
Computer Modeling in
Engineering & Sciences

echT PressScience

Doi:10.32604/cmes.2025.060481

REVIEW

Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic
Search Challenge Algorithms

Mohamad Khairulamirin Md Razali1,*, Masri Ayob2 , Abdul Hadi Abd Rahman2 , Razman Jarmin3 ,
Chian Yong Liu3 , Muhammad Maaya3 , Azarinah Izaham3 and Graham Kendall4,5

1Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
2Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
3Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, 56000, Kuala Lumpur, Malaysia
4School of Engineering and Computing, MILA University, Nilai, 71800, Negeri Sembilan, Malaysia
5School of Computer Science, University of Nottingham-Malaysia Campus, Semenyih, 43500, Selangor, Malaysia
*Corresponding Author: Mohamad Khairulamirin Md Razali. Email: p111390@siswa.ukm.edu.my
Received: 02 November 2024; Accepted: 27 December 2024; Published: 27 January 2025

ABSTRACT: The Cross-domain Heuristic Search Challenge (CHeSC) is a competition focused on creating efficient
search algorithms adaptable to diverse problem domains. Selection hyper-heuristics are a class of algorithms that
dynamically choose heuristics during the search process. Numerous selection hyper-heuristics have different imple-
mentation strategies. However, comparisons between them are lacking in the literature, and previous works have not
highlighted the beneficial and detrimental implementation methods of different components. The question is how
to effectively employ them to produce an efficient search heuristic. Furthermore, the algorithms that competed in
the inaugural CHeSC have not been collectively reviewed. This work conducts a review analysis of the top twenty
competitors from this competition to identify effective and ineffective strategies influencing algorithmic performance.
A summary of the main characteristics and classification of the algorithms is presented. The analysis underlines efficient
and inefficient methods in eight key components, including search points, search phases, heuristic selection, move
acceptance, feedback, Tabu mechanism, restart mechanism, and low-level heuristic parameter control. This review
analyzes the components referencing the competition’s final leaderboard and discusses future research directions for
these components. The effective approaches, identified as having the highest quality index, are mixed search point,
iterated search phases, relay hybridization selection, threshold acceptance, mixed learning, Tabu heuristics, stochastic
restart, and dynamic parameters. Findings are also compared with recent trends in hyper-heuristics. This work enhances
the understanding of selection hyper-heuristics, offering valuable insights for researchers and practitioners aiming to
develop effective search algorithms for diverse problem domains.

KEYWORDS: Hyper-heuristics; search algorithms; optimization; heuristic selection; move acceptance; learning;
diversification; parameter control

1 Introduction

Hyper-heuristics are one of the three forms of heuristics as described by Pillay et al. [1]. The other two
types are low-level heuristics (often just referred to as heuristics) and metaheuristics. Low-level heuristics
make direct changes to the solution, whereas metaheuristics are higher-level methods that guide the search
using one or more low-level heuristics [2]. Hyper-heuristics combine multiple low-level heuristics into a
framework that explores the heuristic space [3].

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2025.060481
https://www.techscience.com/doi/10.32604/cmes.2025.060481
mailto:p111390@siswa.ukm.edu.my


1234 Comput Model Eng Sci. 2025;142(2)

Hyper-heuristics can be classified into four categories: selection constructive, selection perturbative,
generation constructive or generation perturbative [4]. Selection hyper-heuristics select an existing low-level
heuristic (either constructive or perturbative), whereas generation hyper-heuristics evolve a new low-level
heuristic at each point of the optimization. Constructive low-level heuristics build a complete solution
incrementally, whereas perturbative low-level heuristics are used to iteratively improve an already complete
solution, which might be infeasible.

By exploring the heuristic search space, hyper-heuristics achieve a higher level of generality [5].
A method with greater generality can address numerous problem instances, as opposed to tailor-made
methodologies that perform well on certain instances but poorly on others [6]. To evaluate the generality
of hyper-heuristics, the HyFlex framework was developed [7]. HyFlex provides multiple problem instances
with hidden instance-specific low-level heuristics. Users of the framework simply need to design the high-
level strategy that decides which low-level heuristic to call at a given decision point. The framework has
been used in various research studies and competitions, including the Cross-domain Heuristic Search
Challenge (CHeSC) [8]. The inaugural CHeSC drew researchers worldwide to create highly general hyper-
heuristics. The final competition includes 20 selection hyper-heuristics of various algorithmic designs.
These algorithms have been extensively studied post-competition and remain significant benchmarks in
hyper-heuristic research.

One of the main issues in selection hyper-heuristics is the lack of concrete study on which hyper-
heuristic components are most crucial to search performance. Hyper-heuristics encompass numerous
components, such as feedback, low-level heuristics, solutions (or search points), objectives, move acceptance,
and parameter settings [3]. Many hyper-heuristic algorithms have been introduced, each with different
features and strategies. Burke et al. [9] reviewed various hyper-heuristic algorithms, categorizing them into
selection and generation types. Drake et al. [3] also identified various selection hyper-heuristics with different
implementations in components such as feedback mechanisms, move acceptance, and parameter setting.
Sánchez et al. [2] examined various hyper-heuristics implemented to solve combinatorial optimization
problems. However, existing reviews only conducted comparisons between the algorithms limited to the
nature of the heuristic space [9], abstract level [3], or problems addressed [2]. Furthermore, each component
of selection hyper-heuristics has different implementation methods [3]. For example, there are three
classes of move acceptance: stochastic, non-stochastic basic, and non-stochastic threshold [10]. Comparing
performance across different implementations can help in identifying the most effective methods.

Nevertheless, there is a notable absence of a comprehensive analysis on selection hyper-heuristic
components. Numerous studies have focused on heuristic selection and move acceptance [10–14], neglecting
other crucial components such as feedback mechanisms [15,16], diversification strategies such as Tabu
mechanism [16] and search restart [17], as well as parameter settings [16,18]. These overlooked com-
ponents significantly influence algorithmic performance, with feedback mechanisms enabling adaptive
strategies [3,9], diversification techniques promoting exploration of the search space [19–21], and appropriate
parameter selection enhancing overall performance [3]. Identifying the best implementation methods for all
components can lead to the development of a more effective algorithm.

To address these gaps in the literature, a comprehensive analysis of existing algorithms is needed. The
CHeSC algorithms present an ideal case study for addressing these gaps. They remain relevant as they
continue to serve as benchmarks in recent studies such as [22–25]. Their use of a standardized framework
allows for direct comparisons by ensuring consistent experimental conditions. Additionally, the availability
of their design documentation and source codes facilitates in-depth analysis, which is not feasible for more
recent HyFlex algorithms. Despite their significance, no comprehensive analysis of the competing algorithms
has been conducted. Drake et al. [3] provided a summary and a limited classification of only ten out of the



Comput Model Eng Sci. 2025;142(2) 1235

20 competing algorithms. Furthermore, most algorithms were only inspected by their creators, potentially
resulting in a biased analysis. Only the winning algorithm was examined using a complexity analysis to
identify features that do not necessarily contribute to algorithmic performance, conducted by Adriaensen
et al. [17]. While their analysis method is undoubtedly effective, we contend that it may be too complex to
apply to the other 19 algorithms. Moreover, given their diverse algorithmic designs, there is a need to compare
the performance of different implementation methods among these algorithms, which remains unexplored.

In this work, a brief summary of ten competing algorithms that were not reviewed in Drake et al. [3]
is provided using the information gained from their source codes, design documentation, and extended
abstracts. The design documentation offers explanations from the algorithm designers on how their algo-
rithm operates. Then, this study employs a review analysis to investigate eight key components of selection
hyper-heuristics among the top twenty competitors from CHeSC: search points, search phases, heuristic
selection, move acceptance, feedback, Tabu mechanism, restart mechanism, and low-level heuristic param-
eters. The review analysis primarily focuses on these components, as they constitute the key components
of a selection hyper-heuristic algorithm [26,27]. Within hyper-heuristics, the role of the heuristic selection
mechanism is to choose specific low-level heuristics to be employed [28]. The resulting solution then
undergoes the move acceptance process to decide whether it should be accepted or rejected. Besides, certain
algorithms can learn from feedback to adapt their strategies [3,9]. Tabu and restart mechanisms can promote
diversification when the search gets stuck at local optima. Tabu mechanism encourages exploration and
avoids short-term cycling by ignoring previously visited solutions [21]. Restart mechanism can move the
search to a different region in the search space to escape local optima [19,20]. Hyper-heuristic algorithms
may have several parameters that necessitate control within heuristic selection, move acceptance, or low-level
heuristics [3]. The selection of appropriate parameter values is essential for achieving increased performance.

This work offers a simpler analysis of all competing algorithms from CHeSC. The main contribution of
this study is the identification of effective implementation methods for key components of selection hyper-
heuristics by finding the similarities among the top-ranking algorithms. Ineffective strategies are recognized
by detecting the similarities among the bottom-ranking algorithms. To achieve this, participating algorithms
are categorized based on their similarities in implementation methods for each algorithmic component. The
performance of different methods is compared using the average ranking of algorithms employing the same
strategy, derived from the final leaderboard of the competition. The algorithms are not subjected to additional
execution or re-ranking in this study. Instead, the study relies on the results and rankings provided by the
competition organizers.

This study is intended for designers of selection hyper-heuristic algorithms. Although our review
focuses on CHeSC algorithms, we ensure the relevance of our findings by relating them to trends observed in
recent algorithms. This approach enables our analysis to reflect progress in the field while offering valuable
insights for the development of future algorithms. The effective implementation methods identified in this
study can serve as focal points for future research aimed at enhancing search performance. By concentrating
on these methods, researchers can refine algorithms using proven strategies. The findings can also aid future
algorithm designers in creating effective algorithms for solving various optimization problems. The research
questions (RQ) of the study are as follows:

RQ1: What are the main characteristics of the proposed algorithms for CHeSC competition?
RQ2: What are the good and bad practices for key components of selection hyper-heuristics, including

search points, search phases, heuristic selection, move acceptance, feedback, Tabu mechanism, restart
mechanism, and low-level heuristic parameters, observed in the CHeSC algorithms?

RQ3: How do the results obtained from the analysis of the CHeSC algorithms align with the trends
identified in recently introduced hyper-heuristics?



1236 Comput Model Eng Sci. 2025;142(2)

RQ4: What are the recommendations for future studies related to selection hyper-heuristics?
The rest of the paper is structured as follows: Section 2 describes related works on core components

of selection hyper-heuristic and CHeSC. The methodology for the analysis is described in Section 3. The
following sections are structured to answer each research question. The HyFlex framework and the main
characteristics of the participating algorithms are summarized in Section 4 (RQ1). Section 5 discusses the
classification and implementation of key components of selection hyper-heuristics for the CHeSC algorithms
(RQ2). A comparison between the findings from the review with the trends observed in recent algorithms
is included in Section 6 (RQ3). Section 7 highlights future research recommendations related to selection
hyper-heuristics based on the review findings (RQ4). Finally, Section 8 summarizes the study, discusses
limitations and provides suggestions for future work.

2 Related Works
The core components of selection hyper-heuristic frameworks are heuristic selection, move acceptance,

and a set of low-level heuristics [11]. Within this framework, the selection mechanism determines which
low-level heuristic to apply to a working solution, whereas move acceptance establishes whether the resulting
solution will replace the existing one. Hyper-heuristics have been explored in a wide array of optimization
problems. Related works have been reviewed in various contexts, as summarized in Table 1.

Table 1: Summary of existing reviews on selection hyper-heuristics

Authors Key findings/methodologies
Burke et al. [9] Provided an overview of hyper-heuristic algorithms, encompassing

both selection and generation paradigms.
Drake et al. [3] Extended the classification of selection hyper-heuristics and discussed

existing frameworks.
Sánchez et al. [2] Analyzed the optimization problems in which hyper-heuristics are

employed.
Pillay [29] Provided a review focused on educational timetabling problems.

Branke et al. [30] Discussed implementations in production scheduling.
Pillay et al. [31] Introduced a novel taxonomy to classify hyper-heuristic algorithms

based on their level of generality and proposed performance measures
for generality.

Van Onsem et al. [32] Highlighted core concepts within CHeSC 2011 competing algorithms.

The primary components of selection hyper-heuristics, namely heuristic selection and move acceptance,
have been subject to extensive analysis in the literature. Ozcan et al. [11] conducted tests using differ-
ent combinations from seven heuristic selection methods and five move acceptance methods in solving
benchmark functions. Results revealed that the heuristic selection methods exhibit minimal performance
differences. In contrast, move acceptance methods significantly affect algorithm performance, with the
Improving and Equal strategy proving to be the most effective. Kiraz et al. [13] investigated 35 combinations
of five heuristic selection methods and seven move acceptance methods to solve problems in a dynamic
environment. Their findings indicated that heuristic selection methods with learning capabilities excel in
dynamic settings. Conversely, move acceptance methods with parameters, such as Simulated Annealing
(SA), yield poor results, whereas accepting all moves is the least effective. Misir et al. [33] evaluated the
generality of different heuristic selection and move acceptance configurations in solving problems with



Comput Model Eng Sci. 2025;142(2) 1237

different low-level heuristics sets. Their analysis underscores that the performance of heuristic selection
is also influenced by other algorithmic components and runtime. Move acceptance was found to impact
performance, but it is essential to ensure compatibility with the chosen heuristic selection method. The set of
low-level heuristics employed also affects performance, as they possess varying improvement characteristics
that can be leveraged best by different selection strategies.

Zamli et al. [12] assessed the performance of four heuristic selection and move acceptance methods,
including the newly developed Fuzzy Inference Selection (FIS), in solving the t-way test generation problem.
The results showed that FIS outperforms the Exponential Monte Carlo with counter (EMCQ) and Choice
Function (CF), albeit it exhibits slower execution times. Castro et al. [14] focused on the Multi-objective
Particle Swarm Optimization Hyper-heuristic, examining four heuristic selection methods, including CF,
multi-armed bandit, roulette-based and random approaches. Roulette-based selection emerged as the most
effective across 30 instances of multi-objective benchmark problems. Random selection lags behind the other
methods, emphasizing the advantages of non-arbitrary selection strategies. Jackson et al. [10] established a
taxonomy for move acceptance methods and conducted an empirical study comparing well-known methods.
SA was found to be the most effective approach in the context of cross-domain search. Furthermore, they
confirmed the contribution of move acceptance methods to algorithmic performance.

In addition to heuristic selection and move acceptance, other components of selection hyper-heuristics
impact algorithmic performance, as evidenced in the literature. Several studies explored the role of learning
mechanisms in heuristic algorithms. Yates et al. [15] investigated the effect of learning effective heuris-
tic sequences from a set of training instances on the performance of solving cross-domain instances.
They showed that offline learning enhances the performance of a sequence-based hyper-heuristic and
outperforms the online learning approach. Alanazi et al. [34] compared four approaches for controlling
selection probabilities in solving a well-known runtime analysis function. They concluded that learning
schemes do not consistently improve performance. Further analysis has shown that the effectiveness of
learning schemes is most prominent when there are significant performance variations among the low-level
heuristics. This aligns with the findings of Misir et al. [33] that underscore the impact of the set of available
low-level heuristics.

Misir et al. [16] investigated whether a learning strategy combined with a Tabu low-level heuristic
mechanism can improve algorithmic performance. Experiments on the home care scheduling problem, a
variant of VRP, demonstrated that the proposed strategy led to improved outcomes. An additional analysis
was conducted to inspect the impact of Tabu duration. The analysis revealed that an optimal range of values
exists, and deviating from this range can significantly hinder performance. These findings underscore the
importance of carefully tuning algorithmic parameter settings to achieve performance enhancements. This
principle is further substantiated by research conducted by Lissovoi et al. [18]. In their study, the impact of
using static vs. adaptive values for the learning period (τ) parameter in a random gradient hyper-heuristic
algorithm was explored. The comparative analyses on standard unimodal benchmark functions indicated
that adaptive parameter values have the potential to enhance algorithmic performance. Furthermore, the
research revealed that the optimal parameter value can vary across different problem instances.

Misir et al. [16]’s evaluation has also highlighted the influence of the Tabu mechanism, particularly
involving low-level heuristics, on algorithmic performance. The Tabu list, also referred to as a prohibition
list, was identified as one of the diversification strategies by Sarhani et al. [35], along with search restart and
randomization. Other diversification strategies have also been identified as influential to algorithmic perfor-
mance. Adriaensen et al. [17] conducted an Accidental Complexity Analysis on the winner of the CHeSC
2011 competition, AdapHH. The analysis delved into the performance contributions of each sub-mechanism
within the algorithm. The results of the analysis indicated that the restart mechanism incorporated within



1238 Comput Model Eng Sci. 2025;142(2)

the algorithm’s threshold acceptance criterion significantly contributed to its overall performance. However,
the Tabu mechanism within the algorithm did not make a substantial contribution to performance. This
underlines the importance of understanding how different algorithmic components can impact each other’s
performance. Table 2 summarizes the algorithmic components examined in previous studies, emphasizing
the novelty of our work in offering a comprehensive review.

Table 2: Summary of comparative studies on algorithmic components

Authors Heuristic
selection

Move
acceptance

Feedback Tabu
mechanism

Restart
mechanism

Algorithmic
parameters

Ozcan et al. [11] ✓ ✓
Kiraz et al. [13] ✓ ✓
Misir et al. [33] ✓ ✓ ✓
Zamli et al. [12] ✓ ✓
Castro et al. [14] ✓
Jackson et al. [10] ✓

Yates et al. [15] ✓
Alanazi et al. [34] ✓ ✓

Misir et al. [16] ✓ ✓ ✓
Lissovoi et al. [18] ✓ ✓

Adriaensen et al. [17] ✓ ✓
This study ✓ ✓ ✓ ✓ ✓ ✓

The CHeSC 2011 algorithms continue to serve as benchmarks in numerous recent publications, as
highlighted in [3]. The selection hyper-heuristics included in the CHeSC 2011 competition have been
discussed, analyzed and utilized as benchmarks in other research publications. Burke et al. [9] provided
an overview of hyper-heuristics covering the early approaches, classifications, learning components, and
research trends in the field. Four algorithms that competed in CHeSC 2011 were included in the survey. Drake
et al. [3] focused on extended classification, benchmark frameworks, cross-domain search, and problem
domains in selection hyper-heuristics. HyFlex framework and CHeSC 2011 were extensively discussed, and
ten of the competing algorithms were described. However, both reviews only provided summaries and lacked
an in-depth analysis and comparison. In contrast, Van Onsem et al. [32] produced a report of the CHeSC
algorithms, highlighting core concepts such as iterated local search, reinforcement learning, and Tabu search.
They concluded that an algorithm’s performance relies on combining various techniques, and no single
technique used independently leads to large performance gains.

Adriaensen et al. [36] conducted a comparative study to assess the generality of two CHeSC 2011
algorithms (AdapHH and EPH) in solving three additional problem domains: 0–1 knapsack problem,
quadratic assignment problem and max-cut problem. Their experiments showed that AdapHH, the winner of
CHeSC 2011, exhibits superior generality and consistency even when considering the extended set of problem
domains. The authors also pointed out that AdapHH’s shortcoming is in its complexity, which they examined
in detail through the complexity analysis in Adriaensen et al. [17]. The analysis identifies complex algorithmic
components that can be eliminated with minimal performance loss to reduce the overall complexity. A less
complex variant of the algorithm, Lean-GIHH, is proposed from the analytical results. Drake et al. [37]
investigated the crossover control mechanism by substituting the one in AdapHH with another from the
literature and using AdapHH’s in a Modified Choice Function-All Moves hyper-heuristic. They concluded
that the control strategy has no impact on the algorithm’s performance. Notably, AdapHH has received most
of the attention in terms of analysis and comparison, leaving other algorithms overlooked.



Comput Model Eng Sci. 2025;142(2) 1239

The algorithms from CHeSC 2011 have also served as benchmarks in other studies. Numerous works
utilize the HyFlex framework to compare their proposed algorithms against CHeSC 2011 algorithms, either
with the original problem domains or the extended ones. Table 3 lists the benchmark set used in studies
that evaluated algorithms using the HyFlex framework. For a comprehensive summary of works utilizing
the HyFlex framework before 2020, refer to Drake et al. [3]. Soria-Alcaraz et al. [38] compared their iterated
local search hyper-heuristic to the CHeSC 2011 contestants exclusively on vehicle routing problems. Their
algorithm achieved a third-placed ranking among the competitors. Hassan et al. [39] integrated a dynamic
heuristic set selection (DHSS) into the Fair-Share Iterated Local Search (FS-ILS) hyper-heuristic [40], which
surpassed the performance of all CHeSC 2011 algorithms. The comparison, using the original HyFlex problem
domains, showed that DHSS improved FS-ILS. Zhao et al. [41] introduced a hyper-heuristic algorithm that
incorporates multi-armed bandit, relay hybridization and a genetic algorithm. The algorithm produced
highly competitive results against the top five CHeSC 2011 algorithms in most problem instances and
generalized well across the original domains.

Table 3: The HyFlex benchmark set used by previous studies

Authors Original set Extended set
Gümüş et al. [22] ✓

Kletzander et al. [23] ✓

Mischek et al. [24] ✓

Adubi et al. [25] ✓ ✓

Drake et al. [37] ✓

Ferreira et al. [42] ✓

Hassan et al. [39] ✓

Özcan et al. [43] ✓

Zhao et al. [41] ✓

Soria-Alcaraz et al. [38] ✓

Gümüş et al. [44] ✓

In [25], an evolutionary algorithm-based iterated local search (EA-ILS) hyper-heuristic was presented,
featuring a novel mutation operator. The study compared the algorithm’s performance in solving all 30
instances of the extended HyFlex problems against seven hyper-heuristics, which included two from CHeSC
2011. The algorithm demonstrated superior generalization compared to other algorithms. Additionally, when
applied to address the original HyFlex set, EA-ILS outperformed all algorithms from the competition.
Mischek et al. [24] proposed a reinforcement learning approach incorporating different state space represen-
tations and an intelligent reset mechanism. The algorithm would have come in second place, beating other
reinforcement learning-based algorithms in the competition. Kletzander et al. [23]’ large state reinforcement
learning-based algorithm managed to outperform all 20 competitors from CHeSC 2011. Gümüş et al. [22]
proposed using F-Race as a parameter tuning method for a steady-state memetic algorithm (SSMA) to
investigate its efficacy in cross-domain search. They compared the performance of SSMA without tuning [43]
with SSMA tuned using the F-Race or Taguchi method in the CHeSC 2011 competition setup. The tuned
SSMA ranked higher (fourth place) compared to the untuned variant (22nd of 25 algorithms).



1240 Comput Model Eng Sci. 2025;142(2)

3 Methods
This study conducts a review analysis of the top 20 algorithms that competed in CHeSC 2011, aiming to

examine their algorithmic designs. These algorithms are chosen as they continue to be utilized as benchmarks
in recent studies such as [22–25], highlighting their relevance. Furthermore, the algorithms utilize the same
framework, i.e., the HyFlex framework, streamlining the analysis process. The source codes and supporting
documentation for the algorithms are also readily available, enabling us to easily identify the implementation
methods for the algorithmic components examined.

More recent selection hyper-heuristics utilizing the HyFlex framework as highlighted in Section 2.
However, we excluded these algorithms from our review analysis due to the unavailability of their source
codes and to limit the scope of our study. Nevertheless, we provide a brief comparison of the analysis findings
from the CHeSC 2011 algorithms to the trends observed in recent algorithms in Section 6. The inclusion and
exclusion criteria for the review analysis in this study are summarized in Table 4.

Table 4: Inclusion and exclusion criteria of the study

Inclusion criteria Exclusion criteria
1. The algorithm must utilize the HyFlex

framework.
1. The algorithm is not implemented using the

HyFlex framework.
2. The algorithm must have participated in the

CHeSC 2011 competition.
2. The algorithm did not participate the CHeSC

2011 competition.
3. The algorithm must be listed in the final

leaderboard of the CHeSC 2011 competition.
3. The algorithm is not included in the final
leaderboard of the CHeSC 2011 competition.

4. The algorithm must have readily available source
code and design documentation.

4. The algorithm does not have readily available
source code and design documentation.

This study examines eight key components of selection hyper-heuristics: search points, search phases
heuristic selection, move acceptance, feedback, Tabu mechanism, restart mechanism, and low-level heuristic
parameter control. The algorithmic attributes for each component are categorized based on existing classifi-
cation where available. Otherwise, the attributes are classified based on their similarities. The implementation
methods of each algorithm from CHeSC 2011 are identified from the source codes and supporting documen-
tation. We adapt the quality index as in [45,46] to evaluate the performance of the different implementation
methods. Quality index QI ∈ [1, n] is assigned based on the ranks of the algorithms in the competition
results, where the top-ranked algorithm receives n (number of competing algorithms). Each succeeding
algorithm in the ranked list is given one lower quality index than the one ranked before it. Discussions on
each algorithmic component are presented based on the comparisons between different implementation
methods. The components examined in this study are summarized in Fig. 1.

The quality index analysis relies on the rankings within the leaderboard, which are determined by the
performance metric used to rank the algorithms. In the HyFlex framework, algorithms are ranked using
a scoring system inspired by Formula 1 (F1) racing, based on the median values among 31 runs. Recent
research has introduced two performance metrics: average rank (μrank) and average normalized objective
function value (μnorm) [47]. μrank also uses median values among 31 runs but assigns scores to all positions
rather than just the top eight. In contrast, μnorm is calculated as the average of all normalized individual
objective function values across all instances. It considers the performance of all runs instead of just the
median value. We focus on the leaderboard using F1 scores, as this method aligns with the scoring used in
the actual competition.



Comput Model Eng Sci. 2025;142(2) 1241

Components of 
Selection Hyper-

heuristics

Heuristic 
selection

Search point

Search phases

Selection 
methods

Move acceptance
Feedback / 

learning
Diversification 

strategies

Tabu mechanism

Restart / 
reinitialization 

mechanism

Parameter 
control

Low-level 
heuristic 

parameters

Figure 1: Components of selection hyper-heuristics discussed in this study

Additionally, statistical tests are conducted to validate the findings. Due to the unavailability of individ-
ual algorithmic run results, the tests rely on the normalized median objective function values of 30 HyFlex
problem instances, following the approach by Di Gaspero et al. [48]. The normalization is performed using
using the formula norm (median, i) = (median(i)−medianbest(i))

(medianworst(i)−medianbest(i)) , where median (i) represents the median
value from 31 runs by an algorithm for instance i, whereas medianbest (i) and medianworst (i) represents the
best and worst median value among the 20 CHeSC algorithms for instance i. To represent each category
of algorithmic components, the normalized median values of the members within a category are averaged
to form a dependent sample for the category. This approach is chosen to simplify comparisons, given the
unequal number of members across categories, and to focus on category-level performance rather than
individual algorithms. The Shapiro-Wilk Royston test [49] is used to assess the normality of each sample,
determining the subsequent tests. If all samples are normally distributed, the repeated measures ANOVA [50]
is performed to detect significant differences among categories, followed by the post-hoc Tukey’s test [51]
for pairwise comparisons. If any sample is non-normal, the non-parametric Friedman test [52] is employed,
supplemented by the Wilcoxon signed-rank test [53,54] for pairwise analysis. All tests are conducted with a
significance level of 0.05.

4 Main Characteristics of Cross-Domain Heuristic Search Challenge (CHeSC) 2011 Algorithms
CHeSC 2011 competition uses the HyFlex framework to evaluate the competing algorithms based on

their ability to find high-quality solutions within given time limits. The HyFlex framework is a Java program
that provides a set of problem instances from different domains with varying complexity [7]. There are
two distinct sets of problem instances within the framework. The original set consists of 30 instances,
encompassing problems from six distinct domains, each comprising five instances. These instances pertain to
problems within the field of combinatorial optimization. During the competition, participants are provided
with only four problem domains, these being the Boolean satisfiability (SAT) [55], one-dimensional bin
packing (BP) [56], personnel scheduling (PS) [57], and permutation flowshop (PFS) [58]. The two hidden
domains are the travelling salesman problem (TSP) [59] and the vehicle routing problem (VRP) [60].
The HyFlex instances set was later expanded with three additional domains by Adriaensen et al. [36]: 0–
1 Knapsack (KP) [61], Quadratic Assignment (QAP) [62], and Max-Cut Problem (MaxCut) [63]. Each



1242 Comput Model Eng Sci. 2025;142(2)

algorithm underwent 31 executions, each with a time limit of 10 min. The competing algorithms were ranked
based on the median solution quality achieved in these runs, and the F1 scoring system was employed to
assign a score. The scores were then aggregated and used to determine the final rankings on the leaderboard
across various problem domains. Readers are referred to the original works by Burke et al. [8] and Ochoa
et al. [7] for more information. Table 5 shows the final leaderboard of the CHeSC 2011 competition.

Table 5: Results of the CHeSC 2011 competition

Rank Algorithm Total SAT BP PS PFS TSP VRP
1 AdapHH 181.00 34.75 45.00 9.00 37.00 40.25 15.00
2 VNS-TW 134.00 34.25 3.00 39.50 34.00 17.25 6.00
3 ML 131.50 14.50 12.00 31.00 39.00 13.00 22.00
4 PHunter 93.25 10.50 3.00 11.50 9.00 26.25 33.00
5 EPH 89.75 0.00 10.0 10.50 39.00 36.25 12.00
6 HAHA 75.75 32.75 0.00 25.50 3.50 0.00 14.00
7 NAHH 75.00 14.00 19.00 2.00 22.00 12.00 6.00
8 ISEA 71.00 6.00 30.00 14.50 3.50 12.00 5.00
9 KSATS-HH 66.50 24.00 11.00 9.50 0.00 0.00 22.00
10 HAEA 53.50 0.50 3.00 2.00 10.00 11.00 27.00
11 ACO-HH 39.00 0.00 20.00 0.00 9.00 8.00 2.00
12 GenHive 36.50 0.00 14.00 6.50 7.00 3.00 6.00
13 DynILS 27.00 0.00 13.00 0.00 0.00 13.00 1.00
14 SA-ILS 24.25 0.75 0.00 19.50 0.00 0.00 4.00
15 XCJ 22.50 5.50 12.00 0.00 0.00 0.00 5.00
16 AVEG-Nep 21.00 12.00 0.00 0.00 0.00 0.00 9.00
17 GISS 16.75 0.75 0.00 10.00 0.00 0.00 6.00
18 SelfSearch 7.00 0.00 0.00 4.00 0.00 3.00 0.00
19 MCHH-S 4.75 4.75 0.00 0.00 0.00 0.00 0.00
20 Ant-Q 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Two notable features of HyFlex that will be discussed throughout this paper are the classes of low-level
heuristics and the heuristic parameters. Low-level heuristics are classified into different types: mutational,
ruin-recreate, local search, and crossover. Additionally, the behaviour of the low-level heuristics can be
controlled using two parameters, namely depth of search (DOS) and intensity of mutation (IM). DOS only
applies to local search heuristics, whereas IM is for mutational and ruin-recreate heuristics, both of which
specify how much the solution can change. Both parameters have a default value of 0.2 and can increase up
to 1.0.

Several algorithms from the competition have been reviewed in Drake et al. [3], including AdapHH [45],
VNS-TW [64], ML, PHunter [65], EPH [66], HAHA [67], NAHH [68], ISEA [69], GenHive [70], and
AVEG-Nep [48]. Readers are referred to their work for the explanation of those algorithms. The remaining
algorithms are examined using their source codes, design documentation, and extended abstracts available
at https://github.com/seage/hyflex/tree/master/hyflex-hyperheuristics (accessed on 25 December 2024). The
following provides a description of the main characteristics of each algorithm, presented in the order of their
rankings in the competition.

https://github.com/seage/hyflex/tree/master/hyflex-hyperheuristics


Comput Model Eng Sci. 2025;142(2) 1243

KSATS-HH: Achieving a ninth position in the competition, the algorithm demonstrated good perfor-
mance in solving SAT and VRP problems, while it struggled with PFS and TSP. The algorithm is a hybrid
approach that combines reinforcement learning, Tabu search, and simulated annealing. Heuristic selection
follows a tournament selection of size two, where heuristics are chosen based on their ranks. Reinforcement
learning adjusts the heuristic ranks, increases if heuristic improves the working solution and decreases if it
fails. A Tabu mechanism is used, where heuristics that fail to improve the solution are added to the Tabu list
with a tenure of seven rounds. Simulated annealing is employed for move acceptance, considering the fitness
change relative to the best solution. The cooling schedule resets when the maximum iterations are exceeded,
with this value influenced by heuristics’ execution time.

HAEA: Producing the second-best results in solving VRP, contributing to an overall tenth position for
the Hybrid Adaptive Evolutionary Algorithm Hyper Heuristic (HAEA). Low-level heuristics are divided into
two subsets: one includes a mix of local search and other types of heuristics, whereas the other comprises the
remaining local search heuristics. Heuristics from both subsets are applied iteratively, ensuring that a local
search heuristic is the last to be applied. Heuristics are selected based on their probabilities, which increase or
decrease depending on whether they improve the working solution, employing the roulette wheel strategy.
The move acceptance strategy only accepts improving solutions. If a non-improving solution is found, the
heuristic receives a penalty (decrease in selection probability), IM and DOS values are adjusted, and the soft
replacement policy is applied to assess if a search restart is needed. The soft replacement policy applies local
search heuristics using default parameter values and triggers a search restart if the range of DOS has been
tested. Upon a search restart, the current solution is changed using random heuristics from the two subsets,
and the subsets are updated through random permutation. Additionally, heuristic parameters are adjusted
when no improvement is seen, and resets when a maximum value is reached. The value of IM is inversely
related to the DOS value, that is, if IM = 0.4, then DOS = 0.6.

ACO-HH: The algorithm performed third best for BP instances and finished eleventh in the competi-
tion. It adopted an Ant Colony Optimization (ACO) approach tailored for selection hyper-heuristics [71].
The algorithm employs ants that traverse a path, applying a low-level heuristic at each step. All ants start from
the same solution, which is the best solution from the previous iteration. For each iteration, 30 ants search
independently by applying low-level heuristics five times. This approach means that the algorithm maintains
a population of solutions. Heuristics are selected according to both the pheromone and heuristic information
of ACO. The pheromone factor considers the average improvement obtained by a complete path solution,
whereas the heuristic information factor considers the average improvement obtained for the component.
Heuristics are selection based on their probabilities, following the roulette wheel approach. The algorithm
also maintains a different selection probability for the heuristic parameter values. In each application, the
heuristic information and its parameter value are updated to reward or penalize the heuristic.

DynILS: This algorithm performed better on BP and TSP than on other problems. DynILS is a dynamic
iterated local search that selects perturbative heuristics and their IM value. At each iteration, one perturbative
(mutational or ruin-recreate) and one local search heuristic are applied to the incumbent solution, indicating
a single-point and iterated search phases approach. Heuristics are selected using the roulette wheel strategy,
where the selection probabilities of these heuristics are adjusted based on whether improvement is achieved
or not. Heuristic performance is measure by their normalized fitness delta relative to their possible values.
The incumbent solution is only replaced when an improvement is found. Additionally, the heuristic
parameter values are rewarded or penalized according to their performance. No Tabu or restart mechanisms
are employed within the algorithm.

SA-ILS: SA-ILS obtained most of its total score from the personnel scheduling problem, ranking
fourth. The algorithm employs two strategies: Iterated Local Search Hyper-heuristic (ILSHH) and Simulated



1244 Comput Model Eng Sci. 2025;142(2)

Annealing Hyper-heuristic (SAHH), chosen based on the average execution time of local search heuristics
for each problem instance. Before initiating the search process, each local search heuristic once in a random
order, and the results guide the choice of strategy and heuristic parameters. For instances with extended
execution times, ILSHH is employed, whereas SAHH is utilized for instances with shorter execution times.
ILSHH applies one random perturbative heuristic followed by all local search heuristics in a random
sequence. The acceptance strategy allows a non-improving solution to be accepted after seven consecutive
iterations without improvement. For SAHH, a random local search heuristic is used until no improvements
are observed for seven consecutive iterations. The final solution is accepted only if it improves; otherwise,
a random perturbative heuristic is applied. Besides, the low-level heuristic parameters differ based on the
algorithm: ILSHH uses IM and DOS values of 0.4, whereas SAHH uses IM of 0.8 and DOS of 0.6. These
parameters remain constant throughout search process.

XCJ: XCJ (eXplore-Climb-Jump) is a hill climbing-based selection hyper-heuristic that performed best
on BP compared to other problem domains. The low-level heuristics are classified into explore heuristics
(crossover and ruin-recreate) and exploit heuristics (local search and mutational). The algorithm applies
each explore heuristic to the current best solution, generating multiple solutions. Subsequently, each solution
undergoes a sequential application of all exploit heuristics, starting from local search to mutational heuristics,
until ten consecutive non-improving iterations. After each application of exploit heuristic, the resulting
solution is compared to the best solution. An improving solution is always accepted, whereas a worsening
solution is accepted only if the fitness delta is less than 0.2. The fitness delta is calculated as one minus the
fitness before divided by the fitness after application. The algorithm does not include Tabu mechanism, restart
mechanism, or heuristic parameter control.

GISS: Generic Iterative Simulated-Annealing Search (GISS) applies a random heuristic and utilizing
simulated annealing move acceptance at each iteration. Heuristics are selected without considering their
performance. The move acceptance allows non-worsening solutions, where the simulated annealing temper-
ature is influenced by the heuristic’s execution time and fitness delta. The algorithm incorporates a restart
mechanism to reinitialize move acceptance parameters, heuristic parameters, and the working solution. The
search restart is triggered when the number of non-accepted iterations exceeds a threshold, calculated as
the number of heuristics for the problem instance multiplied by two. This threshold doubles if the current
solution is within 1.5 times of the best solution. Upon restart, the temperature resets to its initial value.
Heuristic parameter values may be modified, with IM and DOS increased by 1.1 times with a probability of 0.2,
and the working solution is updated by applying randomly selected ruin-recreate then mutation heuristics.
The algorithm achieves moderate performance for PS and VRP.

SelfSearch: This population-based algorithm adapts its strategy, either explorative or exploitative,
depending on the number of expected generations (or iterations) remaining before reaching the time limit.
Before initiating the search, each heuristic is applied once to calculate the expected number of generations,
based on their execution times and population size. Afterwards, the expected generations are updated after
each generation. The two strategies differ in their heuristic selection, search restart methods, and heuristic
parameter values to either promote exploration or exploitation. Heuristic selection follows the roulette wheel
strategy, which depends on feedback from factors including fitness delta, execution time, usage frequency,
frequency of repetitions, and frequency of non-improvements. Besides, the Adaptive Pursuit approach
dictates that the explorative strategy prioritizes heuristics with lower frequency of repetition and higher
improvement rate, whereas the exploitative strategy only prioritizes higher improvement rate. The selected
heuristic is applied to all individuals in the population of solutions. Move acceptance is incorporated into
the population update, which follows elitist survival selection while avoiding duplicate solutions. A restart
mechanism is triggered when the number of consecutive non-improvement iterations exceeds a threshold,



Comput Model Eng Sci. 2025;142(2) 1245

determined by the expected number of generations. Different restart actions are applied depending on the
remaining number of generations. During the first half of the search, the DOS value is increased, a ruin-
recreate heuristic is applied when DOS reached 1.0 and the current heuristic is applied to all solutions in
the population. In the final half of the search, the IM value is increased, a ruin-recreate heuristic is applied
when IM reached 1.0, and the heuristic with the highest improvement rate is applied to all solutions in
the population. Additionally, different heuristic parameter values are used based on the strategy employed.
For the explorative strategy, high IM and low DOS values are used, with IM increasing proportional to the
number of local optima reached after a restart. For the exploitative strategy, low IM and high DOS values
are used, with DOS increasing proportional to the number of local optima reached after a restart. Tabu
mechanism is not incorporated in this algorithm. SelfSearch performed fairly in PS and TSP.

MCHH-S: MCHH-S, a single objective variant of the Markov chain Hyper-heuristic [72], performed
well only on SAT. The algorithm utilizes a Markov chain for heuristic selection, considering heuristics’ quality
scores derived from fitness delta and execution time. Each iteration involves applying a heuristic to one
solution from a population of solutions, updating the quality score and deciding to accept or reject the
resulting solution. The quality score is calculated as fitness delta multiplied by one minus the time taken
by the heuristic over the maximum time. Improving moves are always accepted, whereas non-improving
moves have a gradually increasing probability of acceptance, proportional to the number of consecutive non-
accepted iterations, reaching a 100% acceptance chance after five non-accepted iterations. Upon acceptance,
a different heuristic (of any type) and solution is selected for the next iteration. Otherwise, a local search
heuristic is applied to the current solution in the next cycle. This algorithm does not involve Tabu mechanism,
restart mechanism, or heuristic parameter control.

Ant-Q: Ant-Q is a hybridization between an Ant system and Q-learning. In this algorithm, two ants
apply heuristics repeatedly, for a total of n (number of low-level heuristics) times, to the best solution
among them. For the first application in each ant, a heuristic is chosen either using an Ant system (based
on pheromone and heuristic information) or random selection, determined by a random probability. The
remaining applications use heuristics chosen randomly. Each ant maintains n solutions, which are kept
in a population of solutions. For PS instances, only one ant is used. Heuristic selection follows a roulette
wheel strategy, with selection probabilities influenced by pheromone and heuristic information. Q-learning
is incorporated in the update rule for the heuristic selection probabilities. The heuristics’ pheromones are
updated after n heuristic applications and evaporate after 100 iterations. The algorithm uses fixed values for
IM and DOS and does not include Tabu or restart mechanisms. Unfortunately, this algorithm failed to score
in any problem instances.

5 Effective and Ineffective Strategies among CHeSC 2011 Algorithms
We classify the search point, search phases, heuristic selection methods, move acceptance, feedback,

Tabu mechanism, restart mechanism, and low-level heuristic parameters for the CHeSC 2011 competing
algorithms as presented in Table 6. Then, the performance of each implementation method is discussed.



1246 Comput Model Eng Sci. 2025;142(2)

Ta
bl

e6
:C

la
ss

ifi
ca

tio
n

of
th

eC
H

eS
C

20
11

al
go

rit
hm

sb
as

ed
on

th
ef

ou
rc

om
po

ne
nt

so
fs

ele
ct

io
n

hy
pe

r-
he

ur
ist

ic
s

R
an

k
A

lg
or

it
hm

Se
ar

ch
po

in
t

Se
ar

ch
ph

as
es

Se
le

ct
io

n
m

et
ho

ds
M

ov
e

ac
ce

pt
an

ce
Fe

ed
ba

ck
Ta

bu
m

ec
ha

ni
sm

R
es

ta
rt

m
ec

ha
ni

sm
H

eu
ri

st
ic

pa
ra

m
et

er
s

1
A

da
pH

H
Si

ng
le

N
on

-
ite

ra
te

d
Re

la
y

hy
br

id
iz

a-
tio

n,
ro

ul
et

te
w

he
el

Th
re

sh
ol

d
O

nl
in

e
H

eu
ri

st
ic

s
Th

re
sh

ol
d

A
da

pt
iv

e

2
V

N
S-

TW
M

ix
ed

It
er

at
ed

R
an

do
m

Ba
si

c
O

nl
in

e
H

eu
ri

st
ic

s
N

o
re

st
ar

t
A

da
pt

iv
e

3
M

L
Si

ng
le

It
er

at
ed

Ro
ul

et
te

w
he

el
Th

re
sh

ol
d

O
nl

in
e

H
eu

ri
st

ic
s

N
o

re
st

ar
t

St
at

ic

4
PH

un
te

r
M

ul
ti

It
er

at
ed

Ro
ul

et
te

w
he

el
Ba

si
c

M
ix

ed
H

eu
ri

st
ic

s
&

so
lu

tio
ns

Th
re

sh
ol

d
A

da
pt

iv
e

5
EP

H
M

ul
ti

It
er

at
ed

N
on

e
Ba

si
c

O
ff

lin
e

N
o

Ta
bu

N
o

re
st

ar
t

Se
lf-

ad
ap

tiv
e

6
H

A
H

A
M

ix
ed

It
er

at
ed

Ro
ul

et
te

w
he

el
Th

re
sh

ol
d

O
nl

in
e

H
eu

ri
st

ic
s

&
so

lu
tio

ns

Th
re

sh
ol

d
D

yn
am

ic

7
N

A
H

H
Si

ng
le

It
er

at
ed

R
an

do
m

St
oc

ha
st

ic
O

ff
lin

e
N

o
Ta

bu
St

oc
ha

st
ic

St
at

ic
8

IS
EA

M
ul

ti
O

pt
io

na
l

N
on

e
St

oc
ha

st
ic

O
ff

lin
e

N
o

Ta
bu

Th
re

sh
ol

d
Se

lf-
ad

ap
tiv

e
9

K
SA

TS
-

H
H

Si
ng

le
N

on
-

ite
ra

te
d

To
ur

na
m

en
t

se
le

ct
io

n
St

oc
ha

st
ic

O
nl

in
e

H
eu

ri
st

ic
s

N
o

re
st

ar
t

St
at

ic

10
H

A
EA

Si
ng

le
O

pt
io

na
l

Ro
ul

et
te

w
he

el
Ba

si
c

O
nl

in
e

N
o

Ta
bu

Th
re

sh
ol

d
A

da
pt

iv
e

11
AC

O
-H

H
M

ul
ti

N
on

-
ite

ra
te

d
Ro

ul
et

te
w

he
el

N
on

e
O

nl
in

e
N

o
Ta

bu
N

o
re

st
ar

t
Se

lf-
ad

ap
tiv

e
12

G
en

H
iv

e
M

ul
ti

N
on

-
ite

ra
te

d
N

on
e

N
on

e
N

o
le

ar
ni

ng
N

o
Ta

bu
N

o
re

st
ar

t
St

at
ic

13
D

yn
IL

S
Si

ng
le

It
er

at
ed

Ro
ul

et
te

w
he

el
Ba

si
c

O
nl

in
e

N
o

Ta
bu

N
o

re
st

ar
t

A
da

pt
iv

e

14
SA

-I
LS

Si
ng

le
It

er
at

ed
R

an
do

m
Ba

si
c

O
ff

lin
e

N
o

Ta
bu

N
o

re
st

ar
t

St
at

ic
15

XC
J

M
ul

ti
It

er
at

ed
Se

qu
en

tia
l

St
oc

ha
st

ic
N

o
le

ar
ni

ng
N

o
Ta

bu
N

o
re

st
ar

t
St

at
ic

16
AV

EG
-

N
ep

Si
ng

le
N

on
-

ite
ra

te
d

R
an

do
m

,
ro

ul
et

te
w

he
el

Ba
si

c
O

nl
in

e
N

o
Ta

bu
N

o
re

st
ar

t
Se

lf-
ad

ap
tiv

e

17
G

IS
S

Si
ng

le
N

on
-

ite
ra

te
d

R
an

do
m

St
oc

ha
st

ic
N

o
le

ar
ni

ng
N

o
Ta

bu
Th

re
sh

ol
d

A
da

pt
iv

e

18
Se

lfS
ea

rc
h

M
ul

ti
It

er
at

ed
Ro

ul
et

te
w

he
el

N
on

e
O

nl
in

e
N

o
Ta

bu
Th

re
sh

ol
d

A
da

pt
iv

e

19
M

C
H

H
-S

M
ul

ti
N

on
-

ite
ra

te
d

Ro
ul

et
te

w
he

el
St

oc
ha

st
ic

O
nl

in
e

N
o

Ta
bu

N
o

re
st

ar
t

St
at

ic

20
A

nt
-Q

M
ul

ti
N

on
-

ite
ra

te
d

Ro
ul

et
te

w
he

el
N

on
e

O
nl

in
e

N
o

Ta
bu

N
o

re
st

ar
t

St
at

ic



Comput Model Eng Sci. 2025;142(2) 1247

5.1 Search Point
Drake et al. [3] classified search points of selection hyper-heuristics into single, population, or mixed.

The single-point search involves a continuous process of heuristic selection and move acceptance until
termination, applied to a single solution [9]. Population-based (or multi-point) search applies the same
process to multiple solutions, whereas mixed-point search combines single and population-based searches
sequentially [3].

We illustrate the frequency and average quality index of the search point (see Fig. 2). It shows that the
number of algorithms based on single and multi-point searches is equal, with nine each. Mixed-point search
is only implemented by two algorithms which produce the highest average quality index. The average quality
index for single-point search is slightly higher than for multi-point search algorithms, with 11 and 8.56,
respectively. Among the top five performers, Table 6 indicates the distribution among the three approaches is
equal with two single-point, two multi-point, and one mixed-point algorithm. Although mixed-point search
gives a higher average quality index, its performance gains over the other approaches could not be confirmed
as only two algorithms employ this strategy. On the other hand, it can be observed that a single-point search
is better than a multi-point search.

0

2

4

6

8

10

12

14

16

18

Count Quality index (avg)

N
u
m

b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 I

n
d
ex

Single Multi Mixed

Figure 2: Algorithm count and average quality index for search point

Statistical tests revealed a non-normal distribution in the sample for the mixed-point category, necessi-
tating the use of non-parametric tests. The Friedman test identified a significant difference among the groups
with a p-value of 0.0022. Subsequent post-hoc Wilcoxon signed-rank tests confirmed significant differences
across all pairings, validating the performance variations among the implementation strategies.

Fig. 3 presents the boxplot of normalized median values across 30 HyFlex problem instances, averaged
among each group’s algorithms. Lower values indicate better final solutions, whereas a smaller range signifies
greater reliability as there is a reduced performance variability across different problem instances. The mixed-
point approach demonstrates the best performance but exhibits higher variability.

Fig. 4 displays the average quality index using rankings in individual problem domains in the HyFlex
framework. Algorithms employing mixed-point search achieved the highest average quality index in five out
of six domains, except for BP, where single-point search is the preferred strategy. Multi-point search was
outperformed by single-point search in all domains. Upon further inspection, we found that BP instances
are sensitive, where every heuristic application tends to yield an improvement. This observation aligns with
findings by Kheiri et al. [73], who emphasized that exploring new search regions significantly enhances



1248 Comput Model Eng Sci. 2025;142(2)

performance in BP instances. In time-constrained settings, the single-point approach is advantageous over
multi- or mixed-point approaches, as it enables more frequent heuristic applications to a single solution. In
contrast, the other approaches must apply heuristics to multiple solutions, selecting the best one for the next
iteration while discarding the rest, which may reduce efficiency.

Figure 3: Boxplot of normalized median values for search point

0

2

4

6

8

10

12

14

16

18

20

SAT BP PS PFS TSP VRP

Q
u

al
it

y
 I

n
d
ex

Single Multi Mixed

Figure 4: Average quality index in individual problem domains for search points

5.1.1 Single-Point Search
The single-point search algorithms can further be classified into three different strategies. The first

strategy is applying single or multiple heuristics to a single solution. A single heuristic is selected using
roulette wheel selection (AdapHH), tournament selection (KSATS-HH), and random selection (GISS). The
application of multiple heuristics can be perturbative followed by local search heuristics (HAEA, DynILS,
SA-ILS, ML) or relay hybridization (AdapHH). HAEA and DynILS apply only one local search heuristic,
whereas SA-ILS and ML apply all local search heuristics after the perturbative one. Relay hybridization in
AdapHH chooses a heuristic from a list of efficient heuristics at each step. Adriaensen et al. [17] demonstrated
that the combination of single selection and relay hybridization outperformed the variants utilizing only one
component. Also, relay hybridization contributes most to the performance.

AVEG-Nep conducts parallel independent searches from three different solutions, which is considered
a single-point search supported by Drake et al. [3]. A heuristic type is chosen by reinforcement learning,



Comput Model Eng Sci. 2025;142(2) 1249

then one random heuristic is selected from the chosen type to be applied to the solutions. Another
strategy is to use multiple algorithm schemata. NAHH runs multiple algorithmic schemata in a race
until the best one emerges. Each schema is parametric and contains different heuristic parameter values,
acceptance probability, mutation probability, and restart probability. Six algorithmic schemata were included:
randomized iterative improvement, probabilistic iterative improvement, variable neighbourhood descent,
iterated local search, simulated annealing, and iterated greedy.

5.1.2 Multi-Point Search
Most multi-point search algorithms utilize a population of solutions (VNS-TW, PHunter, EPH, HAHA,

ACO-HH, GenHive, XCJ, SelfSearch, MCHH-S, and Ant-Q) in three different ways. The first approach is to
maintain a population of solutions where only a single solution is chosen as the working solution for the
iteration (VNS-TW, GenHive). VNS-TW selects a solution using tournament selection, which then undergoes
shaking and local search stages. The new solution replaces the original solution if an improvement is found.
Otherwise, a worse solution from the population is selected for replacement. GenHive conducts searches on a
population of solutions, where at each iteration, only the best solution is improved with heuristic sequences.
Newly produced solutions always replace the old solution in the population.

The second approach employs search from multiple solutions. In PHunter, EPH, SelfSearch, and MCHH-
S, heuristics are applied to different solutions in the population. The population is updated according to
the move acceptance strategy. PHunter applies heuristics to different solutions and updates the population
upon improvement. EPH applies different heuristic sequences to different solutions. Each resulting solution
is compared to the population and placed into the population when it has improved or has a unique fitness
value. MCHH-S applies a heuristic to a single solution until the solution is accepted. Once accepted, a
different heuristic is applied to a different solution. Conversely, in SelfSearch, all solutions in the population
are improved using a heuristic and the population is updated using elitist survival selection. Since SelfSearch
ranked poorly in the competition, elitism in population update is undesirable.

The third approach uses multiple solutions derived from a single solution for either local search (HAHA,
XCJ) or evaluation (ACO-HH, Ant-Q) on each of these solutions. HAHA follows a mixed-point search, where
multiple solutions are generated by applying perturbative heuristics to the solution from the single-point
search phase. Each solution is then applied with a local search heuristic. In XCJ, each perturbative heuristic
is applied to the current best solution to produce multiple solutions. Then, local search heuristics are used
to improve the solutions. ACO-HH and Ant-Q produce multiple solutions for evaluation. Both algorithms
follow the strategies from ACO, modified for selection hyper-heuristics [71]. ACO-HH applies heuristics
chosen by the Ant system to the previous iteration’s best solution at each iteration. In contrast, Ant-Q only
uses the Ant system and Q-learning to determine the first heuristic, with subsequent heuristics chosen
randomly. Each heuristic is applied to the best solution among the ones kept by agents.

Agushaka et al. [74] noted the importance of finding the right balance between population size and
algorithmic iterations to guarantee optimality. Moreover, Malan et al. [75] found that an algorithm with
the same number of function evaluations but different population sizes leads to a significant performance
difference. Table 7 summarizes the population sizes of the multi-point search algorithms. It shows that most
algorithms limit the number of solutions stored to seven. Only ACO-HH has a large population, but we argue
that the performance is maintained since the heuristic reward is updated after each application. EPH only
use a large population for problem instances with short heuristic execution times, which we think is the best
strategy to achieve greater generality. Two algorithms determine the population size based on the number of
heuristics (XCJ and Ant-Q).



1250 Comput Model Eng Sci. 2025;142(2)

Table 7: Summary of the population size of CHeSC 2011 algorithms

Rank Algorithm Population size
2 VNS-TW 6
4 PHunter 4
5 EPH 2 or 35 (based on problem complexity)
6 HAHA 7

A population of heuristic sequences are included in certain algorithms from the competition. A heuristic
sequence consists of multiple heuristics to be applied successively to the domain solution. Two algorithms
that maintain a population of heuristic sequences, EPH and GenHive, are compared in Table 8. Since EPH
outperformed GenHive, several conclusions can be noted. Firstly, an algorithm with predefined sequences
of perturbative, followed by local search, heuristics outperforms an algorithm without any rules. A dynamic
heuristic sequence length and population size may better suit different problem instances than a fixed one.
Next, evolving heuristic parameters alongside the heuristic sequences (co-evolution) presents performance
gains. Crossover among heuristic sequences may not lead to a better final solution, and elitism may degrade
algorithmic performance compared to evolving every heuristic sequence in the population. A population
updated using tournament selection could outperform a population that always accepts offspring. Deploying
heuristic sequences to multiple solutions enhances search performance compared to applying the sequences
to the same solution. ISEA maintains a population of action sequences which are a series of actions to
be applied to a heuristic sequence. The action sequences include adding, removing, moving, swapping, or
changing heuristics. The action sequences evolved through crossover and mutation, with an elitist population
update strategy. Contrary to the standard evolutionary process, multiple offspring (up to 200) are produced
at each generation using the same domain solution.

Table 8: Comparison between the two algorithms with population of heuristic sequences

Algorithm EPH (P5) GenHive (P12)
Predefined sequences Position 1 or/and 2 for perturbative

heuristics, followed by all local search
heuristics

None

Sequence length 1/2 + nl s (Number of local search
heuristics)

7

Population size n (Number of heuristics) 35
Evolved variables Heuristic and heuristic parameter Heuristic only

Offspring generation Mutation Crossover and mutation
Evolved chromosomes All chromosomes Other chromosomes besides the best

one
Population update Tournament selection Offspring replace parent



Comput Model Eng Sci. 2025;142(2) 1251

5.1.3 Mixed-Point Search
Population-based algorithms have demonstrated their superiority in achieving global optima [76].

Nevertheless, single-point search strategies can achieve comparable performance by adapting population-
based features, such as utilizing multiple starting points [77] or hybridizing with single-point-based
algorithms [78]. Within CHeSC 2011 algorithms, VNS-TW utilizes a population of solutions that is reduced
to a single solution after 50% of the time limit or when the search stagnates. The search in HAHA is divided
into serial and parallel search phases. Parallel search applies perturbative heuristics to produce multiple
solutions. Then, one non-Tabu solution is chosen for serial search where local search heuristics are applied
to the solution until none of them can improve any further.

5.2 Search Phases
The HyFlex framework provides four types of low-level heuristics for each problem instance: mutational,

ruin-recreate, local search, and crossover heuristics [7]. Mutational, ruin-recreate, and crossover heuristics
are often grouped into perturbative heuristics, including in VNS-TW and ML. Algorithm designers can
employ an iterated search strategy where heuristics are applied iteratively between perturbative and local
search. Categorizing low-level heuristics or operators by their search capabilities enables control between
exploration and exploitation [79]. Algorithms proposed for CHeSC 2011 competition follow one of three
strategies for the sequence of heuristic applications: iterated, optional iterated or non-iterated (see categoriza-
tion in Table 6). Iterated search alternates between phases of applying perturbative and local search heuristics,
where some algorithms may only enforce the strategy optionally. Other algorithms may allow any type of
heuristics to be applied at any point of the search (non-iterated).

We analyze the search phases by tallying the number of algorithms for each strategy and calculating
their average quality index (see Fig. 5). It shows that most algorithms employ the iterated search strategy (10
algorithms), followed by non-iterated search (eight algorithms). The iterated strategy increases algorithm
performance, as evidenced by the higher average quality index and six of the top seven algorithms following
this strategy (see Table 6). Algorithms with optional iterated search scored marginally lower than ones
employing the iterated search strategy, but only two algorithms implemented this strategy. Repeated measure
ANOVA confirmed a significant difference among the groups (p = 4.7969E−16). Post-hoc Tukey’s tests
showed significant differences across all pairings, with p-values lower than 0.0001. Additionally, the boxplot
in Fig. 6 displays normalized median values for different search phases, revealing that the iterated approach
has the smallest interquartile range, reflecting higher reliability.

0

2

4

6

8

10

12

14

Count Quality index (avg)N
u

m
b

er
 o

f 
al

g
o

ri
th

m
s 

/ 
Q

u
al

it
y
 I

n
d
ex

Iterated Non-iterated Optional iterated

Figure 5: Algorithm count and average quality index for search phases



1252 Comput Model Eng Sci. 2025;142(2)

Figure 6: Boxplot of normalized median values for search phases

The average quality index for iterated search phases in individual domains is consistently high com-
pared to the non-iterated strategy (see Fig. 7), with large differences observed in PS, PFS, TSP, and VRP
instances. Notably, both TSP and VRP problems are routing and optimization problems. They often share
characteristics of having multiple optima and benefit from similar exploratory strategies for effective solution
refinement. PS instances are also characterized as having multiple optimum points [80]. This suggests that
iterated search is effective for multi-modal problems. Meanwhile, the optional iterated approach performed
well in five domains, except for SAT.

0

2

4

6

8

10

12

14

16

SAT BP PS PFS TSP VRP

Q
u

al
it

y
 I

n
d

ex

Iterated Non-iterated Optional iterated

Figure 7: Average quality index in individual problem domains for search phases

The usage of perturbative and local search heuristics can be described as static or dynamic. Most
algorithms impose that perturbative heuristics must be followed by the local search heuristics at each
iteration. For the iterated search strategy, VNS-TW and ML continue the search until reaching a local
optimum using local search heuristics after applying one perturbative heuristic. DynILS and ILSHH of SA-
ILS follow one perturbative heuristic with one and all local search heuristics, respectively. PHunter uses
perturbative heuristics to escape local optima before improving the solution using local search heuristics
with a high DOS. EPH applies every local search heuristic either by a single application or Variable
Neighbourhood Descent after the perturbative heuristics. XCJ produce multiple solutions using perturbative
heuristics before applying all local search heuristics in sequence. Each step in NAHH involves applying ruin-
recreate heuristics followed by local search heuristics. A mutational heuristic is then applied to the resulting
solution with a probability.



Comput Model Eng Sci. 2025;142(2) 1253

Meanwhile, HAHA and SAHH of SA-ILS employ the phases in reverse to diversify when no improve-
ment is obtained from the local search heuristics. In the optional iterated search strategy, HAEA and ISEA
require starting and ending each iteration’s heuristic sequence with a local search heuristic, but there are no
restrictions for the positions in between. Only SelfSearch switches between the search phases dynamically
based on the expected number of iterations remaining. For each phase, different heuristic selection rules and
parameter values are utilized. Since the algorithm ranked poorly, this feature appears degrading performance.

5.3 Heuristic Selection Methods
Five strategies for selecting heuristics are identified: random, roulette wheel, tournament selection, relay

hybridization and sequential (refer to Table 6). Random selection is utilized by SA-ILS, GISS, and VNS-TW in
the local search phase and NAHH for the selected heuristic type. Roulette wheel selection based on heuristic
performance is the most used strategy, employed by 11 competitors (AdapHH, ML, PHunter, HAHA, HAEA,
ACO-HH, DynILS, AVEG-Nep, SelfSearch, MCHH-S, Ant-Q). ACO-HH and Ant-Q obey the principle of
Ant systems where selection probabilities are also influenced by pheromone evaporation. AVEG-Nep uses a
roulette wheel to select only the heuristic type, and a random heuristic of the type is applied to the solution.

Tournament selection is only used in KSATS-HH using a tournament of size two. AdapHH implements
relay hybridization to select heuristic pairings. Relay hybridization involves multiple heuristics working
together in a sequence, where the output of one serves as the input for the next heuristic [81]. In AdapHH,
the first heuristic is selected by the roulette wheel, and the second is chosen from known good heuristics
for the first. XCJ applies all local search heuristics in sequence. On the other hand, EPH, ISEA, and GenHive
incorporate heuristic sequences modified using genetic operators or action sequences, negating the need for
heuristic selection.

Fig. 8 illustrates the frequency distribution for heuristic selection methods and their average quality
index. It suggests that relay hybridization is the most effective heuristic selection strategy, whereas sequential
is the least effective. Since these strategies only exist in one algorithm, a deeper inspection is necessary. Kheiri
et al. [82] demonstrated the effectiveness of relay hybridization in the HyFlex framework. Zhao et al. [41] also
highlighted its capability to form effective heuristics by pairing existing ones. Lepagnot et al. [83] obtained
good results using relay hybridization to combine three different metaheuristics, although it may be less
effective for simpler problems. The quality index averages indicate a marginally better value for the roulette
wheel strategy (10.0) compared to random selection (9.8). We observed high variability between the methods
implemented by the random selection algorithms. The use of random selection in VNS-TW and NAHH does
not negatively impact search performance as it is used on a small heuristic subset compared to SA-ILS and
GISS. Roulette wheel selection was implemented by more algorithms in the top five positions.

Non-parametric statistical tests indicated significant differences among the groups (p = 4.0908E−10).
Pairwise comparisons revealed that the top performer, relay hybridization, has significant difference to all
other strategies. Interestingly, the sequential approach, which had the lowest average quality index, did
not show significant differences with other strategies, whereas other strategies exhibited differences among
themselves. The no-selection approach (ranked second) showed no significant difference from tournament
selection (ranked third) (p = 0.5999) but was statistically different to both roulette wheel (ranked fourth)
(p-value = 3.7243E−05) and random approach (ranked fifth) (p-value = 0.0030). Tournament selection was
significantly different from the random approach (p = 0.0350) but not from roulette wheel (p = 0.0571).
Roulette wheel selection had no significant difference from the random approach (p = 0.7036).



1254 Comput Model Eng Sci. 2025;142(2)

0

5

10

15

20

25

Count Quality index (avg)

N
u

m
b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 I

n
d
ex

Random

Roulette wheel

Tournament selection

Relay hybridization

Sequential

None

Figure 8: Algorithm count and average quality index of heuristic selection methods

Fig. 9 illustrates the distribution of normalized median values for six heuristic selection approaches.
Relay hybridization demonstrates the best performance but includes multiple high-value outliers. The
roulette wheel approach has a narrower interquartile range and a smaller overall range between minimum
and maximum values compared to other approaches.

Figure 9: Boxplot of normalized median values for heuristic selection methods

Relay hybridization achieved the highest quality index in four domains: SAT, BP, PFS, and TSP (refer
to Fig. 10). The best performers in PS are algorithms that do not employ heuristic selection, relying instead
on evolutionary processes to improve solutions. Tournament selection is marginally the best approach for
VRP and performs well for BP and TSP. Between the roulette wheel and random selection, the roulette wheel
is better in BP, PFS, TSP, and VRP, while random selection is better for SAT and PS. These observations are
supported by multiple researchers, noting that search feedback is non-essential for solving SAT [23] and
PS instances [73]. Sequential heuristic selection is the worst strategy for the four domains but offers better
performance for SAT and BP.



Comput Model Eng Sci. 2025;142(2) 1255

0

5

10

15

20

25

SAT BP PS PFS TSP VRP

Q
u

al
it

y
 I

n
d

ex

Random Roulette wheel Tournament selection

Relay hybridization Sequential None

Figure 10: Average quality index in individual problem domains for heuristic selection methods

5.4 Move Acceptance
Move acceptance involves determining whether to accept or reject the outcome of a heuristic applica-

tion [3]. Move acceptance methods can be broken down into stochastic and non-stochastic methods [10].
Stochastic methods accept a solution with a given probability. In contrast, non-stochastic methods make
deterministic decisions about candidate solutions. Within the non-stochastic methods, it can be further
divided into basic or threshold methods. Non-stochastic basic utilizes the objective function value of
previous solutions, whereas non-stochastic threshold relies on a predetermined value as the criterion for
the acceptance threshold. Contrarily, several algorithms deviate from the conventional hyper-heuristic
structure by omitting a move acceptance strategy. The categorization of heuristic selection techniques for the
participating algorithms can be found in Table 6.

Fig. 11 presents the distribution of algorithm count and the average quality index for each move
acceptance method. It shows that most algorithms implemented non-stochastic basic and stochastic move
acceptance methods (six algorithms each). Non-stochastic threshold move acceptance was the least fre-
quently employed technique (three algorithms), yet it yielded the highest average quality index. Conversely,
algorithms lacking a move acceptance have the lowest quality index. Friedman test demonstrated a significant
difference among the groups (p = 4.8205E−12). Post-hoc comparisons showed significant differences in
nearly all pairings, except between basic and stochastic move acceptance (p = 0.1414). Furthermore, the
boxplot of normalized median values for move acceptance shows lower variability for the basic and threshold
approaches (refer to Fig. 12).

Fig. 13 compares the average quality index across problem domains. Threshold move acceptance
obtained the best quality index in all domains, whereas not employing move acceptance led to the worst
quality index. Non-stochastic move acceptance methods performed significantly better in PS, PFS, TSP, and
VRP, indicating a preference for systematic mechanisms. Stochastic move acceptance outperformed non-
stochastic basic move acceptance on SAT and BP, suggesting that some degree of randomness is beneficial
in these domains. BP instances exhibit sensitivity in objective function changes, leading to all moves being
accepted regardless of improvement magnitudes. For SAT instances, escaping local optima is important
for better performance. Acceptance criteria that prioritize diversification, such as those integrated with
restart mechanisms, are more effective [36,82]. The results suggest that incorporating a move acceptance can
enhance search performance, particularly the non-stochastic threshold method.



1256 Comput Model Eng Sci. 2025;142(2)

0

2

4

6

8

10

12

14

16

18

20

Count Quality index (avg)
N

u
m

b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 

In
d

ex

Basic Threshold Stochastic None

Figure 11: Algorithm count and average quality index of move acceptance

Figure 12: Boxplot of normalized median values for move acceptance

0

2

4

6

8

10

12

14

16

18

20

SAT BP PS PFS TSP VRP

Q
u

al
it

y
 I

n
d
ex

Basic Threshold Stochastic None

Figure 13: Average quality index in individual problem domains for move acceptance

The two approaches of non-stochastic basic methods are to accept only improving (PHunter, EPH,
HAEA, DynILS, and SA-ILS) or accept improving and equal solutions (VNS-TW). Most algorithms accept
only improving candidate solutions, including. Notably, EPH follows a unique approach by replacing a solu-
tion in its population with only candidate solutions that differ from other solutions within the population.



Comput Model Eng Sci. 2025;142(2) 1257

The non-stochastic threshold method is implemented by the winning algorithm, AdapHH, which
compares the candidate solution against the previous best solutions kept in a list. Meanwhile, ML accepts a
non-improving solution only if 120 consecutive iterations without improvement have been reached. HAHA
rejects worsening solutions unless five consecutive worsening iterations have occurred and a second of
execution time has passed since the last acceptance of a candidate solution.

A well-known stochastic move acceptance method is SA [84], which has been used in three algorithms
(NAHH, KSATS-HH, and GISS). In NAHH, the move acceptance strategy is different for each algorithmic
schemata, with one of them involving SA. NAHH also employs schemata that directly apply probabilities to
accept a worsening candidate solution, which is also utilized in ISEA, XCJ, and MCHH-S.

Several algorithms, including ACO-HH, GenHive, AVEG-Nep, SelfSearch, and Ant-Q, do not incorporate
a move acceptance strategy. In these algorithms, the solutions are updated every time heuristics are applied.
Notably, Di Gaspero et al. [48] highlighted the trust in the reinforcement learning process within AVEG-Nep,
leading to the acceptance of every candidate solution, including the worsening ones.

5.5 Feedback
Burke et al. [4] classified hyper-heuristics based on the source of feedback during learning. An algorithm

is considered a learning one when it uses feedback from the search process. Learning algorithms process
feedback during the search process, influencing the subsequent decisions made at the hyper-heuristic level.
Algorithms that do not learn from feedback are considered non-learning ones. Learning can be further
divided into online and offline learning. In online learning, the feedback is taken while the algorithm is
in the process of solving the problem, whereas offline learning involves collecting knowledge from a set of
training instances that are expected to be able to generalize for solving the problem. Drake et al. [3] then
extended this taxonomy by adding another category, mixed learning, which combines both offline and online
learning approaches.

We classify the algorithms that competed in CHeSC 2011 based on their nature of feedback
in Table 6. Fig. 14 shows that most algorithms employ the online learning approach (12 algorithms), followed
by the offline learning approach (four algorithms). Notably, the three highest-ranked algorithms implement
online learning. However, the bottom three algorithms are also implementing online learning, which causes
the average quality index for online learning to be lower than for the offline approach. Upon further
investigation, we found no major differences between the online learning strategies utilized by the top three
and the bottom three algorithms. In both cases, the performance of heuristics is measured in terms of the
solution fitness or fitness improvement to help make decisions in heuristic selection. This could indicate that
other features of the algorithm contribute to the performance of the better algorithms. Yates et al. [15] have
also observed that offline learning outperforms online learning. Mixed learning has the highest quality index,
albeit only one algorithm followed the approach. Three algorithms did not have any element of learning,
where they are placed among the worst ten at rank 12, 15, and 17. The significance of learning mechanisms
is evident as numerous prior studies have emphasized the notable improvements linked to the inclusion
of learning mechanisms [12,13,16]. Statistical tests validated significant differences, with the Friedman test
yielding a p-value of 1.8115E−10. Post-hoc Wilcoxon signed-rank tests further validated significant differences
across all pairings. In terms of variability, the mixed learning approach exhibits higher variability, as indicated
by a larger range of normalized median values in Fig. 15.

Regarding the adaptability to different environments, learning approaches are less critical for SAT
instances, where algorithm performance relies more on escaping local optima [23]. The slow execution of
low-level heuristics in PS and VRP instances limited the benefits of feedback mechanisms, making adaptive
or greedy approaches more suitable [73]. Conversely, for PFS instances, feedback mechanisms are crucial



1258 Comput Model Eng Sci. 2025;142(2)

in enhancing heuristic effectiveness and guiding the search toward high-quality solutions [23,82]. Overall,
learning approaches are well-suited for problems with fast low-level heuristics and large solution space.

0

5

10

15

20

Count Quality index (avg)

N
u
m

b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 I

n
d

ex

Online Offline Mixed No learning

Figure 14: Algorithm count and average quality index for nature of feedback

Figure 15: Boxplot of normalized median values for feedback

Next, we analyze both online and offline learning in terms of the source of feedback (what is measured)
and the decisions (or actions) made based on the feedback in Tables 9 and 10. Algorithms with mixed learning
are included in both analyses since mixed learning is a combination of online and offline learning. The results
show that algorithms with online learning most frequently measure the improvement count (whether the
low-level heuristic applied has improved the solution or not), followed by the value of the improvement,
with seven and six algorithms, respectively. The execution time of the algorithm (time spent or time left
before the time limit) is considered in four algorithms, which influences the heuristic selection and search
strategy. VNS-TW checks whether the same solution is produced to disable the low-level heuristic applied.
SelfSearch measures low-level heuristics performance in multiple metrics, including the number of the same
solution it has produced, the number of non-improvement applications and the total number of applications
for the heuristic.



Comput Model Eng Sci. 2025;142(2) 1259

Table 9: Classification of online learning algorithms according to the source of feedback and decisions made based on
the feedback

Source of feedback Algorithms Decision/actions Algorithms
Solution improvement

count
AdapHH, VNS-TW,

ML, PHunter,
KSATS-HH, HAEA,

DynILS

Heuristic selection AdapHH, ML, PHunter,
HAHA, KSATS-HH,

HAEA, ACO-HH,
DynILS, SelfSearch,

MCHH-S, Ant-Q
Fitness improvement HAHA, ACO-HH,

AVEG-Nep, SelfSearch,
MCHH-S, Ant-Q

Heuristic order VNS-TW, HAHA

Execution time AdapHH, HAHA,
SelfSearch, MCHH-S

Heuristic type AVEG-Nep

Same solution produced
count

VNS-TW, SelfSearch Heuristic set AdapHH

Solution
non-improvement count

SelfSearch Search strategy SelfSearch

Heuristic application
count

SelfSearch

Table 10: Classification of offline learning algorithms according to the source of feedback and decisions made based
on the feedback

Source of feedback Algorithms Decision/actions Algorithms
Execution time NAHH, ISEA, SA-ILS Search strategy PHunter, EPH, SA-ILS

Heuristic application
count within a time limit

EPH Algorithmic
parameter values

EPH, ISEA

Search strategy
application count within

a time limit

EPH Low-level heuristic
parameters

SA-ILS

Search strategy
improvement count

EPH Heuristic set NAHH

Search strategy failure
rate

EPH

Solution
non-improvement count

PHunter

Solution fitness NAHH

The feedback from the search process is most often used to make decisions in heuristic selection,
implemented by 11 algorithms. Two other decisions are within the nature of heuristic selection, which are
heuristic order and heuristic type. VNS-TW and HAHA use feedback information to order a set of low-
level heuristics to be applied sequentially. Meanwhile, AVEG-Nep determines the type of low-level heuristic
(between the four provided in the HyFlex framework) to be applied before randomly choosing one from the
selected type. AdapHH alters the low-level heuristic set available for one phase of the search based on the



1260 Comput Model Eng Sci. 2025;142(2)

heuristic performance in the previous phase. Finally, SelfSearch controls the search strategy, whether to be
more explorative or more exploitative, based on the time left before the time limit is exceeded.

In the context of CHeSC 2011, we observed offline learning as the process of assessing the difficulty of
the problem instance. This is achieved by applying the low-level heuristics provided for the selected problem
instance before entering the main search process (either loop or other process). Afterwards, feedback from
the learning process is used to make some decisions. Among the 20 competitors, offline learning is observed
in five algorithms (PHunter, EPH, NAHH, ISEA, and SA-ILS). Most of these are placed in the top half of the
competition leaderboard, with SA-ILS being the exception at rank 14.

Our analysis of the source of feedback for offline learning algorithms has shown that most algorithms
measure the execution time of the low-level heuristics. Compared to online learning, there is less emphasis
on the solution fitness after the heuristic application. Besides, execution time is measured related to the
execution time of low-level heuristics instead of the time spent or time left before the time limit. EPH also
gauges the execution time of low-level heuristics, but it does so by counting how many times a heuristic
is applied within a specified time limit. Moreover, the algorithm tests a local search strategy, namely
Variable Neighbourhood Descent (VND), by observing the number of applications within a time limit. The
improvement and failure rate of the executions are then measured to influence the decision on which local
search strategy to implement in the main phase of the algorithm. PHunter also tests different search strategies
in a rehearsal run, which records the number of non-improvement solutions found throughout. Finally,
besides execution time, NAHH also considers the solution quality obtained after heuristic application to
determine the quality of the particular low-level heuristic.

The feedback from offline learning is most frequently used to determine the search strategy to employ
(three algorithms), followed by setting the algorithmic parameter values such as population size (two
algorithms). EPH will avoid VND for instances with a low number of applications within the offline learning
phase. A single heuristic application strategy will be used in such cases. SA-ILS have two different strategies
for local search (SA or iterated local search), determined by the average heuristic execution time. Meanwhile,
EPH uses a smaller population when the low-level heuristic has a long execution time and a bigger population
when the execution time is shorter. In ISEA, chromosome length and population size are among the
parameters adjusted based on the low-level heuristic execution time. Another type of parameter is the one
for the low-level heuristics, namely IM and DOS. SA-ILS uses high IM and DOS values for instances with
computationally inexpensive low-level heuristics, whereas lower values are used for harder (longer time to
solve) instances. NAHH uses the knowledge gathered from the offline learning phase to remove low-level
heuristics that are dominated by other ones from being used during the search process.

Only one algorithm (PHunter) uses mixed learning, and it placed fourth in the competition. Their online
learning component is similar to other algorithms, where the low-level heuristic performance is measured in
terms of solution improvement. Weights are assigned to the heuristics, which will guide heuristic selection.
Meanwhile, the offline learning part resembles EPH and SA-ILS, where they test out different local search
strategies to be implemented by the main search process. Since the algorithm is placed in the top five of
the competition, we argue that mixed learning brings a positive impact on the algorithmic performance.
Furthermore, we contend that offline learning is important as different instances have different low-level
heuristics with varying execution times, which will affect the search process. This is reasonable as it has been
found that parameter adaptation in cross-domain search can increase performance [10], and offline learning
is capable of adjusting algorithmic parameters according to the instance difficulty.



Comput Model Eng Sci. 2025;142(2) 1261

5.6 Tabu Mechanism
The main mechanism of Tabu search [85] is storing information related to the search process [86].

It features a memory mechanism called Tabu list, which stores either solutions or move operators already
encountered during the search to avoid cycling to them. Information from the Tabu list can be used to
promote diversification by exploring new unvisited areas of the solution space [87]. Talbi [86] gives three
representations for the Tabu list, which are visited solutions, moves attributes, and solution attributes. The
basic approach in implementing the Tabu mechanism is by storing solutions visited throughout the search
process. However, this is computationally expensive and impractical for problems with a large solution space.
A simpler approach is to store moves or solution attributes instead, with the former being the most popular
of all approaches.

Among the CHeSC 2011 algorithms, we identified two approaches in implementing the Tabu mech-
anism, which are storing solutions and low-level heuristics. In most cases, the Tabu mechanism with
solutions stores domain solutions to ensure it is not revisited, whereas the Tabu mechanism with heuristics
prevents ineffective heuristics from being utilized. Besides, several algorithms implement both approaches
since they are not mutually exclusive. None of the algorithms implemented a Tabu mechanism based
on solution attributes. This omission could be attributed to the fact that the HyFlex framework conceals
domain knowledge.

The classification of each algorithm is presented in Table 6, with the frequency distribution and average
quality index for Tabu mechanism methods illustrated in Fig. 16. The results indicated that most algorithms,
specifically 70% (14 algorithms), do not incorporate any Tabu mechanism. All six algorithms that implement
the Tabu mechanism employ the Tabu heuristics approach, with only two of them also implementing the
Tabu solutions approach. Notably, the four best-ranked algorithms utilize a Tabu mechanism, whereas
none of the bottom half performers have. When comparing the average quality index, the Tabu heuristics
approach shows a slightly higher average quality index than the Tabu solutions approach, at 16.83 and
16, respectively. However, the Wilcoxon signed-rank test indicated no significant difference between these
strategies (p = 0.1204). Algorithms with no Tabu mechanism has significantly lower value compared to any
of the Tabu mechanism methods (at 7.79). Statistical tests confirmed significant differences between the no-
Tabu approach and the Tabu-based methods. The existing literature contains conflicting findings regarding
the influence of Tabu mechanisms on algorithmic performance. While Misir et al. [16] recognize its positive
contribution, Adriaensen et al. [17] dispute this perspective.

0

5

10

15

20

Count Quality index (average)

Heuristics Solutions No Tabu

Figure 16: Algorithm count and average quality index for Tabu mechanism methods

Fig. 17 presents the boxplot of normalized median values for the Tabu mechanism strategies. It reveals
that the Tabu heuristics approach has a smaller variability compared to the Tabu solutions approach.
Furthermore, the Tabu solutions approach includes an outlier, exceeding 0.7. Tabu mechanisms can address



1262 Comput Model Eng Sci. 2025;142(2)

challenges posed by problem-specific characteristics. The Tabu heuristics approach is closely related to
learning mechanisms, since often poorly performing heuristics are excluded from the search. The Tabu
solutions approach prevents revisiting previously explored solutions, thereby enhancing solution diversity in
problems with complex landscapes. As noted, feedback is advantageous in certain instances (PFS) but not in
others (SAT, PS, and VRP). Similarly, the Tabu mechanism is beneficial in problems that gain from feedback,
particularly those with fast execution of low-level heuristics and infrequent occurrences of getting trapped
in local optima.

Figure 17: Boxplot of normalized median values for Tabu mechanism methods

The implementation of a Tabu mechanism also involves two parameters, which are the Tabu list size
and Tabu tenure, which will also be discussed. The Tabu list size plays a significant role in determining the
level of restrictions applied to the search process [86]. A smaller Tabu list translates to lower restrictions,
reducing the probability of cycling. In contrast, a bigger Tabu list causes higher restrictions, making cycling
more likely. Furthermore, the Tabu list size can be classified as static, dynamic, or adaptive [86]. The static
type maintains the same list size throughout the search process, whereas the other two types involve variable
list sizes. The distinction between dynamic and adaptive is that the former changes without feedback from
search, whereas the latter adjusts parameter values according to feedback. On the other hand, Tabu tenure
defines the duration, usually measured in the number of iterations, during which a solution or move must
remain in the Tabu list [86].

The Tabu heuristics approach is employed by six algorithms (AdapHH, VNS-TW, ML, PHunter, HAHA,
and KSATS-HH). AdapHH, the competition winner, excludes low-level heuristics from being utilized in
one search phase based on their performance in the preceding phase. At the end of each search phase, the
performance of the low-level heuristics, measured by their quality index, is calculated, and the Tabu list
is updated. Heuristics with quality indices lower than the average value will make up the Tabu list. Both
Tabu list size and Tabu tenure are adaptive, where the former is adjusted based on the quality index, and the
latter increases (up to an upper boundary) when the same heuristic is added to the Tabu list for consecutive
search phases. An analysis by Adriaensen et al. [17] found that the Tabu mechanism in AdapHH does not
significantly improve overall algorithmic performance.

In their iterated local search algorithm [86], VNS-TW implements the Tabu heuristics approach to
avoid applying perturbative low-level heuristics that lead to minimal or excessive changes to the solution.
Perturbative heuristics that result in a worse solution or no changes to the solution following the local search
phase are added to the Tabu list. Otherwise, if a solution with equal fitness is produced, the heuristic is added
with a stochastic probability of 0.2. The Tabu list size is static, and heuristics in the Tabu list are released
according to the first-in-first-out policy. ML incorporates a Tabu mechanism in its local search phase. Local



Comput Model Eng Sci. 2025;142(2) 1263

search low-level heuristics are added to the Tabu list if they fail to improve the incumbent solution. These
heuristics are removed from the list as soon as any other heuristic successfully yields an improvement. This
approach effectively aids in identifying the local optima, which is the point when none of the heuristics can
further enhance the solution.

Other algorithms, including PHunter, HAHA, and KSATS-HH, have varying implementations of the
Tabu heuristics approach. PHunter controls the usage of perturbative low-level heuristics using a Tabu
mechanism. In HAHA, local search heuristics with a success rate of lower than 1% have a 50% chance of being
discarded. KSATS-HH adds low-level heuristics that failed to improve the working solution to the Tabu list,
which will only be released after seven algorithmic iterations. Both PHunter and HAHA employ the Tabu
solutions approach by storing visited solutions, with HAHA specifically retaining the last 50 solutions.

5.7 Restart Mechanism
The restart procedure within a local search algorithm involves the generation of a new solution, in which

the search process is reinitialized from the solution [35]. Since the restart mechanism has never been reviewed
previously, we provide discussions based on our observations. There are two important dimensions within a
restart mechanism: the condition and the method. The restart condition is related to the process of deciding
when to trigger the restart, whereas the restart method is the action taken to reinitialize the search. Adapted
from the classification of the nature of move acceptance, we categorized the nature of the restart mechanism
as threshold and stochastic. Threshold restart involves a restart that is triggered when some conditions are
met, whereas stochastic restart is triggered probabilistically.

We classified each algorithm from the competition based on their implementation of the restart
mechanism in Table 6. A bar graph of the algorithm count and average quality index is presented in Fig. 18.
The results show that there exist more algorithms with no restart mechanism than ones with a restart
mechanism from either type (12 compared to eight). One notable observation is that most algorithms in the
bottom half of the leaderboard do not implement a restart mechanism. On the other hand, among the eight
algorithms with a restart mechanism, only one implements it stochastically.

0

5

10

15

Count Quality index (avg)

N
u
m

b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 I

n
d

ex

Threshold Stochastic No restart

Figure 18: Algorithm count and average quality index for restart mechanism methods

The quality index analysis shows that algorithms with no restart mechanism give out the lowest average
quality index, with 9.42. This implies that a restart mechanism can enhance performance within the HyFlex
framework. Adriaensen et al. [17] has demonstrated the significant role of the restart mechanism in increasing
AdapHH’s performance. Among the implementations of the restart mechanism, the quality index is higher
for stochastic restart, with a value of 14 compared to 11.86 for threshold restart. Friedman test confirmed the
results indicating a significant difference among the groups, with a p-value of 4.4139E−7. Post-hoc Wilcoxon



1264 Comput Model Eng Sci. 2025;142(2)

signed-rank tests also showed statistical significance across all pairings with p-values smaller than 0.0001.
Additionally, the threshold and stochastic approaches exhibit similar variability, as observed in the boxplot of
normalized median values in Fig. 19. The no-restart approach shows reduced variability, though it achieves
poorer median values.

Within the HyFlex framework, the restart mechanism is particularly effective for SAT instances,
helping escape local optima [36,82]. Kheiri et al. [82] highlighted that restart mechanism is required in
FSP instances for increased performance. Conversely, PS instances, characterized by their slow low-level
heuristics, may gain limited benefits from frequent restarts due to the excessive time spent evaluating
heuristic combinations [82]. The restart mechanism proves advantageous for escaping local optima, making
it particularly beneficial for multi-modal problems.

Figure 19: Boxplot of normalized median values for restart mechanism methods

Next, the restart conditions and methods for each algorithm that implements a restart mechanism are
summarized in Table 11. Among the CHeSC 2011 algorithms, we identified six measures of restart condition:
iteration, time, solution quality, heuristic application, heuristic parameters, and probabilistics. Fig. 20
demonstrates that half of the algorithms (four out of eight) use iteration count as the measure for restart
condition. AdapHH incorporates a restart mechanism into its move acceptance criterion, known as Adaptive
Iteration Limited List-based Threshold (AILLA). In AILLA, there is a threshold level that increases when a
move fails to improve the incumbent solution. This implies that re-initialization is initiated after a certain
number of consecutive non-improvements. HAHA triggers restart when any one of three conditions is met,
with one of them being after six non-improving algorithmic iterations. GISS reinitializes the search when
the maximum number of non-accepted iterations has been exceeded. The maximum number of iterations is
equal to the square of the number of low-level heuristics. SelfSearch will trigger a search restart after a certain
consecutive non-improvement to the best solution. The number of consecutive non-improvement allowed
depends on the improving factor and the expected number of generations before the time limit.

Table 11: Restart conditions and methods of the CHeSC 2011 algorithms with a restart mechanism

Rank Algorithm Restart condition Restart method
1 AdapHH • Iteration • Reinitialize solution.
4 PHunter • Time • Reinitialize solution.

(Continued)



Comput Model Eng Sci. 2025;142(2) 1265

Table 11 (continued)

Rank Algorithm Restart condition Restart method
6 HAHA • Iteration

• Time
• Solution quality

• Perturb best solution.

7 NAHH • Probabilistic • Reinitialize solution.
8 ISEA • Time

• Heuristic application
• Perturb best solution.

10 HAEA • Heuristic parameters • Perturb current solution.
• Update heuristic subset.

17 GISS • Iteration
• Solution quality

• Perturb current solution.
• Update heuristic parameters.
• Reset move acceptance.

18 SelfSearch • Iteration • Perturb current solution.
• Update heuristic parameters.

0

2

4

6

8

10

12

14

16

Count Quality index (avg)

N
u

m
b
er

 o
f 

al
g

o
ri

th
m

s 
/ 

Q
u

al
it

y
 I

n
d

ex

Iteration

Time

Solution quality

Heuristic application

Heuristic parameters

Probabilistic

Figure 20: Algorithm count and average quality index for restart condition

The second most frequently employed metric for restart conditions is time, used by three algorithms
(PHunter, HAHA, and ISEA). PHunter calls the restart mechanism when no new solution is produced after a
percentage of the execution time limit has elapsed. One of the other restart conditions for HAHA is the time
elapsed since the last improvement, with one minute being the threshold. ISEA also implement a similar time
condition as HAHA, with an additional condition that the search has progressed for a certain amount of time
after the last restart. Meanwhile, solution quality influences the restart condition in two algorithms: HAHA
and GISS. The final restart condition for HAHA is when the algorithm has produced a solution with a fitness
value that is 150% of the fitness of the current best solution. The maximum number of iterations in GISS is
affected by solution quality, where it doubles when the working solution is within 1.5 times the value of the
best solution. Notably, HAHA is placed in the top half of the leaderboard, whereas GISS is at the bottom half.



1266 Comput Model Eng Sci. 2025;142(2)

The only difference in the restart condition between the two algorithms is the inclusion of the time metric
for HAHA. This suggests that a restart controlled by time can increase the algorithmic performance.

Other restart conditions are implemented only in one algorithm each. ISEA will also trigger a restart
when a maximum number of fitness evaluations (heuristic application) has been exceeded. HAEA has a soft
replacement policy, which is called when a non-improving solution is found. The policy entails applying
local search heuristics to the best solution using default heuristic parameter values. The restart mechanism
is triggered if the range of parameter values has been tested, which is determined using a control variable.
Finally, NAHH initiates restart using varying probabilities for each of its algorithmic schema.

When comparing the average quality index, it can be observed that the highest value is obtained by
the time metric, with 15. Probabilistic and heuristic application conditions have a high average quality
index (14 and 13, respectively), albeit only one algorithm implements each approach. The other metric
implemented by only one algorithm is heuristic parameters, with a quality index of 11. Iteration and solution
quality measurements are the two lowest-scoring approaches, with average quality indices of 10.5 and
9.5, respectively.

Ideally, a search should be reinitialized once a local optimum is reached. Since most algorithms
record the time or number of iterations as the restart threshold, this implies that most algorithms consider
consecutive non-improvements as local optima. On the other hand, only two of the top five performers
implement a restart mechanism, which are AdapHH (rank 1) and PHunter (rank 4). We assume that VNS-
TW (rank 2) and ML (rank 3) did not require a restart mechanism since both algorithms performed
intensification (applying local search heuristics) until local optima. They define the local optima as the point
where all local search heuristics could not improve the solution any further. At this point, exploration will be
induced by applying perturbative heuristics to switch the point in the search space. Meanwhile, EPH (rank
5) did not require a restart mechanism since a mutation operator is used as their diversification strategy.

For the restart method, Fig. 21 shows that the most popular actions for restarting the search are
reinitializing the solution (using a function provided by HyFlex) or making perturbations to the current
solution, with three implementations each. AdapHH, PHunter, and NAHH employ the former. Notably,
PHunter applies local search heuristics to the newly produced solution before reinitializing the search
process. On the other hand, HAEA applies a random heuristic to the current solution, whereas other
algorithms apply different types of heuristics. GISS applies a ruin-recreate heuristic followed by a mutation
heuristic to the current solution. SelfSearch applies a heuristic to all solutions in the population, with the
type of heuristic determined by the number of expected generations left. When there are more than 50% of
the runtime limit, the current heuristic is applied. Otherwise, the heuristic with the highest improvement
rate will be applied. Between the two approaches, the average quality index observed by algorithms that
reinitialize the solution is higher than algorithms that perturb the current solution, with 17 compared to 6.

Meanwhile, making perturbations to the best solution and updating low-level heuristic parameters are
used to restart the search in two algorithms each. HAHA and ISEA implement the former approach, using
ruin-recreate or mutation heuristics. Heuristic parameters are modified when the search is restarted in GISS
and SelfSearch. The values for IM and DOS can be increased by 1.1 times with a probability of 0.2 in GISS.
For SelfSearch, a different parameter is altered depending on the number of expected generations left. DOS
is increased when the search is at the first half of the time limit, whereas IM is increased when it is at the
other half. Perturbating the current best solution gives out the second-highest average quality index of 14,
whereas updating the heuristic parameters has the lowest quality index of 3.5.



Comput Model Eng Sci. 2025;142(2) 1267

0

5

10

15

20

Count Quality index (avg)

N
u

m
b

er
 o

f 
al

g
o

ri
th

m
s 

/ 

Q
u

al
it

y
 I

n
d

ex

Reinitialize solution

Perturb best solution

Perturb current solution

Update heuristic parameters

Update heuristic set

Reset move acceptance

Figure 21: Algorithm count and average quality index for restart method

The restart mechanism also involves updating the low-level heuristic set and resetting move acceptance
variables in one algorithm each. The quality indices for these approaches are 11 and 4, respectively. HAEA
will use a different heuristic set, selected randomly, for the search process after the restart point. Meanwhile,
GISS resets the temperature in its move acceptance strategy, i.e., SA, back to the initial value.

Restart mechanism should be included to escape local optima and is especially critical when local
optima cannot be identified definitively. This is because the quality index for algorithms with a restart
mechanism is higher than those without. Despite this, some of the top-performing algorithms, such as
VNS-TW and ML, do not utilize a restart mechanism. It is hypothesized that they may not need such
mechanisms because they can detect when a local optimum is reached. Moreover, based on our analysis, it is
better to consider execution time rather than algorithmic iteration as the threshold for the restart condition.
Meanwhile, the top two restart methods, which are reinitializing the solution and perturbating the best
solution, are suggested for future algorithms since they have the highest average quality indices. In contrast,
restarting by updating the heuristic parameter values may not be beneficial for algorithmic performance.

5.8 Low-Level Heuristic Parameters
One of the features of the HyFlex framework is the concealment of domain-level knowledge. Nonethe-

less, the framework offers a method to control the low-level heuristics’ behaviour using two parameters:
IM and DOS [7]. IM is for perturbative low-level heuristics, whereas DOS is for local search ones.
Parameter setting is a critical facet of heuristic approaches in optimization. It involves defining the values
of various parameters that control an algorithm’s behaviour, affecting factors like exploration, exploitation,
and convergence. Proper parameter settings can significantly influence an algorithm’s performance and the
quality of solutions it produces [88–90]. Furthermore, parameter settings might need adaptation throughout
the course of a search since the optimal values for the parameters are different at different stages of the search
process [91].

Parameter settings can be classified by their nature into four categories: static, dynamic, adaptive, and
self-adaptive [3]. Static parameters indicate the use of a fixed value, determined before the search, throughout
the search. The other three approaches involve modification to the parameter values as the search progresses.
Dynamic parameters have their values changed based on a predetermined property without considering
feedback from the search. Both adaptive and self-adaptive approaches use search feedback to make informed
changes to the parameter values. The difference between the two is that the latter simultaneously searches
for the best solution and parameter values by having the parameter values encoded into the solution [86].

The algorithms proposed for the CHeSC 2011 competition are classified into four control methods,
which are presented in Table 6. Based on our analysis, Fig. 22 demonstrates that static parameter is the most
popular low-level heuristic parameter control method (with eight algorithms—ML, NAHH, KSATS-HH,



1268 Comput Model Eng Sci. 2025;142(2)

GenHive, SA-ILS, XCJ, MCHH-S, Ant-Q), followed by adaptive parameters (with seven algorithms—
AdapHH, VNS-TW, PHunter, HAEA, DynILS, GISS, SelfSearch). The self-adaptive approach is employed by
four algorithms, including EPH, ISEA, ACO-HH, and AVEG-Nep. Only one algorithm controls the low-level
heuristic parameters dynamically, which is HAHA.

In the HyFlex framework, both IM and DOS have default values of 0.2. Six out of the eight algorithms
with static parameters utilize the default values throughout the search process. They include ML, KSATS-
HH, GenHive, XCJ, MCHH-S, and Ant-Q. On the other hand, NAHH uses different values that are tuned for
each of their algorithmic schemata. Furthermore, during its offline learning phase, which involves heuristic
applications, both IM and DOS are set to 0.1. In problem instances where the local search heuristics require
more than 10 s to execute, the DOS value is configured to 0.1. For SA-ILS, the heuristic parameter values
are determined during its offline learning phase. Problem instances with extended heuristic execution times
use a lower parameter value of 0.4 for both IM and DOS. For instances with short heuristic execution times,
parameter values of 0.8 for IM and 0.6 for DOS are employed.

0

5

10

15

20

Count Quality index (avg)

N
u

m
b

er
 o

f 
al

g
o

ri
th

m
s 

/ 

Q
u

al
it

y
 I

n
d

ex

Static Dynamic Adaptive Self-adaptive

Figure 22: Algorithm count and average quality index for low-level heuristic parameter control methods

Next, HAHA is the only algorithm that dynamically manages the low-level heuristic parameters.
Random parameter values are used during its serial phase, whereas IM values that correlate with the time
since the algorithm started are utilized in the parallel phase. The IM value is controlled so that there is a
lower level of mutation towards the end of its execution.

Most algorithms that use adaptive parameter control adjust parameter values according to the solution
quality after heuristic applications. The winner of CHeSC 2011, AdapHH, incorporates an adaptive parameter
control strategy using a reward-penalty mechanism. The algorithm defined four types of value changes based
on the outcome of heuristic applications. Parameter values are increased by 0.01 when a new best solution or
by 0.001 when an improvement is found. Conversely, when a heuristic application fails to yield improvement,
parameter values are reduced by 0.0005 for obtaining a worse solution or by 0.0001 for obtaining an equal
solution. These parameter values are bounded within the range of 0.2 to 1.0. DynILS also employs a reward-
penalty mechanism to control the value of IM, which is based on whether an improvement is achieved or not.

Meanwhile, the parameter values are updated when an algorithmic iteration has failed to improve the
working solution in HAEA. The DOS value is initialized at 0.1 to promote exploration in the early phases
of the search. The DOS value is incremented by a random value between 0 and 0.1, up to the maximum
parameter value of 0.5. Upon reaching the maximum value, the parameter value is reset to a random value
between 0 and 0.1. Besides, the value of IM is calculated as 1.0 subtracted by the value of DOS, meaning
that modifications to DOS value results in an adjustment to the IM value as well. Parameter values are also
only adapted at specific intervals in other algorithms. The DOS value in VNS-TW increases by 0.2, up to a



Comput Model Eng Sci. 2025;142(2) 1269

maximum of 0.6, when the best solution remains unchanged at the periodical adjustment step. This step is
called at intervals during the algorithm’s execution. Parameter value adjustment in GISS can only occur when
the search is restarted. In this scenario, both IM and DOS values are increased by 10% with a probability of
0.2.

Parameter values are also adaptable depending on the strategy to be applied in the algorithm. PHunter
utilizes one of the different configurations for IM and DOS based on the search state. There are three
configurations for IM (low—0.1, medium—0.5, high—1.0) and two configurations for DOS (low—0.1, high—
1.0). The lower DOS configuration is used when the search is at a sea trench, which is defined as when the
local search heuristic application is prolonged. In SelfSearch, low-level heuristic parameter values are adapted
according to the search strategy employed. For explorative strategy, high IM value and low DOS value are
employed. The IM value increases in proportion to the number of times local optima are encountered during
search restarts. In contrast, when the exploitative strategy is utilized, low IM value and high DOS value are
used, with the DOS value being increased proportional to the frequency of local optima encountered when
the search restarts.

Self-adaptive is implemented in EPH, where the parameter values evolved together with the heuristic
sequences. The parameter values also evolved together with action sequences in ISEA. The initial values,
boundaries, and incremental rates of the parameters are established through an offline learning process
that considers the execution time of low-level heuristics. For less complex instances, a broader range of
parameter values with higher initial values and incremental rates is used, whereas the opposite is true for
more challenging instances. Mutation of the action sequences entails a 25% chance of changing the heuristic
and a 75% chance of adjusting the parameter values. Changes in parameter values have an equal likelihood
of either increasing or decreasing. The amount of adjustment is determined by multiplying the incremental
rate by a random value. Meanwhile, in ACO-HH, parameter values evolved alongside the heuristic, though
they maintain separate sets of selection probabilities. AVEG-Nep deploys a set of possible values {0.2, 0.4,
. . ., 1.0} for IM and DOS, with one value selected through reinforcement learning.

There have been many arguments that having static parameter values is detrimental to algorithmic
performance. Zhang et al. [92] argued that the parameter values may have to be tailored for different types
of problems. Even during the search process, different stages of the search may have different optimal
parameter values to optimize performance. Jackson et al. [10] have also proven that static algorithm settings
perform worse than dynamic or adaptive ones in the context of the move acceptance strategy. Rahman
et al. [88] have also highlighted that one of the keys to a successful metaheuristic implementation is adaptive
parameter setting.

This sentiment can be observed in Fig. 22 which shows that the static parameter control method has
the lowest average quality index of 8.63. The highest quality index belongs to the dynamic approach (15),
although only one algorithm implemented this method. Adaptive and self-adaptive approaches outperform
the static approach, with the adaptive approach having a slightly higher average quality index than the self-
adaptive approach (11.71 and 11, respectively). The Friedman test revealed significant difference between the
groups (p-value = 4.3985E-4). However, post-hoc analysis showed that only the static approach differed
significantly to other approaches. No statistical differences were found between the dynamic, adaptive, and
self-adaptive approaches. Fig. 23 illustrates the distribution of normalized median values for the parameter
control strategies. The adaptive approach demonstrates a lower performance variability across different
problem instances, indicating a higher reliability.

Based on arguments from prior studies and our analysis, which align in highlighting the advantages of
adaptive parameter control, we conclude that this approach is the most effective for ensuring adaptability



1270 Comput Model Eng Sci. 2025;142(2)

across diverse problem scenarios. Thus, adaptive parameters that evolve with search landscape is recom-
mended. However, parameter configuration should be optimized to avoid wasting computational resources,
particularly for problems with slow execution of low-level heuristic, such as PS and VRP instances.

Figure 23: Boxplot of normalized median values for low-level heuristic parameter control methods

6 Comparison with Trends in Recent Hyper-heuristics
Hyper-heuristics remain highly relevant in current research. Their distinct advantage over other

heuristic approaches lies in their greater generality [5].

6.1 Hyper-Heuristics for HyFlex
Many hyper-heuristics employ the HyFlex framework to assess generality. The framework provides

multiple instances from nine problem domains, providing a comprehensive platform for evaluating the
capabilities of designed algorithms. We direct our attention to algorithms that were implemented in the
HyFlex framework for a direct comparison with the algorithms from the CHeSC 2011 competition. We
contend that the problem domains provided in the framework are sufficiently robust to assess the cross-
domain search performance. Furthermore, the insights derived from the cross-domain search studies have
been generalized to encompass all optimization problems, as performed by Jackson et al. [10].

Many algorithms have been proposed to surpass the entries from the CHeSC 2011 competition after
its conclusion. It is important to note that critical bugs in one of the original problem domains, namely
PS, have rendered comparisons between algorithms developed before and after the bug was fixed on 17th
March 2019 incomparable. Several works published after the bug fix have excluded results for PS instances
in their comparison, ensuring fair comparison. Table 12 summarizes 26 algorithms, 23 of which were
published before the bug fix, whereas the remaining three excluded PS instances results. The table details
their chosen benchmark CHeSC 2011 algorithms and corresponding experimental outcomes, sorted by the
year of publication.

Table 12: Hyper-heuristic algorithms proposed from post-CHeSC 2011 until 2023 (not affected by PS bug)

Authors Algorithm Benchmark CHeSC algorithms Outperform all CHeSC algorithms?
Drake et al. [93] MCF-AM All

Jackson et al. [94] SR-LA All
Jackson et al. [94] F1FPS_RUA1-LA All
Kheiri et al. [95] RHH All
Özcan et al. [43] SSMA All
Özcan et al. [43] TGMA All

(Continued)



Comput Model Eng Sci. 2025;142(2) 1271

Table 12 (continued)

Authors Algorithm Benchmark CHeSC algorithms Outperform all CHeSC algorithms?
Adriaensen et al. [40] FS-ILS All ✓

Asta et al. [96] ALHH(πg ) All ✓

Kheiri et al. [73] SSHH All ✓

Sabar et al. [97] GEP-HH Top 5 ✓

Sabar et al. [97] GEP-HH* Top 5
Sabar et al. [98] MCTS-HH Top 5 ✓

Adriaensen et al. [36] NR-FS-ILS AdapHH and EPH ✓

Asta et al. [99] TeBHA-HH All
Adriaensen et al. [17] LeanGIHH AdapHH ✓

Alanazi [100] TSHH All
Dempster et al. [101] SP-MA All
Dempster et al. [101] POP-MA All

Gümüş et al. [44] SSMA-Best All
Kheiri et al. [82] MSHH All ✓

Ferreira et al. [42] FRAMAB Top 10
Soria-Alcaraz et al. [102] HHDMAB All

Choong et al. [103] QHH All
Soria-Alcaraz et al. [38] HH2DMAB All

Adubi et al. [104] TS-ILS All ✓

Adubi et al. [25] EA-ILS All ✓

The HyFlex’s problem instances have been extended after the competition by Adriaensen et al. [36].
Among the algorithms in Table 12, new domains were utilized to assess the generality of NR-FS-ILS,
LeanGIHH, SSMA-Best, and EA-ILS. NR-FS-ILS, LeanGIHH, and EA-ILS outperformed the CHeSC 2011
winner, AdapHH, across the extended set. Asta et al. [96], Soria-Alcaraz et al. [102], and Soria-Alcaraz
et al. [38] only utilized the VRP instances to evaluate their algorithms, rendering their tests no longer a cross-
domain search. Comparisons in Adubi et al. [25] and Adubi et al. [104] excluded the PS domain due to critical
bugs affecting the algorithmic process in this domain. The remaining algorithms are benchmarked using the
six domains employed in the CHeSC 2011 competition.

Comparisons involving the CHeSC 2011 algorithms typically include all 20 algorithms, with the second
most common practice being a comparison with the top five performers. Ferreira et al. [42] compared their
proposed algorithm against the top 10 algorithms from the competition. Adriaensen et al. [36] included
AdapHH and EPH in their experiments, representing the best single-point and multi-point approaches,
respectively. Adriaensen et al. [17] compared LeanGIHH only with AdapHH, as the former is a simplified
variant of the latter, aiming to validate the effectiveness of their simplification.

From the algorithms listed in Table 12, ten algorithms have outperformed the CHeSC 2011 competition
winner, AdapHH. Notably, GEP-HH and MCTS-HH incorporate multi-point search techniques by main-
taining elite solutions to diversify the search. In EA-ILS, a population of elite heuristic sequences is managed,
with a sequence undergoing mutation at every iteration to improve the domain solution. This demonstrates
that integrating multi-point search with elitism can significantly enhance performance.

Another technique for ensuring diversification is through iterated search phases. The iterated local
search principle is a common feature in many effective algorithms, including FS-ILS, NR-FS-ILS, TS-ILS,
and EA-ILS, suggesting its beneficial impact on algorithmic performance. These findings are consistent with
our analysis of the search phases.

Heuristic selection is implemented based on probability using methods such as multi-armed bandit
(in MCTS-HH) or Thompson sampling (in TS-ILS). FS-ILS considers the acceptance rate of the previous
candidate solution as the probability for heuristic selection. On the other hand, SSHH and EA-ILS employ



1272 Comput Model Eng Sci. 2025;142(2)

a Hidden Markov model in their heuristic selection processes to determine the most appropriate heuristic
for the current search state. Based on these observations, it is evident that heuristic selection based on
probability and adapted to the current state of the search can enhance performance. The effective utilization
of the relay hybridization selection method in MSHH reinforces our findings that this method is a promising
heuristic selection approach. Besides, the effectiveness of the dominance-based heuristic selection in MSHH
highlights the importance of excluding poor heuristics in certain stages of the search.

The move acceptance methods that are effective are those that incorporate a probability of accepting
worsening solutions. However, slightly deviating from our analytical findings, the stochastic approach
appears more prominently among the effective algorithms, such as the Metropolis condition in FS-ILS and
the Monte Carlo criterion in MCTS-HH.

Recent algorithms frequently apply feedback to improve heuristic selection. For example, GEP-HH
uses a probability-based selection mechanism that rewards heuristics leading to improvements. In contrast,
SSMA, which lacks a feedback mechanism, could not outperform all CHeSC algorithms. This observation
supports our finding that both online and offline learning offer benefits compared to no learning. Asta
et al. [96] introduced an apprenticeship learning generation hyper-heuristic to develop an optimal selection
hyper-heuristic algorithm. This algorithm operates in two phases. The first phase learns features from an
expert algorithm’s behavior while solving a single problem instance, and the second phase applies these
learned features to address unseen instances. The features learned include heuristic selection, low-level
heuristic parameters, and move acceptance behaviour. In addition to using a heuristic prediction decision
tree, ALHH(πg) also incorporates a probability-based random heuristic selection.

Tabu mechanism is also utilized in recent algorithms, including TSHH. However, its failure to out-
perform all CHeSC algorithms suggests that the Tabu mechanism may provide limited gains. Restart
mechanisms are also used in recent algorithms to prevent stagnation. EA-ILS resets the search periodically
and outperformed all CHeSC algorithms. In contrast, algorithms with no restart mechanism performed
poorly. For instance, TGMA maintained diversity through weak elitism rather than restarts and failed to
outperform all CHeSC algorithms. Adriaensen et al. [36] found that the restart mechanism within FS-ILS
has outperformed the version without restarts, NR-FS-ILS, although at a small enhancement.

Most recent algorithms focus on algorithmic parameters rather than low-level parameters within the
HyFlex framework. Parameters related to move acceptance (FS-ILS, SSHH, GEP-HH), memory (GEP-
HH, MCTS-HH, FRAMAB, HHDMAB), and genetic operator (GEP-HH, SSMA-Best) are commonly
controlled. Only SSMA-Best adjust low-level parameters, employing offline parameter tuning. This trend
emphasizes that controlling algorithmic parameters provide greater benefits over controlling low-level
heuristic parameters.

In contrast, most algorithms fell short of surpassing the competition winner, AdapHH. The poor
performance of SSMA and TGMA suggests that multi-point search strategies, such as memetic algorithms
(MA), suffer from slow convergence. Later research by Gümüş et al. [44] indicated that performance could be
enhanced by tuning MA’s parameters, although not sufficiently to outperform AdapHH. Besides, excluding
the population of elite solutions in GEP-HH* demonstrates that this mechanism can enhance performance,
as GEP-HH, which includes this mechanism, managed to surpass AdapHH. Dempster et al. [101] introduced
two Harmony Search hyper-heuristic variants: SP-MA and POP-MA. In both variants, each harmony consists
of three heuristics applied sequentially, similar to a memetic algorithm. SP-MA maintains a single solution,
whereas POP-MA uses a population of solutions. POP-MA outperformed SP-MA against CHeSC algorithms,
indicating that a population-based approach may enhance search effectiveness.

SR-LA employs Simple Random heuristic selection, whereas F1FPS_RUA1-LA uses fitness-proportional
roulette wheel selection. With both using the Late Acceptance strategy, F1FPS_RUA1-LA performed better



Comput Model Eng Sci. 2025;142(2) 1273

than SR-LA against CHeSC 2011 algorithms, suggesting that fitness-proportional selection may enhance
performance over random selection. RHH implements a round-robin neighbourhood selection mechanism,
where each low-level heuristic is given equal application time. Heuristic application follows a memetic
sequence, progressing from mutation to crossover to hill-climbing heuristics. Additionally, reinforcement
learning is integrated into its threshold move acceptance, where the acceptance rate of non-improving moves
is adjusted based on solution quality. TeBHA-HH uses random heuristic selection with two move acceptance
strategies: naïve and accept improving or equal solutions. It applies tensor analysis to divide heuristics into
two subsets, each using a different move acceptance method. The algorithm switches between these subsets
in a round-robin manner for set intervals.

TSHH failed to outperform AdapHH despite implementing Thompson sampling similar to EA-ILS. This
outcome suggests that the performance boost achieved by EA-ILS is likely attributed to other algorithmic
sub-mechanisms, such as its population-based search and adaptive acceptance strategy. Moreover, MCF-AM
uses an “accepting all moves” move acceptance strategy, aligning with our analysis that suggests this is one
of the less effective implementations of a move acceptance criterion.

Interestingly, the multi-armed bandit strategy employed in FRAMAB, HHDMAB, and HH2DMAB
did not yield superior performance compared to AdapHH, despite its effectiveness in MCTS-HH. This
suggests that other components within the algorithms may be influencing overall algorithmic performance.
Dantas et al. [105] introduced a Deep Q-Network for selecting low-level heuristics, which outperformed
two MAB-based algorithms in solving TSP and VRP instances. Among the algorithms discussed, two are
generation hyper-heuristics, as they operate at a higher level by designing heuristic selection and move
acceptance methods. QHH, which utilizes Q-learning for designing heuristic selection and move acceptance,
falls short of surpassing AdapHH in terms of performance. Conversely, Sabar et al. [28] successfully employed
Gene Expression Programming (GEP) to design heuristic selection and move acceptance, outperforming
AdapHH. This underscores the efficacy of GEP and other sub-mechanisms within GEP-HH, including the
multi-solution mechanism.

In addition to the discussed algorithms, we identified four algorithms published after the PS bug fix
that utilized the original PS domain results from CHeSC for comparative analysis. These algorithms are
listed in Table 13, along with their benchmark set and experimental outcomes, sorted from the earliest to the
latest publication.

Table 13: Hyper-heuristic algorithms proposed from post-CHeSC 2011 until 2023 (affected by PS bug)

Authors Algorithm Benchmark CHeSC algorithms Outperform all CHeSC algorithms?
Hassan et al. [39] DHSS All ✓
Zhao et al. [41] CMS-HH Top 5 ✓

Mischek et al. [24] RL All
Kletzander et al. [23] LAST-RL All ✓

CMS-HH outperformed AdapHH in three of the five PS instances tested. Excluding the PS domain, the
algorithm obtained the best result in 19 out of 25 instances, highlighting its excellent performance in domains
unaffected by bugs. LAST-RL achieved the highest score for the PS domain, surpassing all 20 algorithms from
the competition. However, its performance is subpar for SAT, BP, and PFS (ranking fourth) and TSP (ranking
third). It outperformed CHeSC algorithms only in the VRP domain. This suggests that the algorithm’s overall
ranking would either be maintained or potentially decrease if PS results were excluded. Unfortunately, the
published article for DHSS and RL lacks detailed results on each problem domain, preventing a conclusive



1274 Comput Model Eng Sci. 2025;142(2)

assessment of the PS bug’s impact on overall performance. The impact of the PS bug could potentially either
increase or decrease the ranking of the algorithm.

Nevertheless, we are interested in discussing the algorithmic components of these algorithms. CMS-HH
employs mixed-point search, utilizing a Genetic Algorithm when diversification in the search is required.
This corresponds with our findings, which support the idea that a mixed-point search is the most effective.
We also observed that a multi-point strategy is employed when the search requires exploration, as evident in
both algorithms from the competition that implement this approach; VNS-TW and HAHA. VNS-TW utilizes
a population of solutions in the early phases of the search, intended to facilitate greater exploration. HAHA
generates multiple solutions to escape from a local optimum. CMS-HH integrates a multi-armed bandit
heuristic selection and relay hybridization selection method to obtain excellent results even in problem
domains other than PS. The algorithm also implements a list-based adaptive threshold acceptance method.
This highlights the effectiveness of threshold-based move acceptance. The low-level heuristic parameters are
tuned using an offline approach.

LAST-RL employs the iterated local search principle and considers multiple features that characterize
the search state when making heuristic selections. Both RL and LAST-RL incorporate reinforcement
learning, along with the epsilon-greedy approach to have a probability of choosing a random heuristic to
allow exploration. In contrast to LAST-RL, RL failed to beat AdapHH, even though both algorithms share
the same fundamental principle. This performance difference could be attributed to the absence of iterated
search phases in RL. DHSS is primarily characterized by its dynamic adjustment of the heuristic set during the
search process. This approach functions similarly to a Tabu mechanism, placing certain low-level heuristics
in a Tabu list to exclude them temporarily from the active heuristic set during the search. In contrast, Özcan
et al. [106] uses a List of Active Heuristics (LAH), which is the opposite of a Tabu list. A dominance-based
strategy updates the active heuristics for the search process by removing low-level heuristics with dominated
solution fitness from the LAH.

6.2 Hyper-Heuristics for Other Optimization Problems
Recent research highlights diverse approaches to heuristic selection in hyper-heuristic algorithms,

underscoring the impact of tailored selection strategies on performance. For instance, Choong et al. [107]
integrated a modified CF within an artificial bee colony algorithm, showing the potential for CF in enhancing
algorithm adaptability. Zhang et al. [108] introduced an adaptive bandit-based selection for multi-objective
problems, whereas Hou et al. [109] implements multi-armed bandit (MAB) for heuristic selection. Lagos
et al. [110] proposed a hyper-heuristic that learns through MAB, specifically Thompson Sampling and
Exponential Weights for Exploration and Exploitation algorithms. This suggests that adaptive learning
may offer more precise heuristic selection. Zhao et al. [111] and Maashi et al. [112] employed Q-learning
and CF methods, respectively, to select heuristics, with learning mechanisms that rank low-level heuristic
performance dynamically. Future research could benefit from adaptive selection mechanisms, particularly
in dynamic or complex problem domains.

Search strategies are often adapted to problem-specific requirements, where recent work emphasizes
structuring search stages for exploration and intensification. For instance, Toledo et al. [113] proposed a
two-stage hyper-heuristic algorithm based on Large Neighborhood Search, categorizing fifteen low-level
heuristics to systematically explore and refine solutions. Search phases are also implemented to provide
more effective control over exploration and exploitation, especially in hyper-heuristics handling a variety of
operators. Zhao et al. [114] introduced a framework dividing search operators into hill climber and mutation
heuristic pools, managed by an activation system that adjusts according to pool performance. This phase-
based approach, coupled with pulsar mechanisms to activate specific pools, enables adaptive control over



Comput Model Eng Sci. 2025;142(2) 1275

search stages. On the other hand, Costa et al. [115] proposed a Cluster-based Hyper-Heuristic framework
that utilizes a Genetic Algorithm to automatically evolve the exploration space and trim the search space
based on the evolution of the solution. The study explored whether an adaptive search space will improve
computational time without losing too much quality, compared to having no clusters or fixed ones. This
structured approach to defining search points could be particularly useful in balancing exploration with
solution refinement.

Adaptive learning mechanisms are key in enhancing hyper-heuristic adaptability across varied prob-
lems. Reinforcement learning is implemented in many studies [116,117]. Zhang et al. [118] integrated deep
reinforcement learning for heuristic selection and parameter control, whereas Sánchez et al. [119] used
a sequence-based selection mechanism with Multi-dimensional Archive of Phenotypic Elites. Ibrahim
et al. [120] proposed a two-layer hyper-heuristic paradigm for feature selection, with a Differential Evolution
algorithm in the first layer selecting components for various feature selection methods in the second layer.
Shao et al. [121] introduced a learning probability model with SA-based move acceptance. Zhang et al. [122]
introduced a new effective learning strategy, the perturbation adaptive pursuit strategy, which focuses on
improving diversification.

Lissovoi et al. [123] analyzed the performance of simple hyper-heuristics to determine whether
sophisticated learning mechanisms are necessary to increase performance. They concluded that single-
heuristic observations do not boost performance unless evaluated over a longer period. Additionally, Li
et al. [124] showed that a learning automata-based hyper-heuristic outperformed individual algorithms,
a traditional online learning, and random selection hyper-heuristic. Gölcük et al. [125] proposed Q-
learning hyper-heuristic to control the selection of four bio-inspired metaheuristic algorithms. The algorithm
outperformed random and sequential selection. Burke et al. [126] introduced two adaptive variants of a
multiple neighborhood iterated local search, using online learning to select perturbations at each step. These
variants outperformed a baseline iterated local search with random move selection.

Move acceptance strategies play a pivotal role in handling local optima and encouraging search
space exploration. Doerr et al. [127] and Lissovoi et al. [128] evaluated move acceptance strategies that
switches between accepting only improving moves and accepting all moves, showing the potential for move
acceptance in enhancing solution quality. Shambour et al. [129] and Maashi et al. [130] implemented the late
acceptance strategy, whereas Ahmed et al. [131] incorporated reinforcement learning with Q-learning-based
memory into the EMCQ framework. Their effectiveness suggests that adaptive move acceptance mechanisms
that allow selective non-improving moves could offer a practical approach to escape local optima.

The Tabu mechanism is used to prevent cycles and promote solution diversity in recent hyper-heuristics.
Zhang et al. [132] employed Tabu search with a greedy acceptance strategy. The Tabu mechanism employs the
first-in-first-out principle to keep track of ineffective low-level operators. This mechanism allows for selective
exclusion of heuristics that hinder progress, thus balancing exploration with solution refinement. Besides, the
use of adaptive parameter control is increasingly common in hyper-heuristics, allowing real-time adjustment
based on the search state. Pukhkaiev et al. [133] defines combination of metaheuristics and its parameters as
low-level components and applied a surrogate model for parameter control. Marshall et al. [134] compared
adaptive and grammar-based evolutionary hyper-heuristics, focusing on the trade-off between speed and
quality. The adaptive hyper-heuristic, a simplified variant of Misir et al. [135], delivered high-quality
solutions faster than the grammar-based approach. The algorithm features learning-based selection, relay
hybridization, adaptive move acceptance, solution and parameter restarts, and parameter control.

Comparative studies highlight the cross-domain efficacy of hyper-heuristics compared to basic heuris-
tics or metaheuristics. de Carvalho et al. [136] compared several online hyper-heuristics against single
metaheuristics, demonstrating superior cross-domain performance for hyper-heuristics. Burke et al. [137]



1276 Comput Model Eng Sci. 2025;142(2)

showed the advantage of perturbation-based hyper-heuristic algorithm, which outperformed an iterated
local search. Besides, Misir [138] tackled algorithm selection within selection hyper-heuristics, developing
a framework that matches algorithms to specific problem instances. This approach is promising for hyper-
heuristics designed for cross-domain applications and future research should continue exploring how
algorithm selection can improve adaptability and scalability across diverse problem sets.

The field of generation hyper-heuristics focuses on creating new heuristics or hyper-heuristics through
automated methods. Burke et al. [139] utilized genetic programming to combine or select heuristic compo-
nents, whereas Tyasnurita et al. [140] proposed a neural network-based generation hyper-heuristic to design
both heuristic selection and move acceptance strategies. These approaches demonstrate the potential of
generation hyper-heuristics to create customized strategies for specific problem instances, opening avenues
for future research into self-adaptive and generative models in hyper-heuristic design.

7 Recommendations for Future Studies Related to Selection Hyper-Heuristics
This study identified effective methods for search points, search phases, heuristic selection, move accep-

tance, feedback, Tabu mechanism, restart mechanism, and low-level heuristics parameter control among
CHeSC 2011 algorithms. This includes the mixed-point search, iterated search phases, relay hybridization,
non-stochastic threshold move acceptance, mixed learning, Tabu mechanism with heuristics list, stochastic
restart, and dynamic parameters. Future research should focus on these proven strategies.

Mixed-point search combines single-point and multi-point approaches, leveraging the strengths of
each while mitigating their weaknesses. Single-point search can find good solutions but may have poor
coverage [89]. Multi-point search offers better coverage but may suffer from poor exploitation and high com-
putation times [141,142]. In the CHeSC 2011 algorithms, mixed-point search is used to promote exploration
in the early search phase (VNS-TW) and to escape local optima (HAHA). Future research should identify
effective hybridization methods that apply the right approach in the appropriate scenarios, such as using
populations for diversification and single-point search to speed up the search process.

Iterated search phases alternate between applying perturbative and local search heuristics, which allows
the control of exploration and exploitation. Perturbative heuristics are used for diversification when the
algorithm reaches a local optimum [143]. However, excessive diversification can prevent the exploitation
of good solutions [91]. Local search heuristics exploit the current solution to find better ones. However,
overusing them may lead to premature convergence and an inability to escape local optima. Iterating between
these phases leads to better final solutions and speeds up the search [144]. Among the CHeSC 2011 algorithms,
many top performers use iterated search phases. Moreover, Choong et al. [103] noted that algorithms
based on iterated search phases outperformed traditional ones, cementing the recommendation for new
algorithms to employ this strategy. However, classifying heuristics as perturbative or local search types
remains challenging. While the HyFlex framework provides predefined types, other optimization problems
may not. Further research on classification methods would be beneficial.

Relay hybridization involves multiple heuristics working together in a sequence, where the output of
one serves as the input for the next [81]. In the context of heuristic selection, the choice of the second
heuristic depends on the first, ensuring compatibility. Applying heuristics individually may be less effective.
Certain heuristics may need to be paired to enhance its effectiveness. Zhao et al. [41] highlighted that relay
hybridization can form effective heuristics by pairing existing ones. Good pairings of perturbative heuristics
can lead to deeper exploration, leading to better solutions [25]. New algorithms should ensure heuristic
compatibility and extend the approach to consider longer sequences. However, Lepagnot et al. [83] noted that
relay hybridization may be less effective for simpler problems without providing a reason. We recommend
further research to improve relay hybridization for low-dimensional problems.



Comput Model Eng Sci. 2025;142(2) 1277

Threshold move acceptance utilizes a predetermined threshold value, which can be static, dynamic,
or adaptive, to control solution acceptance. Tuning the threshold value is crucial to balancing exploration
and exploitation. Jackson et al. [10] found that non-static methods outperform static ones since the search
process fluctuates between needing exploration and exploitation. A threshold value set too high may limit
exploration as worsening solutions may never be accepted, whereas a threshold value set too low may lead to
poor convergence as too many worsening solutions are accepted. Adriaensen et al. [40] found that Metropolis
acceptance, which considers solution quality change and time, outperformed strategies that do not accept
worsening solutions or accept all solutions. However, it has not been highlighted that there are various types
of threshold values, such as iteration-based (ML, HAHA), time-based (HAHA), and solution quality-based
(AdapHH). Certain threshold types may be suited for specific experimental setups. A time-based threshold
is more suitable for time-limited experiments such as in the HyFlex framework, whereas an iteration-based
threshold works better when iteration count is used as the stopping criterion. Future researchers should
choose the appropriate type based on their experimental setup and consider combining them to create more
general algorithms.

Mixed learning, which combines both online and offline learning mechanisms, is a promising approach
for enhancing algorithm adaptability and robustness. Offline learning pre-tunes an algorithm to better suit
a specific problem instance, whereas online learning allows it to adjust based on real-time feedback. Soria-
Alcaraz et al. [145] incorporated mixed learning operator probabilities are offline-tuned before applying
online updates using credit assignment mechanism. Yates et al. [15] found the offline approach outperforming
online approach and recommended hybridization of both. Future research should integrate mixed learning
to enhance algorithm robustness across various problem domains.

Incorporating Tabu mechanism of low-level heuristics prevents repeated use of low-performing heuris-
tics within short intervals. Low-level heuristics added to the Tabu list are often ones that performed poorly.
The exclusion of these heuristics can avoid time wastage from applying non-improving moves. The tuning
of key attributes such as Tabu size list and aspiration criteria [86] is important to prevent cycling while
maintaining diverse search options. Future work should focus on designing flexible Tabu lists that adapt
based on performance, for better balance of exploration and exploitation.

Restart mechanism is similar to mutation [146]. Stochastic restarts, where the search process periodi-
cally reset, encourages exploration. Among CHeSC algorithms, only NAHH employed this, placing seventh
in the competition. Further exploration on this approach is needed to confirm its effectiveness. Nevertheless,
any form of restart mechanism is useful, especially for problem instances with multiple local optima. Besides,
it can be combined into other algorithmic components, such as move acceptance. Restart mechanism
also may need the right conditions to be effective [147]. Suitable restart conditions and methods must be
employed in future research. In a time-limited setup, time condition would be a better choice compared to
iteration condition. Reinitializing the current solution and perturbating the best solution are suggested for
future algorithms.

The task of setting algorithm parameters can be classified into parameter tuning and control [90]. When
choosing a method, the resource constraints and the trade-off between domain knowledge and the parameter
setting approach are considered [148]. Parameter tuning should be used for repetitive problems, whereas
parameter control should be used for one-off problems, problems with dynamic fitness function and online
adaptation [149]. Dynamic parameter control has shown to be effective, yet only one CHeSC algorithm,
HAHA, implements it. Further in-depth studies are needed to validate its impact. Adaptive approaches are
generally more effective, as they adjust parameter values based on the current search state. This adaptability is
especially valuable for hyper-heuristics, where diverse problem types demand varying parameter intensities



1278 Comput Model Eng Sci. 2025;142(2)

for optimal results. Future research should aim to establish adaptive frameworks for dynamic parameter
control, enhancing real-time responsiveness to changing problem landscapes.

The HyFlex framework provides valuable insights for future algorithm development as it contains
a diverse set of benchmark problems. Our analysis underscores the importance of tailoring algorithmic
strategies to specific problem characteristics, including heuristic application sensitivity, speed of the search
process, solution space modality, and search landscape complexity. For problems sensitive to objective
function changes, such as BP instances, strategies emphasizing exploration are recommended to enhance
diversity and performance. Strategies including multi-point search, stochastic move acceptance, Tabu
solutions, and restart mechanisms promote exploration.

Speed of the search process, particularly the execution of low-level heuristics, is another critical factor.
In slow-execution instances, simpler strategies like single-point search, non-iterated search phases, and basic
move acceptance are more effective, as they allow for more frequent heuristic applications. Evidently, PS
and VRP instances which have slow execution of low-level heuristics excelled by algorithms with simple
strategies. Conversely, faster search process can accommodate more complex strategies, such as online
learning, adaptive parameters, or Tabu mechanisms, which enhance algorithm intelligence and adaptability.
As evidence, these strategies are more effective in PFS and SAT instances, which have faster processes.
Implementation of these strategies in slow-execution instances will lead to wasted computational time.

Search space complexity, especially modality, also influences strategy selection. Multi-modal problems,
or problems with multiple optima, require diversification strategies to escape local optima. Strategies like
multi-point search, iterated search, threshold or stochastic move acceptance, Tabu and restart mechanisms
help diversifying the search by finding solutions that are far from the current one. For example, iterated
searches have proven beneficial for PS instances, while restart mechanisms excel in SAT instances. In
contrast, learning approaches are less critical in these contexts, as they focus on exploitation. Additionally,
hyper-heuristics should prioritize adaptability across diverse scenarios. Incorporating adaptive heuristic
selection, online learning, and dynamic parameter control ensures robust performance, addressing the
varying demands of different problem domains effectively.

8 Conclusions
The selection hyper-heuristics from the inaugural CHeSC competition were reviewed in this study.

This includes summarizing previously undiscussed algorithms and reviewing critical components of the
algorithms, which are the search point, search phases, heuristic selection, move acceptance, feedback, Tabu
mechanism, restart mechanism, and low-level heuristic parameter control. The review analysis suggests
that heuristic selection using relay hybridization produced the best result, and roulette wheel selection is
marginally better than random selection. A mixed-point search can outperform algorithms employing only
one type of search point. Searches that are conducted in phases, i.e., perturbation followed by local search,
significantly increase algorithm performance. A move acceptance strategy is crucial in enhancing search
performance, with a preference for non-stochastic over stochastic methods. A combination of online and
offline learning should be incorporated to ensure a highly effective algorithm, whereas ignoring feedback
must be avoided. The Tabu mechanism proved to play a critical role in preventing cycling that may degrade
search performance. However, maintaining a Tabu list of solutions may not present a remarkable benefit
compared to keeping a Tabu list of heuristics only. Including search restarts in algorithm design is crucial
for escaping local optima, with a preference for restarts triggered by execution time rather than algorithmic
iteration. The best action upon restarting the search is to reinitialize the solution or modify the best solution.
Regarding the low-level heuristic parameters, it is recommended not to keep them static throughout the
search process. Instead, they should be dynamically or adaptively controlled, with a preference for the former.



Comput Model Eng Sci. 2025;142(2) 1279

This implies that algorithms designed without consideration for the control of these parameters will suffer
in terms of performance when evaluated within the HyFlex framework. A comparison of the trends among
recent hyper-heuristics supported our findings in most cases. Future algorithms should incorporate these
beneficial features to ensure high performance and employ them to effectively solve problems in various
domains such as remote sensing, biology, and environment networks.

However, the findings could not be confirmed as the algorithms have many dissimilarities in compo-
nents outside of the comparison scope. Therefore, the analytical results should be verified in future works
using a fair comparison technique by having the other components constant. Furthermore, the analysis may
yield different results if a different ranking in the leaderboard is considered. The leaderboard is calculated
using median values from multiple runs, and each run produces variable results. Therefore, the rankings are
highly likely to change if new runs are conducted, especially on contemporary hardware. A positive aspect of
research in this field is that the source codes for the CHeSC algorithms are readily available. Future research
can utilize these codes to expand the investigation.

Limitations of this study include the lack of complexity analyses or experimental comparisons beyond
comparisons using the quality index. This limitation arises from the lack of access to individual algorithmic
run records. This study relies on results reported in previous publications. Future research should utilize
source codes for the selection of hyper-heuristics to rerun experiments, ensuring results with higher integrity.
The analysis could be expanded to include more recent algorithms, provided that the challenges related to
the availability of design documentation and source codes are resolved. Further studies could also include
more in-depth comparisons of the algorithms’ complexity and utilize more robust performance metrics.
Inspecting the compliance of algorithms with competition rules provides an interesting avenue for verifying
the integrity of competition results.

Additionally, given the rapid advancements in computer technology, it is recommended to test the
algorithms in an environment that leverages this increased computational power, such as extending the
execution time limit. This approach could offer fresh perspectives on the challenge of premature convergence.
An in-depth analysis of algorithm behaviour throughout the search process, using recorded algorithmic runs,
should also be conducted. Convergence analyses could also be employed to observe convergence trends and
evaluate algorithms’ ability to achieve optimal or near-optimal solutions. It is also recommended to examine
the scalability of the algorithms to larger problem instances to ensure their high generality. Furthermore, the
optimization field has grown rapidly in recent years to include multi-objective, multi-task, and multi-factorial
optimization. The implementation of selection hyper-heuristic can be explored in these areas, leveraging the
insights derived from our analysis as a good starting point.

Acknowledgment: The authors would like to thank the Ministry of Higher Education (MoHE) Malaysia, for the
funding and support for this project.

Funding Statement: This research was funded by Ministry of Higher Education (MoHE) Malaysia, under Transdisci-
plinary Research Grant Scheme (TRGS/1/2019/UKM/01/4/2).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and design:
Mohamad Khairulamirin Md Razali, Masri Ayob, Abdul Hadi Abd Rahman, Razman Jarmin, Chian Yong Liu,
Muhammad Maaya, Azarinah Izaham; data collection: Mohamad Khairulamirin Md Razali; analysis and interpretation
of results: Mohamad Khairulamirin Md Razali; draft manuscript preparation: Mohamad Khairulamirin Md Razali,
Masri Ayob, Abdul Hadi Abd Rahman, Graham Kendall. All authors reviewed the results and approved the final version
of the manuscript.



1280 Comput Model Eng Sci. 2025;142(2)

Availability of Data and Materials: The data and materials that support the findings of this study are openly available
in GitHub at https://github.com/seage/hyflex/tree/master/hyflex-hyperheuristics (accessed on 25 December 2024).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Glossary/Nomenclature/Abbreviations
ACO Ant Colony Optimization
AILLA Adaptive Iteration Limited List-based Threshold Accepting
ALHH(πg) Apprenticeship Learning Hyper-Heuristic
AVEG-Nep Hyper-heuristic based on autonomous agents and Epsilon-greedy selection
BP Bin packing
CF Choice Function
CHeSC Cross-domain Heuristic Search Challenge
DHSS Dynamic heuristic set selection
DOS Depth of search
EA-ILS Evolutionary algorithm-based iterated local search
EMCQ Exponential Monte Carlo with counter
F1 Formula 1
FIS Fuzzy Inference Selection
FRAMAB Fitness-Rate-Average based Multi-armed Bandit
FS-ILS Fair-Share Iterated Local Search
GEP Gene Expression Programming
GISS Generic Iterative Simulated-Annealing Search
HAEA Hybrid Adaptive Evolutionary Algorithm
HHDMAB Hyper-heuristic using Dynamic Multi-armed Bandit
HH2DMAB Hyper-heuristic using Dynamic Multi-armed Bandit 2
ILSHH Iterated Local Search Hyper-heuristic
IM Intensity of mutation
ISEA Iterated Search Driven by Evolutionary Algorithm
KP Knapsack Problem
KSATS-HH Simulated Annealing and Tabu-Search Hyper-Heuristic
LAH List of Active Heuristics
LAST-RL Large state reinforcement learning hyper-heuristic
MA Memetic algorithm
MAB Multi-armed bandit
MaxCut Max-Cut Problem
MCHH-S Single objective Markov chain Hyper-heuristic
MSHH Multi-stage Hyper-heuristic
PFS Permutation flowshop
POP-MA Population-based memetic algorithm
PS Personnel scheduling
QAP Quadratic Assignment Problem
QHH Q-learning based hyper-heuristic
RQ Research question
SA Simulated Annealing
SAHH Simulated Annealing Hyper-heuristic
SAT Boolean satisfiability

https://github.com/seage/hyflex/tree/master/hyflex-hyperheuristics


Comput Model Eng Sci. 2025;142(2) 1281

SP-MA Single-point based memetic algorithm
SR-LA Simple Random Late Acceptance
SSMA Steady-state memetic algorithm
TGMA Transgenerational memetic algorithm
TS-ILS Thompson Sampling based Iterated Local Search Algorithm
TSP Travelling salesman problem
VND Variable Neighbourhood Descent
VNS-TW Variable Neighbourhood Search hyper-heuristic
VRP Vehicle routing problem
XCJ EXplore-Climb-Jump

References
1. Pillay N, Qu R. Hyper-heuristics: theory and applications. 1st ed. (Natural Computing Series). Cham, Switzerland:

Springer; 2018.
2. Sanchez M, Cruz-Duarte JM, Ortiz-Bayliss JC, Ceballos H, Terashima-Marin H, Amaya I. A systematic review of

hyper-heuristics on combinatorial optimization problems. IEEE Access. 2020;8:128068–95. doi:10.1109/ACCESS.
2020.3009318.

3. Drake JH, Kheiri A, Özcan E, Burke EK. Recent advances in selection hyper-heuristics. Eur J Oper Res. 2020 Sep
1;285(2):405–28. doi:10.1016/j.ejor.2019.07.073.

4. Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR. A classification of hyper-heuristic approaches.
In: Gendreau M, Potvin J-Y, editors. Handbook of metaheuristics. Boston, MA, USA: Springer; 2010. p. 449–68.

5. Qu R, Burke EK. Hybridizations within a graph-based hyper-heuristic framework for university timetabling
problems. J Oper Res Soc. 2009;60(9):1273–85. doi:10.1057/jors.2008.102.

6. Ross P. Hyper-heuristics. In: Search methodologies: introductory tutorials in optimization and decision support
techniques. Boston, MA, USA: Springer; 2005. p. 529–56.

7. Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, et al. HyFlex: a benchmark
framework for cross-domain heuristic search. In: Evolutionary computation in combinatorial optimization. Berlin,
Heidelberg: Springer; 2012. p. 136–47.

8. Burke EK, Gendreau M, Hyde M, Kendall G, McCollum B, Ochoa G, et al. The cross-domain heuristic search
challenge—an international research competition. In: Learning and intelligent optimization. Berlin, Heidelberg:
Springer; 2011. p. 631–4.

9. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, et al. Hyper-heuristics: a survey of the state of
the art. J Oper Res Soc. 2013;64(12):1695–724. doi:10.1057/jors.2013.71.

10. Jackson WG, Özcan E, John RI. Move acceptance in local search metaheuristics for cross-domain search. Expert
Syst Appl. 2018;109(13):131–51. doi:10.1016/j.eswa.2018.05.006.

11. Özcan E, Bilgin B, Korkmaz EE. A comprehensive analysis of hyper-heuristics. Intell Data Anal. 2008;12(1):3–23.
doi:10.3233/IDA-2008-12102.

12. Zamli KZ, Din F, Kendall G, Ahmed BS. An experimental study of hyper-heuristic selection and acceptance
mechanism for combinatorial t-way test suite generation. Inf Sci. 2017 Aug 1;399(12):121–53. doi:10.1016/j.ins.2017.
03.007.

13. Kiraz B, Etaner-Uyar AS, Özcan E. Selection hyper-heuristics in dynamic environments. J Oper Res Soc. 2013 Dec
1;64(12):1753–69. doi:10.1057/jors.2013.24.

14. Castro OR, Fritsche GM, Pozo A. Evaluating selection methods on hyper-heuristic multi-objective particle swarm
optimization. J Heuristics. 2018 Aug 1;24(4):581–616. doi:10.1007/s10732-018-9369-x.

15. Yates WB, Keedwell EC. Analysing heuristic subsequences for offline hyper-heuristic learning. Paper presented
at: Genetic and Evolutionary Computation Conference Companion; 2019; Prague, Czech Republic. doi:10.1145/
3319619.3326760.

https://doi.org/10.1109/ACCESS.2020.3009318
https://doi.org/10.1109/ACCESS.2020.3009318
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1057/jors.2008.102
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1016/j.eswa.2018.05.006
https://doi.org/10.3233/IDA-2008-12102
https://doi.org/10.1016/j.ins.2017.03.007
https://doi.org/10.1016/j.ins.2017.03.007
https://doi.org/10.1057/jors.2013.24
https://doi.org/10.1007/s10732-018-9369-x
https://doi.org/10.1145/3319619.3326760
https://doi.org/10.1145/3319619.3326760


1282 Comput Model Eng Sci. 2025;142(2)

16. Misir M, Verbeeck K, Causmaecker PD, Berghe GV. Hyper-heuristics with a dynamic heuristic set for the home
care scheduling problem. In: IEEE Congress on Evolutionary Computation; 2010 Jul 18–23; New York, NY, USA.
p. 1–8. doi:10.1109/CEC.2010.5586348.

17. Adriaensen S, Nowé A. Case study: an analysis of accidental complexity in a state-of-the-art hyper-heuristic for
HyFlex. In: 2016 IEEE Congress on Evolutionary Computation (CEC); 2016 Jul 24–29; New York, NY, USA. p.
1485–92. doi:10.1109/CEC.2016.7743965.

18. Lissovoi A, Oliveto P, Warwicker JA. How the duration of the learning period affects the performance of random
gradient selection hyper-heuristics. Proc AAAI Conf Artif Intell. 2020 Mar 4;34(3):2376–83. doi:10.1609/aaai.
v34i03.5617.

19. Cuccu G, Gomez F, Glasmachers T. Novelty-based restarts for evolution strategies. In: 2011 IEEE Congress of
Evolutionary Computation (CEC); 2011 Jun 5–8; New York, NY, USA. p. 158–63. doi:10.1109/CEC.2011.5949613.

20. Mathesen L, Pedrielli G, Ng SH, Zabinsky ZB. Stochastic optimization with adaptive restart: a framework for
integrated local and global learning. J Glob Optim. 2021 Jan 1;79(1):87–110. doi:10.1007/s10898-020-00937-5.

21. Baghel M, Agrawal S, Silakari S. Survey of metaheuristic algorithms for combinatorial optimization. Int J Comput
Appl. 2012;58(19):10–31. doi:10.5120/9391-3813.

22. Gümüş DB, Özcan E, Atkin J, Drake JH. An investigation of F-Race training strategies for cross domain
optimisation with memetic algorithms. Inf Sci. 2023 Jan 1;619(3):153–71. doi:10.1016/j.ins.2022.11.008.

23. Kletzander L, Musliu N. Large-state reinforcement learning for hyper-heuristics. Proc AAAI Conf Artif Intell. 2023
26 Jun;37(10):12444–52. doi:10.1609/aaai.v37i10.26466.

24. Mischek F, Musliu N. Reinforcement learning for cross-domain hyper-heuristics. In: The 31st International Joint
Conferences on Artificial Intelligence Organization; 2022 Jul 23–29; Vienna, Austria; p. 4793–9. doi:10.24963/ijcai.
2022/664.

25. Adubi SA, Oladipupo OO, Olugbara OO. Evolutionary algorithm-based iterated local search hyper-heuristic for
combinatorial optimization problems. Algorithms. 2022;15(11):405. doi:10.3390/a15110405.

26. Drake JH, Özcan E, Burke EK. A case study of controlling crossover in a selection hyper-heuristic framework using
the multidimensional knapsack problem. Evol Comput. 2016;24(1):113–41. doi:10.1162/EVCO_a_00145.

27. Ozcan E, Bykov Y, Birben M, Burke EK. Examination timetabling using late acceptance hyper-heuristics. In: IEEE
Congress on Evolutionary Computation; 2009 May 18–21; New York, NY, USA. p. 997–1004. doi:10.1109/CEC.2009.
4983054.

28. Sabar NR, Ayob M, Kendall G, Qu R. A dynamic multiarmed bandit-gene expression programming hyper-heuristic
for combinatorial optimization problems. IEEE Trans Cybern. 2015;45(2):217–28. doi:10.1109/TCYB.2014.2323936.

29. Pillay N. A review of hyper-heuristics for educational timetabling. Ann Oper Res. 2016;239(1):3–38. doi:10.1007/
s10479-014-1688-1.

30. Branke J, Nguyen S, Pickardt CW, Zhang M. Automated design of production scheduling heuristics: a review. IEEE
Trans Evol Comput. 2016;20(1):110–24. doi:10.1109/TEVC.2015.2429314.

31. Pillay N, Qu R. Assessing hyper-heuristic performance. J Oper Res Soc. 2021 Nov 2;72(11):2503–16. doi:10.1080/
01605682.2020.1796538.

32. Onsem WV, Demoen B. Analyse en vergelijking van zestien implementaties uit de CHeSC 2011 competitie. In: CW
reports; 2013.

33. Mısır M, Verbeeck K, De Causmaecker P, Berghe GV. An investigation on the generality level of selection hyper-
heuristics under different empirical conditions. Appl Soft Comput. 2013 Jul 1;13(7):3335–53. doi:10.1016/j.asoc.2013.
02.006.

34. Alanazi F, Lehre PK. Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In: 2014
IEEE Congress on Evolutionary Computation (CEC); 2014 Jul 6–11; New York, NY, USA. p. 2515–23. doi:10.1109/
CEC.2014.6900602.

35. Sarhani M, Voß S, Jovanovic R. Initialization of metaheuristics: comprehensive review, critical analysis, and
research directions. Int Trans Oper Res. 2023;30(6):3361–97. doi:10.1111/itor.13237.

https://doi.org/10.1109/CEC.2010.5586348
https://doi.org/10.1109/CEC.2016.7743965
https://doi.org/10.1609/aaai.v34i03.5617
https://doi.org/10.1609/aaai.v34i03.5617
https://doi.org/10.1109/CEC.2011.5949613
https://doi.org/10.1007/s10898-020-00937-5
https://doi.org/10.5120/9391-3813
https://doi.org/10.1016/j.ins.2022.11.008
https://doi.org/10.1609/aaai.v37i10.26466
https://doi.org/10.24963/ijcai.2022/664
https://doi.org/10.24963/ijcai.2022/664
https://doi.org/10.3390/a15110405
https://doi.org/10.1162/EVCO_a_00145
https://doi.org/10.1109/CEC.2009.4983054
https://doi.org/10.1109/CEC.2009.4983054
https://doi.org/10.1109/TCYB.2014.2323936
https://doi.org/10.1007/s10479-014-1688-1
https://doi.org/10.1007/s10479-014-1688-1
https://doi.org/10.1109/TEVC.2015.2429314
https://doi.org/10.1080/01605682.2020.1796538
https://doi.org/10.1080/01605682.2020.1796538
https://doi.org/10.1016/j.asoc.2013.02.006
https://doi.org/10.1016/j.asoc.2013.02.006
https://doi.org/10.1109/CEC.2014.6900602
https://doi.org/10.1109/CEC.2014.6900602
https://doi.org/10.1111/itor.13237


Comput Model Eng Sci. 2025;142(2) 1283

36. Adriaensen S, Ochoa G, Nowé A. A benchmark set extension and comparative study for the HyFlex framework.
In: 2015 IEEE Congress on Evolutionary Computation (CEC); 2015 May 25–28; New York, NY, USA. p. 784–91.
doi:10.1109/CEC.2015.7256971.

37. Drake JH, Özcan E, Burke EK. A comparison of crossover control mechanisms within single-point selection hyper-
heuristics using HyFlex. In: 2015 IEEE Congress on Evolutionary Computation (CEC); 2015 May 25–28; New York,
NY, USA. p. 3397–403. doi:10.1109/CEC.2015.7257316.

38. Soria-Alcaraz JA, Ochoa G, Espinal A, Sotelo-Figueroa MA, Ornelas-Rodriguez M, Rostro-Gonzalez H,
et al. A methodology for classifying search operators as intensification or diversification heuristics. Complex.
2020;2020:10. doi:10.1155/2020/2871835.

39. Hassan A, Pillay N. Dynamic heuristic set selection for cross-domain selection hyper-heuristics. In: Theory and
practice of natural computing. Cham: Springer International Publishing; 2021. p. 33–44.

40. Adriaensen S, Brys T, Nowé A. Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic.
Paper presented at: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation; 2014;
Vancouver, BC, Canada. doi:10.1145/2576768.2598285.

41. Zhao F, Di S, Cao J, Tang J, Jonrinaldi. A novel cooperative multi-stage hyper-heuristic for combination
optimization problems. Complex Syst Model Simul. 2021;1(2):91–108. doi:10.23919/CSMS.2021.0010.

42. Ferreira AS, Gonçalves RA, Pozo A. A multi-armed bandit selection strategy for hyper-heuristics. In: 2017 IEEE
Congress on Evolutionary Computation (CEC); 2017 Jun 5–8; New York, NY, USA. p. 525–32. doi:10.1109/CEC.
2017.7969356.

43. Özcan E, Asta S, Altıntaş C. Memetic algorithms for cross-domain heuristic search. In: 2013 13th UK Workshop
on Computational Intelligence (UKCI); 2013 Sep 9–11; Guildford, UK. p. 175–82. doi:10.1109/UKCI.2013.6651303.

44. Gümüş DB, Ozcan E, Atkin J. An investigation of tuning a memetic algorithm for cross-domain search. In: 2016
IEEE Congress on Evolutionary Computation (CEC); 2016 Jul 24–29; New York, NY, USA. p. 135–42. doi:10.1109/
CEC.2016.7743788.

45. Mısır M, Verbeeck K, Causmaecker PDe, Berghe GV. An intelligent hyper-heuristic framework for CHeSC 2011.
In: Learning and intelligent optimization. Berlin, Heidelberg: Springer; 2012. p. 461–6.

46. Bilgin B, Demeester P, Misir M, Vancroonenburg W, Berghe GV. One hyper-heuristic approach to two timetabling
problems in health care. J Heuristics. 2012 Jun 1;18(3):401–34. doi:10.1007/s10732-011-9192-0.

47. Almutairi A, Özcan E, Kheiri A, Jackson WG. Performance of selection hyper-heuristics on the extended HyFlex
domains. In: Computer and information sciences. Cham: Springer International Publishing; 2016. p. 154–62.

48. Di Gaspero L, Urli T. Evaluation of a family of reinforcement learning cross-domain optimization heuristics. In:
Learning and intelligent optimization. Berlin, Heidelberg: Springer; 2012. p. 384–9.

49. Royston P. Approximating the Shapiro-Wilk W-test for non-normality. Stat Comput. 1992;2(3):117–9. doi:10.1007/
BF01891203.

50. Park E, Cho M, Ki CS. Correct use of repeated measures analysis of variance. Korean J Lab Med. 2009 Feb;29(1):1–9.
doi:10.3343/kjlm.2009.29.1.1.

51. Nanda A, Mohapatra BB, Mahapatra APK, Mahapatra APK, Mahapatra APK. Multiple comparison test by
Tukey’s honestly significant difference (HSD): do the confident level control type I error. Int J Stat Appl Math.
2021;6(1):59–65. doi:10.22271/MATHS.2021.V6.I1A.636.

52. Zimmerman DW, Zumbo BD. Relative power of the wilcoxon test, the friedman test, and repeated-measures
ANOVA on ranks. J Exp Educ. 1993 Jul 1;62(1):75–86. doi:10.1080/00220973.1993.9943832.

53. Woolson RF. Wilcoxon signed-rank test. In: Wiley encyclopedia of clinical trials. Hoboken, NJ, USA: Wiley; 2007.
p. 1–3.

54. Wilcoxon F, Katti S, Wilcox RA. Critical values and probability levels for the Wilcoxon rank sum test and the
Wilcoxon signed rank test. Select Tables Math Stat. 1970;1:171–259.

55. Alyahya TN, Menai MEB, Mathkour H. On the structure of the boolean satisfiability problem: a survey. ACM
Comput Surv. 2022;55(3):1–34. doi:10.1145/3491210.

https://doi.org/10.1109/CEC.2015.7256971
https://doi.org/10.1109/CEC.2015.7257316
https://doi.org/10.1155/2020/2871835
https://doi.org/10.1145/2576768.2598285
https://doi.org/10.23919/CSMS.2021.0010
https://doi.org/10.1109/CEC.2017.7969356
https://doi.org/10.1109/CEC.2017.7969356
https://doi.org/10.1109/UKCI.2013.6651303
https://doi.org/10.1109/CEC.2016.7743788
https://doi.org/10.1109/CEC.2016.7743788
https://doi.org/10.1007/s10732-011-9192-0
https://doi.org/10.1007/BF01891203
https://doi.org/10.1007/BF01891203
https://doi.org/10.3343/kjlm.2009.29.1.1
https://doi.org/10.22271/MATHS.2021.V6.I1A.636
https://doi.org/10.1080/00220973.1993.9943832
https://doi.org/10.1145/3491210


1284 Comput Model Eng Sci. 2025;142(2)

56. Munien C, Mahabeer S, Dzitiro E, Singh S, Zungu S, Ezugwu AES. Metaheuristic approaches for one-dimensional
bin packing problem: a comparative performance study. IEEE Access. 2020;8:227438–65. doi:10.1109/ACCESS.
2020.3046185.

57. Özder EH, Özcan E, Eren T. A systematic literature review for personnel scheduling problems. Int J Inform Technol
Decis Mak. 2020;19(6):1695–735. doi:10.1142/s0219622020300050.

58. Pang X, Xue H, Tseng M-L, Lim MK, Liu K. Hybrid flow shop scheduling problems using improved fireworks
algorithm for permutation. Appl Sci. 2020;10(3):1174.

59. Arram A, Ayob M. A novel multi-parent order crossover in genetic algorithm for combinatorial optimization
problems. Comput Indus Eng. 2019 Jun 1;133(3):267–74. doi:10.1016/j.cie.2019.05.012.

60. Jaradat G, Ayob M, Almarashdeh I. The effect of elite pool in hybrid population-based meta-heuristics for solving
combinatorial optimization problems. Appl Soft Comput. 2016 Jun 1;44(2):45–56. doi:10.1016/j.asoc.2016.01.002.

61. Saeed R, Eisa A, Alsaqour R. 0-1 knapsack problem approach for multicast agent in NEMO system. Int J Eng
Technol. 2014;6(1):411–7.

62. Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T. A survey for the quadratic assignment
problem. Eur J Oper Res. 2007 Jun 16;176(2):657–90. doi:10.1016/j.ejor.2005.09.032.

63. Festa P, Pardalos PM, Resende MGC, Ribeiro CC. Randomized heuristics for the Max-Cut problem. Optim
Methods Softw. 2002 Jan 1;17(6):1033–58. doi:10.1080/1055678021000090033.

64. Ping-Che H, Tsung-Che C, Fu LC. A VNS-based hyper-heuristic with adaptive computational budget of local
search. In: 2012 IEEE Congress on Evolutionary Computation; 2012 Jun 10–15; New York, NY, USA. p. 1–8. doi:10.
1109/CEC.2012.6252969.

65. Chan CY, Xue F, Ip WH, Cheung CF. A hyper-heuristic inspired by pearl hunting. In: Learning and intelligent
optimization. Berlin, Heidelberg: Springer; 2012. p. 349–53.

66. Meignan D. An evolutionary programming hyper-heuristic with co-evolution for CHeSC11. In: The 53rd Annual
Conference of the UK Operational Research Society (OR53); 2011; Milton Park, Oxfordshire, UK. Vol. 3.

67. Lehrbaum A, Musliu N. A new hyperheuristic algorithm for cross-domain search problems. In: Learning and
intelligent optimization. Berlin, Heidelberg: Springer; 2012. p. 437–42.

68. Mascia F, Stützle T. A non-adaptive stochastic local search algorithm for the CHeSC 2011 competition. In: Learning
and intelligent optimization. Berlin Heidelberg: Springer; 2012. p. 101–14.

69. Kubalík J. Hyper-heuristic based on iterated local search driven by evolutionary algorithm. In: Evolutionary
computation in combinatorial optimization. Berlin, Heidelberg: Springer; 2012. p. 148–59.

70. Cichowicz T, Drozdowski M, Frankiewicz M, Pawlak G, Rytwinski F, Wasilewski J. Hyper-heuristics for cross-
domain search. Bullet Pol Acad Sci Tech Sci. 2012;60(4):801–8.

71. Ferreira AS, Pozo A, Gonçalves RA. An ant colony based hyper-heuristic approach for the set covering problem.
ADCAIJ Adv Distrib Comput Artif Intell J. 2015;4(1):1–21. doi:10.14201/adcaij201541121.

72. McClymont K, Keedwell EC. Markov chain hyper-heuristic (MCHH): an online selective hyper-heuristic for multi-
objective continuous problems. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation; 2011; Dublin, Ireland. doi:10.1145/2001576.2001845.

73. Kheiri A, Keedwell E. A Sequence-based Selection Hyper-heuristic utilising a Hidden Markov Model. Paper
presented at: 2015 Annual Conference on Genetic and Evolutionary Computation; 2015; Madrid, Spain. doi:10.
1145/2739480.2754766.

74. Agushaka JO, Ezugwu AE. Initialisation approaches for population-based metaheuristic algorithms: a comprehen-
sive review. Appl Sci. 2022;12(2):896.

75. Malan KM, Engelbrecht AP. Algorithm comparisons and the significance of population size. In: 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); 2008 Jun 1–6;
Hong Kong, China. p. 914–20. doi:10.1109/CEC.2008.4630905.

76. Prügel-Bennett A. Benefits of a population: five mechanisms that advantage population-based algorithms. IEEE
Trans Evol Comput. 2010;14(4):500–17. doi:10.1109/TEVC.2009.2039139.

77. Jaddi NS, Abdullah S. Global search in single-solution-based metaheuristics. Data Technol Appl.
2020;54(3):275–96. doi:10.1108/DTA-07-2019-0115.

https://doi.org/10.1109/ACCESS.2020.3046185
https://doi.org/10.1109/ACCESS.2020.3046185
https://doi.org/10.1142/s0219622020300050
https://doi.org/10.1016/j.cie.2019.05.012
https://doi.org/10.1016/j.asoc.2016.01.002
https://doi.org/10.1016/j.ejor.2005.09.032
https://doi.org/10.1080/1055678021000090033
https://doi.org/10.1109/CEC.2012.6252969
https://doi.org/10.1109/CEC.2012.6252969
https://doi.org/10.14201/adcaij201541121
https://doi.org/10.1145/2001576.2001845
https://doi.org/10.1145/2739480.2754766
https://doi.org/10.1145/2739480.2754766
https://doi.org/10.1109/CEC.2008.4630905
https://doi.org/10.1109/TEVC.2009.2039139
https://doi.org/10.1108/DTA-07-2019-0115


Comput Model Eng Sci. 2025;142(2) 1285

78. Arram A, Ayob M, Sulaiman A. Hybrid bird mating optimizer with single-based algorithms for combinatorial
optimization problems. IEEE Access. 2021;9:115972–89. doi:10.1109/ACCESS.2021.3102154.

79. Bándi N, Gaskó N. Nested Markov chain hyper-heuristic (NMHH): a hybrid hyper-heuristic framework for single-
objective continuous problems. PeerJ Comput Sci. 2024 Feb 2;10(4):e1785. doi:10.7717/peerj-cs.1785.

80. Jackson WG, Özcan E, John RI. Tuning a Simulated Annealing metaheuristic for cross-domain search. In: 2017
IEEE Congress on Evolutionary Computation (CEC); 2017 Jun 5–8. p. 1055–62. doi:10.1109/CEC.2017.7969424.

81. Raj B, Ahmedy I, Idris MYI, Noor RM. A hybrid sperm swarm optimization and genetic algorithm for unimodal
and multimodal optimization problems. IEEE Access. 2022;10(4):109580–96. doi:10.1109/ACCESS.2022.3208169.

82. Kheiri A, Özcan E. An iterated multi-stage selection hyper-heuristic. Eur J Oper Res. 2016 Apr 1;250(1):77–90.
doi:10.1016/j.ejor.2015.09.003.

83. Lepagnot J, Idoumghar L, Brévilliers M, Idrissi-Aouad M. A new high-level relay hybrid metaheuristic for black-
box optimization problems. In: Artificial evolution. Cham: Springer International Publishing; 2018. p. 115–28.

84. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80. doi:10.
1126/science.220.4598.671.

85. Glover F. Tabu search—part I. ORSA J Comput. 1989;1(3):190–206. doi:10.1287/ijoc.1.3.190.
86. Talbi EG. Metaheuristics: from design to implementation. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2009.
87. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK. Metaheuristic algorithms: a comprehensive review. Cambridge,

MA, USA: Academic Press; 2018. p. 185–231.
88. Rahman MA, Sokkalingam R, Othman M, Biswas K, Abdullah L, Kadir EA. Nature-inspired metaheuristic

techniques for combinatorial optimization problems: overview and recent advances. Mathematics. 2021;9(20):1–32.
doi:10.3390/math9202633.

89. Sabar NR, Ayob M, Kendall G, Qu R. Grammatical evolution hyper-heuristic for combinatorial optimization
problems. IEEE Trans Evol Comput. 2013;17(6):840–61. doi:10.1109/TEVC.2013.2281527.

90. Eiben AE, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Trans Evol Comput.
1999;3(2):124–41. doi:10.1109/4235.771166.

91. Črepinšek M, Liu S-H, Mernik M. Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput
Surv. 2013;45(3):35. doi:10.1145/2480741.2480752.

92. Zhang J, Chen W-N, Zhan Z-H, Yu W-J, Li Y-L, Chen N, et al. A survey on algorithm adaptation in evolutionary
computation. Front Electr Electron Eng. 2012 Mar 1;7(1):16–31. doi:10.1007/s11460-012-0192-0.

93. Drake JH, Özcan E, Burke EK. An improved choice function heuristic selection for cross domain heuristic search.
In: Parallel problem solving from nature-PPSN XII. Berlin, Heidelberg: Springer; 2012. p. 307–16.

94. Jackson WG, Özcan E, Drake JH. Late acceptance-based selection hyper-heuristics for cross-domain heuristic
search. In: 2013 13th UK Workshop on Computational Intelligence (UKCI); 2013 Sep 9–11; Guildford, UK. p.
228–35. doi:10.1109/UKCI.2013.6651310.

95. Kheiri A, Özcan E. A hyper-heuristic with a round robin neighbourhood selection. In: Evolutionary computation
in combinatorial optimization. Berlin, Heidelberg: Springer; 2013. p. 1–12.

96. Asta S, Özcan E. An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex. In: 2014 IEEE
Symposium on Evolving and Autonomous Learning Systems (EALS); 2014 Dec 9–12; New York, NY, USA. p. 65–72.
doi:10.1109/EALS.2014.7009505.

97. Sabar NR, Ayob M, Kendall G, Qu R. Automatic design of a hyper-heuristic framework with gene expression
programming for combinatorial optimization problems. IEEE Trans Evol Comput. 2015;19(3):309–25. doi:10.1109/
TEVC.2014.2319051.

98. Sabar NR, Kendall G. Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization
problems. Inf Sci. 2015 Sep 1;314(1):225–39. doi:10.1016/j.ins.2014.10.045.

99. Asta S, Özcan E. A tensor-based selection hyper-heuristic for cross-domain heuristic search. Inf Sci. 2015 Apr
1;299(12):412–32. doi:10.1016/j.ins.2014.12.020.

100. Alanazi F. Adaptive thompson sampling for hyper-heuristics. In: 2016 IEEE Symposium Series on Computational
Intelligence (SSCI); 2016 Dec 6–9; New York, NY, USA. p. 1–8. doi:10.1109/SSCI.2016.7850086.

https://doi.org/10.1109/ACCESS.2021.3102154
https://doi.org/10.7717/peerj-cs.1785
https://doi.org/10.1109/CEC.2017.7969424
https://doi.org/10.1109/ACCESS.2022.3208169
https://doi.org/10.1016/j.ejor.2015.09.003
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.3390/math9202633
https://doi.org/10.1109/TEVC.2013.2281527
https://doi.org/10.1109/4235.771166
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1007/s11460-012-0192-0
https://doi.org/10.1109/UKCI.2013.6651310
https://doi.org/10.1109/EALS.2014.7009505
https://doi.org/10.1109/TEVC.2014.2319051
https://doi.org/10.1109/TEVC.2014.2319051
https://doi.org/10.1016/j.ins.2014.10.045
https://doi.org/10.1016/j.ins.2014.12.020
https://doi.org/10.1109/SSCI.2016.7850086


1286 Comput Model Eng Sci. 2025;142(2)

101. Dempster P, Drake JH. Two frameworks for cross-domain heuristic and parameter selection using harmony search.
In: Harmony search algorithm. Berlin, Heidelberg: Springer; 2016. p. 83–94.

102. Soria-Alcaraz JA, Ochoa G, Sotelo-Figeroa MA, Burke EK. A methodology for determining an effective subset of
heuristics in selection hyper-heuristics. Eur J Oper Res. 2017 Aug 1;260(3):972–83. doi:10.1016/j.ejor.2017.01.042.

103. Choong SS, Wong L-P, Lim CP. Automatic design of hyper-heuristic based on reinforcement learning. Inf Sci. 2018
Apr 1;436–437(12):89–107. doi:10.1016/j.ins.2018.01.005.

104. Adubi SA, Oladipupo OO, Olugbara OO. Configuring the perturbation operations of an iterated local search
algorithm for cross-domain search: a probabilistic learning approach. In: 2021 IEEE Congress on Evolutionary
Computation (CEC); 2021 Jun 1–Jul 28; New York, NY, USA. p. 1372–9. doi:10.1109/CEC45853.2021.9504841.

105. Dantas A, Rego AFd, Pozo A. Using deep Q-network for selection hyper-heuristics. Paper presented at: Proceedings
of the Genetic and Evolutionary Computation Conference Companion; Lille, France; 2021. doi:10.1145/3449726.
3463187.

106. Özcan E, Kheiri A. A hyper-heuristic based on random gradient, greedy and dominance. In: Computer and
information sciences II. London: Springer; 2012. p. 557–63.

107. Choong SS, Wong L-P, Lim CP. An artificial bee colony algorithm with a Modified Choice Function for the
traveling salesman problem. Swarm Evol Comput. 2019 Feb 1;44(4):622–35. doi:10.1016/j.swevo.2018.08.004.

108. Zhang S, Yang T, Liang J, Yue C. A novel adaptive bandit-based selection hyper-heuristic for multiobjective
optimization. IEEE Trans Syst Man Cybern Syst. 2023;53(12):7693–706. doi:10.1109/TSMC.2023.3299982.

109. Hou Y, Dang L, Ma H, Zhang C. A selection hyper-heuristic for the multi-compartment vehicle routing problem
considering carbon emission. Eng Letters. 2024 Oct 1;32:2002–11.

110. Lagos F, Pereira J. Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems. Eur J Oper
Res. 2024 Jan 1;312(1):70–91. doi:10.1016/j.ejor.2023.06.016.

111. Zhao F, Liu Y, Zhu N, Xu T, Jonrinaldi. A selection hyper-heuristic algorithm with Q-learning mechanism. Appl
Soft Comput. 2023 Nov 1;147:110815. doi:10.1016/j.asoc.2023.110815.

112. Maashi M, Özcan E, Kendall G. A multi-objective hyper-heuristic based on choice function. Expert Syst Appl. 2014
Jul 1;41(9):4475–93. doi:10.1016/j.eswa.2013.12.050.

113. Toledo A, Riff M, Neveu B. A hyper-heuristic for the orienteering problem with hotel selection. IEEE Access. 2020
Jan 1;8:1303–13. doi:10.1109/ACCESS.2019.2960492.

114. Zhao Y, Leng L, Zhang C. A novel framework of hyper-heuristic approach and its application in location-routing
problem with simultaneous pickup and delivery. Oper Res. 2021 Jun 1;21(2):1299–332. doi:10.1007/s12351-019-
00480-6.

115. Costa JGC, Mei Y, Zhang M. Cluster-based hyper-heuristic for large-scale vehicle routing problem. In: 2020 IEEE
Congress on Evolutionary Computation (CEC); 2020 Jul 19–24; New York, NY, USA. p. 1–8. doi:10.1109/CEC48606.
2020.9185831.

116. Santiago Júnior VAd, Özcan E, Carvalho VRd. Hyper-heuristics based on reinforcement learning, balanced
heuristic selection and group decision acceptance. Appl Soft Comput. 2020 Dec 1;97(12):106760. doi:10.1016/j.asoc.
2020.106760.

117. Cao P, Zhang Y, Zhou K, Tang J. A reinforcement learning hyper-heuristic in multi-objective optimization with
application to structural damage identification. Struct Multidiscipl Optim. 2022 Dec 28;66(1):16. doi:10.1007/
s00158-022-03432-5.

118. Zhang Y, Bai R, Qu R, Tu C, Jin J. A deep reinforcement learning based hyper-heuristic for combinatorial
optimisation with uncertainties. Eur J Oper Res. 2022 Jul 16;300(2):418–27. doi:10.1016/j.ejor.2021.10.032.

119. Sánchez M, Cruz-Duarte JM, Ortiz-Bayliss JC, Amaya I. Sequence-based selection hyper-heuristic model via
MAP-Elites. IEEE Access. 2021;9:116500–27. doi:10.1109/ACCESS.2021.3106815.

120. Ibrahim RA, Abd Elaziz M, Ewees AA, El-Abd M, Lu S. New feature selection paradigm based on hyper-heuristic
technique. Appl Math Model. 2021 Oct 1;98(13):14–37. doi:10.1016/j.apm.2021.04.018.

121. Shao Z, Shao W, Pi D. LS-HH: a Learning-based selection hyper-heuristic for distributed heterogeneous hybrid
blocking flow-shop scheduling. IEEE Trans Emerg Top Comput Intell. 2023;7(1):111–27. doi:10.1109/TETCI.2022.
3174915.

https://doi.org/10.1016/j.ejor.2017.01.042
https://doi.org/10.1016/j.ins.2018.01.005
https://doi.org/10.1109/CEC45853.2021.9504841
https://doi.org/10.1145/3449726.3463187
https://doi.org/10.1145/3449726.3463187
https://doi.org/10.1016/j.swevo.2018.08.004
https://doi.org/10.1109/TSMC.2023.3299982
https://doi.org/10.1016/j.ejor.2023.06.016
https://doi.org/10.1016/j.asoc.2023.110815
https://doi.org/10.1016/j.eswa.2013.12.050
https://doi.org/10.1109/ACCESS.2019.2960492
https://doi.org/10.1007/s12351-019-00480-6
https://doi.org/10.1007/s12351-019-00480-6
https://doi.org/10.1109/CEC48606.2020.9185831
https://doi.org/10.1109/CEC48606.2020.9185831
https://doi.org/10.1016/j.asoc.2020.106760
https://doi.org/10.1016/j.asoc.2020.106760
https://doi.org/10.1007/s00158-022-03432-5
https://doi.org/10.1007/s00158-022-03432-5
https://doi.org/10.1016/j.ejor.2021.10.032
https://doi.org/10.1109/ACCESS.2021.3106815
https://doi.org/10.1016/j.apm.2021.04.018
https://doi.org/10.1109/TETCI.2022.3174915
https://doi.org/10.1109/TETCI.2022.3174915


Comput Model Eng Sci. 2025;142(2) 1287

122. Zhang S, Ren Z, Li C, Xuan J. A perturbation adaptive pursuit strategy based hyper-heuristic for multi-objective
optimization problems. Swarm Evol Comput. 2020 May 1;54(1):100647. doi:10.1016/j.swevo.2020.100647.

123. Lissovoi A, Oliveto PS, Warwicker JA. Simple hyper-heuristics control the neighbourhood size of randomised local
search optimally for leadingones. Evol Comput. 2020;28(3):437–61. doi:10.1162/evco_a_00258.

124. Li W, Özcan E, Drake JH, Maashi M. A generality analysis of multiobjective hyper-heuristics. Inf Sci. 2023 May
1;627(1):34–51. doi:10.1016/j.ins.2023.01.047.

125. Gölcük İ, Ozsoydan FB. Q-learning and hyper-heuristic based algorithm recommendation for changing environ-
ments. Eng Appl Artif Intell. 2021 Jun 1;102:104284. doi:10.1016/j.engappai.2021.104284.

126. Burke EK, Gendreau M, Ochoa G, Walker JD. Adaptive iterated local search for cross-domain optimisation. Paper
presented at: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation; 2011; Dublin,
Ireland. 2011. doi:10.1145/2001576.2001843.

127. Doerr B, Dremaux A, Lutzeyer J, Stumpf A. How the move acceptance hyper-heuristic copes with local optima:
drastic differences between jumps and cliffs. Paper presented at: Proceedings of the Genetic and Evolutionary
Computation Conference; 2023; Lisbon, Portugal. doi:10.1145/3583131.3590509.

128. Lissovoi A, Oliveto PS, Warwicker JA. When move acceptance selection hyper-heuristics outperform Metropolis
and elitist evolutionary algorithms and when not. Artif Intell. 2023 Jan 1;314(6):103804. doi:10.1016/j.artint.2022.
103804.

129. Shambour MKY, Khan EA. A late acceptance hyper-heuristic approach for the optimization problem of distribut-
ing pilgrims over mina tents. J Univ Comput Sci. 2022;28(4):396–413. doi:10.3897/jucs.72900.

130. Maashi M, Kendall G, Özcan E. Choice function based hyper-heuristics for multi-objective optimization. Appl
Soft Comput. 2015 Mar 1;28(2):312–26. doi:10.1016/j.asoc.2014.12.012.

131. Ahmed BS, Enoiu E, Afzal W, Zamli KZ. An evaluation of Monte Carlo-based hyper-heuristic for interaction
testing of industrial embedded software applications. Soft Comput. 2020 Sep 1;24(18):13929–54. doi:10.1007/
s00500-020-04769-z.

132. Zhang C, Zhao Y, Leng L. A hyper-heuristic algorithm for time-dependent green location routing problem with
time windows. IEEE Access. 2020;8:83092–104. doi:10.1109/ACCESS.2020.2991411.

133. Pukhkaiev D, Semendiak Y, Götz S, Aßmann U. Combined selection and parameter control of meta-heuristics.
In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI); 2020 Dec 1–4; New York, NY, USA. p.
3125–32. doi:10.1109/SSCI47803.2020.9308135.

134. Marshall RJ, Johnston M, Zhang M. A comparison between two evolutionary hyper-heuristics for combinatorial
optimisation. In: Simulated evolution and learning. Cham: Springer International Publishing; 2014. p. 618–30.

135. Mısır M, Verbeeck K, Causmaecker PD, Berghe GV. A new hyper-heuristic as a general problem solver: an
implementation in HyFlex. J Schedul. 2013 Jun 1;16(3):291–311. doi:10.1007/s10951-012-0295-8.

136. de Carvalho VR, Özcan E, Sichman JS. Comparative analysis of selection hyper-heuristics for real-world multi-
objective optimization problems. Appl Sci. 2021;11(19):9153. doi:10.3390/app11199153.

137. Burke E, Curtois T, Hyde M, Kendall G, Ochoa G, Petrovic S, et al. Iterated local search vs. hyper-heuristics: towards
general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation; 2010 Jul 18–23; New York,
NY, USA. p. 1–8. doi:10.1109/CEC.2010.5586064.

138. Misir M. Cross-domain algorithm selection: algorithm selection across selection hyper-heuristics. In: 2022 IEEE
Symposium Series on Computational Intelligence (SSCI); 2022 Dec 4–7; New York, NY, USA. p. 22–9. doi:10.1109/
SSCI51031.2022.10022078.

139. Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Woodward JR. Exploring hyper-heuristic methodologies with
genetic programming. In: Mumford CL, Jain LC, editors. Computational intelligence: collaboration, fusion and
emergence. Berlin, Heidelberg: Springer; 2009. p. 177–201.

140. Tyasnurita R, Özcan E, Drake JH, Asta S. Constructing selection hyper-heuristics for open vehicle routing with
time delay neural networks using multiple experts. Knowl Based Syst. 2024 Jul 8;295(10):111731. doi:10.1016/j.knosys.
2024.111731.

https://doi.org/10.1016/j.swevo.2020.100647
https://doi.org/10.1162/evco_a_00258
https://doi.org/10.1016/j.ins.2023.01.047
https://doi.org/10.1016/j.engappai.2021.104284
https://doi.org/10.1145/2001576.2001843
https://doi.org/10.1145/3583131.3590509
https://doi.org/10.1016/j.artint.2022.103804
https://doi.org/10.1016/j.artint.2022.103804
https://doi.org/10.3897/jucs.72900
https://doi.org/10.1016/j.asoc.2014.12.012
https://doi.org/10.1007/s00500-020-04769-z
https://doi.org/10.1007/s00500-020-04769-z
https://doi.org/10.1109/ACCESS.2020.2991411
https://doi.org/10.1109/SSCI47803.2020.9308135
https://doi.org/10.1007/s10951-012-0295-8
https://doi.org/10.3390/app11199153
https://doi.org/10.1109/CEC.2010.5586064
https://doi.org/10.1109/SSCI51031.2022.10022078
https://doi.org/10.1109/SSCI51031.2022.10022078
https://doi.org/10.1016/j.knosys.2024.111731
https://doi.org/10.1016/j.knosys.2024.111731


1288 Comput Model Eng Sci. 2025;142(2)

141. Aldeeb BA, Al-Betar MA, Norwawi NM, Alissa KA, Alsmadi MK, Hazaymeh AA, et al. Hybrid intelligent
water Drops algorithm for examination timetabling problem. J King Saud Univ-Comput Inf Sci. 2022 Jan
1;34(8):4847–59. doi:10.1016/j.jksuci.2021.06.016.

142. Raghavjee R, Pillay N. A genetic algorithm selection perturbative hyper-heuristic for solving the school timetabling
problem. ORiON. 2015;31(1):39–60. doi:10.5784/31-1-158.

143. Almaneea LI, Hosny MI. A two level hybrid bees algorithm for operating room scheduling problem. Intell Comput
Proc 2018 Comput Conf. 2019;1(3):272–90. doi:10.1007/978-3-030-01174-1_21.

144. Lourenço HR, Martin OC, Stützle T. Iterated local search. In: Glover F, Kochenberger GA, editors. Handbook of
metaheuristics. Boston, MA, USA: Springer; 2003. p. 320–53.

145. Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H, Burke EK. Effective learning hyper-heuristics for the course
timetabling problem. Eur J Oper Res. 2014 Oct 1;238(1):77–86. doi:10.1016/j.ejor.2014.03.046.

146. Koumousis VK, Katsaras CP. A saw-tooth genetic algorithm combining the effects of variable population size
and reinitialization to enhance performance. IEEE Trans Evol Comput. 2006;10(1):19–28. doi:10.1109/TEVC.2005.
860765.

147. Li X, Li M. Multiobjective local search algorithm-based decomposition for multiobjective permutation flow shop
scheduling problem. IEEE Trans Eng Manag. 2015;62(4):544–57. doi:10.1109/TEM.2015.2453264.

148. Phan HD, Ellis K, Barca JC, Dorin A. A survey of dynamic parameter setting methods for nature-inspired swarm
intelligence algorithms. Neural Comput Appl. 2020 Jan 1;32(2):567–88. doi:10.1007/s00521-019-04229-2.

149. Karafotias G, Hoogendoorn M, Eiben AE. Parameter control in evolutionary algorithms: trends and challenges.
IEEE Trans Evol Comput. 2015;19(2):167–87. doi:10.1109/TEVC.2014.2308294.

https://doi.org/10.1016/j.jksuci.2021.06.016
https://doi.org/10.5784/31-1-158
https://doi.org/10.1007/978-3-030-01174-1_21
https://doi.org/10.1016/j.ejor.2014.03.046
https://doi.org/10.1109/TEVC.2005.860765
https://doi.org/10.1109/TEVC.2005.860765
https://doi.org/10.1109/TEM.2015.2453264
https://doi.org/10.1007/s00521-019-04229-2
https://doi.org/10.1109/TEVC.2014.2308294

	Unveiling Effective Heuristic Strategies: A Review of Cross-Domain Heuristic Search Challenge Algorithms
	1 Introduction
	2 Related Works
	3 Methods
	4 Main Characteristics of Cross-Domain Heuristic Search Challenge CHeSC 2011 Algorithms
	5 Effective and Ineffective Strategies among CHeSC 2011 Algorithms
	6 Comparison with Trends in Recent Hyper-heuristics
	7 Recommendations for Future Studies Related to Selection Hyper-Heuristics
	8 Conclusions
	References


