figure 6: (Continued)
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Figure 6: Convergence plot of SCPSO with other modified PSO (CEC2020 30 dimension)

Boxplot is a commonly available data visualization tool to display a data collection’s distribution and
statistical characteristics. Fig. 7 exhibits a boxplot of SCPSO with other algorithms. Upon observation, except
for F2, SCPSO has the smallest width of a rectangular box compared to other algorithms. That implies that
SCPSO has a more centralized data distribution with a smaller range of outliers. In addition, SCPSO has the
fewest outliers on all the test functions, which reveals that SCPSO performs more consistently in terms of
performance and has stronger robustness compared to other modified algorithms. These findings provide us
with more information about the advantages of SCPSO in data processing and optimization problems and
give us more confidence to apply it in real-world scenarios.
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Figure 7: (Continued)
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Figure 7: Boxplot of SCPSO with other modified PSO (CEC2020 30 dimension)

The following additions and summaries can be drawn by viewing the radar plot in Fig. 8 based on the
rank of SCPSO vs. other modified PSO algorithms in the 30-dimension CEC2020 test suite. In the first place,
it is evident from the radar plot that SCPSO encloses the smallest area, demonstrating that SCPSO performs
best relative to other algorithms when evaluating the performance of multiple variables comprehensively.
Secondly, it can be observed in the radar plot that the shaded area enclosed by the ESPSO is ranked second,
but there is still a gap compared with the SCPSO.
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In summary, compared with other PSO variants, SCPSO has better convergence accuracy and stability,
which is its most significant advantage. The rank sum test results also show that SCPSO outperforms other
variants in accuracy. PSOGSA and GQPSO also performed well in multiple functions, achieving the second
and third final rankings. The performance of LFPSO, PSO-DLS, and MSCSO could be improved, resulting
in a lower final ranking.

5.3 Comparison and Analysis of SCPSO with Other Modified Algorithms

To more extensively evaluate the effectiveness of SCPSO in addressing intricate issues, researchers
executed experiments in the newer and more challenging CEC2022 test suite involving two dimensions. In
addition, SCPSO was compared with several competitive experimental algorithms besides PSO, including
the Reptile search algorithm [44], Whale optimization algorithm (WOA) [45], Termite life cycle optimizer
(TLCO) [46], Sine Cosine Algorithm (SCA) [47], Sand Cat Swarm Optimization (SCSO), Harris Hawk Opti-
mizer (HHO) [48], Golden Jackal Optimizer (GJO) [49], and Coati Optimization Algorithm (COA) [50].
These algorithms represent the current cutting-edge methods in the field, so comparing them can reveal the
advantages and characteristics of SCPSO.

Table 5 contains a collection of statistical findings for SCPSO and other algorithms on 10 dimensions.
SCPSO ranks highest on 75% of the functions, which means that it performs excellently in solving these
problems. However, on Fl, although SCPSO and PSO have the same average, PSO has a minor standard
deviation, implying that PSO slightly outperforms SCPSO regarding stability. Interestingly, on F6 and F10,
SCPSO acts differently from the other functions, ranking 6th and 5th, respectively, and not dominating in
standard deviation; there may be scope for improvement. Further research and analysis are necessary to
determine the causes and find ways to improve.
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What is more, the last part of Table 5 also counts the overall average rank, and judging from the statistics,
the rank is from high to low: SCPSO > SCSO > PSO > HHO > GJO > SCA > WOA > TLCO > COA > RSA.
As aresult, SCPSO takes the lead with an average rank of 1.83. SCSO takes second place with an average rank
of 3.58.

In addition, Table 6 provides the p-value results of the Wilcoxon rank sum test to explicitly demonstrate
the statistical disparities between SCPSO and the other algorithms. The findings show that WOA, HHO, and
COA significantly outperform SCPSO on F6. On F10, although the average values of TLCO, SCA, SCSO,
and GJO are superior to those of SCPSO, the p-value reveals little variation between them and SCPSO.
However, SCPSO excels on F1, F3, F4, F5, F7, F8, F9, F11, and F12. Therefore, SCPSO can solve the CEC2022
problem efficiently.

Table 6: Wilcoxon rank sum test p-value for other algorithms (CEC2022 10 dimension)

F Algorithm

RSA WOA TLCO SCA SCSO HHO GJO COA PSO

F1 5.061E - 08 5.061E — 08 5.061E—08 5.061E—-08 5.061E—-08 5.061E—08 5.061E—-08 5.061E—-08 2.194E — 02
F2 5296E - 08 3.04E-02 3157E-07 6.368E-06 5216E—-01 2355E-01 3.597E-05 5.296E-08 2.938E — 02
F3 3187E-09 3187E-09 3.187E-09 3.187E-09 3187E-09 3.187E-09 7948E-07 3.187E-09 3.187E-09
F4 3187E—-09 1.803E-06 3.187E—-09 7898E-08 4.680E-05 8.597E—-06 3.293E—-05 3.187E-09 1597E - 05
F5 6.682E — 08 6.682E — 08 6.682E - 08 6.682E -08 7767E—-08 6.682E-08 7767E - 08 6.682E — 08 3.459E - 03
F6 3187E-09 2I39E-03 3.187E-09 3.187E-09 3.152E-02 1794E-02 2227E-02 3.187E-09 2.393E -0l
F7 3187E-09 1.065E-07 3187E-09 3.187E-09 8.292E-05 1.047E-06 3.293E-05 3.187E-09 1.227E-03
F8 3187E—-09 2218E-07 22I8E-07 1065E-07 1376E-06 6.015E-07 1251E-05 1065E-07 7712E-03
F9 3.670E — 08 3.670E — 08 3.670E-08 3.670E-08 3.272E-05 3.272E-05 3.061E-07 3.670E-08 1701E - 02
F10 3152E-02 4570E-01 5979E-01 2.853E-01 3104E-01 1782E-03 1806E—-01 1806E—-01 7203E - 02
F11 1.387E-06 3.038E-05 1362E-04 1362E-04 7757E-05 1090E-04 3.857E-05 2190E-07 4.608E - 05
F12 6.672E — 08  7.756E — 08 6.672E - 08 6.672E - 08 2.652E-06 6.672E-08 2.323E-06 6.663E —08 1303E - 07

+/=/- 0/0/10 /1/8 0/1/9 0/1/9 1/2/7 1/1/8 0/1/9 /1/8 0/1/9

To present the convergence performance of SCPSO on the 10-dimension CEC2022 test suite more
clearly and explicitly, Fig. 9 gives a convergence plot of SCPSO with other algorithms. We can draw the
following conclusions by observing the plot’s trend. First, SCPSO exhibits a speedy rate of descent and reaches
much lower nadirs on the F2, F5, F8, F9, F11, and F12 functions. That suggests that SCPSO has exceptional
convergence performance in addressing these functions. Secondly, for F3, F7, and F11, although SCPSO’s rate
of descent is not outstanding, it still obtains a superior solution after a certain level of convergence. That
points to the fact that SCPSO may need more iterations on these functions to achieve the best results, but
it still achieves satisfying convergence performance. Taken together, the superiority of SCPSO on the 10-
dimension CEC2022 test suite is evident from the convergence curves in Fig. 9. It demonstrates fast descent
rates and better nadir points in several functions, thus proving its effectiveness in solving these problems.

By comparing the boxplot of SCPSO with the other algorithms in Fig. 10, we can observe that on F1, F2,
F3, F5, F7, F9, F11, and F12, SCPSO shows thinner boxes, signifying a more centralized distribution of fitness
values for SCPSO. This more concentrated distribution implies that the performance of SCPSO is relatively
stable on these functions. Simultaneously, we can also note the relatively small number of outliers in the
SCPSO boxplot. Measurement errors, special conditions, or other factors may cause outliers. Thus, fewer
outliers reflect a more stable and robust performance of SCPSO on these functions.

To investigate the dimension scaling capability of SCPSO further, SCPSO is measured on the
20dimension CEC2022 test suite. Table 7 contains a collection of statistical. Encouragingly, compared to its
performance on 10 dimensions, SCPSO is ranked first on 83.3% of the functions and is only ranked 4th
and 2nd on F10 and F1], respectively. Furthermore, SCPSO is ranked first on eight functions under average
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and standard deviation. That proves the excellence of SCPSO in terms of convergence and emphasizes its
stability advantage. That implies that SCPSO can converge efficiently on high-dimensional problems and
have excellent stability in outcomes. Depending on the statistical results, the rank of all the algorithms is
SCPSO > HHO > SCSO = GJO > PSO > SCA > TLCO > WOA > RSA > COA. SCPSO holds the leading
position with an average rank of 1.33. SCSO and GJO have the same average rank and are jointly listed in
third place. In summary, SCPSO performs more prominently on higher dimensional problem.
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Figure 9: Convergence plot of SCPSO with other algorithms (CEC2022 10 dimension)
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Table 8 presents the p-value results from the Wilcoxon rank sum test applied to the 20-dimensional
CEC2022 test suite. A closer look at the table reveals that while TLCO, SCA, and SCSO show a slight
average advantage over SCPSO on F10, the p-value differences are minimal. That suggests these algorithms
may marginally outperform SCPSO on specific functions, but the disparities are not statistically significant.
In contrast, SCPSO consistently outshines most other algorithms, securing top positions across most test
functions. It leads in terms of performance and claims the top spot in both the mean rank and overall ranking,
reinforcing its dominance in optimization tasks.

Table 8: Wilcoxon rank sum test p-values for other algorithms (CEC2022 20 dimension)

F Algorithm

RSA WOA TLCO SCA SCSO HHO GJO COA PSO

F1 3187E-09 3187E-09 3187E-09 3.187E-09 7898E-08 8.586E—-02 3.1I87E-09 7577E-06 2.596E — 05
F2 3187E-09 3187E-09 3.187E-09 3.187E-09 9173E-08 3.057E-03 3.187E-09 3.187E-09 1.794E - 02
F3 3187E-09 3187E-09 3.187E-09 3.187E-09 3187E-09 3.187E-09 1065E-07 3.187E-09 3.187E - 09
F4 3187E-09 3187E-09 3.187E-09 3.187E-09 9173E-08 2.960E-07 2.356E-06 3.187E-09 1376E - 06
F5 3187E-09 3187E-09 3.187E-09 3.187E-09 3.187E-09 3187E-09 3.187E-09 3.187E-09 3.939E - 07
Fo6 3187E-09 9.173E-08 3.187E-09 3.187E-09 9.278E-05 3.187E-09 7898E-08 7898E -08 7406E - 05
F7 3187E-09 3187E-09 3.187E-09 3.187E-09 6.015E-07 9.173E-08 9.748E—-06 6.796E —08 2.690E — 06
F8 9.748E—-06 2341E-03 1227E-03 1LI16E-03 6.040E—-03 2564E-02 5428E-01 3.987E-06 5.561E - 03
F9 6.738E - 08 3.909E -07 6.738E-08 6.738E-08 3.909E-07 1154E-04 1.644E-07 6.738E-08 5.451E - 05
F10 9.209E - 04 2222E-04 7972E-01 2977E-01 8.817E-01 4.408E-01 1333E-01 6.674E-06 6.040E - 03
F11 3187E-09 4903E-01 3187E-09 3.187E-09 1574E-06 1I98E-01 2.059E-06 3.187E-09 1992E - 04
F12 1.235E - 07 2.062E-06 3.187E—-09 3.416E—-07 2.041E-05 1415E-05 1.610E—-04 6.796E—-08 6.220E — 04

+ =/= 0/0/10 0/1/9 0/1/9 0/1/9 0/1/9 0/3/7 17217 0/0/10 0/0/10

Figs. 11 and 12 contain convergence plots and boxplots of SCPSO and other algorithms on the 20-
dimension CEC2022 test function. The convergence curve of SCPSO on the 20-dimension function decreases
faster compared to that of the convergence plot in the 10-dimension case. Especially on F3, F4, F5, F6, and F7,
SCPSO displays more notable advantages than other algorithms. Likewise, SCPSO has a relatively narrow box
plot, which suggests it is relatively more stable and robust. A narrower box plot indicates that the algorithm
has more consistent convergence performance across running instances and is more stable concerning
parameter tuning and initial settings. Therefore, SCPSO performs better in solving these 20-dimensional
function problems.

A radar plot according to the rank of SCPSO and other superior algorithms in the 10 and 20 dimensions
of the CEC2022 test suite is plotted in Figs. 13 and 14. Observing the two sets of plots, SCPSO has the smallest
area, and its image is more rounded in the 20 dimensions, demonstrating that SCPSO is more convergent
and stable in the 20 dimensions of the test function. In addition, Fig. 15 visualizes the cumulative average
ranks for the two dimensions. It again reveals that SCPSO provides an excellent output on both dimensions
and the greater the dimension, the more enhanced the performance.
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Figure 11: Convergence plot of SCPSO with other algorithms (CEC2022 20 dimension)
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Figure 12
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Figure 13: Radar plot of SCPSO with other algorithms (CEC2022 10 dimension)
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6 Engineering Issues
6.1 Alkylation Unit Optimization Issue

To further assess the capability of SCPSO in addressing intricate constrained optimization issues, it
is applied to three challenging problems. These problems are the optimization of the alkylation unit, the
vehicle side impact design problem, and the industrial refrigeration system design problem. To deal with
these nonlinearly constrained problems, we introduce the concept of penalty function [51]. By transforming
the constraints into penalty terms of the objective function, we can optimize unconstrained problems in
SCPSO. In this approach, the algorithm evaluates the solution in each iteration and adjusts to the value of the
penalty function to approximate the optimal solution. In this case, the population size is 30, the maximum
count of iterations is 500, and the count of executions is 30.

The alkylation process [52] is an essential reaction common in the petroleum industry, and it finds
extensive utility in the synthesis of alkylated products across various domains. In this process, an olefin feed
(usually pure butene) is introduced into a reactor for reaction, a pure isobutane recycles, a 100% isobutene
supplemental stream, and an acid catalyst. The product stream in the reactor is then processed through a
fractionator to separate the isobutene and alkylation products, while the exhausted acid is discharged from
the reactor. The design of the alkylation unit is diagrammed in Fig. 16. In this problem, there are 14 inequality
constraints, and 7 variables Pa = [pay, pay, pas, pas, pas, pds, pay| are involved. The profit maximization
of the reaction system is achieved by considering various constraints comprehensively. The detailed model
is as described below:

min f (Pa) = 1.715pa; + 0.035pa; pag + 4.0565pas + 10pa, — pas pas — 3000 (20)
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Figure 16: Design chart of the alkylation unit

Constraints:
pas
pa
2
@ (Pa) = 1108822 + 0130353322296 _ ¢ 00660332%L%
p613 Pa3 pa3

g1 (Pa) = 0.0059 553571 pa2 + 0.88392857°—= — 0.1175625pag — 1,

>

g3 (Pa) = 0.00066173269pa2 + 0.017239878 pas — 0.0056595559 pa, — 0.19120592pas — 1,
56.85075 1.08702pas 0.32175pas 0.3275pa;

4 (Pa) = ,
& (Pa) pas pas pas pas
2462.3121 25.125634
s (Pa) = 0.006198pay + paz _ P _
paspay pas
0.0016118996 5000 489510
gs(Pﬂ)Z + paz_ paz_
pay paspa;  paspaspa;
44.333333 0.33
g7 (Pa) = + par _ 1,
pas pas

gs (Pa) = 0.022556 pas — 0.007595pa; — 1,
g5 (Pa) = 0.00061pas — 0.0005pa; — 1,
0.819672pa, . 0.819672 ]

Pa) = ,
g0 (Pa) pa; pas
g (Pa) _ 245001)(12 B 2501)(12 _1
paspay pas

0.000012244898paspay

pa;
g13 (Pa) = 0.0000625pa; pag + 0.0000625pa; — 0.00007625pas — 1,

1.22pa
814 (Pa) = b

g2 (Pa) = 0.010204082pay + 1,

— pas +pa1—1
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Variables take values in the range:

1< pay <2000,1 < pa, <120,1< pas < 5000,85 < pay < 93,
90 < pas < 95,3 < pae < 12,145 < pay < 162

The ten excellent algorithms used in this experiment are the Bird Search Algorithm [53], Aquila
optimizer (AO) [54], SCSO, WOA, RSA, TLCO, SCA, Beluga whale optimization (BWO) [55], PSO,
SCPSO. The optimal variables and outcomes of each algorithm for settling the alkylation unit problem are
demonstrated in Table 9, from which we can see that SCPSO achieves the maximum profit. In addition,
observing the statistical outcomes presented in Table 10, we can perceive that SCPSO has a smaller average
and a minor standard deviation, suggesting that its results are more stable. That implies that SCPSO can
achieve the optimal solution more reliably.

Table 9: Optimal outcomes of the alkylation unit optimization issue

Algorithm Optimal variables Optimal outcomes
pa, P, P, P, pa, P pa,

BSA 215.8513  1.3775 5000 85 90 3 155.3877 —4468.472691
AO 169.7608 57.8484 4952.1053 91.0867 90 74683 149.1759 —-3780.575170
SCSO 215.8312  1.3769 5000 85 90 3 155.6344 —4467.477685
WOA 215.8515 1.3774 5000 85 90 3 162 —4468.476520
RSA 272.9829 1.4766 5000 92.9996 90 3.0038 162 —4435.927422
TLCO 213.3441 2.6151 4998.2872 86.7330 90 4.6998 151.4518 —4447.871453
SCA 2151958  1.3510 5000 85 90 3 145 -4468.460454
BWO 214.3297 1 5000 85 90 3 145 -4466.002916
PSO 215.8519 1.3774 5000 85 90 3 155.5748 —4467.477612
SCPSO 215.8412  1.3787 5000 85 90 3 155.0522 —4468.477663

Table 10: Statistical outcomes of optimization problems for alkylation unit

Algorithm Best Worst Average Std
BSA —4468.472691 —3288.898966 —4423.826364 214.9057773
AO —3780.575170  —1493.944319  —-3039.009522 554.3926668

SCSO —4467477685 —2649.450355 —4125.345270 621.9668770
WOA —-4468.476520 —-4466.890332 —4468.051777 0.7123301
RSA —4435.927422  -2045.949163 —3530.728638  569.0514241
TLCO —4447871453  -4362.136759  —4397.728715  23.4395622
SCA —4468.460454 —4467356721 —4468.071897 0.3186941
BWO -4466.002916  —4367.374081 —4442.271801  28.0633036
PSO -4467477612 —4466.033154 —-4467.012516 1.2164211

SCPSO —4468.477663 —4468.476833 —4468.477411 0.0002109
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6.2 Automobile Lateral Crash Design Issue

The automobile lateral crash issue [56] is a constrained optimization problem. It aims to minimize the
extent of passenger injuries in a collision by optimizing the crash resistance of the vehicle to meet vehicle
market and regulatory side-impact standards and to provide adequate side-impact protection. According to
the European Enhanced Vehicle Safety Council (EEVC) European vehicle side impact procedure, this paper
performs optimization under eight constraints to minimize the vehicle weight. Among the variables is the
thickness of the inside of the B-pillar (pa;), the B-pillar strengthening member (pa,), the inside of the floor
(pas), the cross member (pay), the door beam (pas), the door seat belt reinforcement (pag), the roof truss
beam (pay), the material of the inside of the B-pillar (pag), the inside of the floor (pay), the stature of the
impediment (pa;), and the batting slotting (pa; ;). The equation for this issue is:

min f (Pa) = 1.98 + 4.9pa, + 6.67pa, + 6.98pas + 4.01pay + 1.78pas + 2.73pa; (21)
Constraints:

g1 (Pa) =116 — 0.3717 pa, pays — 0.00391 pa, payy — 0.484 pazpay + 0.01343 pagpayy — 1,

& (Pa) = 0.261 - 0.0159 pa, pa, — 0.188 pa; pag — 0.019 pa, pa; + 0.0144 pas pas + 0.0008757 paspayg
+0.08045 pag pas + 0.00139 pas pay + 0.00001575 paypay — 0.32,

g5 (Pa) = 0.214 + 0.00817 pas — 0.131 pa; pas — 0.0704 pa; pas + 0.03099 pa pag — 0.018 pa, pa;
+0.0208 paspas + 0.121 pas pas — 0.00364 paspag + 0.0007715 paspaye — 0.0005354 pag paio
+0.00121 pag pay; — 0.32.

g4 (Pa) =0.74 — 0.061 pa, — 0.163 paz pas + 0.001232 pas payo — 0.166 pa; pay + 0.227 pa% -0.32,

g5 (Pa) = 28.98 + 3.818 pas — 4.2pa; pa, + 0.02070.001232 pas pay
+6.63paspag —7.7a; pag + 0.32 pagpayp — 32,

g6 (Pa) =33.86 + 2.95 pa; + 0.1792 payy — 5.057 paypa, — 11 pa, pag — 0.0215 paspayp — 9.98 a; pas
+22 pagpag — 32,

g7 (Pa) = 46.36 — 9.9 pa, —12.9 pa; pag + 0.1107 paz payo — 32,

gs (Pa) = 4.72 - 0.5 pay — 0.19 pa, pas — 0.0122 pay payy + 0.009325 pag payy + 0.000191 paf, — 4

Variables take values in the range:

0.5 < pay, pas, pas < 1.5,0.45 < pa, <1.35,0.875 < pas < 2.625,
04< pae, paz < 1.2,0.192 < pasg, pag < 0.345,-30 < pawo, pan < 30

The following participated in this experiment: SCA, AO, Slime Mould Algorithm (SMA) [57], TLCO,
Artificial Rabbits Optimization (ARO) [58], WOA, Seagull Optimization Algorithm (SOA) [59], Mountain
Gazelle Optimizer (MGO) [60], PSO, and SCPSO. Based on the optimal results of the automobile lateral
crash design issue presented in Table 11, SCPSO has performed better in solving this problem. Moreover,
other statistical outcomes of each algorithm for solving the automobile lateral crash design issue are also
provided in Table 12, which further demonstrates the superiority of SCPSO.
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Table 11: Optimal outcomes for the automobile lateral crash design issue

Algorithm Optimal variables Optimal outcomes
pa; pa pa; pa pa, pa; pa pa pa pa pa
SCA 0.5 1.0436 0.5 0.5 0.5082 15 0.5 0.3450  0.3450 =30 12.1610 22.414455
AO 0.5457 0.8942 10158 0.5839 0.7474 0.9305 0.5680 0.3401 0.3298 -28.229  2.1109 25.182156
SMA 0.5 1.0526 0.5 0.5 0.5 1.5 0.5 0.3450 0.3450 =30 0.0073 22.238323
TLCO 0.8740 0.8962 0.6074 0.5839 0.5030 13039 0.6153 0.3177 0.2035 —29.064 —0.9041 23.997613
ARO 0.5101  1.0479 0.5 0.5 0.5 15 0.5 0.3450 0.3450 -29.998 0.1794 22.238922
WOA 0.5 1.0480 0.5124 0.5 0.5 1.5 0.5 0.3450  0.2657 =30 —2.3475 22.333979
SOA 0.5048 1.0491 0.5 0.5 0.5 15 0.5052  0.3450 0.3403 =30 6.7587 22.279301
MGO 0.5 1.0525 0.5 0.5 0.5 15 0.5 0.3450  0.3450 =30 0 22.238312
PSO 0.5 1.0525 0.5 0.5 0.5 1.5 0.5 0.3450 0.3450 =30 0 22.238312
SCPSO 0.8777 0.5120 0.0263 0.3399 0.3759 0.4833 0.4112 0.8199 0.0499  0.1373 0.6234 18.071202

Table 12: Statistical outcomes of automobile lateral crash design issue

Algorithm Best Worst Average Std

SCA 22.41445503  23.98014985  23.09158126  0.38403839
AO 2518215649  31.34997360  28.23093593  1.32330282
SMA 22.23832343  22.25508511  22.24040018 0.00397588
TLCO 23.99761321 2712801303  25.16787171  0.61397204
ARO 2223892245  22.33920453  22.25908192  0.02900766
WOA 2233397876  25.13155506  23.67883400 0.79935778
SOA 2227930119  22.74159649  22.43994485  0.10735146
MGO 2223831193  22.25800664 22.23980907  0.00413040
PSO 2223831193  23.99172644  22.45021007  0.49275942
SCPSO 18.07120239  23.06415054  21.30212189  1.29661810

6.3 Industrial Refrigeration System Design Issue

Industrial refrigeration system [61] is a type of refrigeration equipment used in extensive industrial
facilities and commercial buildings closely related to energy consumption. Therefore, the optimal design of
an industrial refrigeration system plays a significant role in regulating energy consumption. This problem

aims to find the minimum energy consumption under fifteen constraints and contains fourteen variables,
which are formulated as follows:

min f (Pa) = 63098.88 pa, pay pay, + 5441.5 pas pay, +115055.5 pay®®* pag + 6172.27 pas pae

1.664

+63098.88 pa; paspay, + 54415 pat pay, + 115055.5 pa}®** pas + 6172.27 pa; pas

+140.53 pa, pay, +70.26 pa; + 281.29 pa, pas + 281.29 pas

2.893

+ 14437 pa§'8812pa?2'3424 palopa;fpalzpmpa;l +20470.2 pa; 0,316

pan Palz (22)

Constraints:

g1 (Pa) =1.524 pa;' -1, g, (Pa) = 1.524pag’ -1,
g3 (Pa) = 0.07789 pa, - 2pa;' pay -1,
g4 (Pa) = 7.05305pay’ pa; pay pag' pas' pay; -1,
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g5 (Pa) = 0.0833pa;; payy — 1,

g6 (Pa) = 47.136 pad*’ pa;) pay, — 1.333pagpay™®
62.08pay;"” pay, pag?payy —1,

g7 (Pa) = 0.04771 payo pag®™?* paly>*** -1,

gs (Pa) = 0.0488 pagpa’®®® pal ' -1,

g9 (Pa) = 0.0099 pa;pa;’ — 1, g (Pa) = 0.0193pa, pa;’ -1,

gu (Pa) = 0.0298 pa,pa;’ -1, g1, (Pa) = 0.056 pa, pag’ -1,

i3 (Pa) =2pag' —1, i (Pa) = 2pay; ~ 1,

15 (Pa) = 2paj —1

Variables take values in the range:

0.001< pa; £5,i=1,2,...,14

PSO and SCPSO that participated in the comparative experiments, as well as the COA, Ant Lion
Optimizer (ALO) [62], Harmony Search Algorithm (HS) [63], AO, Arithmetic Optimization Algorithm
(AOA) [64], TLCO, BSA, and RSA. The optimal results of the industrial refrigeration system design problem
are provided in Table 13, from which it can be noted that the optimal value of SCPSO is closest to the desired
result. Moreover, from the statistical outcomes of each algorithm for solving the industrial refrigeration
system design issue in Table 14, SCPSO has the smallest mean value and is also in a distant second place
regarding standard deviation.

Table 13: Optimal outcomes for the industrial refrigeration system design issue

Algorithm Optimal variables Optimal outcomes
pa, pa, pa, pa, pa, pa, pa, pa, pa, pa, pa, pa, pa, pa
COA 0 0 0 0 0 0 050 013 050 0.09 01 0.04 O 0 0.01200097
ALO 0 0 0 0 0 0 015 039 0.88 0.78 0.07 O 0.01 0.24 0.02649406
HS 001 001 O 002 014 002 061 265 301 078 0.69 067 095 414 15.30238649
AO 0.01 001 0.01 0.00 001 0.01 001 0.01 001 0.01 001 0.01 0.01 0.01 5.32695568
AOA 0 0 0 0 0 0 010 0.05 500 065 0.05 0 0 037 0.03972975
TLCO 0 0 0 013 044 011 359 4.01 083 128 260 013 027 5.00 8.39399418
BSA 0 0 0 0 004 0 004 017 038 0.08 0.08 0.01 0.02 0.06 0.09101996
RSA 0 0 0 0 0 0 015 125 393 169 0.07 094 074 245 0.09598978
PSO 0 0 0 0 0 0 025 041 500 500 007 0 0.02 0.62 0.02592395
SCPSO 0 0 0 0 0 0 026 045 5.00 118 0.07 O 0.01 0.23 0.02586357
Table 14: Statistical outcomes of industrial refrigeration system design issue
Algorithm Best Worst Average Std
COA 0.01200097 4.78285405 1.46993420 1.25630923
ALO 0.02649406 2.97715709 0.24298702 0.56443219
HS 15.30238649 5095.03060 491.72975 943.29833
AO 5.32695568 6.53870665 6.46798239 0.23926326
AOA 0.03972975 0.17823339 0.08453720 0.04020038

(Continued)
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Table 14 (continued)

Algorithm Best Worst Average Std
TLCO 8.39399418 426.44383609 139.52977397 111.50725407
BSA 0.09101996 6.29963487 2.15737234 1.82540728
RSA 0.09598978 663.58908278 443.87324855 316.06062290
PSO 0.02592395 29.11048468 2.30408251 5.59493673
SCPSO 0.02586357 0.02657502 0.02593954 0.00013654

7 Feature Selection

Feature selection (FS) [65] is a critical component of machine learning and data analysis, aiming to
identify the most relevant subset of features from the raw data to build accurate and efficient predictive
models. This process not only enhances model performance but also simplifies interpretation and reduces
computational costs, making it essential for high-dimensional data applications. In this study, we leverage
the Self-adaptive Cooperative Particle Swarm Optimization (SCPSO) algorithm to tackle the multi-objective
ES problem effectively.

SCPSO is applied to achieve two main goals simultaneously: maximizing classification accuracy and
minimizing the number of selected features. By balancing these objectives, SCPSO intelligently narrows
down the feature space, identifying feature subsets that both maintain high predictive power and enhance
efficiency. Through this approach, SCPSO demonstrates its ability to outperform other algorithms by
selecting the most informative features that contribute to precise, generalizable models. This dual objective
underscore the robustness of SCPSO in adapting to complex datasets, highlighting its value as a tool for both
performance-driven and efficiency-oriented feature selection in machine learning tasks.

7.1 Modeling

Feature selection (FS) exemplifies a classic binary optimization challenge. In this context, each feature
is represented by binary variables: a value of 1 indicates the feature is selected, while 0 signifies it is excluded.
This binary transformation is fundamental to refining the feature subset and enhances interpretability in
the optimization process. To robustly assess the performance of the binary FS algorithm, we employ 5-fold
cross-validation, which partitions the data into training and test sets in five cycles, ensuring that the model’s
reliability is consistently validated across varying data segments. This setup not only reinforces the robustness
of the model but also minimizes overfitting. The core objective of FS is to strike a fine balance: minimizing
the number of selected features while preserving, or even enhancing, classification accuracy. The fitness
function is thus meticulously designed to reward minimal feature sets that maintain high predictive power.
This approach emphasizes computational efficiency, reducing model complexity and enabling faster, more
effective decision-making, especially in scenarios where high-dimensional data can obscure insights and
overburden resources. In sum, this FS strategy allows the model to zoom in on the most informative features,
stripping away the irrelevant ones and thus honing predictive accuracy with a lean, high-performing subset
of data. To achieve this goal, the test function is set as:

Fit=vy -err+yﬂ (23)
1 2 IN]

where err represents the classification error rate of the selected classifier, |R| is the count of picked features

in the data set, and N/ is the original count of features in the data set. y; as a penalty factor for controlling
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classification accuracy, y, as a factor identifying the count of picked features, and y; € [0,1],y, =1—-y;. In
this paper, set y; = 0.9,y, = 0.1.

7.2 Trials and Analysis

To showcase the superiority of SCPSO in settling specific feature selection issues. We use the SVM
classifier for testing. Six standard test sets from the database published by the University of California,
Irvine (UCI) for machine learning were used in the test experiment, and the main details of the datasets
are summarized in Table 15. Breast Cancer: This dataset is usually used to classify breast cancer. The
SPECT dataset is mostly used to study heart disease diagnosis. Hepatitis: This dataset is often used for
the task of hepatitis-related classification. Sonar: This dataset is usually used to classify sonar signals.
Congress: This dataset is usually used to study voting patterns. Australian: This dataset is mainly used for
research related to financial or credit card applications. Comparisons with SCPSO were made with SMA,
Differential evolution (DE) [66], Atom Search Optimization (ASO) [67], GWO, ACO, and Gravitational
Search Algorithm (GSA) [68], besides PSO. In addition, the population size and the count of iterations were
set to 20 and 100, and each data set was executed 20 times independently.

Table 15: Details of the datasets

Data sets Feature Classification Precedents

Breast Cancer 9 2 699
Spect 22 2 267
Hepatitis 29 2 155
Sonar 60 2 208
Congress 16 2 435
Australian 101 1 606

First, the data results of each algorithm on six test sets (including Breast Cancer, Spect, hepatitis, Sonar,
Congress, and Australian) are presented in Table 16. In particular, it is worth noting that SCPSO has lower
mean values than the other algorithms on all test sets, which reveals its superior performance in solving these
issues. Additionally, the standard deviation is relatively small, which indicates that SCPSO also performs well
in terms of stability. As a whole, the overall ranks of the algorithms are SCPSO > GSA > ASO > ACO > PSO
> SMA = DE > GWO. SCPSO is ranked first with an average rank of 1, while PSO is ranked fifth with an
average rank of 4.33, again emphasizing the introduced strategies’ importance and effectiveness. The excellent
performance of SCPSO may be attributed to the efficiency and robustness of its optimization process, which
enables it to find better feature combinations on complex datasets. The stable and high performance of GSA
indicates its adaptability in handling different types of data. The relatively weak performance of PSO, SMA,
DE, and GWO may be due to the lack of adaptability of these methods to different data feature distributions
and complexity, resulting in poor results for some datasets.
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Table 16: Data outcomes of each FS algorithm

Datasets Indicators SCPSO PSO SMA DE ASO GWO ACO GSA

Best 0.02647 0.02647 0.03000 0.02647 0.02647 0.03000 0.02647 0.02647
Average 0.04434 0.04778 0.05364 0.05081 0.04863 0.05351 0.04499 0.04654
Breast cancer ~ Worst 0.06532 0.06885 0.07180 0.06885 0.07237 0.06885 0.06532 0.06885
Std 0.01109 0.01137 0.00998 0.01319 0.01329 0.01026 0.01088 0.01244
Rank 1 4 8 6 5 7 2 3

Best 0.07367 0.07487 0.11792 0.11003 0.09065 0.08731 0.09640 0.08731
Average  0.11676 0.12979 0.15668 0.14493 0.12867 0.14866 0.13520 0.12872

Spect Worst 0.18010 0.18465 0.19134 0.19949 0.18010 0.21192 0.17556 0.19134
Std 0.02717 0.02915 0.02247 0.02658 0.02399 0.02865 0.02391 0.02569
Rank 1 4 8 7 2 6 5 3

Best 0.00526 0.01053 0.00526 0.07640 0.00526 0.01579 0.00526 0.00526
Average 0.09813 0.11304 0.12243 0.14081 0.10829 0.14690 0.10856 0.10736
Hepatitis Worst 0.16621 0.18472 0.17946 0.19253 0.17946 0.27963 0.17946 0.17946
Std 0.04066 0.04317 0.04811 0.03550 0.04207 0.05819 0.04264 0.04308
Rank 1 5 6 7 3 8 4 2

Best 0.03362 0.04500 0.08947 0.06862 0.04862 0.04833 0.05057 0.06195
Average  0.07748 0.10006 0.14993 0.12544 0.10553 0.13069 0.11688 0.10694

Sonar Worst 0.14004 0.15476 0.20756 0.18142 0.17004 0.25423 0.18199 0.18866
Std 0.03339 0.03202 0.03490 0.03300 0.03309 0.04693 0.03380 0.02908
Rank 1 2 8 6 3 7 5 4

Best 0.02694 0.02694 0.02694 0.03944 0.02694 0.03750 0.02694 0.02694
Average 0.04857 0.05034 0.05014 0.06203 0.04960 0.06068 0.04908 0.04888
Congress Worst 0.06832 0.06832 0.06832 0.09332 0.06832 0.08707 0.06832 0.06832
Std 0.01119 0.01076 0.01095 0.01347 0.01086 0.01322 0.01078 0.01089
Rank 1 6 5 8 4 7 3 2

Best 0.37990 0.39290 0.39478 0.40890 0.38990 0.41134 0.38734 0.39090

Average  0.39655 0.41241 0.41007 0.42524 0.40570 0.43049 0.40401 0.40727

Australian Worst 0.41853 0.44153 0.43540 0.44953 0.43153 0.46297 0.42753 0.43553
Std 0.01064 0.01427 0.01062 0.01237 0.01359 0.01418 0.01059 0.01271

Rank 1 5 6 7 3 8 2 4
Mean rank 1.00 433 6.83 6.83 3.33 717 35 3.00
Final rank 1 5 6 7 3 7 4 2

In Fig. 17, we can view the convergence plot of each binary algorithm. Among them, the red curve
represents the convergence trend of SCPSO. It is apparent from the observation that SCPSO converges more
swiftly compared to other algorithms, and the minimum value reached is also the smallest. This observation
further highlights the superiority of SCPSO in solving FS issues. Its fast convergence speed signifies that it can
find the optimal subset of features more efficiently. At the same time, the minimum value reached indicates
that it can find a more accurate prediction model. Not only that, the boxplot of SCPSO and the individual
algorithms are also shown in Fig. 18, which also affirms the performance of SCPSO in terms of stability.
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Figure 17: Convergence plot of each FS algorithm
Breast Cancer Spect hepatitis
- T T - r T T T T T T T T B T T r r r . pa r r
o7t - ! _ | _ _ | !
A - : -] o= : 1
T N A SR 0.18 Ty ‘ :
| 1 1 1 18F — ' _
e . Lo ! o] o _ ! ]
! 1 016 | ! ' | T - i - ——
2 2 : b ' 'l g T ' | '
S oos| . {8l : ! goasp I v
= 1 () 1 =
. ; I I
| L I 0.1 1
0.04f T4 ! 1 o i o d =1 ,
1 ' 1 ' 1 ! T ll : ' : ' : . 1 : .
. P o1r : FE 00sf 1 A
) O T T A B S * - o I
L 4 4 . . 4 . 4 4 ol + + L + 4 4 |
o 0 ¥ O L O © 3 o 0 ¥ & L © © v o 0 ¥ & O © © s
quo & & Y g N O @ éz@ & & Vg N R 62% & & Y ¢ & ¢ @
% 2 %
Sonar Congress Australian
0.25 009 T 046 H
! 3 '
. _ - 008 | 045 - !
- ! : R i T 0.44 T : X
T T 0.07 | ! n ! _ T
. _ T P I T ToT ], 0. fo ; -
§015-T : : | - 5006 1 1 1 1 ﬁ 1 1 .50.42 _ ] : : : :
= ' ' = = T | '
: ! El 0.0 ; ' 041} e +
01t e — 5 ' ' :
" ; N i | 0.04 1 ] L 1 N T 04 1T ]
: o s o ! boor | o + .
0.05F L L+ 003k 1 | I ! 1 ! '
+ : L 4 4 4 L 4 038f +
o} (o} \a % o o o} e O O \a & (o} o o e o O \o % (o} o o X
s éz@ &y VY E Ny @ c?% &g & 9 E N ¢ & 5 6{9 & & 9 E &N ¢ &
2

Figure 18: Boxplot of each FS algorithm

Feature selection (FS) primarily aims to maximize classification accuracy. Table 17 presents each algo-

rithm’s average classification accuracy and ranking across six datasets, with a bar plot in Fig. 19 visualizing
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these averages. Notably, SCPSO (Self-adaptive Cooperative Particle Swarm Optimization) shows varying
effects depending on the dataset, with standout performance on severa.SCPSO ranks first in solving
Spect, hepatitis, Sonar, and Australian datasets, showcasing its ability to handle these tasks effectively. This
consistent top-ranking highlights SCPSO’s robustness and adaptability, making it an ideal choice for complex
feature selection problems in these domains. On the Breast Cancer dataset, SCPSO did not outperform SMA
(Slime Mould Algorithm) and GSA (Gravitational Search Algorithm), but it still secured third place. This
ranking indicates that SCPSO remains a competitive choice, even though other algorithms have a slight
edge on this dataset. However, SCPSO ranks fifth on the Congress dataset, suggesting it faces challenges
in addressing this data type. This result points to potential areas for SCPSO’s improvement and to develop
optimized strategies tailored for Congress-type data.

Table 17: Average classification accuracy of each algorithm

Datasets  SCPSO PSO SMA DE ASO GWO ACO GSA

Breast cancer 975680 973022 96.7626 974101 973741 975540 88.4173  97.6619
®) @) ) ©) (6) (4) (8) )
Spect 89.9057 88.9623 876415 895283 89.3396 88.9623 78.5849 89.0566
@ (5) (6) () (3) (5) (7) 4)
Hepatitis ~ 90.9677 895161 877419  89.3548 89.8387 877419 78.5484 90.3226
@ (4) (6) (5) (3) (6) (7) )
Sonar 93.7805 93.0488 85.6098 92.6829 92.5610 919512  69.5122  92.6829
©) 2 (6) 3) (4) (5) (7) ©)
Congress 954023 955172 95.5747 957471 95.2874 95.8621 68.2184 95.4023
©) (4) ®) () (6) @ 7) ©)
Australian 570661 56.8595 55.5372 56.9008 56.9835 56.8182 52.5207 56.9421
) (5) (7) (4) @) (6) (8) ®3)
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Figure 19: Bar plot of the average classification accuracy of each algorithm
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SCPSO excels across most datasets, but its relatively weaker performance in Congress highlights an
opportunity to refine the algorithm and expand its versatility in feature selection applications.

The second goal of the FS problem is to keep the number of features as small as possible. In Table 18, we
collect the average size of the feature subset for the eight algorithms. These results show that all algorithms
achieve some degree of reduction in the dimension of the original data set, i.e., successful feature selection.
Specifically, with fewer features, SCPSO ranked first in Breast Cancer, Spect, Sonar, and Congress. Moreover,
it is slightly inferior to SMA on hepatitis, Australian, and ranks second.

Table 18: Average size of feature subset for each algorithm

Datasets SCPSO PSO SMA DE ASO GWO ACO GSA

Breast Cancer 2.2 235 245 275 2.5 3.15 2.3 2.55
ey () B ) @ 5 (8) (2) (6)

Spect 570 670 10.00 1115 720 1085 845  6.65
) G @© 6 @ O 6 @

Hepatitis 32 355 23 855 32 695 325 385
) @ o O @ © 6 6

Sonar 1225 225 129 3575 2315 3495 1415 24.65
@ 49 @ 6 6 O 6 (6

Congress 115 16 165 38 LI5 375 LI5 12

@ G @ @6 O 6 o @
Australian 1015 2415 99 3735 1855 4185 1165 19.75

) ©o @® @ 6 6 G &

In summary, SCPSO iteratively selects features by evaluating the impact of feature subsets on model
performance. To distinguish between related and unrelated features, the model reduces the probability
of selecting features that contribute less to performance. That is achieved by strengthening particles that
perform well (subsets with higher fitness) and punishing or abandoning particles that do not improve model
performance. Therefore, as the iteration progresses, the algorithm will gradually converge to a feature set that
contributes the most to prediction accuracy.

8 Conclusion and Future Direction

This paper presents an enhanced PSO algorithm called SCPSO. It demonstrates high convergence
accuracy and stability on a complex CEC test suite and three engineering problems, proving its superb
generalization ability and usefulness. He demonstrates its ability to reduce data dimensionality and improve
model performance by selecting relevant features. The integration of SCSO into the traditional PSO
framework is a key improvement that endows SCPSO with extended global search capabilities. This is
attributed to SCSO’s ability to mimic the hunting behavior of sand cats, which are adept at detecting low-
frequency vibrations to locate their prey, thus exploring the solution space more efficiently and reducing the
likelihood of getting stuck in local optima.

Employing a Latin hypercube sampling strategy during the initialization phase has proven to be a
strategic move. This approach ensures a more even distribution of the initial population in the search space,
enhances population diversity, and provides broader coverage from the outset. This initialization technique
is particularly effective in high-dimensional problems where random initialization may lead to clustering
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of solutions in some domains, ignoring others, and potentially missing the global optimum. In addition,
inspired by the cooperative hunting behavior of Grey wolves, a roundup search strategy is introduced to
accelerate the convergence of SCPSO. By selecting leaders based on fitness and allowing them to guide the
group toward the goal, SCPSO demonstrates an improved ability to find optimal solutions quickly.

Improvements to the algorithm will continue in the future. On the one hand, although SCPSO has
achieved some successes, the intake search strategy has been shown to improve the convergence speed but
inhibit the accuracy of the solution on individual functions. Therefore, subsequent research can focus on
finding better strategies. In addition, the transfer function helps to influence the way the algorithm navigates
through the feature space, leading to changes in the quality and efficiency of feature selection. Therefore,
more work needs to be done to measure the applicability of SCPSO in solving other FS problems using other
transfer functions, such as the V-function. Finally, SCSO can be applied to more problems, such as UAV path
planning, time series prediction, etc.
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